

DANIEL
NEXT SLIDE: DANIEL

Who am I?

Daniel Gruss
PostDoc @ Graz University of Technology
 @lavados
 daniel.gruss@iaik.tugraz.at

1 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

https://twitter.com/lavados
mailto:daniel.gruss@iaik.tugraz.at

Who am I?

Moritz Lipp
PhD student @ Graz University of Technology
 @mlxxyz
 moritz.lipp@iaik.tugraz.at

2 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: MICHAEL

https://twitter.com/mlqxyz
mailto:moritz.lipp@iaik.tugraz.at

Who am I?

Michael Schwarz
PhD student @ Graz University of Technology
 @misc0110
 michael.schwarz@iaik.tugraz.at

3 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MICHAEL

https://twitter.com/misc0110
mailto:michael.schwarz@iaik.tugraz.at

And the rest of the team

The rest of the research team
• Clémentine Maurice
• Daniel Genkin
• Jonas Juffinger
• Lukas Raab
• Lukas Lamster
• Misiker Tadesse Aga
• Sioli O’Connell
• Wolfgang Schoechl
• Yuval Yarom

4 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MICHAEL

DRAM organization

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

5 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MICHAEL

DRAM organization

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

5 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MICHAEL

DRAM organization

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

5 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MICHAEL

DRAM organization

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

5 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MICHAEL

DRAM organization

chip
bank 0

row 0
row 1
row 2
…

row 32767

row buffer

64k cells
1 capacitor,

1 transitor each

6 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: DANIEL,MICHAEL

DRAM organization

chip
bank 0

row 0
row 1
row 2
…

row 32767

row buffer

64k cells
1 capacitor,

1 transitor each

6 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: DANIEL,MICHAEL

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL WANTS TO ACCESS
NEXT FRAME: MICHAEL

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 1
→ row 1 activatedactivate 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL EXPLAINS
NEXT FRAME: MICHAEL

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 1
→ row 1 activated
→ row 1 copied to row buffer

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

copy

7 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL EXPLAINS
NEXT FRAME: MICHAEL

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 1
→ row 1 activated
→ row 1 copied to row buffer

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

return

7 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL EXPLAINS
NEXT FRAME: DANIEL

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

CPU wants to access row 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL WANTS TO ACCESS
NEXT FRAME: MICHAEL

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

CPU wants to access row 2
→ row 2 activated

activate 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL EXPLAINS
NEXT FRAME: MICHAEL

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 2
→ row 2 activated
→ row 2 copied to row buffer

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

copy

7 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL EXPLAINS
NEXT FRAME: MICHAEL

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 2
→ row 2 activated
→ row 2 copied to row buffer

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

return

7 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL EXPLAINS
NEXT FRAME: MICHAEL

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 2
→ row 2 activated
→ row 2 copied to row buffer

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1
→ slow (row conflict)

7 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL EXPLAINS
NEXT FRAME: DANIEL

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

CPU wants to access row 2—again

7 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL WANTS TO ACCESS
NEXT FRAME: MICHAEL

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

CPU wants to access row 2—again
→ row 2 already in row buffer

7 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL EXPLAINS
NEXT FRAME: MICHAEL

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

CPU wants to access row 2—again
→ row 2 already in row buffer

return

7 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL EXPLAINS
NEXT FRAME: MICHAEL

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

CPU wants to access row 2—again
→ row 2 already in row buffer
→ fast (row hit)

7 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL EXPLAINS
NEXT FRAME: MORITZ

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

rowbuffer = cache

7 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: MORITZ

Timing difference

210 220 230 240 250 260 270
0

20

40

60

80

100

Clock cycles

Fr
eq
ue
nc
y

Row hits
Row misses

8 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: DANIEL

Rowhammer

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

→

Cells leak faster upon proximate
accesses→ Rowhammer

9 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL ASKS, MICHAEL EXPLAINS
NEXT SLIDE: DANIEL

Rowhammer

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

→

Cells leak faster upon proximate
accesses→ Rowhammer

9 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL ASKS, MICHAEL EXPLAINS
NEXT SLIDE: DANIEL

Rowhammer

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

→
Cells leak faster upon proximate
accesses→ Rowhammer

9 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL ASKS, MICHAEL EXPLAINS
NEXT SLIDE: DANIEL

Rowhammer

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

→
Cells leak faster upon proximate
accesses→ Rowhammer

9 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL ASKS, MICHAEL EXPLAINS
NEXT SLIDE: DANIEL

Rowhammer

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

→
Cells leak faster upon proximate
accesses→ Rowhammer

9 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL ASKS, MICHAEL EXPLAINS
NEXT SLIDE: DANIEL

Rowhammer

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips in row 2!

→
Cells leak faster upon proximate
accesses→ Rowhammer

9 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL ASKS, MICHAEL EXPLAINS
NEXT SLIDE: DANIEL

How widespread is the issue?

• 85% affected [Kim+14] (see Figure)
• 52% affected [SD15]

• First believed to be safe
• We showed bit flips [Pes+16]
• 67% affected [Lan16]

10 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: DANIEL

How widespread is the issue?

• 85% affected [Kim+14] (see Figure)
• 52% affected [SD15]

• First believed to be safe
• We showed bit flips [Pes+16]
• 67% affected [Lan16]

10 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: DANIEL

How widespread is the issue?

• 85% affected [Kim+14] (see Figure)

• 52% affected [SD15]

• First believed to be safe
• We showed bit flips [Pes+16]
• 67% affected [Lan16]

10 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: DANIEL

How widespread is the issue?

• 85% affected [Kim+14] (see Figure)
• 52% affected [SD15]

• First believed to be safe
• We showed bit flips [Pes+16]
• 67% affected [Lan16]

10 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: DANIEL

How widespread is the issue?

• 85% affected [Kim+14] (see Figure)
• 52% affected [SD15]

• First believed to be safe

• We showed bit flips [Pes+16]
• 67% affected [Lan16]

10 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: DANIEL

How widespread is the issue?

• 85% affected [Kim+14] (see Figure)
• 52% affected [SD15]

• First believed to be safe
• We showed bit flips [Pes+16]

• 67% affected [Lan16]

10 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: DANIEL

How widespread is the issue?

• 85% affected [Kim+14] (see Figure)
• 52% affected [SD15]

• First believed to be safe
• We showed bit flips [Pes+16]
• 67% affected [Lan16]

10 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: DANIEL

How widespread is the issue?

• 85% affected [Kim+14] (see Figure)
• 52% affected [SD15]

• First believed to be safe
• We showed bit flips [Pes+16]
• 67% affected [Lan16]

10 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: DANIEL

DANIEL
NEXT SLIDE: DANIEL

Requirements

Memory accesses must be
• uncached: reach DRAM
• fast: race against the next row refresh
• targeted: reach specific row

11 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

How do we get enough uncached accesses?

MORITZ
NEXT SLIDE: MORITZ

Access techniques

• clflush instruction→ original paper [Kim+14]
• cache eviction [GMM16; Awe+16]
• non-temporal accesses [QS16]
• uncached memory [Vee+16]

12 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: MORITZ

Access techniques

• clflush instruction→ original paper [Kim+14]
• cache eviction [GMM16; Awe+16]
• non-temporal accesses [QS16]
• uncached memory [Vee+16]

12 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: MORITZ

Access techniques

• clflush instruction→ original paper [Kim+14]
• cache eviction [GMM16; Awe+16]
• non-temporal accesses [QS16]
• uncached memory [Vee+16]

12 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: MORITZ

Access techniques

• clflush instruction→ original paper [Kim+14]

• cache eviction [GMM16; Awe+16]
• non-temporal accesses [QS16]
• uncached memory [Vee+16]

12 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: MORITZ

Access techniques

• clflush instruction→ original paper [Kim+14]
• cache eviction [GMM16; Awe+16]

• non-temporal accesses [QS16]
• uncached memory [Vee+16]

12 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: MORITZ

Access techniques

• clflush instruction→ original paper [Kim+14]
• cache eviction [GMM16; Awe+16]
• non-temporal accesses [QS16]

• uncached memory [Vee+16]

12 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: MORITZ

Access techniques

• clflush instruction→ original paper [Kim+14]
• cache eviction [GMM16; Awe+16]
• non-temporal accesses [QS16]
• uncached memory [Vee+16]

12 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: MORITZ

How do we target accesses?

MORITZ ASKS MICHAEL
NEXT SLIDE: MICHAEL

Physical addresses and DRAM

DRAMA DRAMA: How your DRAM becomes a security problem
Anders Fogh & Michael Schwarz
Black Hat Europe 2016

13 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL REMEMBERS SOMETHING
NEXT SLIDE: DANIEL

Physical addresses and DRAM

DRAMA

DRAMA: How your DRAM becomes a security problem
Anders Fogh & Michael Schwarz
Black Hat Europe 2016

13 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL REMEMBERS SOMETHING
NEXT SLIDE: DANIEL

Physical addresses and DRAM

DRAMA DRAMA: How your DRAM becomes a security problem
Anders Fogh & Michael Schwarz
Black Hat Europe 2016

13 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL REMEMBERS SOMETHING
NEXT SLIDE: DANIEL

How to exploit random bit flips?

• They are not random→ highly reproducible flip pattern!

1. Choose a data structure that you can place at arbitrary
memory locations

2. Scan for “good” flips
3. Place data structure there
4. Trigger bit flip again

• Alternatively: Build a PUF [Ana+18]

14 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL

How to exploit random bit flips?

• They are not random→ highly reproducible flip pattern!

1. Choose a data structure that you can place at arbitrary
memory locations

2. Scan for “good” flips
3. Place data structure there
4. Trigger bit flip again

• Alternatively: Build a PUF [Ana+18]

14 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL

How to exploit random bit flips?

• They are not random→ highly reproducible flip pattern!

1. Choose a data structure that you can place at arbitrary
memory locations

2. Scan for “good” flips
3. Place data structure there
4. Trigger bit flip again

• Alternatively: Build a PUF [Ana+18]

14 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL

How to exploit random bit flips?

• They are not random→ highly reproducible flip pattern!

1. Choose a data structure that you can place at arbitrary
memory locations

2. Scan for “good” flips
3. Place data structure there
4. Trigger bit flip again

• Alternatively: Build a PUF [Ana+18]

14 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL

How to exploit random bit flips?

• They are not random→ highly reproducible flip pattern!
1. Choose a data structure that you can place at arbitrary
memory locations

2. Scan for “good” flips
3. Place data structure there
4. Trigger bit flip again

• Alternatively: Build a PUF [Ana+18]

14 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL

How to exploit random bit flips?

• They are not random→ highly reproducible flip pattern!
1. Choose a data structure that you can place at arbitrary
memory locations

2. Scan for “good” flips

3. Place data structure there
4. Trigger bit flip again

• Alternatively: Build a PUF [Ana+18]

14 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL

How to exploit random bit flips?

• They are not random→ highly reproducible flip pattern!
1. Choose a data structure that you can place at arbitrary
memory locations

2. Scan for “good” flips
3. Place data structure there

4. Trigger bit flip again

• Alternatively: Build a PUF [Ana+18]

14 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL

How to exploit random bit flips?

• They are not random→ highly reproducible flip pattern!
1. Choose a data structure that you can place at arbitrary
memory locations

2. Scan for “good” flips
3. Place data structure there
4. Trigger bit flip again

• Alternatively: Build a PUF [Ana+18]

14 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT FRAME: MORITZ

How to exploit random bit flips?

