
Donky: Domain Keys – Efficient In-Process Isolation
for RISC-V and x86

David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl,
Michael Schwarz, Stefan Mangard, Daniel Gruss

Graz University of Technology

Abstract
Efficient and secure in-process isolation is in great demand,

as evidenced in the shift towards JavaScript and the recent re-
vival of memory protection keys. Yet, state-of-the-art systems
do not offer strong security or struggle with frequent domain
crossings and oftentimes intrusive kernel modifications.

We propose Donky, an efficient hardware-software co-
design for strong in-process isolation based on dynamic mem-
ory protection domains. The two components of our design
are a secure software framework and a non-intrusive hardware
extension. We facilitate domain switches entirely in userspace,
thus minimizing switching overhead as well as kernel com-
plexity. We show the versatility of Donky in three realistic use
cases, secure V8 sandboxing, software vaults, and untrusted
third-party libraries. We provide an open-source implemen-
tation on a RISC-V Ariane CPU and an Intel-MPK-based
emulation mode for x86. We evaluate the security and per-
formance of our implementation for RISC-V synthesized on
an FPGA. We also evaluate the performance on x86 and
show why our new design is more secure than Intel MPK.
Donky does not impede the runtime of in-domain computa-
tion. Cross-domain switches are 16–116x faster than regular
process context switches. Fully protecting the mbedTLS cryp-
tographic operations has a 4 % overhead.

1 Introduction

Memory isolation is a fundamental building block for develop-
ing secure systems. Hence, concepts of memory isolation can
be found on all layers in the software stack, e.g., via process
isolation via separate address spaces. However, recent use
cases demand more fine-grained isolation, especially within a
process, where traditional process isolation would incur too
substantial performance costs. Especially cloud providers are
in the process of abandoning process isolation in favor of
language-level sandboxing, e.g., via V8 Isolates [16].

Isolation through the V8 sandbox has use cases in the
cloud [16], desktop applications [61], and browsers [81].

Unfortunately, JavaScript engines have a huge potential for
vulnerabilities, such as memory corruption, incorrect com-
piler optimizations, type confusion, or erroneous code gen-
eration [33, 68, 70], and strong hardware-backed sandboxing
is needed. Similarly, native applications may load untrusted
(and potentially closed-source) third-party libraries [78], or
use a library for certain secure operations. The principle
of least privilege would require isolation of such libraries
from the rest of the program. However, traditional process
isolation is oftentimes prohibitive in practice. Hence, prior
work studied more lightweight in-process isolation tech-
niques [14, 15, 30, 35, 44, 50, 51, 56, 72, 82, 85, 89, 94, 99].

In-process isolation mechanisms range from control flow
schemes [30], over capability designs [58, 85, 89], to protec-
tion key mechanisms operating on memory pages [15, 82, 99]
for various architectures [4, 19, 22, 37, 63]. These designs fol-
low either a security-focused approach (e.g., privileged key
switches) with oftentimes significant performance impact or
favor performance (e.g., fast key switches) at the cost of re-
duced security. For instance, Intel MPK [19, 46] is fast but
allows manipulations of the MPK access policy and, thus, can-
not directly be used as a secure sandbox. Instead, prior work
uses binary scanning and non-writable code pages to prevent
manipulations (e.g., ERIM [82]), complicating sandboxing
just-in-time-compiled JavaScript code. If an attacker gains
arbitrary code execution, all MPK-based approaches lose their
protection guarantees. Others guard their memory access pol-
icy via the kernel, which, while secure, demands costly or
intrusive kernel interaction and modifications [15, 35, 50, 99].
Finally, existing architectures are oftentimes limited to 16
protection domains [4, 19], and software emulation of more
domains has a substantial performance cost [64].

Since existing solutions have different security and perfor-
mance goals or involve heavy kernel interaction, we identify
the following research question and challenge:
As the objectives of MPK (high performance) and kernel-
based approaches (high security) are seemingly contradictory,
can these two approaches be combined? How can protection
keys be securely and efficiently managed in userspace?



