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Performance is awesome!

• 1995
• 150MHz
• RISC emulating CISC
• 256KB L2 cache integrated!
• branch prediction
• out-of-order execution
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More and More Performance

The future is going to be fast:

• Apple A12 Bionic (iPhone X): 16KB pages → 128KB
caches

• Intel → more out-of-order parallelism
• AMD
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Side-Channel Attacks

• Bug-free software does not mean safe
execution

• Information leaks due to underlying hardware
• Exploit leakage through side-effects

Power
consumption

Execution
time CPU caches
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Architecture and Microarchitecture

• Instruction Set Architecture (ISA) is an abstract
model of a computer (x86, ARMv8, SPARC, . . . )

• Interface between hardware and software
• Microarchitecture is an ISA implementation
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Microarchitectural Elements

• Modern CPUs contain multiple
microarchitectural elements

Caches and
buffer

Predictor

• Transparent for the programmer
• Timing optimizations → side-channel leakage
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1337 4242

Revolutionary concept!

Store your food at home, 
never go to the grocery store 
during cooking.

Can store ALL kinds of food.

ONLY TODAY INSTEAD OF $1,300

ORDER VIA PHONE: +555 12345







CPU Cache
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printf("%d", i);
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Caching speeds up Memory Accesses
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Flush+Reload

Attacker Victim

Shared Memory

flush

access
access
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Attacks

• Just by looking at cache hits/misses, we can . . .

• Leak AES keys from the cache
• Leak keystroke timings via the cache
• Covertly send data through the cache

• Browser, Cloud, TEEs, . . .
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Out-of-Order Execution

int width = 10, height = 5;

float diagonal = sqrt(width * width
+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width , height , area);
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Out-of-Order Execution
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Building the Code

• An experiment

*( volatile char*) 0;
array [84 * 4096] = 0;

• volatile because compiler was not happy

warning: statement with no effect [-Wunused -value]
*(char*)0;

• Static code analyzer is still not happy

warning: Dereference of null pointer
*( volatile char*)0;
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Building the Code

• Flush+Reload over all pages of the array
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200
300
400
500

Page
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• “Unreachable” code line was actually executed
• Exception was only thrown afterwards
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Building the Code

• Out-of-order instructions leave
microarchitectural traces

• We can see them for example in the cache

• We call them transient instructions
• Execution indirectly observable
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Loading an address
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Building the Code

• Add another layer of indirection to test

char data = *(char*) 0xffffffff81a000e0;
array[data * 4096] = 0;

• Then check if any part of array is cached
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• Index of cache hit reveals data

• Permission check fails sometimes
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Meltdown Mitigation

• Kernel addresses in user space are a problem

• Why don’t we take the kernel addresses...
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Meltdown Mitigation

• ...and remove them if not needed?

• User accessible check in hardware is not reliable
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Meltdown-US Mitigation

• Unmap the kernel in user space

• Kernel addresses are then no longer present
• Memory which is not mapped cannot be

accessed at all
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KAISER

Userspace Kernelspace

Applications                                           Operating   Memory
System
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Userspace Kernelspace

Applications Operating Memory
System

Userspace Kernelspace

Applications                                           

Kernel View User View

context switch
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Meltdown-P (aka Foreshadow-NG)

Page Table
PTE 0
PTE 1
···

PTE #PTI
···

PTE 511

L1
Cache
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Meltdown-P (aka Foreshadow-NG)
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More and More Performance

The future is going to be fast:
• Apple A12 Bionic (iPhone X): 16KB pages → 128KB

caches
• Intel → more ports, more parallelism, larger

reorder buffer

• AMD → perceptron-based prediction
mechanisms
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Speculative Execution

Let us get rid of
bottlenecks
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Speculative Execution

Use the
naughty/nice list
of last year
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Speculative Execution

Finally, check
predictions with
list of this year
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Speculative Execution

Throwing away
wrongly manufac-
tured presents
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Speculative Execution

Correct
predictions
result in
free time
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Spectre-PHT (aka Spectre Variant 1)

LUT index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction
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function()
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More and More Performance

The future is going to be fast:
• Apple A12 Bionic (iPhone X): 16KB pages → 128KB

caches
• Intel → more ports, more parallelism, larger

reorder buffer
• AMD → perceptron-based prediction

mechanisms
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Spectres of
The Future



