Ty

DRAMA: Exploiting DRAM Buffers for Fun and Profit

Master Defense Presentation

Michael Schwarz
October 13, 2016

Graz University of Technology

Introduction

Overview

If cache attacks are not possible, is the system secure
against microarchitectural side-channel attacks?

* We know “normal” Cache Attacks
* Flush+Reload
* Prime+Probe
* Flush+Flush

* We know “normal” Cache Attacks
e Flush+Reload
* Prime+Probe
¢ Flush+Flush
* As these attacks became known, countermeasures were developed

* Deactivate Memory Deduplication
* Use multiple CPUs that do not share a cache

Overview

» Identify DRAM as a new attack target across CPUs

Overview

» Identify DRAM as a new attack target across CPUs

* First fully automated method to reverse engineer DRAM

Overview

» Identify DRAM as a new attack target across CPUs

* First fully automated method to reverse engineer DRAM
* Demonstrate DRAM-based attacks

Overview

» Identify DRAM as a new attack target across CPUs

* First fully automated method to reverse engineer DRAM
* Demonstrate DRAM-based attacks
* DRAM-based template attacks

Overview

» Identify DRAM as a new attack target across CPUs

* First fully automated method to reverse engineer DRAM
* Demonstrate DRAM-based attacks

* DRAM-based template attacks
* Access the internet from a VM without network hardware using a JavaScript
covert channel

How is DRAM organized?

How is DRAM organized?

channel O
—

channel 1

How is DRAM organized?

back of DIMM: rank 1

front of DIMM:
rank O

How is DRAM organized?

back of DIMM: rank 1

front of DIMM:
rank O

channel 1

DRAM organization

chip
row O
row 1

row 2

row 32767

row buffer I

DRAM organization

chip
row O
row 1

row 2

row 32767 64k capacitors

row buffer |-

Reading from DRAM

The Row buffer

Capacitors discharge when reading bits

» Buffer the bits when reading them from the cells
* Write the bits back to the cells when done reading

= Row buffer

How reading from DRAM works

DRAM bank

CPU reads row 1,
11111111111 111 row buffer empty!

111111111111 11

111111111111 11
LA
111111111111 11

11111111111 111

row buffer

How reading from DRAM works

DRAM bank

111111111111 11

activate 11111111111111

111111111111 11
LA
111111111111 11

copy

11111111111 111

row buffer

How reading from DRAM works

DRAM bank

111111111111 11

111111111111 11

111111111111 11
LA
111111111111 11

e 11111111111111

row buffer

How reading from DRAM works

DRAM bank

CPU reads row 1,

11111111111111 row buffer now full!

111111111111 11

111111111111 11
LA
111111111111 11

11111111111 111

row buffer

How reading from DRAM works

DRAM bank

Less work!
11111111111 111 Is it faster?

111111111111 11

111111111111 11
LA
111111111111 11

e 11111111111111

row buffer

We can measure a difference

150 —
>
o 100 .
()
=}
O
o o0 -
L
) Al . |
220 240 260 280
Clock cycles

Row hit

We can measure a difference

150
>
o 100 .
()
=}
O
o o0 -
L
0 T T T - T
220 240 260 280
Clock cycles

Row conflicts

We can measure a difference

150
O

g 100] S a
<

% n

5 b=

0 - . ‘ :
220 240 260 280

Clock cycles

Difference between row hits (=~ 225 cycles) and row conflicts (~ 247 cycles)

Reverse Engineering the Mapping

Reversing the mapping function - Approach

Different bank Same bank

Reversing the mapping function - Approach

Select random base
address in one bank

Different bank Same bank

Reversing the mapping function - Approach

Measure access time when
repeatedly accessing

base and random address N

[6]

Different bank Same bank

Reversing the mapping function - Approach

Measure access time when
repeatedly accessing

base and random address N

16

Different bank Same bank

Reversing the mapping function - Approach

Measure access time when
repeatedly accessing

base and random address N

15
13
16

Different bank Same bank

Reversing the mapping function - Approach
Measure access time when m
repeatedly accessing
base and random address

