
CPU Fuzzing for Discovering Hardware-caused Information

Leakage

Michael Schwarz

January 2022

CISPA Helmholtz Center for Information Security



Who am I

Michael Schwarz

Faculty @ CISPA Helmholtz Center for Information Security

Research on CPU security and side channels

R michael.schwarz@cispa.de

1

mailto:michael.schwarz@cispa.de


Intel Zombieload bug fix to slow data 

centre computers

ZombieLoad attack lets hackers steal data 

from Intel chips

'Zombieload' Flaw Lets Hackers Crack 

Almost Every Intel Chip Back to 2011. 

Why's It Being Downplayed?

Only New CPUs Can Truly Fix ZombieLoad 

and Spectre





Introduction

Microarchitectural side channels are powerful attack techniques

• Attack cryptographic implementations

• Spy on user behavior

• Augment traditional software exploits

• Building blocks for transient-execution attacks

2



Side-channel Attacks

M ≡ Cd (mod n) Description

Execution time
Power consumption

CPU caches

3



Side-channel Attacks

M ≡ Cd (mod n) Description

Cn =

(C 2)
n
2 if n ≡ 0 mod 2

C · (C 2)
n−1
2 if n ≡ 1 mod 2

Software

Execution time

Power consumption
CPU caches

3



Side-channel Attacks

M ≡ Cd (mod n) Description

Cn =

(C 2)
n
2 if n ≡ 0 mod 2

C · (C 2)
n−1
2 if n ≡ 1 mod 2

Software

‘1’ ‘0’
Hardware

Execution time Power consumption

CPU caches

3



Side-channel Attacks

M ≡ Cd (mod n) Description

Cn =

(C 2)
n
2 if n ≡ 0 mod 2

C · (C 2)
n−1
2 if n ≡ 1 mod 2

Software

‘1’ ‘0’
Hardware

Execution time Power consumption CPU caches

3



Flush+Reload

Attacker Victim

Shared Memory

flush

access

access

4



Flush+Reload

Attacker Victim

Shared Memory

flush

access

accessShared Memory

ca
ch

ed
cach

ed

4



Flush+Reload

Attacker Victim

Shared Memory

flushflush

access

accessShared Memory

4



Flush+Reload

Attacker Victim

Shared Memory

flushflush

access

access

4



Flush+Reload

Attacker Victim

Shared Memory

flush

access

accessaccess

4



Flush+Reload

Attacker Victim

Shared Memory

flush

access

accessaccessShared Memory

4



Flush+Reload

Attacker Victim

Shared Memory

flush

accessaccess

accessShared Memory

4



Flush+Reload

Attacker Victim

Shared Memory

flush

accessaccess

accessShared Memory

vs

Victim accessed

(fast)

Victim did not access

(slow)

4



Flush+Reload

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340
0

1

2

3

·105

Access time [CPU cycles]

N
u
m
b
er

o
f
ac
ce
ss
es

Cache Hits

5



Flush+Reload

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340
0

1

2

3

·105

Access time [CPU cycles]

N
u
m
b
er

o
f
ac
ce
ss
es

Cache Hits Cache Misses

5



Flush+Reload on Square-and-Multiply

M = C
d
mod n

6



Flush+Reload on Square-and-Multiply

M = C
d
mod n

1 1 0 0 1 1 0 . . .

Result = C

6



Flush+Reload on Square-and-Multiply

M = C
d
mod n

1 1 0 0 1 1 0 . . .

Result = Result × Result × C

square multiply

6



Flush+Reload on Square-and-Multiply

M = C
d
mod n

1 1 0 0 1 1 0 . . .

Result = Result × Result

square

6



Flush+Reload on Square-and-Multiply

M = C
d
mod n

1 1 0 0 1 1 0 . . .

Result = Result × Result

square

6



Flush+Reload on Square-and-Multiply

M = C
d
mod n

1 1 0 0 1 1 0 . . .

Result = Result × Result × C

square multiply

6



Flush+Reload on Square-and-Multiply

M = C
d
mod n

1 1 0 0 1 1 0 . . .