In this paper, we solve this challenge with Donky, a
hardware-software co-design providing strong in-process iso-
lation guarantees based on memory protection keys. Donky
offers pure userspace policy management with negligible
overhead and full backward-compatibility. Memory pages
are dynamically assigned to protection domains, providing
strict hardware-backed isolation between domains. Moreover,
policy management is entirely decoupled from the kernel
and instead delegated to a self-protecting userspace monitor.
Donky provides substantially stronger security guarantees
than previous designs [82], at a low performance cost.

We demonstrate the versatility of Donky in three realistic
use cases: First, we augment the JavaScript V8 engine with
isolation guarantees that usually can only be achieved by
spawning multiple instances of the V8 engine, i.e., process
isolation. Second, we isolate a third-party library from the
main program, preventing illegitimate access to the main
program’s data, e.g., a parsing library without full access to
the program’s address space. Third, we build a software vault
using Donky with security guarantees that can usually only be
obtained by running the software vault in a separate process.

Our design consists of two components. The first compo-
nent is a secure software framework to define and handle mem-
ory protection domains in userspace, e.g., for just-in-time com-
piled code or third-party binary code. Its core, a lightweight
protection domain monitor library called DonkyLib, exposes
Donky functionality, such as secure in-userspace domain
switching and modification, to an application developer. We
completely outsource system call filtering to a privileged
userspace domain to avoid usage of extended Berkeley Packet
Filters (eBPFs), which have been used several times for kernel
exploitation [77]. Expensive context switches to the kernel are
not necessary for switching or modifying protection domains.

The second component of Donky is a small hardware ex-
tension. Our full open-source hardware implementation is
based on the RISC-V Ariane CPU and evaluated on a Xil-
inx Kintex-7 FPGA KC705. We also implement an Intel-
MPK-based emulation mode for x86. We show that a full
Donky implementation provides higher security guarantees
than MPK-based schemes currently can provide: Donky has
a special userspace protection key policy register protected
via a hardware call gate. Consequently, we do not need binary
inspection or rewriting to guarantee that malicious code can-
not change it, unlike all isolation techniques building upon
Intel’s current MPK implementation [82], and Donky can
shield against arbitrary code execution. We outline hardware
changes to Intel MPK for full Donky support.

We provide a thorough performance analysis for our RISC-
V-based implementation and also, despite the lower security
guarantees, for our emulation mode on x86. We show that
the performance cost in both implementations of Donky is
negligible when compared to the cost of process isolation and
earlier proposals. Finally, we discuss previous work on in-
process isolation in detail and find that previous work focused

only on some goals of Donky (e.g., only isolating trusted
code [15]) or even entirely orthogonal goals like CFI [30].
In summary, our contributions are as follows:
• We propose Donky, efficient userspace memory protection

domains, without requiring control-flow integrity, binary
inspection, or binary rewriting.

• We provide an open-source implementation1 on a RISC-V
CPU, with higher security than MPK-based schemes.

• We repurpose the RISC-V extension for user-level inter-
rupts for managing access policies entirely in userspace.

• We evaluate Donky on V8 just-in-time-compiled JavaScript
code and native code. Donky is 1–2 orders of magnitude
faster than process-based isolation and shows a negligible
overhead over no isolation on real-world software.

Paper Outline. Section 2 provides background on RISC-V
and protection keys. Section 3 overviews Donky’s design.
Section 4 details the software component. Section 5 details
the hardware extension. Section 6 evaluates Donky’s perfor-
mance and security. Section 7 qualitatively evaluates Donky
in terms of applicability, performance, and security. Section 8
discusses related work, and Section 9 concludes.

2 Background

In this section, we overview RISC-V, virtual memory, existing
protection key architectures, and JavaScript JIT engines.

2.1 RISC-V

RISC-V is a free and open-source instruction set architecture
(ISA). It comprises the unprivileged ISA [28], and the privi-
leged ISA [27]. A set of control and status registers (CSRs)
allows configuring the CPU behavior, access performance
metrics, and provides additional scratch space for exception
handling. CSRs are typically prefixed with m, for machine
mode, s, for supervisor mode, or u, for user mode. Exceptions
occur upon various occasions, e.g., memory violations. To
handle the exception, the CPU switches to machine mode and
jumps to the address specified in the trap-vector base-address
register (mtvec CSR). Exceptions can be delegated to super-
visor mode in the medeleg CSR. The instructions mret and
sret are used to return from the exception handler.