46
15
13
16

Different bank Same bank

Reversing the mapping function - Approach

Measure access time when
repeatedly accessing
base and random address N

43
46
15
13
16

Different bank Same bank

Reversing the mapping function - Approach

Measure access time when
repeatedly accessing
base and random address N

45
43
46
15
13
16

Different bank Same bank

Reversing the mapping function - Approach

Measure access time when
repeatedly accessing
base and random address A

45
43
46
15
13

16 4

Different bank Same bank

Reversing the mapping function - Approach

Measure access time when
repeatedly accessing
base and random address A

45
43
46
15

13
16 4

Different bank Same bank

Reversing the mapping function - Approach

Measure access time when
repeatedly accessing
base and random address A

45

43

46

15 3

13 1

16 4
Different bank Same bank

Reversing the mapping function - Approach

Select random base
address in one bank

Different bank Same bank

Reversing the mapping function - Approach

Measure access time when
repeatedly accessing

base and random address N

[6]

Different bank Same bank

Reversing the mapping function - Approach

Measure access time when
repeatedly accessing

base and random address N

16

Different bank Same bank

Reversing the mapping function - Approach

Measure access time when
repeatedly accessing

base and random address N

15
13
16

Different bank Same bank

Reversing the mapping function - Approach

Measure access time when
repeatedly accessing

base and random address A

15
il

16 46
Different bank Same bank

Reversing the mapping function - Approach

Measure access time when
repeatedly accessing

base and random address A

15

13

16 46
Different bank Same bank

Reversing the mapping function - Approach

Measure access time when
repeatedly accessing

base and random address A

15 45

13 43

16 46
Different bank Same bank

Reversing the mapping function - Approach

Measure access time when
repeatedly accessing

base and random address N

4

15 45

13 43

16 46
Different bank Same bank

Reversing the mapping function - Approach

Measure access time when
repeatedly accessing

base and random address N

3
4

15 45

13 43

16 46
Different bank Same bank

Reversing the mapping function - Approach
Measure access time when m
repeatedly accessing
base and random address

3
1
4
15 45
13 43
16 46
Different bank Same bank

Reversing the mapping function - Approach

* Repeat the process for all banks

Reversing the mapping function - Approach

* Repeat the process for all banks
* For each bank, we have a set of addresses that map to this bank

Reversing the mapping function - Approach

* Repeat the process for all banks
* For each bank, we have a set of addresses that map to this bank

* We can see it as a linear equation system

Reversing the mapping function - Approach

* Repeat the process for all banks
* For each bank, we have a set of addresses that map to this bank

* We can see it as a linear equation system

Solving it gives us the bits used for the mapping functions

Reversing the mapping function - Approach

* Repeat the process for all banks

* For each bank, we have a set of addresses that map to this bank
* We can see it as a linear equation system

* Solving it gives us the bits used for the mapping functions

* The alternative: generate every possible XOR function and check if it yields
the same result for all addresses in the set

Reversing the mapping function - Approach

* Repeat the process for all banks

* For each bank, we have a set of addresses that map to this bank
* We can see it as a linear equation system

* Solving it gives us the bits used for the mapping functions

* The alternative: generate every possible XOR function and check if it yields
the same result for all addresses in the set

* This is still very fast (in the order of seconds)

BAO « Q
BA1 ¢ Q‘
Rank ¢ (j:
BA2 « &
*‘
...,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8 , 7,6, ...
Ch.

* We developed a toolkit that reverse engineers the mapping fully
automatically

12

BAO « ’2:
BA1 ¢ Q‘
Rank ¢ (j:
BA2 « &
*‘
...,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8 , 7,6, ...

Ch.

IVa

* We developed a toolkit that reverse engineers the mapping fully
automatically

* We tested it on Ivy Bridge, Haswell, Skylake, ARMv7 and ARMv8

12

Attacks

Spying

* We want to spy on the behaviour of a victim

13

Spying

* We want to spy on the behaviour of a victim

* The victim will not know that we spy on it

13

Spying

* We want to spy on the behaviour of a victim
* The victim will not know that we spy on it

* We can use row hits to get useful information

13

Spying

* We want to spy on the behaviour of a victim
* The victim will not know that we spy on it
* We can use row hits to get useful information