• They are not random→ highly reproducible flip pattern!
1. Choose a data structure that you can place at arbitrary
memory locations

2. Scan for “good” flips
3. Place data structure there
4. Trigger bit flip again

• Alternatively: Build a PUF [Ana+18]

14 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: MICHAEL, DANIEL

Strategy: Modify instructions

• Idea from [SD15]
• x86 op codes are variable length

• Unsafe op codes (syscall) ∈ safe but long multi-byte op
codes

• Only a problem with jumps to arbitrary addresses

• Flip a bit in a validated NaCl instruction sequence

• Safe + validated jump→ arbitrary jump

15 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL ASKS DANIEL
NEXT SLIDE: DANIEL

Strategy: Modify instructions

• Idea from [SD15]
• x86 op codes are variable length

• Unsafe op codes (syscall) ∈ safe but long multi-byte op
codes

• Only a problem with jumps to arbitrary addresses

• Flip a bit in a validated NaCl instruction sequence

• Safe + validated jump→ arbitrary jump

15 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL ASKS DANIEL
NEXT SLIDE: DANIEL

Strategy: Modify instructions

• Idea from [SD15]
• x86 op codes are variable length

• Unsafe op codes (syscall) ∈ safe but long multi-byte op
codes

• Only a problem with jumps to arbitrary addresses

• Flip a bit in a validated NaCl instruction sequence

• Safe + validated jump→ arbitrary jump

15 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL ASKS DANIEL
NEXT SLIDE: DANIEL

Strategy: Modify instructions

• Idea from [SD15]

• x86 op codes are variable length

• Unsafe op codes (syscall) ∈ safe but long multi-byte op
codes

• Only a problem with jumps to arbitrary addresses

• Flip a bit in a validated NaCl instruction sequence

• Safe + validated jump→ arbitrary jump

15 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL ASKS DANIEL
NEXT SLIDE: DANIEL

Strategy: Modify instructions

• Idea from [SD15]
• x86 op codes are variable length

• Unsafe op codes (syscall) ∈ safe but long multi-byte op
codes

• Only a problem with jumps to arbitrary addresses
• Flip a bit in a validated NaCl instruction sequence

• Safe + validated jump→ arbitrary jump

15 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL ASKS DANIEL
NEXT SLIDE: DANIEL

Strategy: Modify instructions

• Idea from [SD15]
• x86 op codes are variable length

• Unsafe op codes (syscall) ∈ safe but long multi-byte op
codes

• Only a problem with jumps to arbitrary addresses
• Flip a bit in a validated NaCl instruction sequence

• Safe + validated jump→ arbitrary jump

15 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL ASKS DANIEL
NEXT SLIDE: DANIEL

Strategy: Modify instructions

• Idea from [SD15]
• x86 op codes are variable length

• Unsafe op codes (syscall) ∈ safe but long multi-byte op
codes

• Only a problem with jumps to arbitrary addresses

• Flip a bit in a validated NaCl instruction sequence

• Safe + validated jump→ arbitrary jump

15 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL ASKS DANIEL
NEXT SLIDE: DANIEL

Strategy: Modify instructions

• Idea from [SD15]
• x86 op codes are variable length

• Unsafe op codes (syscall) ∈ safe but long multi-byte op
codes

• Only a problem with jumps to arbitrary addresses
• Flip a bit in a validated NaCl instruction sequence

• Safe + validated jump→ arbitrary jump

15 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL ASKS DANIEL
NEXT SLIDE: DANIEL

Strategy: Modify instructions

• Idea from [SD15]
• x86 op codes are variable length

• Unsafe op codes (syscall) ∈ safe but long multi-byte op
codes

• Only a problem with jumps to arbitrary addresses
• Flip a bit in a validated NaCl instruction sequence

• Safe + validated jump→ arbitrary jump

15 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL ASKS DANIEL
NEXT SLIDE: DANIEL

Page Table Entries

P RW US WT UC R D S G

X

Each 4KB page table consists of 512 such entries

16 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MICHAEL

Page Table Entries

P RW US WT UC R D S G Ignored

Ignored X

Each 4KB page table consists of 512 such entries

16 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MICHAEL

Page Table Entries

P RW US WT UC R D S G Ignored

Physical Page Number
Ignored X

Each 4KB page table consists of 512 such entries

16 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MICHAEL

Page Table Entries

P RW US WT UC R D S G Ignored

Physical Page Number
Ignored X

Each 4KB page table consists of 512 such entries

16 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MICHAEL

Page Table Manipulation

PTE 7

PTE 6

PTE 5

PTE 4

PTE 3

PTE 2

PTE 1

PTE 0

PTE 0PTE 0PTE 0

PTE 1PTE 1PTE 1

0x7000 – 0x7FFF

0x6000 – 0x6FFF

0x5000 – 0x5FFF

0x4000 – 0x4FFF

0x3000 – 0x3FFF

0x2000 – 0x2FFF

0x1000 – 0x1FFF

0x0 – 0xFFF

0x0 – 0xFFF0x0 – 0xFFF

0x1000 – 0x1FFF0x1000 – 0x1FFF0x1000 – 0x1FFF

User Page

User Page

User Page

User Page

User Page

User Page

Kernel Page

Page Table

User Page

User Page

17 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL EXPLAINS
NEXT SLIDE: DANIEL

Page Table Manipulation

PTE 7

PTE 6

PTE 5

PTE 4

PTE 3

PTE 2

PTE 1

PTE 0

PTE 0

PTE 0PTE 0

PTE 1PTE 1PTE 1

0x7000 – 0x7FFF

0x6000 – 0x6FFF

0x5000 – 0x5FFF

0x4000 – 0x4FFF

0x3000 – 0x3FFF

0x2000 – 0x2FFF

0x1000 – 0x1FFF

0x0 – 0xFFF

0x0 – 0xFFF0x0 – 0xFFF

0x1000 – 0x1FFF0x1000 – 0x1FFF0x1000 – 0x1FFF

User Page

User Page

User Page

User Page

User Page

User Page

Kernel Page

Page Table

User Page

User Page

17 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL EXPLAINS
NEXT SLIDE: DANIEL

Page Table Manipulation

PTE 7

PTE 6

PTE 5

PTE 4

PTE 3

PTE 2

PTE 1

PTE 0PTE 0

PTE 0

PTE 0

PTE 1PTE 1PTE 1

0x7000 – 0x7FFF

0x6000 – 0x6FFF

0x5000 – 0x5FFF

0x4000 – 0x4FFF

0x3000 – 0x3FFF

0x2000 – 0x2FFF

0x1000 – 0x1FFF

0x0 – 0xFFF

0x0 – 0xFFF

0x0 – 0xFFF

0x1000 – 0x1FFF0x1000 – 0x1FFF0x1000 – 0x1FFF

User Page

User Page

User Page

User Page

User Page

User Page

Kernel Page

Page Table

User Page

User Page

17 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL EXPLAINS
NEXT SLIDE: DANIEL

Page Table Manipulation

PTE 7

PTE 6

PTE 5

PTE 4

PTE 3

PTE 2

PTE 1

PTE 0PTE 0PTE 0

PTE 0

PTE 1PTE 1PTE 1

0x7000 – 0x7FFF

0x6000 – 0x6FFF

0x5000 – 0x5FFF

0x4000 – 0x4FFF

0x3000 – 0x3FFF

0x2000 – 0x2FFF

0x1000 – 0x1FFF

0x0 – 0xFFF0x0 – 0xFFF

0x0 – 0xFFF

0x1000 – 0x1FFF0x1000 – 0x1FFF0x1000 – 0x1FFF

User Page

User Page

User Page

User Page

User Page

User Page

Kernel Page

Page Table

User Page

User Page

17 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL EXPLAINS
NEXT SLIDE: DANIEL

Page Table Manipulation

PTE 7

PTE 6

PTE 5

PTE 4

PTE 3

PTE 2

PTE 1

PTE 0PTE 0PTE 0

PTE 0

PTE 1

PTE 1PTE 1

0x7000 – 0x7FFF

0x6000 – 0x6FFF

0x5000 – 0x5FFF

0x4000 – 0x4FFF

0x3000 – 0x3FFF

0x2000 – 0x2FFF

0x1000 – 0x1FFF

0x0 – 0xFFF0x0 – 0xFFF

0x0 – 0xFFF

0x1000 – 0x1FFF

0x1000 – 0x1FFF0x1000 – 0x1FFF

User Page

User Page

User Page

User Page

User Page

User Page

Kernel Page

Page Table

User Page

User Page

17 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL EXPLAINS
NEXT SLIDE: DANIEL

Page Table Manipulation

PTE 7

PTE 6

PTE 5

PTE 4

PTE 3

PTE 2

PTE 1

PTE 0PTE 0PTE 0

PTE 0

PTE 1

PTE 1

PTE 1

0x7000 – 0x7FFF

0x6000 – 0x6FFF

0x5000 – 0x5FFF

0x4000 – 0x4FFF

0x3000 – 0x3FFF

0x2000 – 0x2FFF

0x1000 – 0x1FFF

0x0 – 0xFFF0x0 – 0xFFF

0x0 – 0xFFF

0x1000 – 0x1FFF

0x1000 – 0x1FFF

0x1000 – 0x1FFF

User Page

User Page

User Page

User Page

User Page

User Page

Kernel Page

Page Table

User Page

User Page

17 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL EXPLAINS
NEXT SLIDE: DANIEL

Page Table Manipulation

PTE 7

PTE 6

PTE 5

PTE 4

PTE 3

PTE 2

PTE 1

PTE 0PTE 0PTE 0

PTE 0

PTE 1PTE 1

PTE 1

0x7000 – 0x7FFF

0x6000 – 0x6FFF

0x5000 – 0x5FFF

0x4000 – 0x4FFF

0x3000 – 0x3FFF

0x2000 – 0x2FFF

0x1000 – 0x1FFF

0x0 – 0xFFF0x0 – 0xFFF

0x0 – 0xFFF

0x1000 – 0x1FFF0x1000 – 0x1FFF

0x1000 – 0x1FFF

User Page

User Page

User Page

User Page

User Page

User Page

Kernel Page

Page Table

User Page

User Page

17 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL EXPLAINS
NEXT SLIDE: DANIEL

Search for page with flip

Row 0 Row 23

Hammering memory locations in different rows

18 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: DANIEL

Search for page with flip

Row 0 Row 23

Hammering memory locations in different rows

18 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: DANIEL

Search for page with flip

Row 0 Row 23

Hammering memory locations in different rows

18 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: DANIEL

Search for page with flip

Row 0 Row 23

Hammering memory locations in different rows

18 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: DANIEL

Search for page with flip

Row 0 Row 23

Hammering memory locations in different rows

18 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: DANIEL

Search for page with flip

Row 0 Row 23

Hammering memory locations in different rows

18 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: DANIEL

Release page with flip

Row 0 Row 23

Hammering memory locations in different rows

19 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: DANIEL

Release page with flip

Row 0 Row 23

Hammering memory locations in different rows

19 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: DANIEL

Fill all remaining memory with page tables

Row 0 Row 23

Hammering memory locations in different rows

20 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

Fill all remaining memory with page tables

Row 0 Row 23

Hammering memory locations in different rows

20 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

Page Table Manipulation

PTE 7

PTE 6

PTE 5

PTE 4

PTE 3

PTE 2

PTE 1

PTE 0

PTE 0PTE 0

0x7000 – 0x7FFF

0x6000 – 0x6FFF

0x5000 – 0x5FFF

0x4000 – 0x4FFF

0x3000 – 0x3FFF

0x2000 – 0x2FFF

0x1000 – 0x1FFF

0x0 – 0xFFF

0x0 – 0xFFF

Page Table

Page Table

User Page

Page Table

Page Table

Page Table

Kernel Page

Page Table

Page Table

Page Table

21 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ CONNECTS THE DOTS
NEXT SLIDE: MICHAEL

Page Table Manipulation

PTE 7

PTE 6

PTE 5

PTE 4

PTE 3

PTE 2

PTE 1

PTE 0

PTE 0

PTE 0

0x7000 – 0x7FFF

0x6000 – 0x6FFF

0x5000 – 0x5FFF

0x4000 – 0x4FFF

0x3000 – 0x3FFF

0x2000 – 0x2FFF

0x1000 – 0x1FFF

0x0 – 0xFFF

0x0 – 0xFFF

Page Table

Page Table

User Page

Page Table

Page Table

Page Table

Kernel Page

Page Table

Page Table

Page Table

21 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ CONNECTS THE DOTS
NEXT SLIDE: MICHAEL

Page Table Manipulation

PTE 7

PTE 6

PTE 5

PTE 4

PTE 3

PTE 2

PTE 1

PTE 0PTE 0

PTE 0

0x7000 – 0x7FFF

0x6000 – 0x6FFF

0x5000 – 0x5FFF

0x4000 – 0x4FFF

0x3000 – 0x3FFF

0x2000 – 0x2FFF

0x1000 – 0x1FFF

0x0 – 0xFFF

0x0 – 0xFFF

Page Table

Page Table

User Page

Page Table

Page Table

Page Table

Kernel Page

Page Table

Page Table

Page Table

21 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ CONNECTS THE DOTS
NEXT SLIDE: MICHAEL

Strategy: Flipping Page Table PPN bits

1. Scan for flips
2. Exhaust or massage memory to place a page table at target
location

3. Gain access to your own page table→ kernel privileges

22 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL SUMMARIZES
NEXT SLIDE: DANIEL

Strategy: Flipping Page Table PPN bits

1. Scan for flips
2. Exhaust or massage memory to place a page table at target
location

3. Gain access to your own page table→ kernel privileges

22 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL SUMMARIZES
NEXT SLIDE: DANIEL

Strategy: Flipping Page Table PPN bits

1. Scan for flips
2. Exhaust or massage memory to place a page table at target
location

3. Gain access to your own page table→ kernel privileges

22 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL SUMMARIZES
NEXT SLIDE: DANIEL

Strategy: Flipping Page Table PPN bits

1. Scan for flips

2. Exhaust or massage memory to place a page table at target
location

3. Gain access to your own page table→ kernel privileges

22 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL SUMMARIZES
NEXT SLIDE: DANIEL

Strategy: Flipping Page Table PPN bits

1. Scan for flips
2. Exhaust or massage memory to place a page table at target
location

3. Gain access to your own page table→ kernel privileges

22 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL SUMMARIZES
NEXT SLIDE: DANIEL

Strategy: Flipping Page Table PPN bits

1. Scan for flips
2. Exhaust or massage memory to place a page table at target
location

3. Gain access to your own page table→ kernel privileges

22 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL SUMMARIZES
NEXT SLIDE: DANIEL

Flipping Page Table PPN bits

• Idea from [SD15]
• Same idea applied in several other works:

• Rowhammer.js [GMM16]
• One bit flips, one cloud flops [Xia+16]
• Drammer [Vee+16]

23 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL TALKS ABOUT HISTORY
NEXT SLIDE: MICHAEL

