

Acknowledgements I

Background music for the choir song kindly provided by
Kerbo-Kev.

Cooking photos kindly provided by Becca Lee (ladyfaceblog).

Santa Clause images by http://www.thevectorart.com/

Some picture components are included from “Mickey’s Christmas
Carol” under fair use.

1

Acknowledgements II

We want to thank our collaborators: Anders Fogh, Benjamin von
Berg, Daniel Genkin, Dmitry Evtyushkin, Frank Piessens, Jann Horn,
Jo Van Bulck, Mike Hamburg, Paul Kocher, Philipp Ortner, Stefan
Mangard, Thomas Prescher, Werner Haas, and Yuval Yarom.

The research behind this talk was partially funded by a generous
gift from ARM and a generous gift from Intel. Any opinions,
findings, and conclusions or recommendations are those of the
authors and do not necessarily reflect the views of the funding
parties.

2

Performance is awesome!

• 1995
• 150MHz
• RISC emulating CISC
• 256KB L2 cache integrated!
• branch prediction
• out-of-order execution

3

Performance is awesome!

• 1995
• 150MHz
• RISC emulating CISC
• 256KB L2 cache integrated!
• branch prediction
• out-of-order execution

3

Performance is awesome!

• 1995

• 150MHz
• RISC emulating CISC
• 256KB L2 cache integrated!
• branch prediction
• out-of-order execution

3

Performance is awesome!

• 1995
• 150MHz

• RISC emulating CISC
• 256KB L2 cache integrated!
• branch prediction
• out-of-order execution

3

Performance is awesome!

• 1995
• 150MHz
• RISC emulating CISC

• 256KB L2 cache integrated!
• branch prediction
• out-of-order execution

3

Performance is awesome!

• 1995
• 150MHz
• RISC emulating CISC
• 256KB L2 cache integrated!

• branch prediction
• out-of-order execution

3

Performance is awesome!

• 1995
• 150MHz
• RISC emulating CISC
• 256KB L2 cache integrated!
• branch prediction

• out-of-order execution

3

Performance is awesome!

• 1995
• 150MHz
• RISC emulating CISC
• 256KB L2 cache integrated!
• branch prediction
• out-of-order execution

3

More and More Performance

The future is going to be fast:

• Apple A12 Bionic (iPhone X): 16KB pages → 128KB
caches

• Intel → more out-of-order parallelism
• AMD

4

More and More Performance

The future is going to be fast:
• Apple A12 Bionic (iPhone X): 16KB pages → 128KB

caches

• Intel → more out-of-order parallelism
• AMD

4

Spectres of
The Past

Side-Channel Attacks

• Bug-free software does not mean safe
execution

• Information leaks due to underlying hardware
• Exploit leakage through side-effects

Power
consumption

Execution
time CPU caches

5

Side-Channel Attacks

• Bug-free software does not mean safe
execution
• Information leaks due to underlying hardware

• Exploit leakage through side-effects

Power
consumption

Execution
time CPU caches

5

Side-Channel Attacks

• Bug-free software does not mean safe
execution
• Information leaks due to underlying hardware
• Exploit leakage through side-effects

Power
consumption

Execution
time CPU caches

5

Side-Channel Attacks

• Bug-free software does not mean safe
execution
• Information leaks due to underlying hardware
• Exploit leakage through side-effects

Power
consumption

Execution
time CPU caches

5

Architecture and Microarchitecture

• Instruction Set Architecture (ISA) is an abstract
model of a computer (x86, ARMv8, SPARC, . . .)

• Interface between hardware and software
• Microarchitecture is an ISA implementation

6

Architecture and Microarchitecture

• Instruction Set Architecture (ISA) is an abstract
model of a computer (x86, ARMv8, SPARC, . . .)
• Interface between hardware and software

• Microarchitecture is an ISA implementation

6

Architecture and Microarchitecture

• Instruction Set Architecture (ISA) is an abstract
model of a computer (x86, ARMv8, SPARC, . . .)
• Interface between hardware and software
• Microarchitecture is an ISA implementation

6

Architecture and Microarchitecture

• Instruction Set Architecture (ISA) is an abstract
model of a computer (x86, ARMv8, SPARC, . . .)
• Interface between hardware and software
• Microarchitecture is an ISA implementation

6

Microarchitectural Elements

• Modern CPUs contain multiple
microarchitectural elements

Caches and
buffer

Predictor

• Transparent for the programmer
• Timing optimizations → side-channel leakage

7

Microarchitectural Elements

• Modern CPUs contain multiple
microarchitectural elements

Caches and
buffer

Predictor

• Transparent for the programmer
• Timing optimizations → side-channel leakage

7

Microarchitectural Elements

• Modern CPUs contain multiple
microarchitectural elements

Caches and
buffer

Predictor

• Transparent for the programmer

• Timing optimizations → side-channel leakage

7

Microarchitectural Elements

• Modern CPUs contain multiple
microarchitectural elements

Caches and
buffer

Predictor

• Transparent for the programmer
• Timing optimizations → side-channel leakage

7

Food Cache

8

Food Cache

8

Food Cache

8

Food Cache

8

Food Cache

8

Food Cache

8

Food Cache

8

1337 4242

Revolutionary concept!

Store your food at home,
never go to the grocery store
during cooking.

Can store ALL kinds of food.