RISC-V specifies the so-called “Standard Extension for
User-Level Interrupts”, also abbreviated as N extension [29].2

The N extension is intended for embedded systems, and user
mode exception handling (e.g., for garbage collection or inte-
ger overflows) is only briefly discussed as a potential use case
for non-embedded systems (e.g., Unix). The N extension adds
the utvec and sedeleg CSRs, amongst others, to delegate
exceptions and interrupts directly to user mode handlers with-
out invoking higher privileged code. As with higher privilege

1https://github.com/IAIK/Donky
2It is currently in draft status for the RISC-V ISA 1.12.

https://github.com/IAIK/Donky


modes, utvec allows for vectorized exceptions, and the uret
instruction is used to return from the handler.

Ariane [1, 96] is a 64-bit single issue, 6-stage, in-order
CPU, optimized for short critical path length. It implements
the RV64IMAC RISC-V ISA and features the M, S, and U
privilege modes. Ariane implements v1.10 of the privileged
and the working draft of the unprivileged RISC-V ISA v2.3.
Thus, it can run Unix-like operating systems.

2.2 Address Translation
Modern 64-bit CPUs typically support 48-bit (recently also
57-bit) virtual address spaces, used for process isolation. For
virtual-to-physical address translation, address spaces are
mapped in blocks of pages, most commonly 4 KiB. Mod-
ern CPUs support multiple levels of translation tables, which
are stored in memory. Their entries (also called page-table en-
tries) are cached in the so-called translation-lookaside buffer
(TLB). Switching between processes, and thus address spaces,
means updating a CPU register to point to a different set of
translation tables and flushing the TLB unless it is tagged
with an address-space identifier. Via the page-table entries
(PTEs), access permissions are managed per page, such that
the same physical page may be mapped in multiple virtual ad-
dress spaces (i.e., multiple processes, shared memory), even
with different access permissions. Updates to permissions,
mappings, or the switching of the address space can only be
done by the kernel. Hence, context switches are required for
any of these operations to isolate contexts (e.g., processes)
from each other.

2.3 Memory Protection Keys
Memory protection keys are an extension to page-based mem-
ory permissions, allowing to change permissions of memory
ranges without the slow kernel-level modification of page
tables. Instead, page-table entries are tagged with a protection
key, but the permissions (which the hardware enforces) for
these keys are stored separately. Keys are usually associated
with a protection domain (e.g., application, library, module),
and each (typically virtual) memory region can have one asso-
ciated key. Processes can have one or more keys assigned (e.g.,
one key per application on System/360) via special registers.

Today’s implementations differ mainly in the number of
loaded keys per thread and process, the types of permissions,
if the protection key policy register is privileged or not, as
well as memory region granularity. The main differences of
protection key implementations of some notable hardware
architectures are as follows:

Intel’s Memory Protection Keys (MPK) [19] use 4-bit
keys stored in the page-table entry, allowing for 15 differ-
ent domains per process. The corresponding read- and write-
disable bits for each key are stored in the PKRU (User Page
Key Register) and checked by the hardware upon access. As

the PKRU is non-privileged, allowing fast domain-switching
in userspace, MPK itself does not provide secure in-process
isolation and, to obtain such, has to be combined with other
mechanisms (such as CFI and binary scanning).

ARM Memory Domains [4] are defined in ARMV8 for
AArch32 but were dropped in AArch64. They use 4-bit do-
main IDs (keys) in the translation tables and a kernel-mode
Domain Access Control Register (DACR) with a 2-bit field
per key. With DACR, access can either be denied, enforced
at PTE level, or fully allowed, bypassing PTE permissions.
Since only the first-level page-table entries contain domain
IDs, domain boundaries must be aligned at 1 MB blocks.

IBM’s Power [37] architecture supports 5-bit protection
keys, allowing 32 different memory domains. Its privileged
(kernel mode) registers (AMR and IAMR) store read, write,
and execute permissions for each key.

