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Intel Zombieload bug fix to slow data 

centre computers

ZombieLoad attack lets hackers steal data 

from Intel chips

'Zombieload' Flaw Lets Hackers Crack 

Almost Every Intel Chip Back to 2011. 

Why's It Being Downplayed?

Only New CPUs Can Truly Fix ZombieLoad 

and Spectre





Introduction

Microarchitectural side channels are powerful attack techniques

• Attack cryptographic implementations

• Spy on user behavior

• Augment traditional software exploits

• Building blocks for transient-execution attacks
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Side-channel Attacks
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From Metadata to Data

Meta Data Data
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Transient Execution Attacks

• Transient-execution attacks evolved from side-channel attacks

• Side channel is a building block

• Leak data, not only metadata

• Meltdown, Spectre, ZombieLoad, Foreshadow, Fallout, LVI, ...
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Motivation

Problem

Finding side channels and vulnerabilities is a

complex and time-consuming process
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Motivation

• Apply bug-finding techniques from software

→ Fuzz for side channels

• Input are code sequences

• Detect timing differences

• Start with random (dumb) fuzzing
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Testing A Sequence Triple
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Osiris – Fuzzing x86 CPUs for Side Channels

Offline
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• Fuzzed on 5 different CPUs

• AMD and Intel
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Osiris Results

∼4 days per CPU 2 side channels rediscovered

4 new side channels 2 new attacks
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RDRAND Covert Channel

8.7

8.8

8.9
·106

1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0

Bit

L
at
en
cy

S
u
m

[c
yc
le
s]

• RDRAND cross-core interference

→ Cross-core cross-VM covert channel

• Tested on the AWS cloud
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RDRAND Covert Channel - Properties

AMD and Intel VM and native 1000 bit/s

No memory No detection No mitigation
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MOVNT Side Channel
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• MOVNT can replace CLFLUSH

• Flushes data from all cache levels
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MOVNT Side Channel - Properties
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Not prevented by any cache
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MOVNT-based Meltdown

• Faster reload time → more leakage per transient window

• Previously: max. 3 bytes at once

• Meltdown PoC with MOVNT: 7.83 bytes at once
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Transient Execution Attacks

• Improves implementation of transient execution attacks

• Can we find new transient execution attacks too?

→ Analyze them like the side channels
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MDS Analysis

• Many Microarchitectural Data Sampling (MDS) attacks

→ ZombieLoad, RIDL, Fallout, Meltdown-UC

• Different variants and leakage targets

• Complex to reproduce and test all variations

• Common: require a fault or microcode assist
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Memory Access Checks (simplified)

• Many possibilities for faults

• Idea: mutation fuzzing for new variants
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Buffer Grooming

• Fill microarchitectural buffers with known values

→ Rely on eviction sequences for buffers

• Leaked value indicates origin of leakage
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Transynther Results

26 hours runtime 100 unique leakage patterns 7 attacks reproduced

1 new vulnerability 1 regression
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Medusa

• Medusa: new variant of ZombieLoad

• Leaks from write-combining buffer, i.e., REP MOV

• Used for fast memory copy, e.g., in OpenSSL or kernel

→ Leaked RSA key while decoding in OpenSSL
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Ice Lake Regression

• Ice Lake microarchitecture reported no vulnerabilities

• Transynther found a regression via a small mutation

→ Re-enabled a “mitigated” variant

• Fixed via microcode update
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Small Specialized Fuzzers

• Only cover small field of possible vulnerabilities

• Fuzzers are still simple

• Narrow scope

• No complex sequences

• No guidance

• Very specialized fuzzers
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Other CPU Fuzzer

• Some other specialized CPU fuzzers

• Sandsifter: undocumented x86 instructions

• ABSynthe: same-core contention side channels

• FastSpec: Spectre variants

• CrossTalk: cross-core transient execution attacks
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Software vs. Hardware Fuzzing

• All low-hanging fruit

• Approximately as sophisticated as software fuzzing in 1990

• Majority of fuzzers does not use any guidance

• More research on feedback necessary
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Summary

• Simple models are sufficient to find leakage

• Dumb fuzzers find leakage within hours

• New vulnerability variants

• New side channels

• Regression in new CPUs

• Prediction: smarter fuzzers → more vulnerabilities
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Open Source

https://github.com/CISPA/Osiris

USENIX’21

Daniel Weber, Ahmad Ibrahim, Hamed Nemati, Michael Schwarz, Christian Rossow.

Osiris: Automated Discovery of Microarchitectural Side Channels.

https://github.com/vernamlab/Medusa

USENIX’20

Daniel Moghimi, Moritz Lipp, Berk Sunar, Michael Schwarz.

Medusa: Microarchitectural Data Leakage via Automated Attack Synthesis.
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FUZZ

ALL THE THINGS
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