Result = Result × Result × C

square multiply

6



Flush+Reload on Square-and-Multiply

M = C
d
mod n

1 1 0 0 1 1 0 . . .

Result = Result × Result

square

6



From Metadata to Data

Meta Data Data

7



Transient Execution Attacks

• Transient-execution attacks evolved from side-channel attacks

• Side channel is a building block

• Leak data, not only metadata

• Meltdown, Spectre, ZombieLoad, Foreshadow, Fallout, LVI, ...

8



Motivation

Problem

Finding side channels and vulnerabilities is a

complex and time-consuming process

9



Motivation

• Apply bug-finding techniques from software

→ Fuzz for side channels

• Input are code sequences

• Detect timing differences

• Start with random (dumb) fuzzing

10



Sequence Triples

S0 S1

Reset Seq.

Reset Seq.

Trigger Seq.

Trigger Seq.

11



Sequence Triples

S0 S1

Reset Seq.

Reset Seq.

Trigger Seq.

Trigger Seq.

11



Sequence Triples

S0 S1

Reset Seq.

Reset Seq.

Trigger Seq.

Trigger Seq.

11



Testing A Sequence Triple

Example 1: Seqmeasure = Seqtrigger = Seqreset = INC [mem]
Example 2: Seqmeasure = Seqtrigger = INC [mem];

Seqreset = CLFLUSH [mem]

INC [mem]CLFLUSH [mem]

Seqreset

INC [mem]

Seqmeasure

INC [mem]CLFLUSH [mem]

Seqreset

INC [mem]

Seqtrigger

INC [mem]

Seqmeasure

Cold path S0

Hot path S1

12



Testing A Sequence Triple

Example 1: Seqmeasure = Seqtrigger = Seqreset = INC [mem]
Example 2: Seqmeasure = Seqtrigger = INC [mem];

Seqreset = CLFLUSH [mem]

INC [mem]CLFLUSH [mem]

Seqreset

INC [mem]

Seqmeasure

INC [mem]CLFLUSH [mem]

Seqreset

INC [mem]

Seqtrigger

INC [mem]

Seqmeasure

Cold path S0

Hot path S1

12



Testing A Sequence Triple

Example 1: Seqmeasure = Seqtrigger = Seqreset = INC [mem]
Example 2: Seqmeasure = Seqtrigger = INC [mem];

Seqreset = CLFLUSH [mem]

INC [mem]CLFLUSH [mem]

Seqreset

INC [mem]

Seqmeasure

INC [mem]CLFLUSH [mem]

Seqreset

INC [mem]

Seqtrigger

INC [mem]

Seqmeasure

Cold path S0

Hot path S1

12



Testing A Sequence Triple

Example 1: Seqmeasure = Seqtrigger = Seqreset = INC [mem]
Example 2: Seqmeasure = Seqtrigger = INC [mem];

Seqreset = CLFLUSH [mem]

INC [mem]CLFLUSH [mem]

Seqreset

INC [mem]

Seqmeasure

INC [mem]CLFLUSH [mem]

Seqreset

INC [mem]

Seqtrigger

INC [mem]

Seqmeasure

Cold path S0

Hot path S1

12



Testing A Sequence Triple

Example 1: Seqmeasure = Seqtrigger = Seqreset = INC [mem]
Example 2: Seqmeasure = Seqtrigger = INC [mem];

Seqreset = CLFLUSH [mem]

INC [mem]CLFLUSH [mem]

Seqreset

INC [mem]

Seqmeasure

INC [mem]CLFLUSH [mem]

Seqreset

INC [mem]

Seqtrigger

INC [mem]

Seqmeasure

Cold path S0

Hot path S1

12



Testing A Sequence Triple

Example 1: Seqmeasure = Seqtrigger = Seqreset = INC [mem]
Example 2: Seqmeasure = Seqtrigger = INC [mem];

Seqreset = CLFLUSH [mem]

INC [mem]CLFLUSH [mem]

Seqreset

INC [mem]

Seqmeasure

INC [mem]CLFLUSH [mem]