HP PA-RISC [63] uses 15–18-bit “protection identifiers”
with a write-disable bit each stored in privileged control reg-
isters. Instead of storing a write-disable bit for each of the
keys (which would require a 218 bit register), they have four
registers to load one key each.

Itanium (IA-64) [22] is very similar to PA-RISC but pro-
vides (at least) 16 registers with 18–24-bit keys each and have
additional read- and execute-disable bits as well as a valid bit.

The above hardware designs have various trade-offs. If
the protection key policy register can be changed from the
userspace using unprivileged operations, domain transitions
can be very fast and do not require any kernel interaction.
Having a privileged register, however, completely changes the
threat model and possible use cases. In this case, the kernel
needs to know about the different memory domains, which
requires many complex kernel modifications. Existing work
based on Intel MPK works around the inherent problem of ma-
licious protection key policy register modification by utilizing
additional mechanisms such as compiler-based code rewrit-
ing [41], binary inspection [82] and Write-XOR-Execute to
ensure there are no unintended writes to the PKRU.

2.4 JIT and JavaScript Engines
Just-in-time compilation (JIT) dynamically compiles inter-
preted programming languages, e.g., JavaScript, into an in-
termediate representation (byte code) or machine code. A
JavaScript engine manages the tasks of compilation and exe-
cution of JavaScript, memory management, and optimization.
In the case of V8, which is used in Chrome, Chromium, and
Node.js [81], the source code is first compiled into a byte
code representation, which is then interpreted and executed.
While the code is executed, another component of the engine
analyses the runtime and further optimizes the byte code di-
rectly into machine code. This requires the code region to be
both writable and executable.

Typically, browsers use sandboxing to minimize the attack
surface for attackers exploiting vulnerabilities via JavaScript.



Figure 1: Donky structures a user process into security
domains, orchestrating a set of memory regions. Each re-
gion is assigned a unique protection key, and access is con-
trolled via a policy register. Keys can be domain-private
to implement software vaults (Dom B), or shared across
domains. Limiting a domain’s keys allows to sandbox ma-
licious code (Dom C). The domain monitor manages pro-
tection keys, the policy register, and system call filtering.
Call gates prevent control-flow attacks across domains.

E.g., in V8, an Isolate is an independent copy of the entire
JavaScript runtime environment. Each Isolate has its own
code cache, heap, garbage collection, and call stack. Thus,
JavaScript code runs in parallel in a separate Isolate within
the same process. However, sandbox escapes are still possible
by exploiting vulnerabilities in both the JavaScript engine and
the sandbox [2,33,70]. An additional security enhancement is
to use process isolation, e.g., in the form of site isolation [67].

3 Donky System Design

In this section, we define our threat model and present Donky,
a hardware-software co-design for strong and efficient mem-
ory isolation within a single user process. Donky provides
highly flexible and lightweight domains atop of hardware-
backed memory protection keys, as visualized in Figure 1.
Threat model. Donky supports complex user programs
with multiple software modules and mixed trust assumptions
(cf. Figure 1). Modules can range from small components
like individual C++ classes over compounds like plugins or
browser tabs to entire binaries and libraries. For the sake of
demonstration, we discuss two common scenarios.

First, in a sandbox scenario, an application wants to execute
untrusted code modules without specific security assumptions.
They may contain vulnerabilities that are actively exploited
by an adversary, or even run malicious (e.g., user-provided
JavaScript) or arbitrary code, such that it issues adversary-
chosen system calls or accesses adversary-chosen memory
locations. The adversary may repeatedly inject arbitrary in-
structions at runtime, including WRPKRU. The application en-

capsulates this untrusted code in a Donky in-process sandbox.
Donky shields not only application memory and sandbox
transitions but also the system call interface at the discre-
tion of the application. In contrast to ERIM [82], we do not
require binary scanning. Also, Donky does not rely on re-
compiling programs with CFI. Instead, Donky can sandbox
unmodified, pre-compiled binaries. Unlike ERIM, we do not
assume Write-XOR-Execute and also support self-modifying
code. This enables use cases such as JIT compilation, one of
the main applications of Donky, without modifying the JIT
compiler to not emit unsafe WRPKRU instructions.