* Advantage over cache attacks: it works across CPUs

13

Attacks

Attack Primitive: Row hit

DRAM bank
S < Spy activates row

0, get copied
00000000 |00000000 to row buffer
00000000 00000000

L } 00000000 0O000000O0
00000000 /0000000O0

00000000//00000000]

| row buffer |

Attacks

Attack Primitive: Row hit

DRAM bank

activate

00000000/[00000000

00000000

00000000

00000000

L } 00000000
00000000

00000000

00000000|[00000000

HooooooooHoooooooo

copy

Attack

Attack Primitive: Row hit

DRAM bank

>

00000000/[00000000

00000000

00000000

00000000

l } 00000000
00000000

00000000

glurn 00000000|[00000000

N

[00000000|/00000000]|

Attacks

Attack Primitive: Row hit

DRAM bank

00000000/[00000000

activate 00000000

00000000

00000000

L } 00000000
00000000

00000000

00000000|[00000000

HooooooooHoooooooo

copy

Spy activates
shared row

Attacks

Attack Primitive: Row hit

DRAM bank

>

00000000/[00000000

00000000

00000000

00000000

l } 00000000
00000000

00000000

glurn 00000000|[00000000

- [00000000|[00000000]|

Row conflict,
high timing

Attacks

Attack Primitive: Row hit

DRAM bank
> « ...but what if the

victim accessed
00000000 |00000000 the shared row...
00000000 00000000

L } 00000000 0O000000O0
00000000 /0000000O0

00000000|[00000000

{o0000000500000000]

Attacks

Attack Primitive: Row hit

DRAM bank

00000000/[00000000
00000000/[00000000

L } 00000000 0O000000O0
00000000 /0000000O0

copy

activate

00000000|[00000000

[00000000|/00000000]|

Attacks

Attack Primitive: Row hit

DRAM bank

00000000/[00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000|[00000000

HooooooooHooooooooH

...before the
spy activates it

Attacks

Attack Primitive: Row hit

DRAM bank

00000000(/00000000 Row hit, faster
00000000//00000000

l } 00000000 0O000000O0
00000000 /0000000O0

glurn 00000000|[00000000

™~ [00000000|/00000000]|

Result: Spying on Firefox

W M M

240

235

230

225

15

Covert channel

What is a covert communication?

16

Covert channel

What is a covert communication?

* Two programs would like to communicate

16

Covert channel

What is a covert communication?

* Two programs would like to communicate but are not allowed to do so

16

Covert channel

What is a covert communication?

* Two programs would like to communicate but are not allowed to do so

e All “normal” channels are blocked or monitored

16

Covert channel

What is a covert communication?

* Two programs would like to communicate but are not allowed to do so
e All “normal” channels are blocked or monitored

» They have to find a side channel

16

Attacks

Attack Primitive: Row miss

DRAM bank

Sender and receiver

00000000/[00000000 Jecide on one bank

00000000 /00000O0OO0

! l 00000000//00000000
00000000 /00000O0OO0

100000000[/00000000

| row buffer |

Attacks

Attack Primitive: Row miss

DRAM bank

00000000

00000000

00000000

00000000

activate

! .;! — e >00000000/[00000000

00000000//00000000

100000000[/00000000

[00000000][00000000

Receiver mea-
sures access time
to its address

copy

Attacks

Attack Primitive: Row miss

DRAM bank

00000000

00000000

00000000

00000000

[00000000|[00000000

00000000//00000000

100000000[/00000000

00000000//00000000]|

Attacks

Attack Primitive: Row miss

DRAM bank
> Repeated ac-

Iways h
00000000/[00000000 NS PN
00000000/[00000000
! .;! 00000000/[00000000
00000000//00000000
gturn 100000000[/00000000
™~ 00000000//00000000]|

Attacks

Attack Primitive: Row miss

DRAM bank

00000000 000000O0O
00000000 00000000

!, ;nl 00000000 00000000
00000000 /00000O0OO0

gturn 100000000//00000000]

™~ 00000000//00000000]|

Attacks

Attack Primitive: Row miss

DRAM bank

00000000

00000000

activate 00000000

00000000

00000000

! l 00000000
00000000

00000000

100000000[/00000000

[00000000][00000000

Sender accesses
its address

copy

Attacks

Attack Primitive: Row miss

DRAM bank

Sender accesses

00000000 000000O0O its address

00000000 /00000O0OO0

! l 00000000//00000000
00000000 /00000O0OO0

gturn 100000000[/00000000

00000000//00000000]|

Attacks

Attack Primitive: Row miss

DRAM bank

00000000

00000000

00000000

00000000

activate

! .;! — e >00000000/[00000000

00000000//00000000

100000000[/00000000

[00000000][00000000

On next access
of receiver, there
is a row miss

copy

Attacks

Attack Primitive: Row miss

DRAM bank

Receiver has
00000000 00000000 high access time

00000000 /00000O0OO0

! .;l 00000000//00000000
00000000 /00000O0OO0

gturn 100000000//00000000]