Flipping Page Table PPN bits

• Idea from [SD15]
• Same idea applied in several other works:

• Rowhammer.js [GMM16]
• One bit flips, one cloud flops [Xia+16]
• Drammer [Vee+16]

23 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL TALKS ABOUT HISTORY
NEXT SLIDE: MICHAEL

Flipping Page Table PPN bits

• Idea from [SD15]
• Same idea applied in several other works:

• Rowhammer.js [GMM16]
• One bit flips, one cloud flops [Xia+16]
• Drammer [Vee+16]

23 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL TALKS ABOUT HISTORY
NEXT SLIDE: MICHAEL

Flipping Page Table PPN bits

• Idea from [SD15]

• Same idea applied in several other works:

• Rowhammer.js [GMM16]
• One bit flips, one cloud flops [Xia+16]
• Drammer [Vee+16]

23 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL TALKS ABOUT HISTORY
NEXT SLIDE: MICHAEL

Flipping Page Table PPN bits

• Idea from [SD15]
• Same idea applied in several other works:

• Rowhammer.js [GMM16]
• One bit flips, one cloud flops [Xia+16]
• Drammer [Vee+16]

23 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL TALKS ABOUT HISTORY
NEXT SLIDE: MICHAEL

Flipping Page Table PPN bits

• Idea from [SD15]
• Same idea applied in several other works:

• Rowhammer.js [GMM16]

• One bit flips, one cloud flops [Xia+16]
• Drammer [Vee+16]

23 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL TALKS ABOUT HISTORY
NEXT SLIDE: MICHAEL

Flipping Page Table PPN bits

• Idea from [SD15]
• Same idea applied in several other works:

• Rowhammer.js [GMM16]
• One bit flips, one cloud flops [Xia+16]

• Drammer [Vee+16]

23 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL TALKS ABOUT HISTORY
NEXT SLIDE: MICHAEL

Flipping Page Table PPN bits

• Idea from [SD15]
• Same idea applied in several other works:

• Rowhammer.js [GMM16]
• One bit flips, one cloud flops [Xia+16]
• Drammer [Vee+16]

23 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL TALKS ABOUT HISTORY
NEXT SLIDE: MICHAEL

Post-Rowhammer Exploitation

• Scan entire physical memory (very fast) and:

• Modify binary pages executed in root privileges [Xia+16]
• Modify credential structs [Vee+16]
• Read keys [Xia+16]
• Corrupt signatures [BM16; Pod+18]
• Modify certificates
• Configurations
• etc.

• pages are pretty unique: 32768 bits per page

24 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: DANIEL

Post-Rowhammer Exploitation

• Scan entire physical memory (very fast) and:

• Modify binary pages executed in root privileges [Xia+16]
• Modify credential structs [Vee+16]
• Read keys [Xia+16]
• Corrupt signatures [BM16; Pod+18]
• Modify certificates
• Configurations
• etc.

• pages are pretty unique: 32768 bits per page

24 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: DANIEL

Post-Rowhammer Exploitation

• Scan entire physical memory (very fast) and:

• Modify binary pages executed in root privileges [Xia+16]
• Modify credential structs [Vee+16]
• Read keys [Xia+16]
• Corrupt signatures [BM16; Pod+18]
• Modify certificates
• Configurations
• etc.

• pages are pretty unique: 32768 bits per page

24 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: DANIEL

Post-Rowhammer Exploitation

• Scan entire physical memory (very fast) and:

• Modify binary pages executed in root privileges [Xia+16]
• Modify credential structs [Vee+16]
• Read keys [Xia+16]
• Corrupt signatures [BM16; Pod+18]
• Modify certificates
• Configurations
• etc.

• pages are pretty unique: 32768 bits per page

24 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: DANIEL

Post-Rowhammer Exploitation

• Scan entire physical memory (very fast) and:
• Modify binary pages executed in root privileges [Xia+16]

• Modify credential structs [Vee+16]
• Read keys [Xia+16]
• Corrupt signatures [BM16; Pod+18]
• Modify certificates
• Configurations
• etc.

• pages are pretty unique: 32768 bits per page

24 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: DANIEL

Post-Rowhammer Exploitation

• Scan entire physical memory (very fast) and:
• Modify binary pages executed in root privileges [Xia+16]
• Modify credential structs [Vee+16]

• Read keys [Xia+16]
• Corrupt signatures [BM16; Pod+18]
• Modify certificates
• Configurations
• etc.

• pages are pretty unique: 32768 bits per page

24 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: DANIEL

Post-Rowhammer Exploitation

• Scan entire physical memory (very fast) and:
• Modify binary pages executed in root privileges [Xia+16]
• Modify credential structs [Vee+16]
• Read keys [Xia+16]

• Corrupt signatures [BM16; Pod+18]
• Modify certificates
• Configurations
• etc.

• pages are pretty unique: 32768 bits per page

24 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: DANIEL

Post-Rowhammer Exploitation

• Scan entire physical memory (very fast) and:
• Modify binary pages executed in root privileges [Xia+16]
• Modify credential structs [Vee+16]
• Read keys [Xia+16]
• Corrupt signatures [BM16; Pod+18]

• Modify certificates
• Configurations
• etc.

• pages are pretty unique: 32768 bits per page

24 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: DANIEL

Post-Rowhammer Exploitation

• Scan entire physical memory (very fast) and:
• Modify binary pages executed in root privileges [Xia+16]
• Modify credential structs [Vee+16]
• Read keys [Xia+16]
• Corrupt signatures [BM16; Pod+18]
• Modify certificates

• Configurations
• etc.

• pages are pretty unique: 32768 bits per page

24 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: DANIEL

Post-Rowhammer Exploitation

• Scan entire physical memory (very fast) and:
• Modify binary pages executed in root privileges [Xia+16]
• Modify credential structs [Vee+16]
• Read keys [Xia+16]
• Corrupt signatures [BM16; Pod+18]
• Modify certificates
• Configurations

• etc.

• pages are pretty unique: 32768 bits per page

24 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: DANIEL

Post-Rowhammer Exploitation

• Scan entire physical memory (very fast) and:
• Modify binary pages executed in root privileges [Xia+16]
• Modify credential structs [Vee+16]
• Read keys [Xia+16]
• Corrupt signatures [BM16; Pod+18]
• Modify certificates
• Configurations
• etc.

• pages are pretty unique: 32768 bits per page

24 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: DANIEL

Post-Rowhammer Exploitation

• Scan entire physical memory (very fast) and:
• Modify binary pages executed in root privileges [Xia+16]
• Modify credential structs [Vee+16]
• Read keys [Xia+16]
• Corrupt signatures [BM16; Pod+18]
• Modify certificates
• Configurations
• etc.

• pages are pretty unique: 32768 bits per page

24 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: DANIEL

Bit Flips + Page Deduplication

Row 0 Row 23

25 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

Bit Flips + Page Deduplication

Row 0 Row 23

Page with bit flip is filled with target content

25 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

Bit Flips + Page Deduplication

Row 0 Row 23

OS or hypervisor searches for duplicate pages

25 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

Bit Flips + Page Deduplication

Row 0 Row 23

OS or hypervisor searches for duplicate pages

25 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

Bit Flips + Page Deduplication

Row 0 Row 23

OS or hypervisor searches for duplicate pages

25 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

Bit Flips + Page Deduplication

Row 0 Row 23

OS or hypervisor searches for duplicate pages

25 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

Bit Flips + Page Deduplication

Row 0 Row 23

OS or hypervisor searches for duplicate pages

25 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

Bit Flips + Page Deduplication

Row 0 Row 23

OS or hypervisor searches for duplicate pages

25 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

Bit Flips + Page Deduplication

Row 0 Row 23

OS or hypervisor searches for duplicate pages

25 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

Bit Flips + Page Deduplication

Row 0 Row 23

OS or hypervisor searches for duplicate pages

25 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

Bit Flips + Page Deduplication

Row 0 Row 23

Hammer again + flip again

25 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

Bit Flips + Page Deduplication

Row 0 Row 23

Hammer again + flip again

25 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

Strategy: Flipping in Deduplicated Pages

1. Scan for flips
2. Place content for deduplication so that flip can be exploited
3. Perform the bit change through Rowhammer

26 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ CONNECTS THE DOTS
NEXT SLIDE: MICHAEL

Strategy: Flipping in Deduplicated Pages

1. Scan for flips
2. Place content for deduplication so that flip can be exploited
3. Perform the bit change through Rowhammer

26 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ CONNECTS THE DOTS
NEXT SLIDE: MICHAEL

Strategy: Flipping in Deduplicated Pages

1. Scan for flips
2. Place content for deduplication so that flip can be exploited
3. Perform the bit change through Rowhammer

26 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ CONNECTS THE DOTS
NEXT SLIDE: MICHAEL

Strategy: Flipping in Deduplicated Pages

1. Scan for flips

2. Place content for deduplication so that flip can be exploited
3. Perform the bit change through Rowhammer

26 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ CONNECTS THE DOTS
NEXT SLIDE: MICHAEL

Strategy: Flipping in Deduplicated Pages

1. Scan for flips
2. Place content for deduplication so that flip can be exploited

3. Perform the bit change through Rowhammer

26 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ CONNECTS THE DOTS
NEXT SLIDE: MICHAEL

Strategy: Flipping in Deduplicated Pages

1. Scan for flips
2. Place content for deduplication so that flip can be exploited
3. Perform the bit change through Rowhammer

26 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ CONNECTS THE DOTS
NEXT SLIDE: MICHAEL

Flipping in Deduplicated Pages

• Idea from [Bos+16]

• Change data type (double→ pointer)
• Change pointer to good object→ counterfeit object

• and from [Raz+16]

• Corrupt authorized SSH keys
• Corrupt Debian update URLs + RSA public key file

27 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

Flipping in Deduplicated Pages

• Idea from [Bos+16]

• Change data type (double→ pointer)
• Change pointer to good object→ counterfeit object

• and from [Raz+16]

• Corrupt authorized SSH keys
• Corrupt Debian update URLs + RSA public key file

27 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

Flipping in Deduplicated Pages

• Idea from [Bos+16]

• Change data type (double→ pointer)
• Change pointer to good object→ counterfeit object

• and from [Raz+16]

• Corrupt authorized SSH keys
• Corrupt Debian update URLs + RSA public key file

27 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

Flipping in Deduplicated Pages

• Idea from [Bos+16]

• Change data type (double→ pointer)
• Change pointer to good object→ counterfeit object

• and from [Raz+16]

• Corrupt authorized SSH keys
• Corrupt Debian update URLs + RSA public key file

27 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

Flipping in Deduplicated Pages

• Idea from [Bos+16]
• Change data type (double→ pointer)

• Change pointer to good object→ counterfeit object
• and from [Raz+16]

• Corrupt authorized SSH keys
• Corrupt Debian update URLs + RSA public key file

27 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

Flipping in Deduplicated Pages

• Idea from [Bos+16]
• Change data type (double→ pointer)
• Change pointer to good object→ counterfeit object

• and from [Raz+16]

• Corrupt authorized SSH keys
• Corrupt Debian update URLs + RSA public key file

27 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

Flipping in Deduplicated Pages

• Idea from [Bos+16]
• Change data type (double→ pointer)
• Change pointer to good object→ counterfeit object

• and from [Raz+16]

• Corrupt authorized SSH keys
• Corrupt Debian update URLs + RSA public key file

27 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

Flipping in Deduplicated Pages

• Idea from [Bos+16]
• Change data type (double→ pointer)
• Change pointer to good object→ counterfeit object

• and from [Raz+16]
• Corrupt authorized SSH keys

• Corrupt Debian update URLs + RSA public key file

27 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

Flipping in Deduplicated Pages

• Idea from [Bos+16]
• Change data type (double→ pointer)
• Change pointer to good object→ counterfeit object

• and from [Raz+16]
• Corrupt authorized SSH keys
• Corrupt Debian update URLs + RSA public key file

27 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

How to mitigate Rowhammer?

MORITZ
NEXT SLIDE: MICHAEL

Mitigations

Different mitigations have been proposed:

Detection

vs

Prevention

28 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MICHAEL

Mitigations

Different mitigations have been proposed:

Software

vs

Hardware

29 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MICHAEL

Mitigations

Different mitigations have been proposed:

Short Term

vs

Long Term

30 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

Quick fixes

• No clflush instruction

→
Rowhammer.js

• Increase the refresh rate

→ Would need to be
increased by 7× to
eliminate all bit flips

→ Implementation: increased
by 2× by BIOS vendors

Errors depending on
refresh interval [Kim+14]

31 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ DEFENDS, DANIEL ATTACKS
NEXT SLIDE: MICHAEL

Quick fixes

• No clflush instruction→
Rowhammer.js

• Increase the refresh rate

→ Would need to be
increased by 7× to
eliminate all bit flips

→ Implementation: increased
by 2× by BIOS vendors

Errors depending on
refresh interval [Kim+14]

31 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ DEFENDS, DANIEL ATTACKS
NEXT SLIDE: MICHAEL

Quick fixes

• No clflush instruction→
Rowhammer.js

• Increase the refresh rate

→ Would need to be
increased by 7× to
eliminate all bit flips

→ Implementation: increased
by 2× by BIOS vendors Errors depending on

refresh interval [Kim+14]

31 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ DEFENDS, DANIEL ATTACKS
NEXT SLIDE: MICHAEL

Quick fixes

• No clflush instruction→
Rowhammer.js

• Increase the refresh rate
→ Would need to be

increased by 7× to
eliminate all bit flips

→ Implementation: increased
by 2× by BIOS vendors

Errors depending on
refresh interval [Kim+14]

31 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ DEFENDS, DANIEL ATTACKS
NEXT SLIDE: MICHAEL

Quick fixes

• No clflush instruction→
Rowhammer.js

• Increase the refresh rate
→ Would need to be

increased by 7× to
eliminate all bit flips

→ Implementation: increased
by 2× by BIOS vendors Errors depending on

refresh interval [Kim+14]

31 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ DEFENDS, DANIEL ATTACKS
NEXT SLIDE: MICHAEL

What about ECC?