Seqreset

INC [mem]

Seqtrigger

INC [mem]

Seqmeasure

Cold path S0

Hot path S1

12



Testing A Sequence Triple

Example 1: Seqmeasure = Seqtrigger = Seqreset = INC [mem]
Example 2: Seqmeasure = Seqtrigger = INC [mem];

Seqreset = CLFLUSH [mem]

INC [mem]CLFLUSH [mem]

Seqreset

INC [mem]

Seqmeasure

INC [mem]CLFLUSH [mem]

Seqreset

INC [mem]

Seqtrigger

INC [mem]

Seqmeasure

Cold path S0

Hot path S1

12



Testing A Sequence Triple

Example 1: Seqmeasure = Seqtrigger = Seqreset = INC [mem]

Example 2: Seqmeasure = Seqtrigger = INC [mem];

Seqreset = CLFLUSH [mem]

INC [mem]CLFLUSH [mem]

Seqreset

INC [mem]

Seqmeasure

INC [mem]CLFLUSH [mem]

Seqreset

INC [mem]

Seqtrigger

INC [mem]

Seqmeasure

Cold path S0

Hot path S1

12



Testing A Sequence Triple

Example 1: Seqmeasure = Seqtrigger = Seqreset = INC [mem]

Example 2: Seqmeasure = Seqtrigger = INC [mem];

Seqreset = CLFLUSH [mem]

INC [mem]

CLFLUSH [mem]

Seqreset

INC [mem]

Seqmeasure

INC [mem]CLFLUSH [mem]

Seqreset

INC [mem]

Seqtrigger

INC [mem]

Seqmeasure

Cold path S0

Hot path S1

12



Testing A Sequence Triple

Example 1: Seqmeasure = Seqtrigger = Seqreset = INC [mem]

Example 2: Seqmeasure = Seqtrigger = INC [mem];

Seqreset = CLFLUSH [mem]

INC [mem]

CLFLUSH [mem]

Seqreset

INC [mem]

Seqmeasure

INC [mem]CLFLUSH [mem]

Seqreset

INC [mem]

Seqtrigger

INC [mem]

Seqmeasure

Cold path S0

Hot path S1

12



Testing A Sequence Triple

Example 1: Seqmeasure = Seqtrigger = Seqreset = INC [mem]

Example 2: Seqmeasure = Seqtrigger = INC [mem];

Seqreset = CLFLUSH [mem]

INC [mem]

CLFLUSH [mem]

Seqreset

INC [mem]

Seqmeasure

INC [mem]

CLFLUSH [mem]

Seqreset

INC [mem]

Seqtrigger

INC [mem]

Seqmeasure

Cold path S0

Hot path S1

12



Testing A Sequence Triple

Example 1: Seqmeasure = Seqtrigger = Seqreset = INC [mem]

Example 2: Seqmeasure = Seqtrigger = INC [mem];

Seqreset = CLFLUSH [mem]

INC [mem]

CLFLUSH [mem]

Seqreset

INC [mem]

Seqmeasure

INC [mem]

CLFLUSH [mem]

Seqreset

INC [mem]

Seqtrigger

INC [mem]

Seqmeasure

Cold path S0

Hot path S1

12



Testing A Sequence Triple

Example 1: Seqmeasure = Seqtrigger = Seqreset = INC [mem]

Example 2: Seqmeasure = Seqtrigger = INC [mem];

Seqreset = CLFLUSH [mem]

INC [mem]

CLFLUSH [mem]

Seqreset

INC [mem]

Seqmeasure

INC [mem]

CLFLUSH [mem]

Seqreset

INC [mem]

Seqtrigger

INC [mem]

Seqmeasure

Cold path S0

Hot path S1

12



Testing A Sequence Triple

Example 1: Seqmeasure = Seqtrigger = Seqreset = INC [mem]

Example 2: Seqmeasure = Seqtrigger = INC [mem];

Seqreset = CLFLUSH [mem]

INC [mem]

CLFLUSH [mem]

Seqreset

INC [mem]

