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Abstract. Rowhammer is a hardware vulnerability that can be ex-
ploited to induce bit flips in dynamic random access memory (DRAM),
compromising the security of a computer system. Multiple ways of ex-
ploiting Rowhammer have been shown and even in the presence of mitiga-
tions such as target row refresh (TRR), DRAM modules remain partially
vulnerable. In this paper, we present a large-scale reproduction study on
the Rowhammer vulnerability using the Blacksmith Rowhammer fuzzer.
The main focus of our study is the impact of the fuzzing environment.
Our study uses a diverse set of 10 DRAM chips from various manufac-
turers, with different capacities and memory frequencies. We show that
the runtime, used seeds, and DRAM coverage of the fuzzer have been
underestimated in previous work. Additionally, we study the entire hard-
ware setup’s impact on the transferability of Rowhammer by fuzzing the
same DRAM on 4 identical machines. The transferability study heav-
ily relates to Rowhammer-based physically unclonable functions (PUFs)
which rely on the stability of Rowhammer-induced bit flips. Our results
confirm the findings of the Blacksmith fuzzer, showing that even modern
DRAM chips are vulnerable to Rowhammer. In addition, we show that
PUFs are challenging to achieve on commodity systems due to the high
variability of Rowhammer bit flips.

1 Introduction

The Rowhammer effect was first documented in 2014 [15]. With this effect, bit
flips can be induced in the DRAM by rapidly accessing adjacent memory cells
in the DRAM. While first deemed unexploitable, multiple exploitation tech-
niques [2,8,22,23,27,28,29] have been presented, making Rowhammer a threat
to the security of systems. Consequently, in addition to multiple academic miti-
gations [15,30,25,26,31,18,20,12|, industry also tried to prevent the exploitation
of this effect [13]. However, some implemented mitigations have been bypassed
using new hammering techniques [6,9,17,11]. Mounting Rowhammer with coun-
termeasures such as target row refresh (TRR) or error correction code (ECC)
memory in place requires sophisticated techniques often discovered using spe-
cialized fuzzers to search for hammering patterns automatically [6,3,11].

These fuzzers were evaluated on a large set of different DRAM modules (up
to 42 DIMMS) where they report impressive results [6]. However, in contrast to



fuzzing papers on software [16], these results are often not reproduced. One rea-
son is that microarchitectural attacks, particularly Rowhammer, require specific
expertise [5]. There is a non-trivial configuration phase of the system. In the case
of Rowhammer, it is necessary to reverse engineer the DRAM memory address-
ing function before an attack can be mounted [21,10,7]. As this function depends
on the CPU’s memory controller, this step adds additional complexity to a row-
hammer attack. In addition, attack parameters that work for the specific DRAM
module under test must be found. Moreover, multiple DIMMs are required for
statistically significant results, making these experiments more expensive than
fuzzing software. Hence, even given open-source Rowhammer fuzzers [11,6], it is
not trivial to reproduce the results.

In this paper, we evaluate the reproducibility of Rowhammer fuzzing runs,
showing that the current metric of flips in 12 h is not ideal for comparing fuzzers.
For the results, we focus on the transferability of Rowhammer patterns across
identical machines and identical DIMMs. More precisely, our analysis focuses on
the following research question: Does the same DIMM show different bit flips on
different but identical machines?

For our setup, we rely on the state-of-the-art open-source Rowhammer fuzzer
Blacksmith [11]. Our analysis with 10 DIMMs on 4 identical machines shows that
the reported results are reproducible on a wide range of commonly-available
DIMMs and desktop computers without requiring any special hardware setup
or software configuration. Surprisingly, our non-optimized setup discovers 5397
bit flips on average, which aligns with the original paper [11]. However, as the
default configuration of the fuzzer only uses 1 GB of randomly mapped memory,
the number of discovered flips in 12h varies significantly, from 0 to 18142 on
the same DIMM. Hence, this shows that the number of bit flips in such a short
time frame and over such a comparatively small memory region is not the ideal
metric to compare the performance of fuzzers.