Second, in a vault scenario, an application wants to shield
highly sensitive modules such as cryptographic libraries.
While not being adversarial, the application wants to enforce
the principle of least privilege [69] to reduce the attack surface
in case of corruption. For example, the application might be
subject to vulnerabilities and exploitation. It might also load
other modules (e.g., libc), which themselves are vulnerable or
malicious and cannot be securely sandboxed. The application
shields sensitive modules in a Donky in-process vault and
renounces all access rights to it. Donky enforces memory
isolation and call gate protection towards the vault.

We assume that the developer correctly uses Donky. Ill-
designed trust relationships, domain interfaces, or system call
filter rules [9,31] are out of scope.3 While DonkyLib carefully
validates all untrusted input, we consider confused deputy or
corruption attacks [12, 36, 52, 59] out of scope. We assume
a trusted code base consisting of DonkyLib, all code that is
executed before DonkyLib, and the operating system.

We consider side-channel and fault attacks out of scope,
and these types of attacks must be addressed by orthogonal
mechanisms [8, 17, 32, 38, 57, 75, 92]. However, Donky can,
just as process isolation [67], reduce the attack surface of
Spectre attacks [40], as we also show in Section 6.1.

Design Overview. While memory protection keys are a
powerful building block for in-process isolation, they do not
provide proper abstraction for securely shielding software
components. In particular, each memory page has exactly
one protection key. However, a software component might
require multiple protection keys to share memory with other
components. To capture this, we use the term “domain” to
denote a set of protection keys (and associated memory), their
precise usage rights, and their allowed entry points.

By assigning each domain a different set of protection keys,
depicted as circles in Figure 1, a variety of trust models can
be enforced, as we demonstrate in our use case studies in Sec-
tion 7. For example, Donky supports sandboxing of untrusted
or even malicious code (see domain C in Figure 1). In par-
ticular, strong sandboxing of runtime compilers for scripting
languages such as JavaScript is in great demand [16,80]. Also,
Donky, by design, supports the inverse trust model in which
sensitive data is safeguarded in a vault via privilege separation

3Note that this assumption has to be made for any shielding system.



Table 1: Donky API handles protection keys and do-
mains (did), and wraps some standard library calls (õ).

Donky API function Description
dk_init(), dk_deinit() (De)Initialize DonkyLib
dk_domain_create(), dk_domain_free(did) Create/destroy child domain
dk_mmap([did], [key], addr, len, prot ...) õ Allocate memory
dk_mprotect([did], addr, len, prot) õ Protect memory
dk_munmap([did], addr, length) õ Deallocate memory
dk_pkey_alloc(flags, access) õ Allocate protection key
dk_pkey_mprotect([did], addr, len, prot, key) õ Assign memory a prot. key
dk_pkey_free(key) õ Free an unused prot. key
dk_domain_default_key(did) Get domain’s default key
dk_domain_assign_key(did, key, flags, acc) Assign prot. key to domain
dk_domain_release_child(did) Untie child dom. from parent
dk_domain_register_dcall([did], callid, entry) Register an dcall
dk_domain_allow_caller([did], caller_did) Allow dcalls among domains
dk_pthread_create(thread, attr, entry, arg) õ Create new thread
dk_pthread_exit(retval) õ Exit thread
dk_signal(sig, handler), dk_sigaction(sig, ...) õ Register signal handler

to, e.g., tackle programming errors and their exploitation [66]
(see domain B). The versatility of Donky’s design supports a
variety of intermediary trust models as well, including shared
memory (e.g., key K5 is shared between domain B and C)
and unprotected legacy code (key K0).

On the hardware side, Donky extends the concept of pro-
tection keys with a userspace call-gate mechanism for secure
in-userspace domain transitions. This subtle design change
solves the non-trivial challenge of combining userspace pro-
tection keys with pure userspace key management. Moreover,
the hardware call gate intercepts system calls, allowing for
efficient in-userspace system call filtering. On the software
side, a thin userspace layer called Donky Monitor leverages
the hardware call gate for self-protection. Hence, we can
safely entrust Donky Monitor with management of domains
and protection keys and the interposition of critical system
calls. Moreover, Donky Monitor enables fast and secure do-
main switches via software-defined call gates without kernel
interaction (cf. the call into the vault in Figure 1).