ONLY TODAY INSTEAD OF $1,300

ORDER VIA PHONE: +555 12345

CPU Cache

printf("%d", i);

printf("%d", i);

9

CPU Cache

printf("%d", i);

printf("%d", i);

Cache miss

9

CPU Cache

printf("%d", i);

printf("%d", i);

Cache miss Req
ues

t

9

CPU Cache

printf("%d", i);

printf("%d", i);

Cache miss Req
ues

t

Respo
nse

9

CPU Cache

i

printf("%d", i);

printf("%d", i);

Cache miss Req
ues

t

Respo
nse

9

CPU Cache

i

printf("%d", i);

printf("%d", i);

Cache miss

Cache hit

Req
ues

t

Respo
nse

9

CPU Cache

i

printf("%d", i);

printf("%d", i);

Cache miss

Cache hit

Req
ues

t

Respo
nse

DRAM access,
slow

9

CPU Cache

i

printf("%d", i);

printf("%d", i);

Cache miss

Cache hit

Req
ues

t

Respo
nse

DRAM access,
slow

No DRAM access,
much faster

9

Caching speeds up Memory Accesses

50 100 150 200 250 300 350 400

100

103

106

Access time [CPU cycles]

Nu
mb

er
of

ac
ce

ss
es

Cache Hits

10

Caching speeds up Memory Accesses

50 100 150 200 250 300 350 400

100

103

106

Access time [CPU cycles]

Nu
mb

er
of

ac
ce

ss
es

Cache Hits Cache Misses

10

Flush+Reload

Attacker Victim

Shared Memory

flush

access
access

11

Flush+Reload

Attacker Victim

Shared Memory

flush

access
accessShared Memory

ca
ch

ed
cached

11

Flush+Reload

Attacker Victim

Shared Memory

flushflush

access
accessShared Memory

11

Flush+Reload

Attacker Victim

Shared Memory

flushflush

access
access

11

Flush+Reload

Attacker Victim

Shared Memory

flush

access
accessaccess

11

Flush+Reload

Attacker Victim

Shared Memory

flush

access
accessaccessShared Memory

11

Flush+Reload

Attacker Victim

Shared Memory

flush

accessaccess
accessShared Memory

11

Flush+Reload

Attacker Victim

Shared Memory

flush

accessaccess
accessShared Memory

vs

Victim accessed

(fast)

Victim did not access

(slow)
11

Attacks

• Just by looking at cache hits/misses, we can . . .

• Leak AES keys from the cache
• Leak keystroke timings via the cache
• Covertly send data through the cache

• Browser, Cloud, TEEs, . . .

12

Attacks

• Just by looking at cache hits/misses, we can . . .
• Leak AES keys from the cache

• Leak keystroke timings via the cache
• Covertly send data through the cache

• Browser, Cloud, TEEs, . . .

12

Attacks

• Just by looking at cache hits/misses, we can . . .
• Leak AES keys from the cache
• Leak keystroke timings via the cache

• Covertly send data through the cache

• Browser, Cloud, TEEs, . . .

12

Attacks

• Just by looking at cache hits/misses, we can . . .
• Leak AES keys from the cache
• Leak keystroke timings via the cache
• Covertly send data through the cache

• Browser, Cloud, TEEs, . . .

12

Attacks

• Just by looking at cache hits/misses, we can . . .
• Leak AES keys from the cache
• Leak keystroke timings via the cache
• Covertly send data through the cache

• Browser, Cloud, TEEs, . . .

12

More and More Performance

The future is going to be fast:
• Apple A12 Bionic (iPhone X): 16KB pages → 128KB

caches

• Intel → more out-of-order parallelism

• AMD

13

More and More Performance

The future is going to be fast:
• Apple A12 Bionic (iPhone X): 16KB pages → 128KB

caches
• Intel → more out-of-order parallelism

• AMD

13

Spectres of
The Present

Out-of-Order Execution

int width = 10, height = 5;

float diagonal = sqrt(width * width
+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width , height , area);

14

Out-of-Order Execution

int width = 10, height = 5;

float diagonal = sqrt(width * width
+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width , height , area);

Parallelize
D

ep
en

de
nc

y

14

Out-of-Order Execution

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Ex
ec

ut
ion

 E
ng

ine
Me

mo
ry

Su
bs

ys
te

m

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions are
• fetched and decoded in the front-end

• dispatched to the backend
• processed by individual execution units

15

Out-of-Order Execution

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Ex
ec

ut
ion

 E
ng

ine
Me

mo
ry

Su
bs

ys
te

m

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions are
• fetched and decoded in the front-end
• dispatched to the backend

• processed by individual execution units

15

Out-of-Order Execution

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Ex
ec

ut
ion

 E
ng

ine
Me

mo
ry

Su
bs

ys
te

m

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions are
• fetched and decoded in the front-end
• dispatched to the backend
• processed by individual execution units

15

Building the Code

• An experiment

(volatile char) 0;
array [84 * 4096] = 0;

• volatile because compiler was not happy

warning: statement with no effect [-Wunused -value]
(char)0;

• Static code analyzer is still not happy

warning: Dereference of null pointer
(volatile char)0;

16

Building the Code

• An experiment

(volatile char) 0;
array [84 * 4096] = 0;

• volatile because compiler was not happy

warning: statement with no effect [-Wunused -value]
(char)0;

• Static code analyzer is still not happy

warning: Dereference of null pointer
(volatile char)0;

16

Building the Code

• An experiment

(volatile char) 0;
array [84 * 4096] = 0;

• volatile because compiler was not happy

warning: statement with no effect [-Wunused -value]
(char)0;

• Static code analyzer is still not happy

warning: Dereference of null pointer
(volatile char)0;

16

Building the Code

• Flush+Reload over all pages of the array

0 50 100 150 200 250
200
300
400
500

Page
Ac

ce
ss

ti
me

[c
yc

le
s]

• “Unreachable” code line was actually executed
• Exception was only thrown afterwards

17

Building the Code

• Flush+Reload over all pages of the array

0 50 100 150 200 250
200
300
400
500

Page
Ac

ce
ss

ti
me

[c
yc

le
s]

• “Unreachable” code line was actually executed

• Exception was only thrown afterwards

17

Building the Code

• Flush+Reload over all pages of the array

0 50 100 150 200 250
200
300
400
500

Page
Ac

ce
ss

ti
me

[c
yc

le
s]

• “Unreachable” code line was actually executed
• Exception was only thrown afterwards

17

Building the Code

• Out-of-order instructions leave
microarchitectural traces

• We can see them for example in the cache

• We call them transient instructions
• Execution indirectly observable

18

Building the Code

• Out-of-order instructions leave
microarchitectural traces
• We can see them for example in the cache

• We call them transient instructions
• Execution indirectly observable

18

Building the Code

• Out-of-order instructions leave
microarchitectural traces
• We can see them for example in the cache