To further analyze the transferability of the discovered bit flips, we rely on 3
identical DIMMs and 4 identical desktop setups. We analyze both the difference
in bit flip between the identical DIMMs on the same machine, and the same
DIMM on identical machines. To enable such an analysis, we modify Blacksmith
to deterministically map and sweep hammering patterns over a defined memory
area. In line with previous work, we show that bit flips are unique to DIMMs,
even if they are of the same model. However, we show that the used machine
also has a significant impact. When we used a fixed 256 MB memory region and
hammering pattern, in the most extreme case, we achieve on average 13 282 bit
flips on 3 machines, but no bit flip on the 4th machine. This insight that even
identical setups significantly impact bit flips directly affects proposals that rely
on Rowhammer as a physical-unclonable function [24,1].

Contributions. The contributions of this paper are:

1. Reproducing the results of Jattke et al. [11] on 4 identical machines and
10 DIMMs, showing that current metrics for comparing Rowhammer fuzzers
are not ideal.



2. Study of the transferability of bit flips between identical machines, showing
that the impact of the used hardware was underestimated in previous work.

3. Evaluation of DRAM as a physically unclonable function, showing that such
constructions suffer from practical issues.

Outline. Section 2 provides the necessary background. Section 3 introduces
our evaluation methodology. Section 4 presents our results. Section 5 evaluates
the usability of Rowhammer as a PUF. Section 6 discusses the implications of
our study and potential future work. Section 7 concludes.

2 Background

In the following, we introduce the necessary background to understand the re-
mainder of this paper.

2.1 Rowhammer

Rowhammer is a vulnerability that affects modern DRAM modules, allowing
attackers to induce bit flips. Modern DRAM modules are physically organized
into rows containing memory cells. Each memory cell can hold a single bit,
represented by a capacitor’s charge level. Because the capacitor constantly dis-
charges, it must be regularly refreshed to prevent data loss. By design of the
DRAM module, data can only be accessed in rows, discharging all capacitors in
the addressed row. Therefore, after both read and write accesses, the entire row
must be refilled with both the changed and unchanged data. Rowhammer at-
tacks abuse this effect by repeatedly rapidly accessing one or more DRAM rows
(“aggressor” rows) to influence neighboring DRAM rows (“victim” rows). Ca-
pacitors in neighboring rows then lose their charge more quickly, up to a point
where the charge decreases below a threshold necessary to reliable detect the
bit’s value. This behavior allows an attacker to corrupt memory, thereby creat-
ing a potential security threat. As demonstrated by previous research [15,23,22],
Rowhammer attacks can reliably flip bits at attacker-chosen addresses by ac-
cessing DRAM rows in fixed patterns. Such targeted bit flips can be used for
sandbox escapes and privilege-escalation attacks on various systems, including
desktop computers [15,8], mobile devices [28], and cloud servers [29], even by a
remote attacker [27,19]. In an attempt to prevent Rowhammer attacks, a class of
hardware mitigations called Target Row Refresh (TRR) [6] was proposed. These
mitigations detect frequently-accessed rows and refresh them and other rows in
proximity. While TRR prevents Rowhammer attacks relying on simple hammer-
ing patterns, it has been shown that the majority of TRR implementations is
still vulnerable to more sophisticated Rowhammer attacks [6,11,17].

2.2 Blacksmith Rowhammer Fuzzer

Blacksmith [11] is a state-of-the-art Rowhammer fuzzer aiming to find mem-
ory access patterns that yield particularly high rates of Rowhammer-induced



bit flips. It improves on previous Rowhammer attacks by not only consider-
ing patterns with a uniform distribution of accesses onto the aggressor rows, but
also allowing non-uniform patterns. Moreover, the fuzzer considers patterns that
span over multiple refresh intervals, as these significantly improve the number
of induced bit flips. Because the search space for non-uniform fuzzing patterns
of varying lengths is large, Blacksmith uses a heuristic (called fuzzing in the
frequency domain by the authors) to efficiently explore promising hammering
patterns. This method has been shown to be highly effective in finding patterns
with a high rate of Rowhammer-induced bit flips. In addition, the generated
patterns have been shown to be able to bypass mitigations like TRR. TRR is
bypassed by particular hammering patterns that are outside the detection scope
of current hardware countermeasures [6,11,17].

