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And the rest of the team

The rest of the research team
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• Wolfgang Schoechl
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DRAM organization

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip
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DRAM organization

chip
bank 0

row 0
row 1
row 2
…

row 32767

row buffer

64k cells
1 capacitor,

1 transitor each
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How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
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How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
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1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

CPU wants to access row 2
→ row 2 activated

activate 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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How reading from DRAM works
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1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 2
→ row 2 activated
→ row 2 copied to row buffer

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1
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How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
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1 1 1 1 1 1 1 1 1 1 1 1 1 1
…
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How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

CPU wants to access row 2—again
→ row 2 already in row buffer
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How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

rowbuffer = cache
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Timing difference
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Rowhammer

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

→

Cells leak faster upon proximate
accesses→ Rowhammer
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copy
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Rowhammer

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips in row 2!

→
Cells leak faster upon proximate
accesses→ Rowhammer
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How widespread is the issue?

• 85% affected [Kim+14] (see Figure)
• 52% affected [SD15]

• First believed to be safe
• We showed bit flips [Pes+16]
• 67% affected [Lan16]
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Requirements

Memory accesses must be
• uncached: reach DRAM
• fast: race against the next row refresh
• targeted: reach specific row
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How do we get enough uncached accesses?
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Access techniques

• clflush instruction→ original paper [Kim+14]
• cache eviction [GMM16; Awe+16]
• non-temporal accesses [QS16]
• uncached memory [Vee+16]
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How do we target accesses?
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Physical addresses and DRAM

DRAMA DRAMA: How your DRAM becomes a security problem
Anders Fogh & Michael Schwarz
Black Hat Europe 2016
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How to exploit random bit flips?

• They are not random→ highly reproducible flip pattern!

1. Choose a data structure that you can place at arbitrary
memory locations

2. Scan for “good” flips
3. Place data structure there
4. Trigger bit flip again

• Alternatively: Build a PUF [Ana+18]

14 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology



DANIEL



How to exploit random bit flips?

• They are not random→ highly reproducible flip pattern!

1. Choose a data structure that you can place at arbitrary
memory locations

2. Scan for “good” flips
3. Place data structure there
4. Trigger bit flip again

• Alternatively: Build a PUF [Ana+18]

14 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology



DANIEL



How to exploit random bit flips?

• They are not random→ highly reproducible flip pattern!

1. Choose a data structure that you can place at arbitrary
memory locations

2. Scan for “good” flips
3. Place data structure there
4. Trigger bit flip again

• Alternatively: Build a PUF [Ana+18]

14 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology



DANIEL



How to exploit random bit flips?

• They are not random→ highly reproducible flip pattern!

1. Choose a data structure that you can place at arbitrary
memory locations

2. Scan for “good” flips
3. Place data structure there
4. Trigger bit flip again

• Alternatively: Build a PUF [Ana+18]

14 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology



DANIEL



How to exploit random bit flips?

• They are not random→ highly reproducible flip pattern!
1. Choose a data structure that you can place at arbitrary
memory locations

2. Scan for “good” flips
3. Place data structure there
4. Trigger bit flip again

• Alternatively: Build a PUF [Ana+18]

14 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology



DANIEL



How to exploit random bit flips?

• They are not random→ highly reproducible flip pattern!
1. Choose a data structure that you can place at arbitrary
memory locations

2. Scan for “good” flips

3. Place data structure there
4. Trigger bit flip again

• Alternatively: Build a PUF [Ana+18]

14 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology



DANIEL



How to exploit random bit flips?

• They are not random→ highly reproducible flip pattern!
1. Choose a data structure that you can place at arbitrary
memory locations

2. Scan for “good” flips
3. Place data structure there

4. Trigger bit flip again

• Alternatively: Build a PUF [Ana+18]

14 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology



DANIEL



How to exploit random bit flips?