Seqmeasure

INC [mem]

CLFLUSH [mem]

Seqreset

INC [mem]

Seqtrigger

INC [mem]

Seqmeasure

Cold path S0

Hot path S1

12



Testing A Sequence Triple

Example 1: Seqmeasure = Seqtrigger = Seqreset = INC [mem]

Example 2: Seqmeasure = Seqtrigger = INC [mem];

Seqreset = CLFLUSH [mem]

INC [mem]

CLFLUSH [mem]

Seqreset

INC [mem]

Seqmeasure

INC [mem]

CLFLUSH [mem]

Seqreset

INC [mem]

Seqtrigger

INC [mem]

Seqmeasure

Cold path S0

Hot path S1

12



Testing A Sequence Triple

Example 1: Seqmeasure = Seqtrigger = Seqreset = INC [mem]

Example 2: Seqmeasure = Seqtrigger = INC [mem];

Seqreset = CLFLUSH [mem]

INC [mem]

CLFLUSH [mem]

Seqreset

INC [mem]

Seqmeasure

INC [mem]

CLFLUSH [mem]

Seqreset

INC [mem]

Seqtrigger

INC [mem]

Seqmeasure

Cold path S0

Hot path S1

12



Osiris – Fuzzing x86 CPUs for Side Channels

Offline

1 Generation 2 Execution 3 Confirmation 4 Clustering

ISA Instructions

Triple Generation Timing Measurement
Randomized

Execution Leaking Triples Clustering Report

• Fuzzed on 5 different CPUs

• AMD and Intel

13



Osiris – Fuzzing x86 CPUs for Side Channels

Offline 1 Generation

2 Execution 3 Confirmation 4 Clustering

ISA Instructions Triple Generation

Timing Measurement
Randomized

Execution Leaking Triples Clustering Report

• Fuzzed on 5 different CPUs

• AMD and Intel

13



Osiris – Fuzzing x86 CPUs for Side Channels

Offline 1 Generation 2 Execution

3 Confirmation 4 Clustering

ISA Instructions Triple Generation Timing Measurement

Randomized

Execution Leaking Triples Clustering Report

• Fuzzed on 5 different CPUs

• AMD and Intel

13



Osiris – Fuzzing x86 CPUs for Side Channels

Offline 1 Generation 2 Execution 3 Confirmation

4 Clustering

ISA Instructions Triple Generation Timing Measurement
Randomized

Execution Leaking Triples

Clustering Report

• Fuzzed on 5 different CPUs

• AMD and Intel

13



Osiris – Fuzzing x86 CPUs for Side Channels

Offline 1 Generation 2 Execution 3 Confirmation 4 Clustering

ISA Instructions Triple Generation Timing Measurement
Randomized

Execution Leaking Triples Clustering

Report

• Fuzzed on 5 different CPUs

• AMD and Intel

13



Osiris – Fuzzing x86 CPUs for Side Channels

Offline 1 Generation 2 Execution 3 Confirmation 4 Clustering

ISA Instructions Triple Generation Timing Measurement
Randomized

Execution Leaking Triples Clustering Report

• Fuzzed on 5 different CPUs

• AMD and Intel

13



Osiris – Fuzzing x86 CPUs for Side Channels

Offline 1 Generation 2 Execution 3 Confirmation 4 Clustering

ISA Instructions Triple Generation Timing Measurement
Randomized

Execution Leaking Triples Clustering Report

• Fuzzed on 5 different CPUs

• AMD and Intel

13



Osiris Results

∼4 days per CPU 2 side channels rediscovered

4 new side channels 2 new attacks

14



RDRAND Covert Channel

8.7

8.8

8.9
·106

1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0

Bit

L
at
en
cy

S
u
m

[c
yc
le
s]

• RDRAND cross-core interference

→ Cross-core cross-VM covert channel

• Tested on the AWS cloud

15



RDRAND Covert Channel - Properties

AMD and Intel VM and native 1000 bit/s

No memory No detection No mitigation

16



MOVNT Side Channel

40 60 80 100 120 140 160 180 200 220
0

50,000

1 · 105

Execution time [cycles]