2.3 Rowhammer as Physically-unclonable Function (PUF)

Rowhammer can be leveraged as a Physically-unclonable Function (PUF) [24,1],
a security primitive that uses the physical variations specific to individual hard-
ware components to generate unique and unpredictable cryptographic keys. For
Rowhammer, the physical variation in DRAM cells can be used to generate a
unique bit flip sequence that can be used as a basis for further cryptographic
operations. As the variations in susceptibility to bit flips vary between DRAM
modules, even ones from an identical manufacturing run, the bit flips of each
module are unique. However, the reliability of this approach is still an active area
of research, as the stability and predictability of the bit sequence can be affected
by various factors, such as temperature and voltage fluctuations and the qual-
ity of the DRAM module itself. Therefore, PUFs based on Rowhammer require
a fuzzy extractor construction [4] to deal with the underlying unstableness of
Rowhammer bit flips. In addition, attacks against Rowhammer-based PUF con-
structions have been proposed [32]. It was shown that given enough observations
of a PUF scheme using Rowhammer, an attacker can predict the subsequent PUF
response, alwowing an attacker to imitate the PUF generated, therefore breaking
its security guarantees. In addition, a denial of service attack was shown. While
not directly undermining the security guarantees of Rowhammer-based PUFs,
this attack renders a PUF based on Rowhammer unusable.

3 Evaluation Methodology

In this section, we describe our methodology for reproducing the Blacksmith
Rowhammer fuzzer as well as the impact of the remaining computing system on
the presence and frequency of Rowhammer bit flips. By reproducing the results
found with the Blacksmith fuzzer, we gain valuable insight into the intricacies
in the evaluation of Rowhammer fuzzers. In addition, we further characterize
the distribution of Rowhammer bit flips in the tested DRAM modules. To com-
bine both our evaluation goals, we use the Blacksmith fuzzer to find flips on 10



different DDR4 modules and repeat the process on 4 identical machines (Sec-
tion 3.2). As the Blacksmith fuzzer heavily relies on randomization, it depends
heavily on the desired property one wants to validate or falsify whether the data
it produces is useful. We modify Blacksmith to be deterministic for reproducible
runs by employing a fixed seed and ensuring that the same physical memory is
mapped between runs. Based on the performed fuzzing runs, we create a data
set that we also use for our analysis in Section 4.

3.1 Testing Setup

This section describes our testing setup regarding both hardware and method-
ology. We provide details about the machines and DRAM modules used during
our evaluation and introduce the testing setup for the Blacksmith fuzzer.

Tested Machines We conduct our tests using 4 identical machines, each with an
Intel Core i7 9700K CPU, HP 8591 mainboard, and HP HQ-TRE 71025 power
supply. All machines run a freshly-installed stock Ubuntu 22.04 using the 5.19.0
Linux kernel. We verify that each machine uses microcode version 0xf0 from May
10, 2022, which is the default microcode with the installed Linux distribution.
We reset the BIOS settings to eliminate the influence of BIOS settings on the
fuzzing runs to factory default settings. In addition, all machines are placed in
one room to minimize the impact of different temperature environments. In the
remainder of the paper, we refer to these machines as machine A to machine D.

Tested DRAM Modules We use 10 different DDR4 DRAM modules of varying
memory sizes from 3 different manufacturers. The tested modules range in mem-
ory sizes from 8 GB to 32 GB. In addition, they cover a wide range of memory
speeds from 2133 MHz up to 3200 MHz. The manufacturing date of the DRAM
modules ranges from 2016 to 2022. Further information on the tested DRAM
modules is provided in Table 1.

3.2 Fuzzing and Memory Sweep

We set up Blacksmith to run for 12h, consistent with the evaluation by Jat-
tke et al. [11]. For each module, we perform one run on machines A to D. We
label each run with a combination of DRAM module and machine, e.g., A; for
machine A and DRAM module 1. During each fuzzing run, Blacksmith searches
for patterns that produce bit flips. We label a fuzzing run successful if it pro-
duces at least one bit flip. When a successful fuzzing run is found, it is followed
by a memory sweep, where a randomly-mapped 256 MB memory range is tested
again using the pattern that produced the most bit flips in the initial run. This
configuration is consistent with the Blacksmith paper and allows for a more
thorough inspection of bit flips in a smaller chunk of memory.

To study the transferability of the bit flips between the different machines,
we rely on the best fuzzing patterns, i.e., the ones producing the most bit flips
in our initial runs. To ensure that we always test the same physical memory cells



Table 1: Module information of our tested DIMMs.