• They are not random→ highly reproducible flip pattern!
1. Choose a data structure that you can place at arbitrary
memory locations

2. Scan for “good” flips
3. Place data structure there
4. Trigger bit flip again

• Alternatively: Build a PUF [Ana+18]

14 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology



DANIEL 
NEXT FRAME: MORITZ



How to exploit random bit flips?

• They are not random→ highly reproducible flip pattern!
1. Choose a data structure that you can place at arbitrary
memory locations

2. Scan for “good” flips
3. Place data structure there
4. Trigger bit flip again

• Alternatively: Build a PUF [Ana+18]

14 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology



MORITZ 
NEXT SLIDE: MICHAEL, DANIEL



Strategy: Modify instructions

• Idea from [SD15]
• x86 op codes are variable length

• Unsafe op codes (syscall) ∈ safe but long multi-byte op
codes

• Only a problem with jumps to arbitrary addresses

• Flip a bit in a validated NaCl instruction sequence

• Safe + validated jump→ arbitrary jump

15 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology
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Page Table Entries

P RW US WT UC R D S G

X

Each 4KB page table consists of 512 such entries
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Search for page with flip

Row 0 Row 23

Hammering memory locations in different rows
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Release page with flip

Row 0 Row 23

Hammering memory locations in different rows
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Fill all remaining memory with page tables

Row 0 Row 23

Hammering memory locations in different rows
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Strategy: Flipping Page Table PPN bits

1. Scan for flips
2. Exhaust or massage memory to place a page table at target
location

3. Gain access to your own page table→ kernel privileges
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Flipping Page Table PPN bits

• Idea from [SD15]
• Same idea applied in several other works:

• Rowhammer.js [GMM16]
• One bit flips, one cloud flops [Xia+16]
• Drammer [Vee+16]
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Post-Rowhammer Exploitation

• Scan entire physical memory (very fast) and:

• Modify binary pages executed in root privileges [Xia+16]
• Modify credential structs [Vee+16]
• Read keys [Xia+16]
• Corrupt signatures [BM16; Pod+18]
• Modify certificates
• Configurations
• etc.

• pages are pretty unique: 32768 bits per page
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Bit Flips + Page Deduplication

Row 0 Row 23
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Bit Flips + Page Deduplication

Row 0 Row 23

Page with bit flip is filled with target content
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Bit Flips + Page Deduplication

Row 0 Row 23

OS or hypervisor searches for duplicate pages
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Bit Flips + Page Deduplication

Row 0 Row 23

Hammer again + flip again
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Bit Flips + Page Deduplication
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Strategy: Flipping in Deduplicated Pages

1. Scan for flips
2. Place content for deduplication so that flip can be exploited
3. Perform the bit change through Rowhammer
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Flipping in Deduplicated Pages

• Idea from [Bos+16]

• Change data type (double→ pointer)
• Change pointer to good object→ counterfeit object

• and from [Raz+16]

• Corrupt authorized SSH keys
• Corrupt Debian update URLs + RSA public key file

27 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology
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How to mitigate Rowhammer?
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Mitigations

Different mitigations have been proposed:

Detection

vs

Prevention

28 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology
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Mitigations

Different mitigations have been proposed:

Software

vs

Hardware

29 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology
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Mitigations

Different mitigations have been proposed:

Short Term

vs

Long Term
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Quick fixes

• No clflush instruction

→
Rowhammer.js

• Increase the refresh rate

→ Would need to be
increased by 7× to
eliminate all bit flips

→ Implementation: increased
by 2× by BIOS vendors

Errors depending on
refresh interval [Kim+14]

31 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology
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What about ECC?