Intel MPK

• Protection key for a group of pages

• 4 bits in PTE identify key for protected memory
regions
• Quick update of access rights
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Meltdown-PK

• Protection keys are lazily enforced

• Protected value is forwarded to transient
instructions
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Meltdown-BR

• x86 provides dedicated instruction raising #BR
exception if bound-range is exceeded

• Data used in transient execution
• Attacker determines accessed cache line using

Flush+Reload
• First Meltdown-type attack on AMD
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Vulnerable Vendors

Vendor
Attack Melt

do
wn-

US

Melt
do

wn-
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Melt
do

wn-
GP

Melt
do

wn-
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Melt
do

wn-
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Melt
do

wn-
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Melt
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wn-
BR

Melt
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wn-
DE

Melt
do

wn-
AC

Melt
do

wn-
UD

Melt
do

wn-
SS

Melt
do

wn-
XD

Melt
do

wn-
SM

Intel
ARM
AMD
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Meltdown Defense Categorization

Meltdown defenses in 2 categories:

D1 Architecturally inaccessible
data is also microarchi-
tecturally inaccessible

D2 Preventing occurrence of
faults
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Meltdown-P Mitigation

Clear phyiscal address field of
unmapped PTEs

Flush L1 upon switching
protection domains
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Transient Execution Attacks: Classification

Transient
cause?
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Spectre: Mistraining Strategies

same address space/
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Spectre-
vulnerable
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45



Spectre: Mistraining Strategies

same address space/
in place

same address space/
out of place

Victim

Spectre-
vulnerable

branch

Aliased
branch

Ad
dr

es
s

co
ll
is
io
n

45



Spectre: Mistraining Strategies

same address space/
in place

same address space/
out of place

Victim

Spectre-
vulnerable

branch

Aliased
branch

Ad
dr

es
s

co
ll
is
io
n

Shared Branch Prediction State

45



Spectre: Mistraining Strategies

same address space/
in place

same address space/
out of place

Victim

Spectre-
vulnerable

branch

Aliased
branch

Ad
dr

es
s

co
ll
is
io
n

Attacker

Shared Branch Prediction State

45



Spectre: Mistraining Strategies

same address space/
in place

same address space/
out of place

Victim

Spectre-
vulnerable

branch

Aliased
branch

Ad
dr

es
s

co
ll
is
io
n

cross address space/
in place

Attacker

Same address

Shared Branch Prediction State

45



Spectre: Mistraining Strategies

same address space/
in place

same address space/
out of place

Victim

Spectre-
vulnerable

branch

Aliased
branch

Ad
dr

es
s

co
ll
is
io
n

cross address space/
in place

cross address space/
out of place

Attacker

Same address

Aliased
address

Ad
dr

es
s

co
ll
is
io
n

Shared Branch Prediction State

45



Spectre Mistraining: Vulnerable Vendors

Method
Attack Spectre

-PHT

Spectre
-BTB

Spectre
-RSB
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-ST
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ARM
same-address-space in-place
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AMD
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cross-address-space in-place
out-of-place
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Super Effective Solution: Drilling template

Drilling template (@kreon_nrw)47



Spectre Defense Categorization

Spectre defenses in 3 categories:

C1 Mitigate or
reduce accuracy
of covert channels

C2 Mitigate or
abort speculation

C3 Ensure secret
cannot be reached
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Spectre Defenses: Microarchitectural Target
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Site Isolation

• Each site executed in its own process

→ limits amount of data that is exposed
• Chrome 67: default, Firefox: work in progress
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Serialization

• Insert instructions stopping speculation

→ insert after every bounds check
• x86: LFENCE , ARM: CSDB with conditional selects

or moves
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InvisiSpec

• Make transient loads invisible in the cache
hierarchy

→ all transient loads use a speculative buffer
• Correct prediction: buffer content loaded into

cache
• Wrong prediction: transient load is reverted
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Spectre: Defense Analysis
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Transient Execution Attacks: Classification

Transient
cause?
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Lessons learned

We have ignored microarchitectural attacks for
many years:

• attacks on crypto → “software should be fixed”
• attacks on ASLR → “ASLR is broken anyway”
• attacks on TEEs → “not within threat model”
• Rowhammer → “only some cheap modules”

→ for years we solely optimized for performance
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Conclusion

• Optimizations always come at a cost
• Some mitigations cost more than gained by the

feature they defend
• Transient-execution attacks will keep us busy

for a while
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