- 00000000//00000000]|

DRAM Covert Channel

» Sender and receiver agree on a bank (can be hardcoded)

18

DRAM Covert Channel

» Sender and receiver agree on a bank (can be hardcoded)

* Both sender and receiver select a different row inside this bank

18

DRAM Covert Channel

» Sender and receiver agree on a bank (can be hardcoded)
* Both sender and receiver select a different row inside this bank

* Receiver measures access time for this row

18

DRAM Covert Channel

Sender and receiver agree on a bank (can be hardcoded)

Both sender and receiver select a different row inside this bank
* Receiver measures access time for this row

* Sender can transmit 0 by doing nothing and 1 by causing row conflict

18

DRAM Covert Channel

Sender and receiver agree on a bank (can be hardcoded)

Both sender and receiver select a different row inside this bank
* Receiver measures access time for this row
* Sender can transmit 0 by doing nothing and 1 by causing row conflict

» If measured timing was “fast” sender transmitted 0.

18

DRAM Covert Channel

e Sender and receiver both inside the VM

19

DRAM Covert Channel

e Sender and receiver both inside the VM

0.5 - - - - - - - - 2500

0.4 2000 2
o
5
g %
5 9
503 {1500 5
[>
= S
5 ®
£ 0.2 41000 &
qJ o
E g
c
0.1 {500 &

0.0 PR A B EEE L L L L L L 0

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Raw bitrate

19

JavaScript Covert Channel

20

JavaScript Covert Channel

» JavaScript running in the browser on the host

20

JavaScript Covert Channel

» JavaScript running in the browser on the host

* Browser acts as receiver

20

JavaScript Covert Channel

» JavaScript running in the browser on the host
* Browser acts as receiver

e Sender in VM without internet access

20

JavaScript Covert Channel

JavaScript running in the browser on the host
* Browser acts as receiver
* Sender in VM without internet access

* Problem: No addresses in JavaScript

20

JavaScript Covert Channel

JavaScript running in the browser on the host
* Browser acts as receiver

* Sender in VM without internet access

* Problem: No addresses in JavaScript

e — Cannot apply DRAM functions

20

The Problem - Physical Addresses

 Iterate over a large array and measure timing

21

The Problem - Physical Addresses

 Iterate over a large array and measure timing
* We can detect the page borders due to pagefaults

21

JavaScript Covert Channel

* We only have to trick the victim to visit our page

22

JavaScript Covert Channel

* We only have to trick the victim to visit our page

* Transmission of approximately 11 bit/s

22

JavaScript Covert Channel

* We only have to trick the victim to visit our page
* Transmission of approximately 11 bit/s
* Enough to steal keys or passwords

22

Conclusion

» We discovered a new attack vector

23

» We discovered a new attack vector

» Advantage over cache attacks: it works across CPUs

23

» We discovered a new attack vector

» Advantage over cache attacks: it works across CPUs
* Demonstrated two use cases:

23

» We discovered a new attack vector

» Advantage over cache attacks: it works across CPUs
* Demonstrated two use cases:
* Spy on other processes

23

» We discovered a new attack vector

» Advantage over cache attacks: it works across CPUs
* Demonstrated two use cases:

* Spy on other processes
e Covert channel across CPUs

23

» We discovered a new attack vector

» Advantage over cache attacks: it works across CPUs
* Demonstrated two use cases:

* Spy on other processes
e Covert channel across CPUs

* Implemented the covert channel in JavaScript

23

Contribution

* DRAM as a novel attack vector

24

https://github.com/iaik/drama

Contribution

* DRAM as a novel attack vector
Pessl, P., Gruss, D., Maurice, C., Schwarz, M., and Mangard, S. (2016).
DRAMA: Exploiting DRAM addressing for cross-cpu attacks. (USENIX
Security 16).

24

https://github.com/iaik/drama

Contribution

* DRAM as a novel attack vector
Pessl, P., Gruss, D., Maurice, C., Schwarz, M., and Mangard, S. (2016).
DRAMA: Exploiting DRAM addressing for cross-cpu attacks. (USENIX
Security 16).