• We call them transient instructions

• Execution indirectly observable

18

Building the Code

• Out-of-order instructions leave
microarchitectural traces
• We can see them for example in the cache

• We call them transient instructions
• Execution indirectly observable

18

Loading an address

19

Loading an address

19

Loading an address

19

Loading an address

19

Loading an address

19

Loading an address

19

Building the Code

• Add another layer of indirection to test

char data = *(char*) 0xffffffff81a000e0;
array[data * 4096] = 0;

• Then check if any part of array is cached

20

Building the Code

• Add another layer of indirection to test

char data = *(char*) 0xffffffff81a000e0;
array[data * 4096] = 0;

• Then check if any part of array is cached

20

Building the Code

• Flush+Reload over all pages of the array

0 50 100 150 200 250
200
300
400
500

Page
Ac

ce
ss

ti
me

[c
yc

le
s]

• Index of cache hit reveals data

• Permission check fails sometimes

21

Building the Code

• Flush+Reload over all pages of the array

0 50 100 150 200 250
200
300
400
500

Page
Ac

ce
ss

ti
me

[c
yc

le
s]

• Index of cache hit reveals data
• Permission check fails sometimes

21

TARGET: 41:45

Meltdown Mitigation

• Kernel addresses in user space are a problem

• Why don’t we take the kernel addresses...

23

Meltdown Mitigation

• Kernel addresses in user space are a problem
• Why don’t we take the kernel addresses...

23

Meltdown Mitigation

• ...and remove them if not needed?

• User accessible check in hardware is not reliable

24

Meltdown Mitigation

• ...and remove them if not needed?
• User accessible check in hardware is not reliable

24

Meltdown-US Mitigation

• Unmap the kernel in user space

• Kernel addresses are then no longer present
• Memory which is not mapped cannot be

accessed at all

25

Meltdown-US Mitigation

• Unmap the kernel in user space
• Kernel addresses are then no longer present

• Memory which is not mapped cannot be
accessed at all

25

Meltdown-US Mitigation

• Unmap the kernel in user space
• Kernel addresses are then no longer present
• Memory which is not mapped cannot be

accessed at all

25

KAISER

Userspace Kernelspace

Applications Operating Memory
System

26

KAISER

Userspace Kernelspace

Applications Operating Memory
System

Userspace Kernelspace

Applications

Kernel View User View

context switch

27

Meltdown-P (aka Foreshadow-NG)

Page Table
PTE 0
PTE 1
···

PTE #PTI
···

PTE 511

L1
Cache

28

Meltdown-P (aka Foreshadow-NG)

Page Table
PTE 0
PTE 1
···

PTE #PTI
···

PTE 511

present

L1
Cache

28

Meltdown-P (aka Foreshadow-NG)

Page Table
PTE 0
PTE 1
···

PTE #PTI
···

PTE 511

present Guest Physical
to Host Physical

L1
Cache

28

Meltdown-P (aka Foreshadow-NG)

Page Table
PTE 0
PTE 1
···

PTE #PTI
···

PTE 511

present Guest Physical
to Host Physical

Physical
Page

L1 lookup
with

physical address

L1
Cache

28

Meltdown-P (aka Foreshadow-NG)

Page Table
PTE 0
PTE 1
···

PTE #PTI
···

PTE 511

not present

L1
Cache

28

Meltdown-P (aka Foreshadow-NG)

Page Table
PTE 0
PTE 1
···

PTE #PTI
···

PTE 511

not present

L1 lookup
with

virtual address

L1
Cache

28

More and More Performance

The future is going to be fast:
• Apple A12 Bionic (iPhone X): 16KB pages → 128KB

caches
• Intel → more ports, more parallelism, larger

reorder buffer

• AMD → perceptron-based prediction
mechanisms

29

More and More Performance

The future is going to be fast:
• Apple A12 Bionic (iPhone X): 16KB pages → 128KB

caches
• Intel → more ports, more parallelism, larger

reorder buffer
• AMD → perceptron-based prediction

mechanisms

29

https://xkcd.com/838/

Speculative Execution

Let us get rid of
bottlenecks

31

Speculative Execution

Use the
naughty/nice list
of last year

31

Speculative Execution

Finally, check
predictions with
list of this year

31

Speculative Execution

Throwing away
wrongly manufac-
tured presents

31

Speculative Execution

Correct
predictions
result in
free time

31

Spectre-PHT (aka Spectre Variant 1)

LUT index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-PHT (aka Spectre Variant 1)

LUT index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-PHT (aka Spectre Variant 1)

LUT

Speculate

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-PHT (aka Spectre Variant 1)

LUT

Index ’t’

Execute

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-PHT (aka Spectre Variant 1)

LUT index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-PHT (aka Spectre Variant 1)

LUT index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-PHT (aka Spectre Variant 1)

LUT

Index ’e’ Speculate

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-PHT (aka Spectre Variant 1)

LUT

Index ’e’

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-PHT (aka Spectre Variant 1)

LUT index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-PHT (aka Spectre Variant 1)

LUT index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-PHT (aka Spectre Variant 1)

LUT

Index ’x’

Speculate

index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-PHT (aka Spectre Variant 1)

LUT

Index ’x’

index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-PHT (aka Spectre Variant 1)

LUT index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-PHT (aka Spectre Variant 1)

LUT index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-PHT (aka Spectre Variant 1)

LUT

Index ’t’

Speculate

index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-PHT (aka Spectre Variant 1)

LUT

Index ’t’

index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-PHT (aka Spectre Variant 1)

LUT index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-PHT (aka Spectre Variant 1)

LUT index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-PHT (aka Spectre Variant 1)

LUT

Index ’K’

Speculate

index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-PHT (aka Spectre Variant 1)

LUT

Index ’K’

Execute

index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-PHT (aka Spectre Variant 1)

LUT index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-PHT (aka Spectre Variant 1)

LUT index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-PHT (aka Spectre Variant 1)

LUT

Index ’E’

Speculate

index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-PHT (aka Spectre Variant 1)

LUT

Index ’E’

Execute

index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-PHT (aka Spectre Variant 1)