Manufacturer Module Id Manufactured Size Ranks Frequency Flips Observed

Module 1 2018 Q2 32GB 2 2666 MHz 4
Module 2 2018 Q2 32GB 2 2666 MHz v
A Module 3 2018 Q2 32GB 2 2666 MHz v
Module 4 2018 Q2 32GB 2 2666 MHz v
Module 5 2021 8GB 1 3200 MHz v
Module 6 2021 8GB 1 3200 MHz v
B Module 7 2017 8GB 2 3200 MHz v
Module 8 2022 16 GB 2 3200 MHz v
C Module 9 2016 8GB 2 2133 MHz X
Module 10 2016 8GB 2 2133 MHz X

on the DRAM module, we modify Blacksmith to always map the same memory
region when sweeping a fuzzing pattern. We test the best fuzzing patterns found
on the identical modules 1, 2 and 4! on each of the 4 identical machines, allowing
us to study the transferability of bit flips under an identical setup.

4 Results

We present the results of the fuzzing evaluation with regard to the individual runs
performed with the unmodified Blacksmith fuzzer. By analyzing the distribution
of the found bit flips, we gain additional insights into the bit-flip characteristic of
the analyzed DRAM modules. We make several interesting observations. First,
8 out of the 10 tested modules are affected by Rowhammer bit flips on at least
one of the test machines, confirming claims from prior work that most modules
are affected. Second, Section 4.1 shows potential areas for improvement when
using simple evaluation criteria such as the number of bit flips or bit flips over
time. Third, Section 4.2 shows that the bit flips are not uniformly distributed
across rows but instead localized within a smaller subset of the rows, and that
bit flips with lower hamming weight are more likely, i.e., bit flips where only a
few memory cells change their value. Finally, a factor that was previously not
analyzed and has considerable influence is the machine used during Rowhammer
testing, as we show in Section 4.3. As a result, we gain valuable insights into the
specifics of Rowhammer fuzzer evaluation that show that current evaluations are
not ideal for comparing fuzzers. Building on the result that Rowhammer depends
on the entire underlying system, we perform a case study in Section 5 showing
that its use as a PUF, as proposed by previous work [24,1], is very challenging
on a commodity system.

! DRAM module 3 broke during testing and is therefore excluded in the transferability
study.



4.1 Temporal Distribution of Bit Flips

Two standard time-based metrics when evaluating software fuzzers are crashes
and coverage over time [16]. While these metrics originate from software fuzzing,
they can also find application in evaluating more specialized fuzzers such as
Blacksmith. However, as Blacksmith does not produce crashes, we use the num-
ber of bit flips over time reported during each fuzzing run.

A common methodology in software fuzzing is dedicating crashes to isolate
a unique trigger for each crash [16]. Deduplication, when used in the practical
context of vulnerability discovery, simplifies the analysis of crash root causes.
Further, deduplication eases the evaluation of a software fuzzer as one crash
may have many different root causes, which, when not deduplicated, can also
complicate the comparison between different fuzzers. Similarly to the deduplica-
tion of crashes in software fuzzing, we also deduplicate the bit flips and count the
number of unique bit flips over time. While multiple deduplication granularities
are possible as the DRAM is hierarchically organized, we decided to duplicate on
a per-row basis. We experimentally evaluated multiple deduplication strategies
and found that a per-row deduplication is an effective middle ground allowing
for interesting observations. This means that we only count the new rows where
a bit flip occurs not the position inside a row. As observed in Section 4.2, up to
75 % of all memory cells are vulnerable when hammering long enough.

As seen in Figure 1, Blacksmith finds bit flips quickly. On average, the time to
the first bit flip is 47.78 min, excluding runs that do not produce flips. The higher
time to first bit flip is easily explained by two outlier samples where the time to
the first bit flip takes multiple hours. This also reflects in the much lower median
time to the first bit flip of 3.78 min. Similar differences between the time to first
bit flip have been observed by Jattke et al. [11]. In addition, once the first bit flip
occurred, further bit flips are consistently found. These observations highlight
that Blacksmith’s fuzzing strategy can consistently produce patterns that induce
bit flips. Overall, a linear relationship exists between time and the number of bit
flips, both when considering unique and non-unique bit flips, as seen in Figure 1.
We also calculate the factor with which unique bit flips occur less than general
bit flips. We observe that unique bit flips occur around 3 orders of magnitude less
often than just any observed bit flip (to be more precise, general bit flips occur
1694 times more often than unique ones). While this factor is comparatively
high, the high number of overall bit flips also implies a high number of unique
bit flips. Even more interesting, the factor with which unique vs. non-unique bit
flips occur, stabilizes quickly after starting a fuzzing run. It also remains stable
during the 12 h duration of the run. The fact that this factor stays constant over
the time of the fuzzing run indicates that there are still new bit flips found at
the end of the run. Therefore, the 12h duration for each fuzzing run is likely
too short to exhaust all unique bit flips in the 1 GB memory area under test
by fuzzing. Future work could evaluate similar fuzzers based on the time until
no unique flips are found. This strategy can lead to two potentially interesting
metrics.
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Fig. 1: Flips over time observed by the fuzzing runs. Both duplicated and non-
deduplicated bit flips are plotted with the minimum and maximum flips at the
current time point as well as the average.