* DRAM covert channel in JavaScript

24

https://github.com/iaik/drama

Contribution

* DRAM as a novel attack vector
Pessl, P., Gruss, D., Maurice, C., Schwarz, M., and Mangard, S. (2016).
DRAMA: Exploiting DRAM addressing for cross-cpu attacks. (USENIX
Security 16).

* DRAM covert channel in JavaScript
Schwarz, M. and Fogh, A. (2016). DRAMA: How your DRAM becomes a
security problem (Black Hat Europe 2016)

24

https://github.com/iaik/drama

Contribution

* DRAM as a novel attack vector
Pessl, P., Gruss, D., Maurice, C., Schwarz, M., and Mangard, S. (2016).
DRAMA: Exploiting DRAM addressing for cross-cpu attacks. (USENIX
Security 16).

* DRAM covert channel in JavaScript
Schwarz, M. and Fogh, A. (2016). DRAMA: How your DRAM becomes a
security problem (Black Hat Europe 2016)

* Fully automatic DRAM reverse engineering tool

24

https://github.com/iaik/drama

Contribution

* DRAM as a novel attack vector
Pessl, P., Gruss, D., Maurice, C., Schwarz, M., and Mangard, S. (2016).
DRAMA: Exploiting DRAM addressing for cross-cpu attacks. (USENIX
Security 16).

* DRAM covert channel in JavaScript
Schwarz, M. and Fogh, A. (2016). DRAMA: How your DRAM becomes a
security problem (Black Hat Europe 2016)

* Fully automatic DRAM reverse engineering tool
https://github.com/iaik/drama

24

https://github.com/iaik/drama

Thank you for your attention!

Additional: Covert Channel
Transmission

The gory details - Eviction

Address 0

Address n

The gory details - bits

255 T T T T T

250 1

245 4

240 |

285 1

230 1 1 1 1 1 1
0 50 100 150 200 250 300 350

Figure 1: Multiple measurements per bit to have a reliable detection.

250 al (]\ W % W .
235 K) ﬂ‘J\N W N M 4

230 1 1 1 1 1 1
0 50 100 150 200 250 300 350

Figure 1: Multiple measurements per bit to have a reliable detection.

The gory details - Packets

10 Data EDC

* Communication is based on packets

The gory details - Packets

10 Data EDC

* Communication is based on packets
* Packet starts with a 2-bit preamble

The gory details - Packets

10 Data EDC

* Communication is based on packets
* Packet starts with a 2-bit preamble

* Data integrity is checked by an error-detection code (EDC)

The gory details - Packets

10 Data EDC

* Communication is based on packets
* Packet starts with a 2-bit preamble
* Data integrity is checked by an error-detection code (EDC)

* Sequence bit indicates whether it is a retransmission or a new packet

Additional: Accuracy

Accuracy

* Not the whole physical page must be in one row

Accuracy

* Not the whole physical page must be in one row

* Depending on the mapping function, a page can be distributed over multiple
rows

Accuracy

* Not the whole physical page must be in one row

* Depending on the mapping function, a page can be distributed over multiple
rows

* This is the case if address bits 0 to 11 are used for the mapping

Accuracy

* Not the whole physical page must be in one row

* Depending on the mapping function, a page can be distributed over multiple
rows

This is the case if address bits 0 to 11 are used for the mapping

» For example: Skylake uses low bits for channel (bits 8 and 9) and bankgroup
(bit 7)

Accuracy

* Not the whole physical page must be in one row

* Depending on the mapping function, a page can be distributed over multiple
rows

This is the case if address bits 0 to 11 are used for the mapping
» For example: Skylake uses low bits for channel (bits 8 and 9) and bankgroup
(bit 7)

* One physical page is distributed over 4 rows

Accuracy

0 127

8KB row x in BGO (1) and channel (1)
| | Page #2 | Page #3 | Page #4 | Page #5 | Page #6 | Page #7 | Page #8 |

8KB row x in BGO (0) and channel (1)

8KB row z in BGO (1) and channel (0)
l | Page #2 | Page #3 | Page #4 | Page #5 | Page #6 | Page #7 | Page #8 |

8KB row z in BGO (0) and channel (0)
I | Page #2 | Page #3 | Page #4 | Page #5 | Page #6 | Page #7 | Page #8 |