LUT index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-PHT (aka Spectre Variant 1)

LUT index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-PHT (aka Spectre Variant 1)

LUT

Index ’Y’

Speculate

index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-PHT (aka Spectre Variant 1)

LUT

Index ’Y’

Execute

index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else
Prediction

33

Spectre-BTB (aka Spectre Variant 2)

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fl
y(
)

Prediction

swim()
swim()

34

Spectre-BTB (aka Spectre Variant 2)

Speculate
a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fl
y(
)

Prediction

swim()
swim()

34

Spectre-BTB (aka Spectre Variant 2)

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fl
y(
)

Prediction

swim()
swim()

34

Spectre-BTB (aka Spectre Variant 2)

Execute
a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fl
y(
)

Prediction

swim()
swim()

34

Spectre-BTB (aka Spectre Variant 2)

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fl
y(
)

Prediction

fly()
swim()

34

Spectre-BTB (aka Spectre Variant 2)

Speculate
a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fl
y(
)

Prediction

fly()
swim()

34

Spectre-BTB (aka Spectre Variant 2)

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fl
y(
)

Prediction

fly()
swim()

34

Spectre-BTB (aka Spectre Variant 2)

a->move()

Animal* a = fish;

LUT[data[index] * 4096] 0

fl
y(
)

Prediction

fly()
swim()

34

Spectre-BTB (aka Spectre Variant 2)

Speculate
a->move()

Animal* a = fish;

LUT[data[index] * 4096] 0

fl
y(
)

Prediction

fly()
swim()

34

Spectre-BTB (aka Spectre Variant 2)

a->move()

Animal* a = fish;

LUT[data[index] * 4096] 0

fl
y(
)

Prediction

fly()
swim()

34

Spectre-BTB (aka Spectre Variant 2)

Execute
a->move()

Animal* a = fish;

LUT[data[index] * 4096] 0

fl
y(
)

Prediction

fly()
swim()

34

Spectre-BTB (aka Spectre Variant 2)

a->move()

Animal* a = fish;

LUT[data[index] * 4096] 0

fl
y(
)

Prediction

swim()
swim()

34

Spectre-RSB

Victim Attacker

function()

...

RSB

35

Spectre-RSB

Victim

reg = secret

Attacker

reg = dummy

function()

...

RSB

35

Spectre-RSB

Victim

reg = secret

call function(SHORT)

Attacker

reg = dummy

function()

...

RSB

&victim
35

Spectre-RSB

Victim

reg = secret

call function(SHORT)

Attacker

reg = dummy

call function(LONG)

data[reg * 4096]

function()

...

RSB

&victim

&attacker

35

Spectre-RSB

Victim

reg = secret

call function(SHORT)

Attacker

reg = dummy

call function(LONG)

data[reg * 4096]

function()

...

RSB

&victim

&attacker

35

Spectre-RSB

Victim

reg = secret

call function(SHORT)

Attacker

reg = dummy

call function(LONG)

data[reg * 4096]

function()

...

RSB

&victim
35

Spectre-RSB

Victim

reg = secret

call function(SHORT)

Attacker

reg = dummy

call function(LONG)

data[reg * 4096]

function()

...

RSB

&victim
35

Meltdown vs. Spectre

operation #n

time

36

Meltdown vs. Spectre

operation #n

prediction

time

36

Meltdown vs. Spectre

operation #n

prediction

operation #n+2p
re
d
ic
t

C
F
/
D
F

time

36

Meltdown vs. Spectre

operation #n

prediction

operation #n+2p
re
d
ic
t

C
F
/
D
F

possibly

architectural transient execution

time

36

Meltdown vs. Spectre

operation #n

re
ti
re

prediction

operation #n+2p
re
d
ic
t

C
F
/
D
F

possibly

architectural transient execution

time

36

Meltdown vs. Spectre

operation #n

re
ti
re

prediction

re
ti
re

operation #n+2p
re
d
ic
t

C
F
/
D
F

possibly

architectural transient execution

flush pipeline
on wrong
prediction

time

36

Meltdown vs. Spectre

operation #n

re
ti
re

prediction

re
ti
re

operation #n+2

re
ti
re

p
re
d
ic
t

C
F
/
D
F

possibly

architectural transient execution

flush pipeline
on wrong
prediction

time

36

Meltdown vs. Spectre

operation #n

time

operation #n

re
ti
re

prediction

re
ti
re

operation #n+2

re
ti
re

p
re
d
ic
t

C
F
/
D
F

possibly

architectural transient execution

flush pipeline
on wrong
prediction

time

36

Meltdown vs. Spectre

operation #n

data

time

operation #n

re
ti
re

prediction

re
ti
re

operation #n+2

re
ti
re

p
re
d
ic
t

C
F
/
D
F

possibly

architectural transient execution

flush pipeline
on wrong
prediction

time

36

Meltdown vs. Spectre

operation #n

operation #n+2

data dependency

data

time

operation #n

re
ti
re

prediction

re
ti
re

operation #n+2

re
ti
re

p
re
d
ic
t

C
F
/
D
F

possibly

architectural transient execution

flush pipeline
on wrong
prediction

time

36

Meltdown vs. Spectre

operation #n

re
ti
re

operation #n+2

data dependency

data

possibly

architectural transient execution

exception

time

operation #n

re
ti
re

prediction

re
ti
re

operation #n+2

re
ti
re

p
re
d
ic
t

C
F
/
D
F

possibly

architectural transient execution

flush pipeline
on wrong
prediction

time

36

Meltdown vs. Spectre

operation #n

re
ti
re

operation #n+2

data dependency

data

possibly

architectural transient execution

exception

time

operation #n

re
ti
re

prediction

re
ti
re

operation #n+2

re
ti
re

p
re
d
ic
t

C
F
/
D
F

possibly

architectural transient execution

flush pipeline
on wrong
prediction

time

36

Meltdown vs. Spectre

operation #n

re
ti
re

operation #n+2

data dependency

data Meltdown

possibly

architectural transient execution

exception

time

operation #n

re
ti
re

prediction

re
ti
re

operation #n+2

re
ti
re

p
re
d
ic
t

C
F
/
D
F

possibly

architectural transient execution

flush pipeline
on wrong
prediction

time

36

Meltdown vs. Spectre

operation #n

re
ti
re

re
ti
re

operation #n+2

data dependency

data Meltdown

possibly

architectural transient execution

exception raise

time

operation #n

re
ti
re

prediction

re
ti
re

operation #n+2

re
ti
re

p
re
d
ic
t

C
F
/
D
F

possibly

architectural transient execution

flush pipeline
on wrong
prediction

time

36

More and More Performance

The future is going to be fast:
• Apple A12 Bionic (iPhone X): 16KB pages → 128KB