• ECC protection: server can handle or correct single bit
errors

• No standard for event reporting
• In practice [Lan16]

• Common: server counts ECC errors and report only if they
reach a threshold (e.g., > 100 bit flips / hour)

• Some server vendors never report errors to the OS
• One server did not even halt when bit flips were
non-correctable

32 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL DEFENDS, DANIEL ATTACKS
NEXT SLIDE: MORITZ

What about ECC?

• ECC protection: server can handle or correct single bit
errors

• No standard for event reporting

• In practice [Lan16]

• Common: server counts ECC errors and report only if they
reach a threshold (e.g., > 100 bit flips / hour)

• Some server vendors never report errors to the OS
• One server did not even halt when bit flips were
non-correctable

32 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL DEFENDS, DANIEL ATTACKS
NEXT SLIDE: MORITZ

What about ECC?

• ECC protection: server can handle or correct single bit
errors

• No standard for event reporting
• In practice [Lan16]

• Common: server counts ECC errors and report only if they
reach a threshold (e.g., > 100 bit flips / hour)

• Some server vendors never report errors to the OS
• One server did not even halt when bit flips were
non-correctable

32 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL DEFENDS, DANIEL ATTACKS
NEXT SLIDE: MORITZ

What about ECC?

• ECC protection: server can handle or correct single bit
errors

• No standard for event reporting
• In practice [Lan16]

• Common: server counts ECC errors and report only if they
reach a threshold (e.g., > 100 bit flips / hour)

• Some server vendors never report errors to the OS

• One server did not even halt when bit flips were
non-correctable

32 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL DEFENDS, DANIEL ATTACKS
NEXT SLIDE: MORITZ

What about ECC?

• ECC protection: server can handle or correct single bit
errors

• No standard for event reporting
• In practice [Lan16]

• Common: server counts ECC errors and report only if they
reach a threshold (e.g., > 100 bit flips / hour)

• Some server vendors never report errors to the OS
• One server did not even halt when bit flips were
non-correctable

32 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL DEFENDS, DANIEL ATTACKS
NEXT SLIDE: MORITZ

Preventing Rowhammer attacks in hardware (1/3)

Original ideas from [Kim+14]

• Making better DRAM chips that are not vulnerable
• Using error correcting codes (ECC)
• Increasing the refresh rate
• Remapping/retiring faulty cells after manufacturing
• Identifying hammered rows at runtime and refreshing
neighbors

→ Expensive, performance overhead, or increased power
consumption

33 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ EXPLAINS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in hardware (1/3)

Original ideas from [Kim+14]

• Making better DRAM chips that are not vulnerable
• Using error correcting codes (ECC)
• Increasing the refresh rate
• Remapping/retiring faulty cells after manufacturing
• Identifying hammered rows at runtime and refreshing
neighbors

→ Expensive, performance overhead, or increased power
consumption

33 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ EXPLAINS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in hardware (1/3)

Original ideas from [Kim+14]

• Making better DRAM chips that are not vulnerable
• Using error correcting codes (ECC)
• Increasing the refresh rate
• Remapping/retiring faulty cells after manufacturing
• Identifying hammered rows at runtime and refreshing
neighbors

→ Expensive, performance overhead, or increased power
consumption

33 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ EXPLAINS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in hardware (1/3)

Original ideas from [Kim+14]
• Making better DRAM chips that are not vulnerable

• Using error correcting codes (ECC)
• Increasing the refresh rate
• Remapping/retiring faulty cells after manufacturing
• Identifying hammered rows at runtime and refreshing
neighbors

→ Expensive, performance overhead, or increased power
consumption

33 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ EXPLAINS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in hardware (1/3)

Original ideas from [Kim+14]
• Making better DRAM chips that are not vulnerable
• Using error correcting codes (ECC)

• Increasing the refresh rate
• Remapping/retiring faulty cells after manufacturing
• Identifying hammered rows at runtime and refreshing
neighbors

→ Expensive, performance overhead, or increased power
consumption

33 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ EXPLAINS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in hardware (1/3)

Original ideas from [Kim+14]
• Making better DRAM chips that are not vulnerable
• Using error correcting codes (ECC)
• Increasing the refresh rate

• Remapping/retiring faulty cells after manufacturing
• Identifying hammered rows at runtime and refreshing
neighbors

→ Expensive, performance overhead, or increased power
consumption

33 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ EXPLAINS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in hardware (1/3)

Original ideas from [Kim+14]
• Making better DRAM chips that are not vulnerable
• Using error correcting codes (ECC)
• Increasing the refresh rate
• Remapping/retiring faulty cells after manufacturing

• Identifying hammered rows at runtime and refreshing
neighbors

→ Expensive, performance overhead, or increased power
consumption

33 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ EXPLAINS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in hardware (1/3)

Original ideas from [Kim+14]
• Making better DRAM chips that are not vulnerable
• Using error correcting codes (ECC)
• Increasing the refresh rate
• Remapping/retiring faulty cells after manufacturing
• Identifying hammered rows at runtime and refreshing
neighbors

→ Expensive, performance overhead, or increased power
consumption

33 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ EXPLAINS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in hardware (1/3)

Original ideas from [Kim+14]
• Making better DRAM chips that are not vulnerable
• Using error correcting codes (ECC)
• Increasing the refresh rate
• Remapping/retiring faulty cells after manufacturing
• Identifying hammered rows at runtime and refreshing
neighbors

→ Expensive, performance overhead, or increased power
consumption

33 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ EXPLAINS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in hardware (2/3)

PARA - Probabilistic Adjacent Row Activation [Kim+14]
• One row closed→ one adjacent row opened with low
probability p

• Rowhammer: one row opened and closed a high number of
times Nth

• Statistically, neighbor rows are refreshed→ no bit flip
• Implementation at the memory controller level
• Advantage: stateless→ not expensive
• For p = 0.001 and Nth = 100K, experiencing one error in one
year has a probability 9.4× 10−14

34 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: DANIEL

Preventing Rowhammer attacks in hardware (2/3)

PARA - Probabilistic Adjacent Row Activation [Kim+14]
• One row closed→ one adjacent row opened with low
probability p

• Rowhammer: one row opened and closed a high number of
times Nth

• Statistically, neighbor rows are refreshed→ no bit flip
• Implementation at the memory controller level
• Advantage: stateless→ not expensive
• For p = 0.001 and Nth = 100K, experiencing one error in one
year has a probability 9.4× 10−14

34 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: DANIEL

Preventing Rowhammer attacks in hardware (2/3)

PARA - Probabilistic Adjacent Row Activation [Kim+14]
• One row closed→ one adjacent row opened with low
probability p

• Rowhammer: one row opened and closed a high number of
times Nth

• Statistically, neighbor rows are refreshed→ no bit flip

• Implementation at the memory controller level
• Advantage: stateless→ not expensive
• For p = 0.001 and Nth = 100K, experiencing one error in one
year has a probability 9.4× 10−14

34 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: DANIEL

Preventing Rowhammer attacks in hardware (2/3)

PARA - Probabilistic Adjacent Row Activation [Kim+14]
• One row closed→ one adjacent row opened with low
probability p

• Rowhammer: one row opened and closed a high number of
times Nth

• Statistically, neighbor rows are refreshed→ no bit flip
• Implementation at the memory controller level

• Advantage: stateless→ not expensive
• For p = 0.001 and Nth = 100K, experiencing one error in one
year has a probability 9.4× 10−14

34 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: DANIEL

Preventing Rowhammer attacks in hardware (2/3)

PARA - Probabilistic Adjacent Row Activation [Kim+14]
• One row closed→ one adjacent row opened with low
probability p

• Rowhammer: one row opened and closed a high number of
times Nth

• Statistically, neighbor rows are refreshed→ no bit flip
• Implementation at the memory controller level
• Advantage: stateless→ not expensive

• For p = 0.001 and Nth = 100K, experiencing one error in one
year has a probability 9.4× 10−14

34 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: DANIEL

Preventing Rowhammer attacks in hardware (2/3)

PARA - Probabilistic Adjacent Row Activation [Kim+14]
• One row closed→ one adjacent row opened with low
probability p

• Rowhammer: one row opened and closed a high number of
times Nth

• Statistically, neighbor rows are refreshed→ no bit flip
• Implementation at the memory controller level
• Advantage: stateless→ not expensive
• For p = 0.001 and Nth = 100K, experiencing one error in one
year has a probability 9.4× 10−14

34 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: DANIEL

Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)

• Counter per row
• Increment neighbor rows
• Refresh when counter reaches a
threshold

refresh

hammer

refresh

hammer

refresh

We flipped bits on DDR4 with TRR activated!

35 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MICHAEL ATTACKS
NEXT SLIDE: DANIEL

Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)
• Counter per row

• Increment neighbor rows
• Refresh when counter reaches a
threshold

refresh

hammer

refresh

hammer

refresh

We flipped bits on DDR4 with TRR activated!

35 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MICHAEL ATTACKS
NEXT SLIDE: DANIEL

Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)
• Counter per row
• Increment neighbor rows

• Refresh when counter reaches a
threshold

refresh

hammer

refresh

hammer

refresh

We flipped bits on DDR4 with TRR activated!

35 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MICHAEL ATTACKS
NEXT SLIDE: DANIEL

Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)
• Counter per row
• Increment neighbor rows

• Refresh when counter reaches a
threshold

refresh

hammer

refresh

hammer

refresh

We flipped bits on DDR4 with TRR activated!

35 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MICHAEL ATTACKS
NEXT SLIDE: DANIEL

Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)
• Counter per row
• Increment neighbor rows

• Refresh when counter reaches a
threshold

refresh

hammer

refresh

hammer

refresh

We flipped bits on DDR4 with TRR activated!

35 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MICHAEL ATTACKS
NEXT SLIDE: DANIEL

Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)
• Counter per row
• Increment neighbor rows

• Refresh when counter reaches a
threshold

refresh

hammer

refresh

hammer

refresh

We flipped bits on DDR4 with TRR activated!

35 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MICHAEL ATTACKS
NEXT SLIDE: DANIEL

Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)
• Counter per row
• Increment neighbor rows

• Refresh when counter reaches a
threshold

refresh

hammer

refresh

hammer

refresh

We flipped bits on DDR4 with TRR activated!

35 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MICHAEL ATTACKS
NEXT SLIDE: DANIEL

Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)
• Counter per row
• Increment neighbor rows

• Refresh when counter reaches a
threshold

refresh

hammer

refresh

hammer

refresh

We flipped bits on DDR4 with TRR activated!

35 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MICHAEL ATTACKS
NEXT SLIDE: DANIEL

Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)
• Counter per row
• Increment neighbor rows
• Refresh when counter reaches a
threshold

refresh

hammer

refreshrefresh

hammer

refresh

We flipped bits on DDR4 with TRR activated!

35 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MICHAEL ATTACKS
NEXT SLIDE: DANIEL

Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)
• Counter per row
• Increment neighbor rows
• Refresh when counter reaches a
threshold

refresh

hammer

refresh

hammer

refresh

We flipped bits on DDR4 with TRR activated!

35 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MICHAEL ATTACKS
NEXT SLIDE: DANIEL

Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)
• Counter per row
• Increment neighbor rows
• Refresh when counter reaches a
threshold

refreshrefresh

hammer

refresh

hammer

refreshrefresh

We flipped bits on DDR4 with TRR activated!

35 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MICHAEL ATTACKS
NEXT SLIDE: DANIEL

Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)
• Counter per row
• Increment neighbor rows
• Refresh when counter reaches a
threshold

refresh

hammer

refresh

hammer

refresh

We flipped bits on DDR4 with TRR activated!

35 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MICHAEL ATTACKS
NEXT SLIDE: DANIEL

Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)
• Counter per row
• Increment neighbor rows
• Refresh when counter reaches a
threshold

refresh

hammer

refresh

hammer

refresh

We flipped bits on DDR4 with TRR activated!

35 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MICHAEL ATTACKS
NEXT SLIDE: DANIEL

Preventing Rowhammer attacks in software

“nohammer” kernel module [Cor16]

• Refresh rate of 8ms would prevent
Rowhammer on most systems

• Use PMC to measure cache misses per
64ms interval

• Limit cache miss rate to 1/8 of maximum

hammerhammer

Wait for refresh

Wait for refresh
Performance?