4KB Page #1 4095

Accuracy

BGO (0), Channel (0)

BGO (0), Channel (0)

BGO (0), Channel (0)

BGO (0), Channel (0)

BGO (0), Channel (0)

BGO (0), Channel (0)

BGO (0), Channel (0)

BGO (0), Channel (0)

4KB Page #1

4095

8KB row x in BGO (1) and channel (1)
| | Page #2 | Page #3 | Page #4 | Page #5 | Page #6 | Page #7 | Page #8 |

8KB row x in BGO (0) and channel (1)

8KB row z in BGO (1) and channel (0)
l | Page #2 | Page #3 | Page #4 | Page #5 | Page #6 | Page #7 | Page #8 |

8KB row z in BGO (0) and channel (0)
| Page #1 | Page #2 | Page #3 | Page #4 | Page #5 | Page #6 | Page #7 | Page #8 |

Accuracy

0] 127
[BGO%O;, Channel 50; |
N anne
Bag T -cpanne {3 — 8KB row z in BGO (1) and channel (1)

I | Page #2 | Page #3 | Page #4 | Page #5 | Page #6 | Page #7 | Page #8 |

| BGO %Og, Channel 50; |
, Channe

BGO (0), Channel (0O
B 1), Channel

e 8KB row x in BGO (1) and channel (0)

| Page #1 | Page #2 | Page #3 | Page #4 | Page #5 | Page #6 | Page #7 | Page #8 |

8KB row x in BGO (0) and channel (1)

BGO (0), Channel (0
B 1), Channel

8KB row z in BGO (0) and channel (0)

‘—S-g-%%:—(mgm:—ng{—é%;—‘ | Page #1 | Page #2 | Page #3 | Page #4 | Page #5 | Page #6 | Page #7 | Page #8 |
| BGO %Oe, Channel 50 |
, Channe

4KB Page #1 4095

Accuracy

0 127
[__BGO(0), Channel (0) |
[___BGO (1), Channel (0) |

8KB row x in BGO (1) and channel (1)
I | Page #2 | Page #3 | Page #4 | Page #5 | Page #6 | Page #7 | Page #8 |

I 8KB row x in BGO (0) and channel (1)

8KB row z in BGO (1) and channel (0)
| Page #1 | Page #2 | Page #3 | Page #4 | Page #5 | Page #6 | Page #7 | Page #8 |

BGO (0), Channel (O
[BGO (1), Channel (0) |

8KB row z in BGO (0) and channel (0)
| Page #1 | Page #2 | Page #3 | Page #4 | Page #5 | Page #6 | Page #7 | Page #8 |

[___BGO (1), Channel (0) |

BGO (0), Channel (O
[BGO (1), Channel (0) |

4KB Page #1 4095

Accuracy

127
-mxunmmm-
[___BGO (1), Channel (0) |

L BCO{1 Channel (13
[BGO(0). Channel{(
520 (7] Channel (0]

[BGO (1), Channel(
——5C0(0) Charner (0]
[BGO (1), Channel (0) |

L BCO{1. Channel (13
[BGO(0). Channel{(
520 (7] Channel (0]

[___BGO (1), Channel (1) |
[___BGO(0), Channel (0) |
[___BGO (1), Channel (0) |

1 N T 6
[BGO(0). Channel{(
520 (3] Channel (0]

[BGO (1), Channel (1) |
[___BGO(0), Channel (0) |
[___BGO (1), Channel (0) |

1 T 6
8GO (0]

8KB row x in BGO (1) and channel (1)
| Page #1 | Page #2 | Page #3 | Page #4 | Page #5 | Page #6 | Page #7 | Page #8 |

1 I 8KB row x in BGO (0) and channel (1)

8KB row z in BGO (1) and channel (0)
| Page #1 | Page #2 | Page #3 | Page #4 | Page #5 | Page #6 | Page #7 | Page #8 |

8KB row z in BGO (0) and channel (0)
| Page #1 | Page #2 | Page #3 | Page #4 | Page #5 | Page #6 | Page #7 | Page #8 |

4KB Page #1 4095

References i

	Introduction
	Reading from DRAM
	Reverse Engineering the Mapping
	Attacks
	Conclusion
	Appendix
	Additional: Covert Channel Transmission
	Additional: Accuracy