caches
• Intel → more ports, more parallelism, larger

reorder buffer
• AMD → perceptron-based prediction

mechanisms

37

Spectres of
The Future

Intel MPK

• Protection key for a group of pages

• 4 bits in PTE identify key for protected memory
regions
• Quick update of access rights

38

Intel MPK

• Protection key for a group of pages
• 4 bits in PTE identify key for protected memory

regions

• Quick update of access rights

38

Intel MPK

• Protection key for a group of pages
• 4 bits in PTE identify key for protected memory

regions
• Quick update of access rights

38

Meltdown-PK

• Protection keys are lazily enforced

• Protected value is forwarded to transient
instructions

39

Meltdown-PK

• Protection keys are lazily enforced
• Protected value is forwarded to transient

instructions

39

Meltdown-BR

• x86 provides dedicated instruction raising #BR
exception if bound-range is exceeded

• Data used in transient execution
• Attacker determines accessed cache line using

Flush+Reload
• First Meltdown-type attack on AMD

40

Meltdown-BR

• x86 provides dedicated instruction raising #BR
exception if bound-range is exceeded

• Data used in transient execution

• Attacker determines accessed cache line using
Flush+Reload

• First Meltdown-type attack on AMD

40

Meltdown-BR

• x86 provides dedicated instruction raising #BR
exception if bound-range is exceeded

• Data used in transient execution
• Attacker determines accessed cache line using

Flush+Reload

• First Meltdown-type attack on AMD

40

Meltdown-BR

40

Meltdown-BR

40

Meltdown-BR

40

Meltdown-BR

• x86 provides dedicated instruction raising #BR
exception if bound-range is exceeded

• Data used in transient execution
• Attacker determines accessed cache line using

Flush+Reload
• First Meltdown-type attack on AMD

40

Vulnerable Vendors

Vendor
Attack Melt

do
wn-

US

Melt
do

wn-
P

Melt
do

wn-
GP

Melt
do

wn-
NM

Melt
do

wn-
RW

Melt
do

wn-
PK

Melt
do

wn-
BR

Melt
do

wn-
DE

Melt
do

wn-
AC

Melt
do

wn-
UD

Melt
do

wn-
SS

Melt
do

wn-
XD

Melt
do

wn-
SM

Intel
ARM
AMD

41

Meltdown Defense Categorization

Meltdown defenses in 2 categories:

D1 Architecturally inaccessible
data is also microarchi-
tecturally inaccessible

D2 Preventing occurrence of
faults

42

Meltdown Defense Categorization

Meltdown defenses in 2 categories:

D1 Architecturally inaccessible
data is also microarchi-
tecturally inaccessible

D2 Preventing occurrence of
faults

42

Meltdown Defense Categorization

Meltdown defenses in 2 categories:

D1 Architecturally inaccessible
data is also microarchi-
tecturally inaccessible

D2 Preventing occurrence of
faults

42

Meltdown-P Mitigation

Clear phyiscal address field of
unmapped PTEs

Flush L1 upon switching
protection domains

43

Meltdown-P Mitigation

Clear phyiscal address field of
unmapped PTEs

Flush L1 upon switching
protection domains

43

Meltdown-P Mitigation

Clear phyiscal address field of
unmapped PTEs

Flush L1 upon switching
protection domains

43

Demo
Foreshadow-NG

Transient Execution Attacks: Classification

Transient
cause?

44

Transient Execution Attacks: Classification

Transient
cause?

Spectre-type

Meltdown-type

prediction

fault

44

Transient Execution Attacks: Classification

Transient
cause?