Grand Pwning Unit [Fri+18], ThrowHammer [Tat+18],
NetHammer [Lip+17].

36 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MORITZ ATTACKS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in software

“nohammer” kernel module [Cor16]
• Refresh rate of 8ms would prevent
Rowhammer on most systems

• Use PMC to measure cache misses per
64ms interval

• Limit cache miss rate to 1/8 of maximum

hammerhammer

Wait for refresh

Wait for refresh
Performance?

Grand Pwning Unit [Fri+18], ThrowHammer [Tat+18],
NetHammer [Lip+17].

36 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MORITZ ATTACKS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in software

“nohammer” kernel module [Cor16]
• Refresh rate of 8ms would prevent
Rowhammer on most systems

• Use PMC to measure cache misses per
64ms interval

• Limit cache miss rate to 1/8 of maximum

hammerhammer

Wait for refresh

Wait for refresh
Performance?

Grand Pwning Unit [Fri+18], ThrowHammer [Tat+18],
NetHammer [Lip+17].

36 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MORITZ ATTACKS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in software

“nohammer” kernel module [Cor16]
• Refresh rate of 8ms would prevent
Rowhammer on most systems

• Use PMC to measure cache misses per
64ms interval

• Limit cache miss rate to 1/8 of maximum

hammerhammer

Wait for refresh

Wait for refresh

Performance?

Grand Pwning Unit [Fri+18], ThrowHammer [Tat+18],
NetHammer [Lip+17].

36 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MORITZ ATTACKS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in software

“nohammer” kernel module [Cor16]
• Refresh rate of 8ms would prevent
Rowhammer on most systems

• Use PMC to measure cache misses per
64ms interval

• Limit cache miss rate to 1/8 of maximum

hammer

Wait for refresh
Wait for refresh

Performance?

Grand Pwning Unit [Fri+18], ThrowHammer [Tat+18],
NetHammer [Lip+17].

36 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MORITZ ATTACKS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in software

“nohammer” kernel module [Cor16]
• Refresh rate of 8ms would prevent
Rowhammer on most systems

• Use PMC to measure cache misses per
64ms interval

• Limit cache miss rate to 1/8 of maximum

hammer

Wait for refresh

Wait for refresh
Performance?

Grand Pwning Unit [Fri+18], ThrowHammer [Tat+18],
NetHammer [Lip+17].

36 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MORITZ ATTACKS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in software

“nohammer” kernel module [Cor16]
• Refresh rate of 8ms would prevent
Rowhammer on most systems

• Use PMC to measure cache misses per
64ms interval

• Limit cache miss rate to 1/8 of maximum

hammer

Wait for refresh

Wait for refresh
Performance?

Grand Pwning Unit [Fri+18], ThrowHammer [Tat+18],
NetHammer [Lip+17].

36 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MORITZ ATTACKS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in software

“nohammer” kernel module [Cor16]
• Refresh rate of 8ms would prevent
Rowhammer on most systems

• Use PMC to measure cache misses per
64ms interval

• Limit cache miss rate to 1/8 of maximum

hammer

Wait for refresh

Wait for refresh
Performance?

Grand Pwning Unit [Fri+18], ThrowHammer [Tat+18],
NetHammer [Lip+17].

36 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MORITZ ATTACKS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in software

“nohammer” kernel module [Cor16]
• Refresh rate of 8ms would prevent
Rowhammer on most systems

• Use PMC to measure cache misses per
64ms interval

• Limit cache miss rate to 1/8 of maximum

hammer

Wait for refresh
Wait for refresh

Performance?

Grand Pwning Unit [Fri+18], ThrowHammer [Tat+18],
NetHammer [Lip+17].

36 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MORITZ ATTACKS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in software

“nohammer” kernel module [Cor16]
• Refresh rate of 8ms would prevent
Rowhammer on most systems

• Use PMC to measure cache misses per
64ms interval

• Limit cache miss rate to 1/8 of maximum

hammer

Wait for refresh

Wait for refresh

Performance?

Grand Pwning Unit [Fri+18], ThrowHammer [Tat+18],
NetHammer [Lip+17].

36 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MORITZ ATTACKS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in software

“nohammer” kernel module [Cor16]
• Refresh rate of 8ms would prevent
Rowhammer on most systems

• Use PMC to measure cache misses per
64ms interval

• Limit cache miss rate to 1/8 of maximum

hammer

Wait for refresh

Wait for refresh

Performance? Grand Pwning Unit [Fri+18],

ThrowHammer [Tat+18],
NetHammer [Lip+17].

36 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MORITZ ATTACKS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in software

“nohammer” kernel module [Cor16]
• Refresh rate of 8ms would prevent
Rowhammer on most systems

• Use PMC to measure cache misses per
64ms interval

• Limit cache miss rate to 1/8 of maximum

hammer

Wait for refresh

Wait for refresh

Performance? Grand Pwning Unit [Fri+18], ThrowHammer [Tat+18],

NetHammer [Lip+17].

36 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MORITZ ATTACKS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in software

“nohammer” kernel module [Cor16]
• Refresh rate of 8ms would prevent
Rowhammer on most systems

• Use PMC to measure cache misses per
64ms interval

• Limit cache miss rate to 1/8 of maximum

hammer

Wait for refresh

Wait for refresh

Performance? Grand Pwning Unit [Fri+18], ThrowHammer [Tat+18],
NetHammer [Lip+17].

36 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MORITZ ATTACKS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in software

MASCAT - Stopping Microarchitectural Attacks Before Execution
[IES17]
• Static analysis of the binary

• Detect suspicious instruction sequences
(clflush, rdtsc, fences, …)

• Open problem: false positives

ThrowHammer [Tat+18], NetHammer [Lip+17].

37 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL DEFENDS, MORITZ ATTACKS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in software

MASCAT - Stopping Microarchitectural Attacks Before Execution
[IES17]
• Static analysis of the binary
• Detect suspicious instruction sequences
(clflush, rdtsc, fences, …)

• Open problem: false positives

ThrowHammer [Tat+18], NetHammer [Lip+17].

37 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL DEFENDS, MORITZ ATTACKS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in software

MASCAT - Stopping Microarchitectural Attacks Before Execution
[IES17]
• Static analysis of the binary
• Detect suspicious instruction sequences
(clflush, rdtsc, fences, …)

• Open problem: false positives
ThrowHammer [Tat+18], NetHammer [Lip+17].

37 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL DEFENDS, MORITZ ATTACKS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in software

ANVIL [Awe+16]
• Uses performance counters to
detect rowhammer

• Activate rows neighbor rows to
prevent flips

• Similar as PARA, but in software

hammer

hammer

refresh

What if performance counters do not work? [Gru+18; Jan+17]

38 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL DEFENDS, DANIEL ATTACKS
NEXT SLIDE: MORITZ

Preventing Rowhammer attacks in software

ANVIL [Awe+16]
• Uses performance counters to
detect rowhammer

• Activate rows neighbor rows to
prevent flips

• Similar as PARA, but in software

refresh

hammer

hammer

refresh

What if performance counters do not work? [Gru+18; Jan+17]

38 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL DEFENDS, DANIEL ATTACKS
NEXT SLIDE: MORITZ

Preventing Rowhammer attacks in software

ANVIL [Awe+16]
• Uses performance counters to
detect rowhammer

• Activate rows neighbor rows to
prevent flips

• Similar as PARA, but in software

refresh

hammer

refresh

hammer

refreshrefresh

What if performance counters do not work? [Gru+18; Jan+17]

38 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL DEFENDS, DANIEL ATTACKS
NEXT SLIDE: MORITZ

Preventing Rowhammer attacks in software

• B-CATT: disable vulnerable physical memory
[Bra+17]

• G-CATT: isolate security domains in physical
memory based on potential vulnerability
[Bra+17]

G-CATTB-CATT

B-CATT: Might block 95% of RAM [Gru+18; Vee+18]

G-CATT: What about non-kernel or shared pages? [Gru+18; CZN18]

G-CATT: Bit flips more than 8 “rows” apart [Kim+14; Gru+18]

39 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ B-CATT, MICHAEL G-CATT, DANIEL ATTACKS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in software

• B-CATT: disable vulnerable physical memory
[Bra+17]

• G-CATT: isolate security domains in physical
memory based on potential vulnerability
[Bra+17]

G-CATTB-CATT

B-CATT: Might block 95% of RAM [Gru+18; Vee+18]

G-CATT: What about non-kernel or shared pages? [Gru+18; CZN18]

G-CATT: Bit flips more than 8 “rows” apart [Kim+14; Gru+18]

39 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ B-CATT, MICHAEL G-CATT, DANIEL ATTACKS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in software

• B-CATT: disable vulnerable physical memory
[Bra+17]

• G-CATT: isolate security domains in physical
memory based on potential vulnerability
[Bra+17]

G-CATTB-CATT

B-CATT: Might block 95% of RAM [Gru+18; Vee+18]

G-CATT: What about non-kernel or shared pages? [Gru+18; CZN18]

G-CATT: Bit flips more than 8 “rows” apart [Kim+14; Gru+18]

39 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ B-CATT, MICHAEL G-CATT, DANIEL ATTACKS
NEXT SLIDE: MICHAEL

Preventing Rowhammer attacks in software

• B-CATT: disable vulnerable physical memory
[Bra+17]

• G-CATT: isolate security domains in physical
memory based on potential vulnerability
[Bra+17]

G-CATTB-CATT

B-CATT: Might block 95% of RAM [Gru+18; Vee+18]

G-CATT: What about non-kernel or shared pages? [Gru+18; CZN18]

G-CATT: Bit flips more than 8 “rows” apart [Kim+14; Gru+18]

39 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ B-CATT, MICHAEL G-CATT, DANIEL ATTACKS
NEXT SLIDE: MICHAEL

GuardION

• Isolate DMA buffers in physical memory [Vee+18]

Bit flips more than 8 “rows” apart [Kim+14; Gru+18]

40 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL DEFENDS, DANIEL ATTACKS
NEXT SLIDE: DANIEL

GuardION

• Isolate DMA buffers in physical memory [Vee+18]

Bit flips more than 8 “rows” apart [Kim+14; Gru+18]

40 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL DEFENDS, DANIEL ATTACKS
NEXT SLIDE: DANIEL

GuardION

• Isolate DMA buffers in physical memory [Vee+18]

Bit flips more than 8 “rows” apart [Kim+14; Gru+18]

40 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL DEFENDS, DANIEL ATTACKS
NEXT SLIDE: DANIEL

Detecting Rowhammer attacks

• Rowhammer: lots of cache misses that can be monitored with hardware
performance counters [HF15; Gru+16; CSY15; Pay16]

Firefox OpenT
TD

stress
-m 1

Flush+
Reload Rowha

mmer
100

102

104

Cache misses (normalized) Cache hits (normalized)

What if performance counters do not work because we run in SGX? [Gru+18;
Jan+17]

41 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MORITZ ATTACKS
NEXT SLIDE: MICHAEL

Detecting Rowhammer attacks

• Rowhammer: lots of cache misses that can be monitored with hardware
performance counters [HF15; Gru+16; CSY15; Pay16]

Firefox OpenT
TD

stress
-m 1

Flush+
Reload Rowha

mmer
100

102

104

Cache misses (normalized) Cache hits (normalized)

What if performance counters do not work because we run in SGX? [Gru+18;
Jan+17]

41 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL DEFENDS, MORITZ ATTACKS
NEXT SLIDE: MICHAEL

Defenses Overview

Methodology
Defense M

AS
CA
T

Ch
ia
pe
tta

et
al
. [
CS
Y1
5]

Cl
ou
dR
ad
ar

He
ra
th
an
d
Fo
gh
[H
F1
5]

He
xP
AD
S

pe
rf

AN
VI
L

no
ha
m
m
er

No
OO
M

G-
CA
TT

B-
CA
TT

TR
R

M
AC

PA
RA
/C
RA
/P
RA

AR
M
OR

EC
C/
Ch
ip
ki
ll

Re
fre
sh
Ra
te

Detection

Static Analysis
Performance Counters
Memory Access Pattern

Neutralization

Physical Proximity
Memory Footprint

Elimination

Bootloader
Hardware Modification

BIOS Update

42 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MICHAEL

What if you don’t need to hammer two or more rows?

One-location hammering

MICHAEL ASKS DANIEL
NEXT SLIDE: DANIEL

What if you don’t need to hammer two or more rows?

One-location hammering

MICHAEL ASKS DANIEL
NEXT SLIDE: DANIEL

How to hammer?

• There are two different hammering techniques

• #1: Hammer one row next to victim row and other random
rows

• #2: Hammer two rows neighboring victim row

43 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MICHAEL

How to hammer?

• There are two different hammering techniques
• #1: Hammer one row next to victim row and other random
rows

• #2: Hammer two rows neighboring victim row

43 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MICHAEL

How to hammer?