First, the time until no more unique bit flips are found indicates how long a
fuzzer needs to reach its optimal coverage, after which point fuzzing for longer
produces diminishing returns. The number of unique bit flips yields insight into
the maximum reachable performance of the fuzzer. Combining these metrics
by dividing the total number of unique bit flips by the time needed to reach
a point where little to no new bit flips are found gives a combined metric for
the fuzzing performance. Intuitively, one wants many unique bit flips as fast
as possible, favoring fuzzers that efficiently explore the DRAM to produce new
ones. In addition, this metric enables comparing long-running fuzzers that try
to scan the memory thoroughly for a maximum amount of bit flips with ones
that are optimized to produce bit flips as quickly as possible.

Takeaway Simply evaluating Rowhammer fuzzers by the number of bit flips
they produce in a fixed time interval oversimplifies the comparison.

Second, the coverage, again similar to classic software fuzzers, is another
interesting metric. In contrast to coverage metrics from software testing, a much
simpler coverage metric suffices for Rowhammer. We monitor how many of the
total DRAM rows in the 1 GB memory interval are accessed by Blacksmith
during its 12h fuzzing campaign. As illustrated in Figure 2, during each of the
12h fuzzing runs, a coverage of over 90.5 % is reached. Due to the randomized
fuzzing strategy that Blacksmith employs, the coverage differs between fuzzing
runs, with different runs producing different minimal and maximal coverage. We
also see that the increase in global coverage slows down over time as Blacksmith
randomly picks addresses in the DRAM. This leads to a situation where the
more prolonged the fuzzing is, the more the DRAM has been covered, and the
less likely it is to uncover new DRAM locations randomly. This observation
can be valuable if a fuzzer should reach maximal global coverage quickly, in
which case the design employed by Blacksmith is not ideal. Instead, already
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Fig.2: Coverage of the 1 GB memory region over the time of the 12h fuzzing
run. The margins show the minimum and maximum coverage achieved over all
runs at each point in time.

tested DRAM locations could be blocklisted in favor of new untested locations,
therefore enabling rapid exploration of the provided memory.

Takeaway Coverage of current Rowhammer fuzzers can be improved by
avoiding already fuzzed DRAM cells.

4.2 Spatial Distribution of Bit Flips

In addition to the temporal resolution, i.e., how long it takes to find bit flips,
the spatial distribution of the bit flips is a relevant metric. An important start-
ing point is the distribution of Rowhammer-susceptible DRAM rows over the
analyzed DRAM module.

We compute the distribution of bit flips among the tested DRAM rows. In
the interest of keeping the results readable, we compute a histogram over the
rows where we group 256 rows into one bucket. The results of this evaluation are
shown in Figure 3, where it can be observed that the bit flips are not uniformly
distributed across the DRAM rows but are concentrated in a small subset of rows.
In addition, we observe that this effect is consistent over multiple machines and
DRAM modules as well as over the random memory ranges picked by Blacksmith
for each fuzzing run. As we observe this effect on independent fuzzing runs, we
hypothesize it is more a property of the DRAM itself and not one of the fuzzing
patterns generated by Blacksmith. In addition, we observe the same effect even if
the memory ranges used for fuzzing reside at a fixed physical address, implying
that this effect is not due to the specifics of address allocation from the OS.
Our current hypothesis is that the physical memory layout of the DRAM chip is
reflected in the observed bit flips. As the physical layout does not need to match
the physical addresses, we assume that a more vulnerable DRAM integrated
circuit on the DRAM module is indexed at regular intervals yielding the observed
patterns. While this effect has to be better understood to determine its root
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Fig. 3: Accumulated bit flips per row range on A; to Dy averaged over all banks.
It can be seen that flips are not evenly distributed across rows.

cause, we can see potential consequences. A fuzzer searching for Rowhammer
bit flips could employ a search strategy favoring memory regions where bit flips
already occurred to target the localized bit flips. In addition, an attacker can
employ a similar strategy to scan the memory for the required bit flip patterns.

