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Introduction



Overview

If cache attacks are not possible, is the system secure
against microarchitectural side-channel attacks?
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* We know “normal” Cache Attacks
e Flush+Reload
* Prime+Probe
¢ Flush+Flush
* As these attacks became known, countermeasures were developed

* Deactivate Memory Deduplication
* Use multiple CPUs that do not share a cache
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Overview

» Identify DRAM as a new attack target across CPUs

* First fully automated method to reverse engineer DRAM
* Demonstrate DRAM-based attacks

* DRAM-based template attacks
* Access the internet from a VM without network hardware using a JavaScript
covert channel
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DRAM organization

chip
row O
row 1

row 2

row 32767 64k capacitors

row buffer |-




Reading from DRAM



The Row buffer

Capacitors discharge when reading bits

» Buffer the bits when reading them from the cells
* Write the bits back to the cells when done reading

= Row buffer



How reading from DRAM works
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How reading from DRAM works

DRAM bank

CPU reads row 1,

11111111111111 row buffer now full!
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How reading from DRAM works

DRAM bank

Less work!
11111111111 111 Is it faster?
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We can measure a difference
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Difference between row hits (=~ 225 cycles) and row conflicts (~ 247 cycles)
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Reversing the mapping function - Approach

Different bank Same bank



Reversing the mapping function - Approach

Select random base
address in one bank

Different bank Same bank



Reversing the mapping function - Approach

Measure access time when
repeatedly accessing

base and random address N

[6 ]

Different bank Same bank



Reversing the mapping function - Approach

Measure access time when
repeatedly accessing

base and random address N

16

Different bank Same bank



Reversing the mapping function - Approach

Measure access time when
repeatedly accessing

base and random address N

15
13
16

Different bank Same bank



Reversing the mapping function - Approach
Measure access time when m
repeatedly accessing
base and random address

46
15
13
16

Different bank Same bank



Reversing the mapping function - Approach

Measure access time when
repeatedly accessing
base and random address N

43
46
15
13
16

Different bank Same bank



Reversing the mapping function - Approach

Measure access time when
repeatedly accessing
base and random address N

45
43
46
15
13
16

Different bank Same bank



Reversing the mapping function - Approach

Measure access time when
repeatedly accessing
base and random address A

45
43
46
15
13

16 4

Different bank Same bank



Reversing the mapping function - Approach

Measure access time when
repeatedly accessing
base and random address A

45
43
46
15

13
16 4

Different bank Same bank




Reversing the mapping function - Approach

Measure access time when
repeatedly accessing
base and random address A

45

43

46

15 3

13 1

16 4
Different bank Same bank



Reversing the mapping function - Approach

Select random base
address in one bank

Different bank Same bank



Reversing the mapping function - Approach

Measure access time when
repeatedly accessing

base and random address N

[6 ]

Different bank Same bank



Reversing the mapping function - Approach

Measure access time when
repeatedly accessing

base and random address N

16

Different bank Same bank



Reversing the mapping function - Approach

Measure access time when
repeatedly accessing

base and random address N

15
13
16

Different bank Same bank



Reversing the mapping function - Approach

Measure access time when
repeatedly accessing

base and random address A

15
il

16 46
Different bank Same bank



Reversing the mapping function - Approach

Measure access time when
repeatedly accessing

base and random address A

15

13

16 46
Different bank Same bank



Reversing the mapping function - Approach

Measure access time when
repeatedly accessing

base and random address A

15 45

13 43

16 46
Different bank Same bank



Reversing the mapping function - Approach

Measure access time when
repeatedly accessing

base and random address N

4

15 45

13 43

16 46
Different bank Same bank



Reversing the mapping function - Approach

Measure access time when
repeatedly accessing

base and random address N

3
4

15 45

13 43

16 46
Different bank Same bank



Reversing the mapping function - Approach
Measure access time when m
repeatedly accessing
base and random address

3
1
4
15 45
13 43
16 46
Different bank Same bank



Reversing the mapping function - Approach

* Repeat the process for all banks



Reversing the mapping function - Approach

* Repeat the process for all banks
* For each bank, we have a set of addresses that map to this bank



Reversing the mapping function - Approach

* Repeat the process for all banks
* For each bank, we have a set of addresses that map to this bank

* We can see it as a linear equation system



Reversing the mapping function - Approach

* Repeat the process for all banks
* For each bank, we have a set of addresses that map to this bank

* We can see it as a linear equation system

Solving it gives us the bits used for the mapping functions



Reversing the mapping function - Approach

* Repeat the process for all banks

* For each bank, we have a set of addresses that map to this bank
* We can see it as a linear equation system