• ECC protection: server can handle or correct single bit
errors

• No standard for event reporting
• In practice [Lan16]

• Common: server counts ECC errors and report only if they
reach a threshold (e.g., > 100 bit flips / hour)

• Some server vendors never report errors to the OS
• One server did not even halt when bit flips were
non-correctable

32 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology
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Preventing Rowhammer attacks in hardware (1/3)

Original ideas from [Kim+14]

• Making better DRAM chips that are not vulnerable
• Using error correcting codes (ECC)
• Increasing the refresh rate
• Remapping/retiring faulty cells after manufacturing
• Identifying hammered rows at runtime and refreshing
neighbors

→ Expensive, performance overhead, or increased power
consumption

33 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology
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Preventing Rowhammer attacks in hardware (2/3)

PARA - Probabilistic Adjacent Row Activation [Kim+14]
• One row closed→ one adjacent row opened with low
probability p

• Rowhammer: one row opened and closed a high number of
times Nth

• Statistically, neighbor rows are refreshed→ no bit flip
• Implementation at the memory controller level
• Advantage: stateless→ not expensive
• For p = 0.001 and Nth = 100K, experiencing one error in one
year has a probability 9.4× 10−14

34 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology
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Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)

• Counter per row
• Increment neighbor rows
• Refresh when counter reaches a
threshold

refresh

hammer

refresh

hammer

refresh

We flipped bits on DDR4 with TRR activated!

35 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology
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Preventing Rowhammer attacks in software

“nohammer” kernel module [Cor16]

• Refresh rate of 8ms would prevent
Rowhammer on most systems

• Use PMC to measure cache misses per
64ms interval

• Limit cache miss rate to 1/8 of maximum

hammerhammer

Wait for refresh

Wait for refresh
Performance?

Grand Pwning Unit [Fri+18], ThrowHammer [Tat+18],
NetHammer [Lip+17].

36 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology
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Preventing Rowhammer attacks in software

MASCAT - Stopping Microarchitectural Attacks Before Execution
[IES17]
• Static analysis of the binary

• Detect suspicious instruction sequences
(clflush, rdtsc, fences, …)

• Open problem: false positives

ThrowHammer [Tat+18], NetHammer [Lip+17].
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Preventing Rowhammer attacks in software

ANVIL [Awe+16]
• Uses performance counters to
detect rowhammer

• Activate rows neighbor rows to
prevent flips

• Similar as PARA, but in software

hammer

hammer

refresh

What if performance counters do not work? [Gru+18; Jan+17]

38 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology
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Preventing Rowhammer attacks in software

• B-CATT: disable vulnerable physical memory
[Bra+17]

• G-CATT: isolate security domains in physical
memory based on potential vulnerability
[Bra+17]

G-CATTB-CATT

B-CATT: Might block 95% of RAM [Gru+18; Vee+18]

G-CATT: What about non-kernel or shared pages? [Gru+18; CZN18]

G-CATT: Bit flips more than 8 “rows” apart [Kim+14; Gru+18]

39 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology
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GuardION

• Isolate DMA buffers in physical memory [Vee+18]

Bit flips more than 8 “rows” apart [Kim+14; Gru+18]

40 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology
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Detecting Rowhammer attacks

• Rowhammer: lots of cache misses that can be monitored with hardware
performance counters [HF15; Gru+16; CSY15; Pay16]

Firefox OpenT
TD

stress
-m 1

Flush+
Reload Rowha

mmer
100

102

104

Cache misses (normalized) Cache hits (normalized)

What if performance counters do not work because we run in SGX? [Gru+18;
Jan+17]

41 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology
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Defenses Overview

Methodology
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Detection

Static Analysis
Performance Counters
Memory Access Pattern

Neutralization

Physical Proximity
Memory Footprint

Elimination

Bootloader
Hardware Modification

BIOS Update
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What if you don’t need to hammer two or more rows?

One-location hammering
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How to hammer?