• There are two different hammering techniques
• #1: Hammer one row next to victim row and other random
rows

• #2: Hammer two rows neighboring victim row

43 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MICHAEL

#1 - Single-sided hammering

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

44 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

#1 - Single-sided hammering

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

44 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

#1 - Single-sided hammering

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

44 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

#1 - Single-sided hammering

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1activate

44 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

#1 - Single-sided hammering

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

44 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

#1 - Single-sided hammering

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips

44 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

#2 - Double-sided hammering

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

45 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: DANIEL

#2 - Double-sided hammering

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

45 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: DANIEL

#2 - Double-sided hammering

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

45 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: DANIEL

#2 - Double-sided hammering

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

45 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: DANIEL

#2 - Double-sided hammering

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

45 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: DANIEL

#2 - Double-sided hammering

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips

45 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: DANIEL

DANIEL
NEXT SLIDE: DANIEL

DANIEL
NEXT SLIDE: DANIEL

Hammering techniques

• There are three different hammering techniques
• #1: Hammer one row next to victim row and other random
rows

• #2: Hammer two rows neighboring victim row
• #3: Hammer only one row next to victim row

46 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: DANIEL

#3 - One-location hammering

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

47 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
DEMO: MICHAEL
SLIDE DANACH: MORITZ

#3 - One-location hammering

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

47 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
DEMO: MICHAEL
SLIDE DANACH: MORITZ

#3 - One-location hammering

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

47 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
DEMO: MICHAEL
SLIDE DANACH: MORITZ

#3 - One-location hammering

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

47 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
DEMO: MICHAEL
SLIDE DANACH: MORITZ

#3 - One-location hammering

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

47 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
DEMO: MICHAEL
SLIDE DANACH: MORITZ

#3 - One-location hammering

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips

47 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
DEMO: MICHAEL
SLIDE DANACH: MORITZ

Memory-Controller Policies

• Open-page policy: Keep row opened and buffered

• Low latency for subsequent accesses to same row
• High latency for accesses to any other row

• Close-page policy: Immediately close row, ready to open a
new row
• Medium latency for accesses to any row
• Perform better on multi-core systems [Dav+11]

49 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ POLICIES, DANIEL DETAILS
NEXT SLIDE: MORITZ

Memory-Controller Policies

• Open-page policy: Keep row opened and buffered
• Low latency for subsequent accesses to same row
• High latency for accesses to any other row

• Close-page policy: Immediately close row, ready to open a
new row
• Medium latency for accesses to any row
• Perform better on multi-core systems [Dav+11]

49 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ POLICIES, DANIEL DETAILS
NEXT SLIDE: MORITZ

Memory-Controller Policies

• Open-page policy: Keep row opened and buffered
• Low latency for subsequent accesses to same row
• High latency for accesses to any other row

• Close-page policy: Immediately close row, ready to open a
new row

• Medium latency for accesses to any row
• Perform better on multi-core systems [Dav+11]

49 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ POLICIES, DANIEL DETAILS
NEXT SLIDE: MORITZ

Memory-Controller Policies

• Open-page policy: Keep row opened and buffered
• Low latency for subsequent accesses to same row
• High latency for accesses to any other row

• Close-page policy: Immediately close row, ready to open a
new row
• Medium latency for accesses to any row

• Perform better on multi-core systems [Dav+11]

49 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ POLICIES, DANIEL DETAILS
NEXT SLIDE: MORITZ

Memory-Controller Policies

• Open-page policy: Keep row opened and buffered
• Low latency for subsequent accesses to same row
• High latency for accesses to any other row

• Close-page policy: Immediately close row, ready to open a
new row
• Medium latency for accesses to any row
• Perform better on multi-core systems [Dav+11]

49 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ POLICIES, DANIEL DETAILS
NEXT SLIDE: MORITZ

Memory-Controller Policies

• Policies that preemptively close rows, would allow
one-location hammering

• We observed close-page policies on desktop computers
• Mobile devices (e.g., laptops) seem to use mostly
open-page policies

50 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: DANIEL

Memory-Controller Policies

• Policies that preemptively close rows, would allow
one-location hammering

• We observed close-page policies on desktop computers

• Mobile devices (e.g., laptops) seem to use mostly
open-page policies

50 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: DANIEL

Memory-Controller Policies

• Policies that preemptively close rows, would allow
one-location hammering

• We observed close-page policies on desktop computers
• Mobile devices (e.g., laptops) seem to use mostly
open-page policies

50 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: DANIEL

How well does it work?

Double-sided
77.0% bit offsets
51.7% 0→1 bit flips

Single-sided
78.5% bit offsets
54.1% 0→1 bit flips

One-location
36.5% bit offsets
51.6% 0→1 bit flips

51 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL 4KB, 100k randomly pages, 8 hours
NEXT SLIDE: MORITZ

What if we cannot target kernel pages?

Opcode Flipping

MORITZ ASKS MICHAEL
NEXT SLIDE: MICHAEL

What if we cannot target kernel pages?

Opcode Flipping

MORITZ ASKS MICHAEL
NEXT SLIDE: MICHAEL

Opcode Flipping

• Many applications perform actions as root

• They can be used by unprivileged users as well
• Implicitly: e.g., ping or mount
• Explicitly: sudo
• Target sudo (easy to exploit)

52 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MICHAEL

Opcode Flipping

• Many applications perform actions as root
• They can be used by unprivileged users as well

• Implicitly: e.g., ping or mount
• Explicitly: sudo
• Target sudo (easy to exploit)

52 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MICHAEL

Opcode Flipping

• Many applications perform actions as root
• They can be used by unprivileged users as well
• Implicitly: e.g., ping or mount

• Explicitly: sudo
• Target sudo (easy to exploit)

52 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MICHAEL

Opcode Flipping

• Many applications perform actions as root
• They can be used by unprivileged users as well
• Implicitly: e.g., ping or mount
• Explicitly: sudo

• Target sudo (easy to exploit)

52 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MICHAEL

Opcode Flipping

• Many applications perform actions as root
• They can be used by unprivileged users as well
• Implicitly: e.g., ping or mount
• Explicitly: sudo
• Target sudo (easy to exploit)

52 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MICHAEL

Opcode Flipping - Conditional Jump

JE
0 1 1 1 0 1 0 0

HLT
1 1 1 1 0 1 0 0

<prefix>
0 1 1 0 0 1 0 0

53 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

Opcode Flipping - Conditional Jump

JE
0 1 1 1 0 1 0 0

XORB
0 0 1 1 0 1 0 0

<prefix>
0 1 1 0 0 1 0 0

53 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

Opcode Flipping - Conditional Jump

JE
0 1 1 1 0 1 0 0

PUSHQ
0 1 0 1 0 1 0 0

<prefix>
0 1 1 0 0 1 0 0

53 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

Opcode Flipping - Conditional Jump

JE
0 1 1 1 0 1 0 0

<prefix>
0 1 1 0 0 1 0 0

53 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

Opcode Flipping - Conditional Jump

JE
0 1 1 1 0 1 0 0

JL
0 1 1 1 1 1 0 0

<prefix>
0 1 1 0 0 1 0 0

53 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

Opcode Flipping - Conditional Jump

JE
0 1 1 1 0 1 0 0

JO
0 1 1 1 0 0 0 0

<prefix>
0 1 1 0 0 1 0 0

53 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

Opcode Flipping - Conditional Jump

JE
0 1 1 1 0 1 0 0

JBE
0 1 1 1 0 1 1 0

<prefix>
0 1 1 0 0 1 0 0

53 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

Opcode Flipping - Conditional Jump

JE
0 1 1 1 0 1 0 0

JNE
0 1 1 1 0 1 0 1

<prefix>
0 1 1 0 0 1 0 0

53 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

Opcode Flipping

• Conditional jumps are not the only targets

• Other targets include
• Comparisons
• Addresses of memory loads/stores
• Address calculations
• ...

• Manual analysis of sudo revealed 29 possible bit flips
• They all somehow skipped the password check

54 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: DANIEL

Opcode Flipping

• Conditional jumps are not the only targets
• Other targets include

• Comparisons
• Addresses of memory loads/stores
• Address calculations
• ...

• Manual analysis of sudo revealed 29 possible bit flips
• They all somehow skipped the password check

54 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: DANIEL

Opcode Flipping

• Conditional jumps are not the only targets
• Other targets include

• Comparisons
• Addresses of memory loads/stores
• Address calculations
• ...

• Manual analysis of sudo revealed 29 possible bit flips
• They all somehow skipped the password check

54 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: DANIEL

Opcode Flipping

• Conditional jumps are not the only targets
• Other targets include

• Comparisons
• Addresses of memory loads/stores
• Address calculations
• ...

• Manual analysis of sudo revealed 29 possible bit flips

• They all somehow skipped the password check

54 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: DANIEL

Opcode Flipping

• Conditional jumps are not the only targets
• Other targets include

• Comparisons
• Addresses of memory loads/stores
• Address calculations
• ...

• Manual analysis of sudo revealed 29 possible bit flips
• They all somehow skipped the password check

54 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: DANIEL

How to get the target virtual page to the target physical
location?

Memory Waylaying

DANIEL ASKS MICHAEL
NEXT SLIDE: MICHAEL

How to get the target virtual page to the target physical
location?

Memory Waylaying

DANIEL ASKS MICHAEL
NEXT SLIDE: MICHAEL

Placing the binary

• Not as easy as with page tables

• Binary only once in memory + stays in memory (in the page
cache) even after termination

• Only evicted if page cache is full
• Page cache usually occupies all unused memory

55 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: DANIEL

Placing the binary

• Not as easy as with page tables
• Binary only once in memory + stays in memory (in the page
cache) even after termination

• Only evicted if page cache is full
• Page cache usually occupies all unused memory

55 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: DANIEL

Placing the binary

• Not as easy as with page tables
• Binary only once in memory + stays in memory (in the page
cache) even after termination

• Only evicted if page cache is full

• Page cache usually occupies all unused memory

55 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: DANIEL

Placing the binary

• Not as easy as with page tables
• Binary only once in memory + stays in memory (in the page
cache) even after termination

• Only evicted if page cache is full
• Page cache usually occupies all unused memory

55 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: DANIEL

Page Cache

• If a binary is loaded the first time, it is loaded to the memory

• It stays in memory (in the page cache) even after execution
• Only evicted if page cache is full
• Page cache is huge - usually all unused memory

56 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MICHAEL

Page Cache

• If a binary is loaded the first time, it is loaded to the memory
• It stays in memory (in the page cache) even after execution

• Only evicted if page cache is full
• Page cache is huge - usually all unused memory

56 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MICHAEL

Page Cache

• If a binary is loaded the first time, it is loaded to the memory
• It stays in memory (in the page cache) even after execution
• Only evicted if page cache is full

• Page cache is huge - usually all unused memory

56 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MICHAEL

Page Cache

• If a binary is loaded the first time, it is loaded to the memory
• It stays in memory (in the page cache) even after execution
• Only evicted if page cache is full
• Page cache is huge - usually all unused memory

56 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MICHAEL

MICHAEL
NEXT SLIDE: MICHAEL

Memory Waylaying

(1) Start

B
X

57 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

Memory Waylaying

(2) Evict Page Cache

X

57 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

Memory Waylaying

(3) Access Binary

B

X

57 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

Memory Waylaying

(4) Evict + Access

B

X

57 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

Memory Waylaying

(5) Evict + Access

B

X

57 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

Memory Waylaying

(6) Stop if target reached

BX

57 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ

How well does it work?

• New pages cover most of the physical memory

1

58 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: DANIEL

How well does it work?

• Great advantage over memory massaging: only negligible memory footprint

59 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

Rowhammer + SGX = Cheap Denial of Service

MORITZ
NEXT SLIDE: MORITZ

Intel SGX

• Instruction-set extension
• Integrity and confidentiality of code and data in untrusted
environments

• Run with user privileges and restricted, e.g., no system calls
• Run programs in enclaves using protected areas of memory

60 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: DANIEL

SGX Encrypted Memory

Physical Memory

EP
C
(1
28
M
B)

0 GB 16GB

61 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

SGX Encrypted Memory

Physical Memory

EP
C
(1
28
M
B)

0 GB 16GB

61 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

Bit Flips in the EPC

• What happens if a bit flips in the EPC?

• Integrity check will fail!
→ Locks up the memory controller
→ Not a single further memory access!
→ System halts immediately

62 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: MORITZ

Bit Flips in the EPC

• What happens if a bit flips in the EPC?
• Integrity check will fail!

→ Locks up the memory controller
→ Not a single further memory access!
→ System halts immediately

62 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: MORITZ

Bit Flips in the EPC

• What happens if a bit flips in the EPC?
• Integrity check will fail!

→ Locks up the memory controller

→ Not a single further memory access!
→ System halts immediately

62 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: MORITZ

Bit Flips in the EPC

• What happens if a bit flips in the EPC?
• Integrity check will fail!

→ Locks up the memory controller
→ Not a single further memory access!

→ System halts immediately

62 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: MORITZ

Bit Flips in the EPC

• What happens if a bit flips in the EPC?
• Integrity check will fail!

→ Locks up the memory controller
→ Not a single further memory access!
→ System halts immediately

62 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: MORITZ

Bit Flips in the EPC

• What happens if a bit flips in the EPC?
• Integrity check will fail!