* Solving it gives us the bits used for the mapping functions

* The alternative: generate every possible XOR function and check if it yields
the same result for all addresses in the set



Reversing the mapping function - Approach

* Repeat the process for all banks

* For each bank, we have a set of addresses that map to this bank
* We can see it as a linear equation system

* Solving it gives us the bits used for the mapping functions

* The alternative: generate every possible XOR function and check if it yields
the same result for all addresses in the set

* This is still very fast (in the order of seconds)
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* We developed a toolkit that reverse engineers the mapping fully
automatically

* We tested it on Ivy Bridge, Haswell, Skylake, ARMv7 and ARMv8
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Spying

* We want to spy on the behaviour of a victim
* The victim will not know that we spy on it
* We can use row hits to get useful information

* Advantage over cache attacks: it works across CPUs

13



Attacks

Attack Primitive: Row hit

DRAM bank
S < Spy activates row
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Attack Primitive: Row hit

DRAM bank
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Attacks

Attack Primitive: Row hit

DRAM bank
> « ...but what if the

victim accessed
00000000 |00000000 the shared row...
00000000 00000000

L } 00000000 0O000000O0
00000000 /0000000O0

00000000|[00000000
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Attack Primitive: Row hit

DRAM bank
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Attack Primitive: Row hit

DRAM bank
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Attacks

Attack Primitive: Row hit

DRAM bank

00000000(/00000000 Row hit, faster
00000000//00000000

l } 00000000 0O000000O0
00000000 /0000000O0

glurn 00000000|[00000000

™~ [00000000|/00000000]|




Result: Spying on Firefox
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Covert channel

What is a covert communication?

* Two programs would like to communicate but are not allowed to do so
e All “normal” channels are blocked or monitored

» They have to find a side channel

16



Attacks

Attack Primitive: Row miss

DRAM bank

Sender and receiver
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Attack Primitive: Row miss
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Attacks

Attack Primitive: Row miss

DRAM bank

Sender accesses

00000000 000000O0O its address
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Attacks

Attack Primitive: Row miss

DRAM bank

00000000

00000000

00000000

00000000

activate

! .;! — e >00000000/[00000000

00000000//00000000

100000000[/00000000

[00000000][00000000

On next access
of receiver, there
is a row miss

copy



Attacks

Attack Primitive: Row miss

DRAM bank

Receiver has
00000000 00000000 high access time

00000000 /00000O0OO0

! .;l 00000000//00000000
00000000 /00000O0OO0

gturn 100000000//00000000]

- 00000000//00000000]|
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DRAM Covert Channel

Sender and receiver agree on a bank (can be hardcoded)

Both sender and receiver select a different row inside this bank
* Receiver measures access time for this row
* Sender can transmit 0 by doing nothing and 1 by causing row conflict

» If measured timing was “fast” sender transmitted 0.

18



DRAM Covert Channel

e Sender and receiver both inside the VM

19



DRAM Covert Channel

e Sender and receiver both inside the VM
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JavaScript Covert Channel

JavaScript running in the browser on the host
* Browser acts as receiver

* Sender in VM without internet access

* Problem: No addresses in JavaScript

e — Cannot apply DRAM functions

20



The Problem - Physical Addresses

 Iterate over a large array and measure timing
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The Problem - Physical Addresses

 Iterate over a large array and measure timing
* We can detect the page borders due to pagefaults
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JavaScript Covert Channel
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JavaScript Covert Channel

* We only have to trick the victim to visit our page
* Transmission of approximately 11 bit/s
* Enough to steal keys or passwords

22
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» We discovered a new attack vector

» Advantage over cache attacks: it works across CPUs
* Demonstrated two use cases:

* Spy on other processes
e Covert channel across CPUs

* Implemented the covert channel in JavaScript

23



Contribution

* DRAM as a novel attack vector
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Thank you for your attention!
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The gory details - Eviction

Address 0

Address n




The gory details - bits
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Figure 1: Multiple measurements per bit to have a reliable detection.
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The gory details - Packets

10 Data EDC

* Communication is based on packets
* Packet starts with a 2-bit preamble
* Data integrity is checked by an error-detection code (EDC)

* Sequence bit indicates whether it is a retransmission or a new packet
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Accuracy

* Not the whole physical page must be in one row

* Depending on the mapping function, a page can be distributed over multiple
rows

This is the case if address bits 0 to 11 are used for the mapping
» For example: Skylake uses low bits for channel (bits 8 and 9) and bankgroup
(bit 7)

* One physical page is distributed over 4 rows
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