• There are two different hammering techniques

• #1: Hammer one row next to victim row and other random
rows

• #2: Hammer two rows neighboring victim row

43 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology
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#1 - Single-sided hammering

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate
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#2 - Double-sided hammering
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Hammering techniques

• There are three different hammering techniques
• #1: Hammer one row next to victim row and other random
rows

• #2: Hammer two rows neighboring victim row
• #3: Hammer only one row next to victim row

46 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology



DANIEL 
NEXT SLIDE: DANIEL



#3 - One-location hammering
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Memory-Controller Policies

• Open-page policy: Keep row opened and buffered

• Low latency for subsequent accesses to same row
• High latency for accesses to any other row

• Close-page policy: Immediately close row, ready to open a
new row
• Medium latency for accesses to any row
• Perform better on multi-core systems [Dav+11]

49 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology
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Memory-Controller Policies

• Policies that preemptively close rows, would allow
one-location hammering

• We observed close-page policies on desktop computers
• Mobile devices (e.g., laptops) seem to use mostly
open-page policies

50 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology
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How well does it work?

Double-sided
77.0% bit offsets
51.7% 0→1 bit flips

Single-sided
78.5% bit offsets
54.1% 0→1 bit flips

One-location
36.5% bit offsets
51.6% 0→1 bit flips

51 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology
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What if we cannot target kernel pages?

Opcode Flipping
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Opcode Flipping

• Many applications perform actions as root

• They can be used by unprivileged users as well
• Implicitly: e.g., ping or mount
• Explicitly: sudo
• Target sudo (easy to exploit)

52 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology
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Opcode Flipping - Conditional Jump

JE
0 1 1 1 0 1 0 0

HLT
1 1 1 1 0 1 0 0

<prefix>
0 1 1 0 0 1 0 0
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Opcode Flipping - Conditional Jump

JE
0 1 1 1 0 1 0 0

XORB
0 0 1 1 0 1 0 0

<prefix>
0 1 1 0 0 1 0 0
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Opcode Flipping - Conditional Jump

JE
0 1 1 1 0 1 0 0

PUSHQ
0 1 0 1 0 1 0 0

<prefix>
0 1 1 0 0 1 0 0
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Opcode Flipping - Conditional Jump

JE
0 1 1 1 0 1 0 0

JL
0 1 1 1 1 1 0 0

<prefix>
0 1 1 0 0 1 0 0
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Opcode Flipping - Conditional Jump

JE
0 1 1 1 0 1 0 0

JO
0 1 1 1 0 0 0 0

<prefix>
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Opcode Flipping - Conditional Jump

JE
0 1 1 1 0 1 0 0

JBE
0 1 1 1 0 1 1 0

<prefix>
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Opcode Flipping - Conditional Jump

JE
0 1 1 1 0 1 0 0

JNE
0 1 1 1 0 1 0 1

<prefix>
0 1 1 0 0 1 0 0
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Opcode Flipping

• Conditional jumps are not the only targets

• Other targets include
• Comparisons
• Addresses of memory loads/stores
• Address calculations
• ...

• Manual analysis of sudo revealed 29 possible bit flips
• They all somehow skipped the password check
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How to get the target virtual page to the target physical
location?

Memory Waylaying
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Placing the binary

• Not as easy as with page tables

• Binary only once in memory + stays in memory (in the page
cache) even after termination

• Only evicted if page cache is full
• Page cache usually occupies all unused memory
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Page Cache

• If a binary is loaded the first time, it is loaded to the memory

• It stays in memory (in the page cache) even after execution
• Only evicted if page cache is full
• Page cache is huge - usually all unused memory
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Memory Waylaying

(1) Start

B
X
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Memory Waylaying

(2) Evict Page Cache

X
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Memory Waylaying

(3) Access Binary

B

X
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Memory Waylaying

(4) Evict + Access

B

X
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Memory Waylaying

(5) Evict + Access

B

X
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Memory Waylaying

(6) Stop if target reached

BX
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How well does it work?

• New pages cover most of the physical memory

1

58 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology



MORITZ 
NEXT SLIDE: DANIEL



How well does it work?