Spectre-type

Meltdown-type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

prediction

fault

44

Spectre: Mistraining Strategies

same address space/
in place

Victim

Spectre-
vulnerable

branch

45

Spectre: Mistraining Strategies

same address space/
in place

same address space/
out of place

Victim

Spectre-
vulnerable

branch

Aliased
branch

Ad
dr

es
s

co
ll
is
io
n

45

Spectre: Mistraining Strategies

same address space/
in place

same address space/
out of place

Victim

Spectre-
vulnerable

branch

Aliased
branch

Ad
dr

es
s

co
ll
is
io
n

Shared Branch Prediction State

45

Spectre: Mistraining Strategies

same address space/
in place

same address space/
out of place

Victim

Spectre-
vulnerable

branch

Aliased
branch

Ad
dr

es
s

co
ll
is
io
n

Attacker

Shared Branch Prediction State

45

Spectre: Mistraining Strategies

same address space/
in place

same address space/
out of place

Victim

Spectre-
vulnerable

branch

Aliased
branch

Ad
dr

es
s

co
ll
is
io
n

cross address space/
in place

Attacker

Same address

Shared Branch Prediction State

45

Spectre: Mistraining Strategies

same address space/
in place

same address space/
out of place

Victim

Spectre-
vulnerable

branch

Aliased
branch

Ad
dr

es
s

co
ll
is
io
n

cross address space/
in place

cross address space/
out of place

Attacker

Same address

Aliased
address

Ad
dr

es
s

co
ll
is
io
n

Shared Branch Prediction State

45

Spectre Mistraining: Vulnerable Vendors

Method
Attack Spectre

-PHT

Spectre
-BTB

Spectre
-RSB

Spectre
-ST

L

Intel
same-address-space in-place

out-of-place

cross-address-space in-place
out-of-place

ARM
same-address-space in-place

out-of-place

cross-address-space in-place
out-of-place

AMD
same-address-space in-place

out-of-place

cross-address-space in-place
out-of-place

46

Spectre Mistraining: Vulnerable Vendors

Method
Attack Spectre

-PHT

Spectre
-BTB

Spectre
-RSB

Spectre
-ST

L

Intel
same-address-space in-place

out-of-place

cross-address-space in-place
out-of-place

ARM
same-address-space in-place

out-of-place

cross-address-space in-place
out-of-place

AMD
same-address-space in-place

out-of-place

cross-address-space in-place
out-of-place

46

Spectre Mistraining: Vulnerable Vendors

Method
Attack Spectre

-PHT

Spectre
-BTB

Spectre
-RSB

Spectre
-ST

L

Intel
same-address-space in-place

out-of-place

cross-address-space in-place
out-of-place

ARM
same-address-space in-place

out-of-place

cross-address-space in-place
out-of-place

AMD
same-address-space in-place

out-of-place

cross-address-space in-place
out-of-place

46

Spectre Mistraining: Vulnerable Vendors

Method
Attack Spectre

-PHT

Spectre
-BTB

Spectre
-RSB

Spectre
-ST

L

Intel
same-address-space in-place

out-of-place

cross-address-space in-place
out-of-place

ARM
same-address-space in-place

out-of-place

cross-address-space in-place
out-of-place

AMD
same-address-space in-place

out-of-place

cross-address-space in-place
out-of-place

46

Super Effective Solution: Drilling template

Drilling template (@kreon_nrw)47

Spectre Defense Categorization

Spectre defenses in 3 categories:

C1 Mitigate or
reduce accuracy
of covert channels

C2 Mitigate or
abort speculation

C3 Ensure secret
cannot be reached

48

Spectre Defense Categorization

Spectre defenses in 3 categories:

C1 Mitigate or
reduce accuracy
of covert channels

C2 Mitigate or
abort speculation

C3 Ensure secret
cannot be reached

48

Spectre Defense Categorization

Spectre defenses in 3 categories:

C1 Mitigate or
reduce accuracy
of covert channels

C2 Mitigate or
abort speculation

C3 Ensure secret
cannot be reached

48

Spectre Defense Categorization

Spectre defenses in 3 categories:

C1 Mitigate or
reduce accuracy
of covert channels

C2 Mitigate or
abort speculation

C3 Ensure secret
cannot be reached

48

Spectre Defenses: Microarchitectural Target

Defense In
vi

si
Sp

ec
Sa

fe
Sp

ec
DA

W
G

Ta
in

t
Tr

ac
ki

ng

Ti
m

er
Re

du
ct

io
n

RS
B

St
uf

fi
ng

Re
tp

ol
in

e
SL

H
YS

NB
IB

RS
ST

IP
B

IB
PB

Se
ri

al
iz
at

io
n

Sl
ot

h
SS

BD
/S

SB
B

Po
is
on

Va
lu

e
In

de
x

M
as

ki
ng

Si
te

Is
ol

at
io

n

M
ic

ro
a

rc
hi

te
c

tu
ra

lE
le

m
e

nt Cache
TLB
BTB
BHB
PHT
RSB
AVX
FPU

Execution Ports

Category: C1 C2 C3

49

Site Isolation

• Each site executed in its own process

→ limits amount of data that is exposed
• Chrome 67: default, Firefox: work in progress

50

Site Isolation

• Each site executed in its own process
→ limits amount of data that is exposed

• Chrome 67: default, Firefox: work in progress

50

Site Isolation

• Each site executed in its own process
→ limits amount of data that is exposed
• Chrome 67: default, Firefox: work in progress

50

Serialization

• Insert instructions stopping speculation

→ insert after every bounds check
• x86: LFENCE , ARM: CSDB with conditional selects

or moves

51

Serialization

• Insert instructions stopping speculation
→ insert after every bounds check

• x86: LFENCE , ARM: CSDB with conditional selects
or moves

51

Serialization

• Insert instructions stopping speculation
→ insert after every bounds check
• x86: LFENCE , ARM: CSDB with conditional selects

or moves

51

InvisiSpec

• Make transient loads invisible in the cache
hierarchy

→ all transient loads use a speculative buffer
• Correct prediction: buffer content loaded into

cache
• Wrong prediction: transient load is reverted

52

InvisiSpec

• Make transient loads invisible in the cache
hierarchy

→ all transient loads use a speculative buffer

• Correct prediction: buffer content loaded into
cache

• Wrong prediction: transient load is reverted

52

InvisiSpec

• Make transient loads invisible in the cache
hierarchy

→ all transient loads use a speculative buffer
• Correct prediction: buffer content loaded into

cache

• Wrong prediction: transient load is reverted

52

InvisiSpec

• Make transient loads invisible in the cache
hierarchy

→ all transient loads use a speculative buffer
• Correct prediction: buffer content loaded into