→ Locks up the memory controller
→ Not a single further memory access!
→ System halts immediately

62 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: MORITZ

MORITZ
NEXT SLIDE: DANIEL

Bit Flips in the EPC

• If a malicious enclave induces a bit flip, …

• …the entire machine halts
• …including co-located tenants
• Denial-of-Service Attacks in the Cloud [Gru+18; Jan+17]

63 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MICHAEL

Bit Flips in the EPC

• If a malicious enclave induces a bit flip, …
• …the entire machine halts

• …including co-located tenants
• Denial-of-Service Attacks in the Cloud [Gru+18; Jan+17]

63 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MICHAEL

Bit Flips in the EPC

• If a malicious enclave induces a bit flip, …
• …the entire machine halts
• …including co-located tenants

• Denial-of-Service Attacks in the Cloud [Gru+18; Jan+17]

63 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MICHAEL

Bit Flips in the EPC

• If a malicious enclave induces a bit flip, …
• …the entire machine halts
• …including co-located tenants
• Denial-of-Service Attacks in the Cloud [Gru+18; Jan+17]

63 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MICHAEL

SGX + One-location Hammering + Opcode Flipping =
Undetectable Exploit

MICHAEL
NEXT SLIDE: MICHAEL

(Ab)using SGX Protection

• SGX protects software from malicious environments

• Thwarts static and dynamic (= performance counters)
analysis

• Hammering from SGX defeats countermeasures relying on
this

64 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MICHAEL

(Ab)using SGX Protection

• SGX protects software from malicious environments
• Thwarts static and dynamic (= performance counters)
analysis

• Hammering from SGX defeats countermeasures relying on
this

64 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MICHAEL

(Ab)using SGX Protection

• SGX protects software from malicious environments
• Thwarts static and dynamic (= performance counters)
analysis

• Hammering from SGX defeats countermeasures relying on
this

64 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MICHAEL

MICHAEL
NEXT SLIDE: DANIEL

Bypassing the Defenses

Bypass
Defense Class

St
at
ic
An
al
ys
is

Pe
rfo
rm
an
ce
Co
un
te
rs

M
em
or
y
Ac
ce
ss

Pa
t-

te
rn Ph
ys
ic
al
Pr
ox
im
ity

M
em
or
y
fo
ot
pr
in
t

Intel SGX
One-location hammering

Opcode flipping
Memory waylaying

Defense class defeated

66 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MICHAEL

MICHAEL
NEXT SLIDE: DANIEL

Just comparing some performance numbers...

• ≥ 43 000 hammering attempts (within 64ms) for a bit
flip [GMM16]

= 671 875 accesses per second
• Network packets access memory location up to 6 times
(depending on kernel)

→ 111 979 packets per second
• Network packets are a least 64B
= 7 166 656B/s = 7MB/s = 57Mb/s
→ That sounds doable on “modern” networks

67 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

Just comparing some performance numbers...

• ≥ 43 000 hammering attempts (within 64ms) for a bit
flip [GMM16]

= 671 875 accesses per second
• Network packets access memory location up to 6 times
(depending on kernel)

→ 111 979 packets per second
• Network packets are a least 64B
= 7 166 656B/s = 7MB/s = 57Mb/s
→ That sounds doable on “modern” networks

67 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

Just comparing some performance numbers...

• ≥ 43 000 hammering attempts (within 64ms) for a bit
flip [GMM16]

= 671 875 accesses per second
• Network packets access memory location up to 6 times
(depending on kernel)

→ 111 979 packets per second
• Network packets are a least 64B
= 7 166 656B/s = 7MB/s = 57Mb/s
→ That sounds doable on “modern” networks

67 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

Just comparing some performance numbers...

• ≥ 43 000 hammering attempts (within 64ms) for a bit
flip [GMM16]

= 671 875 accesses per second

• Network packets access memory location up to 6 times
(depending on kernel)

→ 111 979 packets per second
• Network packets are a least 64B
= 7 166 656B/s = 7MB/s = 57Mb/s
→ That sounds doable on “modern” networks

67 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

Just comparing some performance numbers...

• ≥ 43 000 hammering attempts (within 64ms) for a bit
flip [GMM16]

= 671 875 accesses per second
• Network packets access memory location up to 6 times
(depending on kernel)

→ 111 979 packets per second
• Network packets are a least 64B
= 7 166 656B/s = 7MB/s = 57Mb/s
→ That sounds doable on “modern” networks

67 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

Just comparing some performance numbers...

• ≥ 43 000 hammering attempts (within 64ms) for a bit
flip [GMM16]

= 671 875 accesses per second
• Network packets access memory location up to 6 times
(depending on kernel)

→ 111 979 packets per second

• Network packets are a least 64B
= 7 166 656B/s = 7MB/s = 57Mb/s
→ That sounds doable on “modern” networks

67 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

Just comparing some performance numbers...

• ≥ 43 000 hammering attempts (within 64ms) for a bit
flip [GMM16]

= 671 875 accesses per second
• Network packets access memory location up to 6 times
(depending on kernel)

→ 111 979 packets per second
• Network packets are a least 64B

= 7 166 656B/s = 7MB/s = 57Mb/s
→ That sounds doable on “modern” networks

67 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

Just comparing some performance numbers...

• ≥ 43 000 hammering attempts (within 64ms) for a bit
flip [GMM16]

= 671 875 accesses per second
• Network packets access memory location up to 6 times
(depending on kernel)

→ 111 979 packets per second
• Network packets are a least 64B
= 7 166 656B/s = 7MB/s = 57Mb/s

→ That sounds doable on “modern” networks

67 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

Just comparing some performance numbers...

• ≥ 43 000 hammering attempts (within 64ms) for a bit
flip [GMM16]

= 671 875 accesses per second
• Network packets access memory location up to 6 times
(depending on kernel)

→ 111 979 packets per second
• Network packets are a least 64B
= 7 166 656B/s = 7MB/s = 57Mb/s
→ That sounds doable on “modern” networks

67 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

Just comparing some performance numbers...

• ≥ 43 000 hammering attempts (within 64ms) for a bit
flip [GMM16]

= 671 875 accesses per second
• Network packets access memory location up to 6 times
(depending on kernel)

→ 111 979 packets per second
• Network packets are a least 64B
= 7 166 656B/s = 7MB/s = 57Mb/s
→ That sounds doable on “modern” networks

67 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ

Nethammer

Inducing bit flips:

• Network stacks on ARM often use uncached memory
(perfect for hammering)

• Intel recommends Intel CAT for QoS (perfect for
hammering)

• Network reachable code might use clflush or
non-temporal stores
(both great for hammering)

68 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: MORITZ

Nethammer

Inducing bit flips:

• Network stacks on ARM often use uncached memory
(perfect for hammering)

• Intel recommends Intel CAT for QoS (perfect for
hammering)

• Network reachable code might use clflush or
non-temporal stores
(both great for hammering)

68 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: MORITZ

Nethammer

Inducing bit flips:

• Network stacks on ARM often use uncached memory
(perfect for hammering)

• Intel recommends Intel CAT for QoS (perfect for
hammering)

• Network reachable code might use clflush or
non-temporal stores
(both great for hammering)

68 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: MORITZ

Nethammer

Inducing bit flips:
• Network stacks on ARM often use uncached memory
(perfect for hammering)

• Intel recommends Intel CAT for QoS (perfect for
hammering)

• Network reachable code might use clflush or
non-temporal stores
(both great for hammering)

68 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: MORITZ

Nethammer

Inducing bit flips:
• Network stacks on ARM often use uncached memory
(perfect for hammering)

• Intel recommends Intel CAT for QoS (perfect for
hammering)

• Network reachable code might use clflush or
non-temporal stores
(both great for hammering)

68 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: MORITZ

Nethammer

Inducing bit flips:
• Network stacks on ARM often use uncached memory
(perfect for hammering)

• Intel recommends Intel CAT for QoS (perfect for
hammering)

• Network reachable code might use clflush or
non-temporal stores
(both great for hammering)

68 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: MORITZ

Exploiting Nethammer Bit Flips

Nethammer on ...

• SGX = powerful DoS
• File system = persistent DoS
• DNS entries on a DNS server = bit-squatting attack
• OCSP servers = make invalid certificates great again
• Crypto = generate private keys for broken public keys
• Crypto + GitLab = manipulate repositories in the name of
someone else

• Bonus: evict the broken key and all traces are gone!
• Original key owner will have a hard time proving that this
was an attacker

69 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT FRAME: MORITZ

Exploiting Nethammer Bit Flips

Nethammer on ...

• SGX = powerful DoS
• File system = persistent DoS
• DNS entries on a DNS server = bit-squatting attack
• OCSP servers = make invalid certificates great again
• Crypto = generate private keys for broken public keys
• Crypto + GitLab = manipulate repositories in the name of
someone else

• Bonus: evict the broken key and all traces are gone!
• Original key owner will have a hard time proving that this
was an attacker

69 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT FRAME: MORITZ

Exploiting Nethammer Bit Flips

Nethammer on ...

• SGX = powerful DoS
• File system = persistent DoS
• DNS entries on a DNS server = bit-squatting attack
• OCSP servers = make invalid certificates great again
• Crypto = generate private keys for broken public keys
• Crypto + GitLab = manipulate repositories in the name of
someone else

• Bonus: evict the broken key and all traces are gone!
• Original key owner will have a hard time proving that this
was an attacker

69 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT FRAME: MICHAEL

Exploiting Nethammer Bit Flips

Nethammer on ...
• SGX = powerful DoS

• File system = persistent DoS
• DNS entries on a DNS server = bit-squatting attack
• OCSP servers = make invalid certificates great again
• Crypto = generate private keys for broken public keys
• Crypto + GitLab = manipulate repositories in the name of
someone else

• Bonus: evict the broken key and all traces are gone!
• Original key owner will have a hard time proving that this
was an attacker

69 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT FRAME: DANIEL

Exploiting Nethammer Bit Flips

Nethammer on ...
• SGX = powerful DoS
• File system = persistent DoS

• DNS entries on a DNS server = bit-squatting attack
• OCSP servers = make invalid certificates great again
• Crypto = generate private keys for broken public keys
• Crypto + GitLab = manipulate repositories in the name of
someone else

• Bonus: evict the broken key and all traces are gone!
• Original key owner will have a hard time proving that this
was an attacker

69 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT FRAME: MICHAEL

Exploiting Nethammer Bit Flips

Nethammer on ...
• SGX = powerful DoS
• File system = persistent DoS
• DNS entries on a DNS server = bit-squatting attack

• OCSP servers = make invalid certificates great again
• Crypto = generate private keys for broken public keys
• Crypto + GitLab = manipulate repositories in the name of
someone else

• Bonus: evict the broken key and all traces are gone!
• Original key owner will have a hard time proving that this
was an attacker

69 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT FRAME: MORITZ

Exploiting Nethammer Bit Flips

Nethammer on ...
• SGX = powerful DoS
• File system = persistent DoS
• DNS entries on a DNS server = bit-squatting attack
• OCSP servers = make invalid certificates great again

• Crypto = generate private keys for broken public keys
• Crypto + GitLab = manipulate repositories in the name of
someone else

• Bonus: evict the broken key and all traces are gone!
• Original key owner will have a hard time proving that this
was an attacker

69 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT FRAME: DANIEL

Exploiting Nethammer Bit Flips

Nethammer on ...
• SGX = powerful DoS
• File system = persistent DoS
• DNS entries on a DNS server = bit-squatting attack
• OCSP servers = make invalid certificates great again
• Crypto = generate private keys for broken public keys

• Crypto + GitLab = manipulate repositories in the name of
someone else

• Bonus: evict the broken key and all traces are gone!
• Original key owner will have a hard time proving that this
was an attacker

69 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT FRAME: MORITZ

Exploiting Nethammer Bit Flips

Nethammer on ...
• SGX = powerful DoS
• File system = persistent DoS
• DNS entries on a DNS server = bit-squatting attack
• OCSP servers = make invalid certificates great again
• Crypto = generate private keys for broken public keys
• Crypto + GitLab = manipulate repositories in the name of
someone else

• Bonus: evict the broken key and all traces are gone!
• Original key owner will have a hard time proving that this
was an attacker

69 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT FRAME: MICHAEL

Exploiting Nethammer Bit Flips

Nethammer on ...
• SGX = powerful DoS
• File system = persistent DoS
• DNS entries on a DNS server = bit-squatting attack
• OCSP servers = make invalid certificates great again
• Crypto = generate private keys for broken public keys
• Crypto + GitLab = manipulate repositories in the name of
someone else
• Bonus: evict the broken key and all traces are gone!

• Original key owner will have a hard time proving that this
was an attacker

69 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MICHAEL, MORITZ

Exploiting Nethammer Bit Flips

Nethammer on ...
• SGX = powerful DoS
• File system = persistent DoS
• DNS entries on a DNS server = bit-squatting attack
• OCSP servers = make invalid certificates great again
• Crypto = generate private keys for broken public keys
• Crypto + GitLab = manipulate repositories in the name of
someone else
• Bonus: evict the broken key and all traces are gone!
• Original key owner will have a hard time proving that this
was an attacker

69 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MICHAEL, MORITZ

What do we learn from it?

• Many (academic) countermeasures were proposed to
mitigate Rowhammer

• We showed that all of them can be circumvented [Gru+18]
• We cannot design countermeasures without completely
understanding the attack

• Otherwise we only patch concrete exploits, but do not
solve the problem

70 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT FRAME: MORITZ

What do we learn from it?