• Great advantage over memory massaging: only negligible memory footprint
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Rowhammer + SGX = Cheap Denial of Service
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Intel SGX

• Instruction-set extension
• Integrity and confidentiality of code and data in untrusted
environments

• Run with user privileges and restricted, e.g., no system calls
• Run programs in enclaves using protected areas of memory

60 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology
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SGX Encrypted Memory

Physical Memory

EP
C
(1
28
M
B)

0 GB 16GB
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Bit Flips in the EPC

• What happens if a bit flips in the EPC?

• Integrity check will fail!
→ Locks up the memory controller
→ Not a single further memory access!
→ System halts immediately

62 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology
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Bit Flips in the EPC

• If a malicious enclave induces a bit flip, …

• …the entire machine halts
• …including co-located tenants
• Denial-of-Service Attacks in the Cloud [Gru+18; Jan+17]
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SGX + One-location Hammering + Opcode Flipping =
Undetectable Exploit
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(Ab)using SGX Protection

• SGX protects software from malicious environments

• Thwarts static and dynamic (= performance counters)
analysis

• Hammering from SGX defeats countermeasures relying on
this

64 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology
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Bypassing the Defenses

Bypass
Defense Class
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Intel SGX
One-location hammering

Opcode flipping
Memory waylaying

Defense class defeated
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Just comparing some performance numbers...

• ≥ 43 000 hammering attempts (within 64ms) for a bit
flip [GMM16]

= 671 875 accesses per second
• Network packets access memory location up to 6 times
(depending on kernel)

→ 111 979 packets per second
• Network packets are a least 64B
= 7 166 656B/s = 7MB/s = 57Mb/s
→ That sounds doable on “modern” networks

67 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology
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Nethammer

Inducing bit flips:

• Network stacks on ARM often use uncached memory
(perfect for hammering)

• Intel recommends Intel CAT for QoS (perfect for
hammering)

• Network reachable code might use clflush or
non-temporal stores
(both great for hammering)

68 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology
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Exploiting Nethammer Bit Flips

Nethammer on ...

• SGX = powerful DoS
• File system = persistent DoS
• DNS entries on a DNS server = bit-squatting attack
• OCSP servers = make invalid certificates great again
• Crypto = generate private keys for broken public keys
• Crypto + GitLab = manipulate repositories in the name of
someone else

• Bonus: evict the broken key and all traces are gone!
• Original key owner will have a hard time proving that this
was an attacker

69 Daniel Gruss, Moritz Lipp, Michael Schwarz | Graz University of Technology
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What do we learn from it?

• Many (academic) countermeasures were proposed to
mitigate Rowhammer

• We showed that all of them can be circumvented [Gru+18]
• We cannot design countermeasures without completely
understanding the attack

• Otherwise we only patch concrete exploits, but do not
solve the problem
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What do we learn from it?

Apple had a great idea:
• Lower refresh rate→ save energy + more flips

→ ECC memory→ fewer flips
• It’s an optimization problem.

• Too aggressive? → bit flips
• Too cautious? → waste of energy
• What if the “too aggressive” changes over time?
• What if attackers come up with slightly better attacks?

→ Difficult to optimize with an adversary working against you
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What do we learn from it?

• We have to invest more into researching attacks

• There are still aspects of Rowhammer we do not fully
understand

• However, this is required to design effective
countermeasures

• Moreover, new features might introduce new attack vectors
(e.g., SGX)
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What do we learn from it?

• We underestimated side-channel attacks for a long time

• Industry and customers have to reconsider priorities→
focus more on security instead of performance

• Reliability issues (Rowhammer) can have security impacts
• More research is required to understand attacks to
ultimately mitigate them
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Runtime of the attack

Method Bit flips Templating Waylaying Total
Double-sided, waylaying 91 26.1 h 69.4h 95.5 h
Single-sided, waylaying 87 27.5 h 70.6h 98.1 h
One-location, waylaying 50 47.3 h 90.5 h 137.8h

Double-sided, chasing 1 0.7 h 43.7 h 44.4h
Single-sided, chasing 1 0.7 h 43.7 h 44.4h
One-location, chasing 1 1.3 h 44.0h 45.4h
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