Takeaway Bit flips are not uniformly distributed across DRAM rows. Instead,
they are local, mostly occurring in a smaller subset of the rows.

In addition to analyzing the distribution of bit flips across different DRAM
rows, we analyze the Hamming weight of bit-flip patterns induced during each
fuzzing run. A pattern is a 64-bit bitmask representing the difference between
the original and flipped data, i.e., the location of bit flips. Figure 4 shows the
results of summing up the occurrences of Hamming weights per machine-DRAM
pair. Note that we accumulate the data of all patterns by summing the Hamming
weights of the patterns. While most patterns have a Hamming weight of 1, we
find up to 5 bit flips per quadword, i.e., a Hamming weight of 5, on C;and C4. This
is in line with work by Kim et al. [15,14]. They report up to 4 bit flips. Further,
we analyze the maximum flip rate per row. We find up to 364 bit flips per row
(8 KiB = 65536 bits) on C4 with pattern A, giving a maximum flip rate of 0.56 %.
This is again in line with Kim et al. [14] who report a maximum flip rate between
0.1% and 1% for new DDR4 chips. When analyzing the distribution of bits in
the bit-flip patterns, we find that the flipped bits are uniformly distributed in a
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Fig. 4: Distribution of Hamming weights per quadword on machine-DRAM com-
binations accumulated over all patterns that produce bit flips. The distribution
is close to a normal distribution with a mean at around 32.

quadword. This aligns with results by Gruss et al. [8], who report that bit-flip
locations are uniformly distributed when averaging over multiple pages.

Takeaway In rare cases, Blacksmith finds patterns that induce up to 5 bit
flips per quadword. Further, Blacksmith reaches a maximum flip rate of 0.56 %
per hammering run. As reported by related work, the bit-flip locations are
uniformly distributed in a quadword.

4.3 Transferability

A key goal of our study is to analyze the transferability of Rowhammer bit flips
on the same DRAM module but on different, identical machines. For this, we
analyze the observed bit flips induced by a hammering pattern between different
machines. The vital difference to the transferability study of Jattke et al. [11]
is that we examine the transferability of hammering patterns between machines
and not DRAM modules.

We perform the memory sweep on all machines with the best pattern found
for the DRAM module on one machine. Each pattern is replayed over the ezact
same physical memory range in the exact same order. We take the above steps to
eliminate side effects caused by the choice of memory region. As seen in Figure 3,
bit flips are not uniformly distributed across rows. Therefore, picking a different
memory and row range could bias the results.

11
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A B c D A B C D A B C D A B C D

Fig.5: Transferability of patterns between different machines. Each heatmap
illustrates fuzzing runs on one machine over the 3 tested DIMMs with patterns
found on all other machines. Darker colors indicate more observed bit flips.

Figure 5 illustrates our results. We observe that the occurrence and count
of bit flips depend on the machine. In the most extreme cases, this can lead to
cases where we do observe bit flips on one machine but not the other using the
same hammering pattern and DRAM module. We suspect that manufacturing
differences in non-DRAM parts of the system could induce these differences.
One example could be the different frequency scaling behavior of CPUs depend-
ing on minor manufacturing differences. Similar differences could also influence
the mainboard components and power supply, leading to a different number of
observed bit flips.

Takeaway The combination of the machine, hammering pattern and DRAM
module impacts the presence and count of bit flips.

5 Case Study: Rowhammer as Physically Unclonable
Function

In this section, we further quantify the extent to which the machine in that a
DRAM module is installed influences the observed bit flips. This effect directly
impacts not only the evaluation of Rowhammer fuzzers but also the use of DRAM
as a physically-unclonable function (PUF) [24,1]. Assuming that the bit flips are
randomly distributed and dependent on manufacturing differences unique to
each DRAM module, a random and unique bit stream can be obtained. This
bit stream can then be used as an entropy source for further operations, such
as serving as a seed in cryptographic operations. We experimentally quantify
the additional error induced by manufacturing differences in the same model of
different CPUs.