cache
• Wrong prediction: transient load is reverted

52

Spectre: Defense Analysis

Attack
Defense

In
v
is

iS
pe

c
Sa

fe
Sp

ec
DA

W
G

RS
B

St
uf

fi
ng

Re
tp

ol
in

e
Po

is
on

Va
lu

e
In

de
x

M
as

ki
ng

Si
te

Is
ol

at
io

n
SL

H
YS

N
B

IB
RS

ST
IP

B
IB

PB
Se

ri
al

iz
at

io
n

Ta
in

t
Tr

ac
ki

ng
Ti

m
er

Re
du

ct
io

n
Sl

ot
h

SS
BD

/S
SB

B

Intel

Spectre-PHT
Spectre-BTB
Spectre-RSB
Spectre-STL

ARM

Spectre-PHT
Spectre-BTB
Spectre-RSB
Spectre-STL

AMD

Spectre-PHT
Spectre-BTB
Spectre-RSB
Spectre-STL

53

Spectre: Defense Analysis

Attack
Defense

In
v
is

iS
pe

c
Sa

fe
Sp

ec
DA

W
G

RS
B

St
uf

fi
ng

Re
tp

ol
in

e
Po

is
on

Va
lu

e
In

de
x

M
as

ki
ng

Si
te

Is
ol

at
io

n
SL

H
YS

N
B

IB
RS

ST
IP

B
IB

PB
Se

ri
al

iz
at

io
n

Ta
in

t
Tr

ac
ki

ng
Ti

m
er

Re
du

ct
io

n
Sl

ot
h

SS
BD

/S
SB

B

Intel

Spectre-PHT
Spectre-BTB
Spectre-RSB
Spectre-STL

ARM

Spectre-PHT
Spectre-BTB
Spectre-RSB
Spectre-STL

AMD

Spectre-PHT
Spectre-BTB
Spectre-RSB
Spectre-STL

53

Spectre: Defense Analysis

Attack
Defense

In
v
is

iS
pe

c
Sa

fe
Sp

ec
DA

W
G

RS
B

St
uf

fi
ng

Re
tp

ol
in

e
Po

is
on

Va
lu

e
In

de
x

M
as

ki
ng

Si
te

Is
ol

at
io

n
SL

H
YS

N
B

IB
RS

ST
IP

B
IB

PB
Se

ri
al

iz
at

io
n

Ta
in

t
Tr

ac
ki

ng
Ti

m
er

Re
du

ct
io

n
Sl

ot
h

SS
BD

/S
SB

B

Intel

Spectre-PHT
Spectre-BTB
Spectre-RSB
Spectre-STL

ARM

Spectre-PHT
Spectre-BTB
Spectre-RSB
Spectre-STL

AMD

Spectre-PHT
Spectre-BTB
Spectre-RSB
Spectre-STL

53

Spectre: Defense Analysis

Attack
Defense

In
v
is

iS
pe

c
Sa

fe
Sp

ec
DA

W
G

RS
B

St
uf

fi
ng

Re
tp

ol
in

e
Po

is
on

Va
lu

e
In

de
x

M
as

ki
ng

Si
te

Is
ol

at
io

n
SL

H
YS

N
B

IB
RS

ST
IP

B
IB

PB
Se

ri
al

iz
at

io
n

Ta
in

t
Tr

ac
ki

ng
Ti

m
er

Re
du

ct
io

n
Sl

ot
h

SS
BD

/S
SB

B

Intel

Spectre-PHT
Spectre-BTB
Spectre-RSB
Spectre-STL

ARM

Spectre-PHT
Spectre-BTB
Spectre-RSB
Spectre-STL

AMD

Spectre-PHT
Spectre-BTB
Spectre-RSB
Spectre-STL

53

Transient Execution Attacks: Classification

Transient
cause?

54

Transient Execution Attacks: Classification

Transient
cause?

Spectre-type

Meltdown-type

prediction

fault

54

Transient Execution Attacks: Classification

Transient
cause?

Spectre-type

microarchitec-
turalbuffer

Meltdown-type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

prediction

fault

54

Transient Execution Attacks: Classification

Transient
cause?

Spectre-type

microarchitec-
turalbuffer

Meltdown-type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

mistraining
strategy Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

prediction

fault

54

Transient Execution Attacks: Classification

Transient
cause?

Spectre-type

microarchitec-
turalbuffer

Meltdown-type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

mistraining
strategy Cross-address-space

Same-address-space

PHT-CA-IP ∗

PHT-CA-OP ∗

PHT-SA-IP

PHT-SA-OP ∗

in-place (IP) vs., out-of-place (OP)

Cross-address-space

Same-address-space
BTB-CA-IP

BTB-CA-OP

BTB-SA-IP ∗

BTB-SA-OP ∗

Cross-address-space

Same-address-space

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

prediction

fault

54

Transient Execution Attacks: Classification

Transient
cause?

Spectre-type

microarchitec-
turalbuffer

Meltdown-type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

mistraining
strategy Cross-address-space

Same-address-space

PHT-CA-IP ∗

PHT-CA-OP ∗

PHT-SA-IP

PHT-SA-OP ∗

in-place (IP) vs., out-of-place (OP)

Cross-address-space

Same-address-space
BTB-CA-IP

BTB-CA-OP

BTB-SA-IP ∗

BTB-SA-OP ∗

Cross-address-space

Same-address-space

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

prediction

fault

54

Transient Execution Attacks: Classification

Transient
cause?

Spectre-type

microarchitec-
turalbuffer

Meltdown-type

fault type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

mistraining
strategy Cross-address-space

Same-address-space

PHT-CA-IP ∗

PHT-CA-OP ∗

PHT-SA-IP

PHT-SA-OP ∗

in-place (IP) vs., out-of-place (OP)

Cross-address-space

Same-address-space
BTB-CA-IP

BTB-CA-OP

BTB-SA-IP ∗

BTB-SA-OP ∗

Cross-address-space

Same-address-space

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

Meltdown-NM

Meltdown-AC .

Meltdown-DE .

Meltdown-PF

Meltdown-UD .

Meltdown-SS .

Meltdown-BR

Meltdown-GP

prediction

fault

54

Transient Execution Attacks: Classification

Transient
cause?

Spectre-type

microarchitec-
turalbuffer

Meltdown-type

fault type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

mistraining
strategy Cross-address-space

Same-address-space

PHT-CA-IP ∗

PHT-CA-OP ∗

PHT-SA-IP

PHT-SA-OP ∗

in-place (IP) vs., out-of-place (OP)

Cross-address-space

Same-address-space
BTB-CA-IP

BTB-CA-OP

BTB-SA-IP ∗

BTB-SA-OP ∗

Cross-address-space

Same-address-space

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

Meltdown-NM

Meltdown-AC .

Meltdown-DE .

Meltdown-PF

Meltdown-UD .

Meltdown-SS .

Meltdown-BR

Meltdown-GP

prediction

fault

54

Transient Execution Attacks: Classification

Transient
cause?

Spectre-type

microarchitec-
turalbuffer

Meltdown-type

fault type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

mistraining
strategy Cross-address-space

Same-address-space

PHT-CA-IP ∗

PHT-CA-OP ∗

PHT-SA-IP

PHT-SA-OP ∗

in-place (IP) vs., out-of-place (OP)

Cross-address-space

Same-address-space
BTB-CA-IP

BTB-CA-OP

BTB-SA-IP ∗

BTB-SA-OP ∗

Cross-address-space

Same-address-space

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

Meltdown-NM

Meltdown-AC .