O
b
se
rv
at
io
n
s

Cache Hit

Cache Miss

• MOVNT can replace CLFLUSH

• Flushes data from all cache levels

17



MOVNT Side Channel - Properties

Faster reload Stealthy
Not prevented by any cache

design

18



MOVNT-based Meltdown

• Faster reload time → more leakage per transient window

• Previously: max. 3 bytes at once

• Meltdown PoC with MOVNT: 7.83 bytes at once

19



MOVNT KASLR Break

CLFLUSH

MOVNT

Load hit

Kernel

20



MOVNT KASLR Break

CLFLUSH

MOVNT

Load miss

Kernel

20



MOVNT KASLR Break

CLFLUSH

MOVNT

Load hit

Kernel

20



Transient Execution Attacks

• Improves implementation of transient execution attacks

• Can we find new transient execution attacks too?

→ Analyze them like the side channels

21



MDS Analysis

• Many Microarchitectural Data Sampling (MDS) attacks

→ ZombieLoad, RIDL, Fallout, Meltdown-UC

• Different variants and leakage targets

• Complex to reproduce and test all variations

• Common: require a fault or microcode assist

22



MDS

User Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

char value = faulting[0]

23



MDS

User Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

char value = faulting[0]
Fault

23



MDS

Out of order

User Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

K

char value = faulting[0]

mem[value]

Fault

23



MDS

Out of order

User Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

K K

char value = faulting[0]

mem[value]

K

Fault

23



Memory Access Checks (simplified)

• Many possibilities for faults

• Idea: mutation fuzzing for new variants

24



Memory Access Checks (simplified)