Schaller et al. [24] conclude that an error rate of 5% achieved in their ex-
periments is acceptable when using a fuzzy extractor construction [4]. To stay
comparable to the work of Schaller et al. [24], we also use the Jaccard index
as a measurement of error. The Jaccard index J can be computed between two

sets of measurements H; and Ha, obtained during two hammering runs, using
|HiNH, |

oM We store the rows index of the rows that produced

the formula J =

12
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Fig.6: Comparison of three deterministic runs (same machine, same DRAM,
same pattern) on machines A-D. The jackard index d; shows how consistent the
runs are, with d; = 0 we observe the same bitflips between two different runs.

bit flips in these sets H; and Hy. We focus on the error rate between different
machine-DRAM pairs, which is the Jaccard distance computed as dy = 1 — J,
where J is the Jaccard index between two fuzzing runs using the same pattern
and memory range.

5.1 Reliability

To ensure that machine-DRAM pairs can be used as PUF, we analyze 3 repeated
fuzzing runs on the same machine-DRAM pair. Figure 6 illustrates the results.
For A, both DRAM modules 1 and 4 give low error rates between the 3 runs,
while DRAM 2 has a high error rate. Consequently, modules 1 and 4 could be
used as PUF with A, while module 2 cannot be used. On B to D, we see contrary
results. While DRAM module 2 performs best, both modules 1 and 4 cannot be
used on any of the 3 machines. On D we even see that no module works reliably,
with error rates above 50 %.

We conclude that DRAM modules may work perfectly with one machine
while inducing high error rates on another machine. Further, we conclude that
some machines induce bit flips less reliably than others and, therefore, are not
suitable for usage as PUFs. Additionally, we conclude that multiple hammering
runs are needed for reliable results as can be seen with the runs on C;, where
two runs compared well, while the others had no common flipped rows. Multiple
reasons can potentially explain the high error rates on some machines:

— More diverse hardware: Our experiments are performed on DRAM mod-
ules from multiple vendors. In addition, additional variations could be in-
troduced as we use commodity computers instead of a specialized testing
setup.
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— System noise: We perform our experiments under a normal Linux setup
introducing additional unrelated noise on the DRAM modules.

— Hammering patterns: We use complex hammering patterns generated by
Blacksmith, which could introduce additional noise.

Quantifying if and to which extent the above points change the occurrence of
bit flips requires further studies. Especially the relationship between the com-
plexity of a hammering pattern and the determinism of the induced bit flips is
important for both the usage of Rowhammer as a PUF and also the reliability
of Rowhammer exploits.

Takeaway System noise, hardware differences, and different hammering pat-
terns make it unlikely to trigger identical bit flips reliably on the same DIMM.

5.2 Uniqueness

In this section, we investigate on which parameters the uniqueness of Rowham-
mer as PUF depends. For that, we evaluate both pairs of the same machine and
differing DRAM and differing machine and the same DRAM.

Table 2 gives an overview of the best (lowest error rate) 15 pairs of combi-
nations of machine, DRAM, and pattern. While most pairs result in error rates
above 40 %, we find 3 cases with lower error rates. In all of these cases, both
memory sweeps that are compared are performed with the same DRAM module,
only the machine changes. Further, we see no cases of low error rates when using
a different machine as well as a different DRAM module from our test pool.
From these observations, we draw the following conclusions:

1. DRAM has more impact on the error rate than the machine: The
pairs with the lowest error rate all have in common that they share the same
DRAM module. Thus, we conclude that DRAM has a higher impact on a low
error rate than the machine. This further leads us to the next conclusion.

2. Uniqueness is guaranteed when DRAM is secret, i.e., not shared:
We see no pair of machine-DRAM combinations with error rates below 50 %,
where only the machine matches. Thus, we argue that a secret DRAM mod-
ule, i.e., a non-shared one, already fulfills the uniqueness guarantees of a
PUF. Section 5.1 in contrast shows that the machine has a high impact on
the reliability and applicability of Rowhammer as PUF.