Meltdown-DE .

Meltdown-PF

Meltdown-UD .

Meltdown-SS .

Meltdown-BR

Meltdown-GP

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK ∗

Meltdown-XD .

Meltdown-SM .

Meltdown-MPX

Meltdown-BND ∗

prediction

fault

54

Transient Execution Attacks: Classification

Transient
cause?

Spectre-type

microarchitec-
turalbuffer

Meltdown-type

fault type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

mistraining
strategy Cross-address-space

Same-address-space

PHT-CA-IP ∗

PHT-CA-OP ∗

PHT-SA-IP

PHT-SA-OP ∗

in-place (IP) vs., out-of-place (OP)

Cross-address-space

Same-address-space
BTB-CA-IP

BTB-CA-OP

BTB-SA-IP ∗

BTB-SA-OP ∗

Cross-address-space

Same-address-space

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

Meltdown-NM

Meltdown-AC .

Meltdown-DE .

Meltdown-PF

Meltdown-UD .

Meltdown-SS .

Meltdown-BR

Meltdown-GP

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK ∗

Meltdown-XD .

Meltdown-SM .

Meltdown-MPX

Meltdown-BND ∗

prediction

fault

54

Transient Execution Attacks: Classification

Transient
cause?

Spectre-type

microarchitec-
turalbuffer

Meltdown-type

fault type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

mistraining
strategy Cross-address-space

Same-address-space

PHT-CA-IP ∗

PHT-CA-OP ∗

PHT-SA-IP

PHT-SA-OP ∗

in-place (IP) vs., out-of-place (OP)

Cross-address-space

Same-address-space
BTB-CA-IP

BTB-CA-OP

BTB-SA-IP ∗

BTB-SA-OP ∗

Cross-address-space

Same-address-space

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

Meltdown-NM

Meltdown-AC .

Meltdown-DE .

Meltdown-PF

Meltdown-UD .

Meltdown-SS .

Meltdown-BR

Meltdown-GP

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK ∗

Meltdown-XD .

Meltdown-SM .

Meltdown-MPX

Meltdown-BND ∗

prediction

fault

54

Lessons learned

We have ignored microarchitectural attacks for
many years:

• attacks on crypto → “software should be fixed”
• attacks on ASLR → “ASLR is broken anyway”
• attacks on TEEs → “not within threat model”
• Rowhammer → “only some cheap modules”

→ for years we solely optimized for performance

55

Lessons learned

We have ignored microarchitectural attacks for
many years:
• attacks on crypto

→ “software should be fixed”
• attacks on ASLR → “ASLR is broken anyway”
• attacks on TEEs → “not within threat model”
• Rowhammer → “only some cheap modules”

→ for years we solely optimized for performance

55

Lessons learned

We have ignored microarchitectural attacks for
many years:
• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”
• attacks on TEEs → “not within threat model”
• Rowhammer → “only some cheap modules”

→ for years we solely optimized for performance

55

Lessons learned

We have ignored microarchitectural attacks for
many years:
• attacks on crypto → “software should be fixed”
• attacks on ASLR

→ “ASLR is broken anyway”
• attacks on TEEs → “not within threat model”
• Rowhammer → “only some cheap modules”

→ for years we solely optimized for performance

55

Lessons learned

We have ignored microarchitectural attacks for
many years:
• attacks on crypto → “software should be fixed”
• attacks on ASLR → “ASLR is broken anyway”

• attacks on TEEs → “not within threat model”
• Rowhammer → “only some cheap modules”

→ for years we solely optimized for performance

55

Lessons learned

We have ignored microarchitectural attacks for
many years:
• attacks on crypto → “software should be fixed”
• attacks on ASLR → “ASLR is broken anyway”
• attacks on TEEs

→ “not within threat model”
• Rowhammer → “only some cheap modules”

→ for years we solely optimized for performance

55

Lessons learned

We have ignored microarchitectural attacks for
many years:
• attacks on crypto → “software should be fixed”
• attacks on ASLR → “ASLR is broken anyway”
• attacks on TEEs → “not within threat model”

• Rowhammer → “only some cheap modules”

→ for years we solely optimized for performance

55

Lessons learned

We have ignored microarchitectural attacks for
many years:
• attacks on crypto → “software should be fixed”
• attacks on ASLR → “ASLR is broken anyway”
• attacks on TEEs → “not within threat model”
• Rowhammer

→ “only some cheap modules”

→ for years we solely optimized for performance

55

Lessons learned

We have ignored microarchitectural attacks for
many years:
• attacks on crypto → “software should be fixed”
• attacks on ASLR → “ASLR is broken anyway”
• attacks on TEEs → “not within threat model”
• Rowhammer → “only some cheap modules”

→ for years we solely optimized for performance

55

Lessons learned

We have ignored microarchitectural attacks for
many years:
• attacks on crypto → “software should be fixed”
• attacks on ASLR → “ASLR is broken anyway”
• attacks on TEEs → “not within threat model”
• Rowhammer → “only some cheap modules”

→ for years we solely optimized for performance

55

Conclusion

• Optimizations always come at a cost
• Some mitigations cost more than gained by the

feature they defend
• Transient-execution attacks will keep us busy

for a while

56

Conclusion

• Optimizations always come at a cost

• Some mitigations cost more than gained by the
feature they defend
• Transient-execution attacks will keep us busy

for a while

56

Conclusion

• Optimizations always come at a cost
• Some mitigations cost more than gained by the

feature they defend

• Transient-execution attacks will keep us busy
for a while

56

Conclusion

• Optimizations always come at a cost
• Some mitigations cost more than gained by the

feature they defend
• Transient-execution attacks will keep us busy

for a while

56

Moritz Lipp
"Past"

@mlqxyz

Michael Schwarz
"Present"

@misc0110

Claudio Canella
"Future"
@cc0x1f

Daniel Gruss
"Scrooge"
@lavados