• Many (academic) countermeasures were proposed to
mitigate Rowhammer

• We showed that all of them can be circumvented [Gru+18]

• We cannot design countermeasures without completely
understanding the attack

• Otherwise we only patch concrete exploits, but do not
solve the problem

70 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT FRAME: MICHAEL

What do we learn from it?

• Many (academic) countermeasures were proposed to
mitigate Rowhammer

• We showed that all of them can be circumvented [Gru+18]
• We cannot design countermeasures without completely
understanding the attack

• Otherwise we only patch concrete exploits, but do not
solve the problem

70 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT FRAME: MORITZ

What do we learn from it?

• Many (academic) countermeasures were proposed to
mitigate Rowhammer

• We showed that all of them can be circumvented [Gru+18]
• We cannot design countermeasures without completely
understanding the attack

• Otherwise we only patch concrete exploits, but do not
solve the problem

70 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: MICHAEL, DANIEL

What do we learn from it?

Apple had a great idea:
• Lower refresh rate→ save energy + more flips

→ ECC memory→ fewer flips
• It’s an optimization problem.

• Too aggressive? → bit flips
• Too cautious? → waste of energy
• What if the “too aggressive” changes over time?
• What if attackers come up with slightly better attacks?

→ Difficult to optimize with an adversary working against you

71 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT FRAME: MICHAEL

What do we learn from it?

Apple had a great idea:
• Lower refresh rate→ save energy + more flips

→ ECC memory→ fewer flips

• It’s an optimization problem.
• Too aggressive? → bit flips
• Too cautious? → waste of energy
• What if the “too aggressive” changes over time?
• What if attackers come up with slightly better attacks?

→ Difficult to optimize with an adversary working against you

71 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT FRAME: DANIEL

What do we learn from it?

Apple had a great idea:
• Lower refresh rate→ save energy + more flips

→ ECC memory→ fewer flips
• It’s an optimization problem.

• Too aggressive? → bit flips
• Too cautious? → waste of energy
• What if the “too aggressive” changes over time?
• What if attackers come up with slightly better attacks?

→ Difficult to optimize with an adversary working against you

71 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ, MICHAEL

What do we learn from it?

Apple had a great idea:
• Lower refresh rate→ save energy + more flips

→ ECC memory→ fewer flips
• It’s an optimization problem.

• Too aggressive? → bit flips

• Too cautious? → waste of energy
• What if the “too aggressive” changes over time?
• What if attackers come up with slightly better attacks?

→ Difficult to optimize with an adversary working against you

71 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ, MICHAEL

What do we learn from it?

Apple had a great idea:
• Lower refresh rate→ save energy + more flips

→ ECC memory→ fewer flips
• It’s an optimization problem.

• Too aggressive? → bit flips
• Too cautious? → waste of energy

• What if the “too aggressive” changes over time?
• What if attackers come up with slightly better attacks?

→ Difficult to optimize with an adversary working against you

71 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ, MICHAEL

What do we learn from it?

Apple had a great idea:
• Lower refresh rate→ save energy + more flips

→ ECC memory→ fewer flips
• It’s an optimization problem.

• Too aggressive? → bit flips
• Too cautious? → waste of energy
• What if the “too aggressive” changes over time?

• What if attackers come up with slightly better attacks?
→ Difficult to optimize with an adversary working against you

71 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ, MICHAEL

What do we learn from it?

Apple had a great idea:
• Lower refresh rate→ save energy + more flips

→ ECC memory→ fewer flips
• It’s an optimization problem.

• Too aggressive? → bit flips
• Too cautious? → waste of energy
• What if the “too aggressive” changes over time?
• What if attackers come up with slightly better attacks?

→ Difficult to optimize with an adversary working against you

71 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ, MICHAEL

What do we learn from it?

Apple had a great idea:
• Lower refresh rate→ save energy + more flips

→ ECC memory→ fewer flips
• It’s an optimization problem.

• Too aggressive? → bit flips
• Too cautious? → waste of energy
• What if the “too aggressive” changes over time?
• What if attackers come up with slightly better attacks?

→ Difficult to optimize with an adversary working against you

71 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT SLIDE: MORITZ, MICHAEL

What do we learn from it?

• We have to invest more into researching attacks

• There are still aspects of Rowhammer we do not fully
understand

• However, this is required to design effective
countermeasures

• Moreover, new features might introduce new attack vectors
(e.g., SGX)

72 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ

What do we learn from it?

• We have to invest more into researching attacks
• There are still aspects of Rowhammer we do not fully
understand

• However, this is required to design effective
countermeasures

• Moreover, new features might introduce new attack vectors
(e.g., SGX)

72 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ

What do we learn from it?

• We have to invest more into researching attacks
• There are still aspects of Rowhammer we do not fully
understand

• However, this is required to design effective
countermeasures

• Moreover, new features might introduce new attack vectors
(e.g., SGX)

72 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT FRAME: MICHAEL

What do we learn from it?

• We have to invest more into researching attacks
• There are still aspects of Rowhammer we do not fully
understand

• However, this is required to design effective
countermeasures

• Moreover, new features might introduce new attack vectors
(e.g., SGX)

72 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT SLIDE: MORITZ,DANIEL,MICHAEL,MORITZ

What do we learn from it?

• We underestimated side-channel attacks for a long time

• Industry and customers have to reconsider priorities→
focus more on security instead of performance

• Reliability issues (Rowhammer) can have security impacts
• More research is required to understand attacks to
ultimately mitigate them

73 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT FRAME: DANIEL

What do we learn from it?

• We underestimated side-channel attacks for a long time
• Industry and customers have to reconsider priorities→
focus more on security instead of performance

• Reliability issues (Rowhammer) can have security impacts
• More research is required to understand attacks to
ultimately mitigate them

73 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

DANIEL
NEXT FRAME: MICHAEL

What do we learn from it?

• We underestimated side-channel attacks for a long time
• Industry and customers have to reconsider priorities→
focus more on security instead of performance

• Reliability issues (Rowhammer) can have security impacts

• More research is required to understand attacks to
ultimately mitigate them

73 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MICHAEL
NEXT FRAME: MORITZ

What do we learn from it?

• We underestimated side-channel attacks for a long time
• Industry and customers have to reconsider priorities→
focus more on security instead of performance

• Reliability issues (Rowhammer) can have security impacts
• More research is required to understand attacks to
ultimately mitigate them

73 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

MORITZ
NEXT SLIDE: DANIEL

DANIEL

References

N. A. Anagnostopoulos, T. Arul, Y. Fan, C. Hatzfeld, A. Schaller, W. Xiong, M. Jain,
M. U. Saleem, J. Lotichius, S. Gabmeyer, et al. Intrinsic Run-Time Row Hammer
PUFs: Leveraging the Row Hammer Effect for Run-Time Cryptography and
Improved Security. In: Cryptography 2.3 (2018), p. 13.

Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren, and T. Austin.
ANVIL: Software-based protection against next-generation Rowhammer
attacks. In: ACM SIGPLAN Notices 51.4 (2016), pp. 743–755.

S. Bhattacharya and D. Mukhopadhyay. Curious Case of Rowhammer: Flipping
Secret Exponent Bits Using Timing Analysis. In: Conference on Cryptographic
Hardware and Embedded Systems (CHES). 2016.

E. Bosman, K. Razavi, H. Bos, and C. Giuffrida. Dedup Est Machina: Memory
Deduplication as an Advanced Exploitation Vector. In: S&P. 2016.

F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi. CAn’t Touch This:
Software-only Mitigation against Rowhammer Attacks targeting Kernel
Memory. In: USENIX Security Symposium. 2017.

J. Corbet. Defending against Rowhammer in the kernel. Oct. 2016. url:
https://lwn.net/Articles/704920/.

M. Chiappetta, E. Savas, and C. Yilmaz. Real time detection of cache-based
side-channel attacks using Hardware Performance Counters. Cryptology
ePrint Archive, Report 2015/1034. 2015.

Y. Cheng, Z. Zhang, and S. Nepal. Still Hammerable and Exploitable: on the
Effectiveness of Software-only Physical Kernel Isolation. In: arXiv:1802.07060
(2018).

https://lwn.net/Articles/704920/

H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu. Memory power
management via dynamic voltage/frequency scaling. In: ACM International
Conference on Autonomic Computing. 2011.

P. Frigo, C. Giuffrida, H. Bos, and K. Razavi. Grand Pwning Unit: Accelerating
Microarchitectural Attacks with the GPU. In: IEEE S&P. 2018.

D. Gruss, C. Maurice, and S. Mangard. Rowhammer.js: A Remote
Software-Induced Fault Attack in JavaScript. In: DIMVA. 2016.

D. Gruss, C. Maurice, K. Wagner, and S. Mangard. Flush+Flush: A Fast and
Stealthy Cache Attack. In: DIMVA. 2016.

D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell, W. Schoechl,
and Y. Yarom. Another Flip in the Wall of Rowhammer Defenses. In: S&P. 2018.

N. Herath and A. Fogh. These are Not Your Grand Daddys CPU Performance
Counters – CPU Hardware Performance Counters for Security. In: Black Hat
Briefings. Aug. 2015. url: https://www.blackhat.com/docs/us-
15/materials/us-15-Herath-These-Are-Not-Your-Grand-Daddys-
CPU-Performance-Counters-CPU-Hardware-Performance-
Counters-For-Security.pdf.

G. Irazoqui, T. Eisenbarth, and B. Sunar. MASCAT: Stopping Microarchitectural
Attacks Before Execution. Cryptology ePrint Archive, Report 2016/1196. 2017.

Y. Jang, J. Lee, S. Lee, and T. Kim. SGX-Bomb: Locking Down the Processor via
Rowhammer Attack. In: SysTEX. 2017.

Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and
O. Mutlu. Flipping bits in memory without accessing them: An experimental
study of DRAM disturbance errors. In: ISCA’14. 2014.

https://www.blackhat.com/docs/us-15/materials/us-15-Herath-These-Are-Not-Your-Grand-Daddys-CPU-Performance-Counters-CPU-Hardware-Performance-Counters-For-Security.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Herath-These-Are-Not-Your-Grand-Daddys-CPU-Performance-Counters-CPU-Hardware-Performance-Counters-For-Security.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Herath-These-Are-Not-Your-Grand-Daddys-CPU-Performance-Counters-CPU-Hardware-Performance-Counters-For-Security.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Herath-These-Are-Not-Your-Grand-Daddys-CPU-Performance-Counters-CPU-Hardware-Performance-Counters-For-Security.pdf

M. Lanteigne. How Rowhammer Could Be Used to Exploit Weaknesses in
Computer Hardware. Mar. 2016. url:
http://www.thirdio.com/rowhammer.pdf.

M. Lipp, M. T. Aga, M. Schwarz, D. Gruss, C. Maurice, L. Raab, and L. Lamster.
Nethammer: Inducing Rowhammer Faults through Network Requests. In:
arXiv:1711.08002 (2017).

M. Payer. HexPADS: a platform to detect “stealth” attacks. In: ESSoS’16. 2016.

P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard. DRAMA: Exploiting
DRAM Addressing for Cross-CPU Attacks. In: USENIX Security Symposium. 2016.

D. Poddebniak, J. Somorovsky, S. Schinzel, M. Lochter, and P. Rösler. Attacking
deterministic signature schemes using fault attacks. In: EuroS&P. 2018.

R. Qiao and M. Seaborn. A New Approach for Rowhammer Attacks. In:
International Symposium on Hardware Oriented Security and Trust. 2016.

http://www.thirdio.com/rowhammer.pdf

K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos. Flip Feng
Shui: Hammering a Needle in the Software Stack. In: USENIX Security
Symposium. 2016.

M. Seaborn and T. Dullien. Exploiting the DRAM rowhammer bug to gain
kernel privileges. In: Black Hat Briefings. 2015.

A. Tatar, R. Krishnan, E. Athanasopoulos, C. Giuffrida, H. Bos, and K. Razavi.
Throwhammer: Rowhammer Attacks over the Network and Defenses. In:
USENIX ATC. 2018.

V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice, G. Vigna,
H. Bos, K. Razavi, and C. Giuffrida. Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms. In: CCS’16. 2016.

V. van der Veen, M. Lindorfer, Y. Fratantonio, H. P. Pillai, G. Vigna, C. Kruegel,
H. Bos, and K. Razavi. GuardION: Practical Mitigation of DMA-Based
Rowhammer Attacks on ARM. In: DIMVA. 2018.

Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu. One Bit Flips, One Cloud Flops:
Cross-VM Row Hammer Attacks and Privilege Escalation. In: USENIX Security
Symposium. 2016.

Runtime of the attack

Method Bit flips Templating Waylaying Total
Double-sided, waylaying 91 26.1 h 69.4h 95.5 h
Single-sided, waylaying 87 27.5 h 70.6h 98.1 h
One-location, waylaying 50 47.3 h 90.5 h 137.8h

Double-sided, chasing 1 0.7 h 43.7 h 44.4h
Single-sided, chasing 1 0.7 h 43.7 h 44.4h
One-location, chasing 1 1.3 h 44.0h 45.4h

81 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology

	References