Takeaway PUFs with Rowhammer are difficult to achieve on commodity
systems. While there are no false positives (no combination of DRAM and
machines is the same), the false positive rate is high as it heavily depends
on the machine (minor change in the environment leads to non-reproducible
output of the PUF).
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dy Combination A Combination B Same machine Same DRAM Pattern

-— 0.21 B] Cl X v B
—— 0.29 Aq Bi X v A
—o— 0.35 As Ba X v B
—e— 0.40 BQ CZ X v C
—o— 0.43 Ay Cy X v A
—e— 0.52 Az Cs X v C
—e— 0.55 Az Cy X X C
—e— 0.59 B; C X X C
—eo— 0.60 By Cy X v C
—eo— 0.62 C1 Co v X C
—eo— 0.62 C1 Co v X C
—e— 0.67 C4 D4 X v D

Table 2: The 15 combinations of machine, DRAM, and pattern, whith the lowest
error rate. At least one of the three parameters is different in between the runs.
We compute the jackard distance d; for each of the tested combinations.

6 Discussion

In this section we discuss the implications of our work and the potential for
future work building on our research.

6.1 Implications

In this paper we reproduced the results presented in the Blacksmith paper and
quantified the impact of hardware other than the DRAM module on the presence
of Rowhammer bit flips. Our results show that Blacksmith effectively finds bit
flips in 8 of the 10 tested DRAM modules. However, our results also show that
the hardware, beyond the DRAM module, significantly impacts the occurrence
and distribution of bit flips. These results do not only have implications on the
evaluation of Rowhammer fuzzers but also on the usage of DRAM as a PUF.
We show that depending on the machine, even if they have identical hardware,
the change in bit flips and therefore the error rate of a Rowhammer-based PUF
can reach over 80 %.

Our results confirm the ongoing threat of Rowhammer as an attack vector.
The fact that Blacksmith can find bit flips in 8 of the 10 tested DRAM modules
again underlines the need for effective Rowhammer countermeasures. Our results
also show that the spatial distribution of bit flips is an important metric to
consider when evaluating a Rowhammer attack’s effectiveness.
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6.2 Future Work

Future work could include evaluating the performance of Blacksmith against
other Rowhammer fuzzers. Our study shows that Blacksmith is effective in find-
ing bit flips in various DRAM modules, but it is unclear how it compares to
other search strategies employed in other fuzzers. Our analysis also shows that
a simple metric such as bit flips in a 12h run can be misleading when com-
paring Rowhammer fuzzers. Therefore, future work should explore methods to
fairly and reliably compare fuzzers, which is challenging given that the amount
of Rowhammer bit flips strongly depends on the tested DRAM module.
Another avenue for future research is to analyze the impact of further factors,
such as specific CPU and mainboard features, on the occurrence and distribution
of bit flips. In addition, a study with more diverse hardware and uniform DRAM
modules could be performed, further quantifying the impact of hardware other
than the DRAM module on Rowhammer. This information could aid the design
of better Rowhammer countermeasures and more effective Rowhammer attacks.
Lastly, fundamental observations regarding the Rowhammer effect could be
further quantified. We observed that the bit flips found by Blacksmith were not
uniformly distributed across DRAM. In addition, further characterizing the bit
flip patterns found by Blacksmith beyond the hamming weight of the bit flips
could reveal insights about the distribution of bit flips inside a single row.

7 Conclusion

In this paper, we presented a reproduction study on the Rowhammer security
vulnerability using the Blacksmith Rowhammer fuzzer. We also investigated the
impact of the entire hardware setup on the transferability of Rowhammer flips
across different but identical machines. With 8 out of 10 DDR4 DIMMs showing
bit flips, the findings revealed that the Rowhammer vulnerability is still prevalent
in modern DRAM chips and could be easily reproduced using the correct tools.
Additionally, identical machines were utilized to determine the transferability
and variability of the Rowhammer effect between different system setups. This
transferability study was closely related to Rowhammer-based physically unclon-
able functions (PUF), which depend on the stability of Rowhammer-induced bit
flips. In conclusion, the results confirmed the findings of the Blacksmith fuzzer,
demonstrating that even modern DRAM chips were vulnerable to Rowhammer.
However, we also showed that the fair comparison of Rowhammer fuzzers is dif-
ficult due to the hardware-dependent fuzzing environment. Finally, our results
indicate that achieving PUF on commodity systems is challenging due to the
high variability of Rowhammer bit flips.
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