• Many possibilities for faults

• Idea: mutation fuzzing for new variants

24



Transynther

P1: Synthetisation

ZombieLoad

Fallout

RIDL

Meltdown
Random

Instruction

25



Transynther

P1: Synthetisation

ZombieLoad

Fallout

RIDL

Meltdown

Mutate

Random

Instruction

25



Transynther

P1: Synthetisation

ZombieLoad

Fallout

RIDL

Meltdown

Mutate

Random

Instruction

P2: Evaluation

P
ot

en
ti

al

M
el

td
ow

n

C
o

de
S

eq
ue

nc
e

25



Transynther

P1: Synthetisation

ZombieLoad

Fallout

RIDL

Meltdown

Mutate

Random

Instruction

P2: Evaluation

Execute

Code

Leakage

P
ot

en
ti

al

M
el

td
ow

n

C
o

de
S

eq
ue

nc
e

25



Transynther

P1: Synthetisation

ZombieLoad

Fallout

RIDL

Meltdown

Mutate

Random

Instruction

P2: Evaluation

Execute

Code

Leakage

0

P
ot

en
ti

al

M
el

td
ow

n

C
o

de
S

eq
ue

nc
e

25



Transynther

P1: Synthetisation

ZombieLoad

Fallout

RIDL

Meltdown

Mutate

Random

Instruction

P2: Evaluation

Execute

Code

Leakage
1

0

P3: Classification

P
ot

en
ti

al

M
el

td
ow

n

C
o

de
S

eq
ue

nc
e

S
en

d
to

C
la

ss
ifi

ca
ti

on

25



Transynther

P1: Synthetisation

ZombieLoad

Fallout

RIDL

Meltdown

Mutate

Random

Instruction

P2: Evaluation

Execute

Code

Leakage
1

0

P3: Classification

P
ot

en
ti

al

M
el

td
ow

n

C
o

de
S

eq
ue

nc
e

S
en

d
to

C
la

ss
ifi

ca
ti

on

Performance

Counters

Evaluate

Manual

Analysis

25



Buffer Grooming

• Fill microarchitectural buffers with known values

→ Rely on eviction sequences for buffers

• Leaked value indicates origin of leakage

26



Transynther Results

26 hours runtime 100 unique leakage patterns 7 attacks reproduced

1 new vulnerability 1 regression

27



Medusa

• Medusa: new variant of ZombieLoad

• Leaks from write-combining buffer, i.e., REP MOV

• Used for fast memory copy, e.g., in OpenSSL or kernel

→ Leaked RSA key while decoding in OpenSSL

28



Medusa

• Medusa: new variant of ZombieLoad

• Leaks from write-combining buffer, i.e., REP MOV

• Used for fast memory copy, e.g., in OpenSSL or kernel

→ Leaked RSA key while decoding in OpenSSL

28



Ice Lake Regression

• Ice Lake microarchitecture reported no vulnerabilities

• Transynther found a regression via a small mutation

→ Re-enabled a “mitigated” variant

• Fixed via microcode update

29



Small Specialized Fuzzers

• Only cover small field of possible vulnerabilities

• Fuzzers are still simple

• Narrow scope

• No complex sequences

• No guidance

• Very specialized fuzzers

30



Small Specialized Fuzzers

• Only cover small field of possible vulnerabilities

• Fuzzers are still simple

• Narrow scope

• No complex sequences

• No guidance

• Very specialized fuzzers

30



Small Specialized Fuzzers

• Only cover small field of possible vulnerabilities

• Fuzzers are still simple

• Narrow scope

• No complex sequences

• No guidance

• Very specialized fuzzers

30



Small Specialized Fuzzers

• Only cover small field of possible vulnerabilities

• Fuzzers are still simple

• Narrow scope

• No complex sequences

• No guidance

• Very specialized fuzzers

30



Other CPU Fuzzer

• Some other specialized CPU fuzzers

• Sandsifter: undocumented x86 instructions

• ABSynthe: same-core contention side channels

• FastSpec: Spectre variants

• CrossTalk: cross-core transient execution attacks

31



Software vs. Hardware Fuzzing

• All low-hanging fruit

• Approximately as sophisticated as software fuzzing in 1990

• Majority of fuzzers does not use any guidance

• More research on feedback necessary

32



Summary

• Simple models are sufficient to find leakage

• Dumb fuzzers find leakage within hours

• New vulnerability variants

• New side channels

• Regression in new CPUs

• Prediction: smarter fuzzers → more vulnerabilities

33



Open Source

https://github.com/CISPA/Osiris

USENIX’21

Daniel Weber, Ahmad Ibrahim, Hamed Nemati, Michael Schwarz, Christian Rossow.

Osiris: Automated Discovery of Microarchitectural Side Channels.

https://github.com/vernamlab/Medusa

USENIX’20

Daniel Moghimi, Moritz Lipp, Berk Sunar, Michael Schwarz.

Medusa: Microarchitectural Data Leakage via Automated Attack Synthesis.

34

https://github.com/CISPA/Osiris
https://github.com/vernamlab/Medusa


FUZZ

ALL THE THINGS
35



CPU Fuzzing for Discovering Hardware-caused Information

Leakage

Michael Schwarz

January 2022

CISPA Helmholtz Center for Information Security



References i

References

C. Domas. Breaking the x86 ISA, v. 2017-07-27. In: Black Hat US (2017).

B. Gras, C. Giuffrida, M. Kurth, H. Bos, and K. Razavi. ABSynthe: Automatic

Blackbox Side-channel Synthesis on Commodity Microarchitectures. In: NDSS.

2020.

D. Moghimi, M. Lipp, B. Sunar, and M. Schwarz. Medusa: Microarchitectural Data

Leakage via Automated Attack Synthesis. In: USENIX Security Symposium. 2020.

H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuffrida. CrossTalk: Speculative

Data Leaks Across Cores Are Real. In: S&P. 2021.

36



References ii

M. C. Tol, K. Yurtseven, B. Gulmezoglu, and B. Sunar. FastSpec: Scalable

Generation and Detection of Spectre Gadgets Using Neural Embeddings. In:

arXiv:2006.14147 (2020).

D. Weber, A. Ibrahim, H. Nemati, M. Schwarz, and C. Rossow. Osiris: Automated

Discovery Of Microarchitectural Side Channels. In: USENIX Security Symposium.

2021.

37


	References