In Section 5.1, we prototype Donky on RISC-V and im-
plement it on top of the Ariane RISC-V CPU running on an
FPGA, and also discuss lightweight adaptations making Intel
MPK fully benefit from Donky. In the following, we show
how our Donky design meets the goals of secure and efficient
in-process isolation and highlight all involved components.

4 Software Design of Donky

In this section, we present the software design of Donky. At
its core lies a small handler called Donky Monitor that com-
bines the benefits of a secure hardware call gate with the
performance and convenience of pure userspace policy man-
agement. Donky Monitor offers a rich software abstraction
layer towards application developers via an intuitive Donky
API. Also, the monitor safeguards domain transitions via

1 // Allocate domain-private memory
2 void* pmem = mmap(NULL, 4096, PROT_READ|PROT_WRITE...);
3 // Allocate (shared) protection key+memory
4 int key = pkey_alloc(0, 0);
5 void* smem = mmap(NULL, 4096, PROT_READ|PROT_WRITE...);
6 pkey_mprotect(smem, 4096, PROT_READ|PROT_WRITE, key);
7 // Create child domain & assign shared key
8 int child = dk_domain_create();
9 dk_domain_assign_key(child, key, DK_KEY_COPY, 0);

10 // Register a child dcall we can invoke
11 dk_domain_register_dcall(child, 1, child_function);
12 dk_domain_allow_caller(child, current_did);
13 // Decouple child for principle of least priv.
14 dk_domain_release_child(child);
15 // Do dcall
16 child_function(args);

Listing 1: The Donky API offers intuitive and secure-by-
default management of domains and protection keys.

secure in-userspace software call gates, supports traditional
multithreading, and dynamic system call filtering.

Our software design is agnostic to the underlying ISA and
works both with our full RISC-V implementation, as well as
the x86 emulation mode based on Intel MPK. DonkyLib can
sandbox code without recompilation or transformations [15,
86], and be easily integrated into existing projects.
Donky Monitor is our trusted handler in charge of man-
aging in-process access policies in userspace and securing
domains from each other. Unlike previous work [15,35,50,99],
Donky domains are a pure userspace concept upheld by
Donky Monitor without involvement of the kernel.4

Donky Monitor is invoked for any operation on domains or
protection keys. It also safeguards domain switches via dcalls.
To protect itself from tampering, Donky Monitor encapsu-
lates its memory in a separate domain, which has access to all
other domains. To achieve security, even in the presence of
malicious code, a hardware call-gate mechanism ensures that
the monitor can only be entered at its defined entry point. Fur-
thermore, triggering the hardware call gate grants the Donky
Monitor permission to update the protection key policy reg-
ister. Outside the monitor, the register is protected, which
obviates the need for binary scanning, CFI, and W⊕X [82].
Software Abstraction Layer. The Donky API is our soft-
ware abstraction layer, which expands the POSIX interface
with Donky API calls. In particular, it allows to manage do-
mains, protection keys and associated memory, and share keys
with other domains. The API also manages software call gates
to allow for cross-domain calls denoted as dcalls. Table 1 lists
our API, of which we discuss the essentials in the following.

Donky API follows a secure-by-default principle, e.g., new
domains are isolated by default, and permissions (e.g., to reg-
ister dcalls to its memory) have to be explicitly granted to
other domains. Also, each domain is automatically assigned
a unique protection key used to protect its private memory,
e.g., stack and mmap’ed memory (see Listing 1, line 2). A

4Note that Donky reuses Linux MPK support “as is” for allocating and
assigning protection keys. The kernel is not aware of domains.



Figure 2: Donky cross-domain dcalls are managed purely
in userspace by Donky Monitor, entered via a hardware
call gate. Donky Monitor switches domains by switching
stacks, updating the policy register (i.e., DKRU), and en-
tering the new domain at a software-registered call gate.

protection key is owned by a domain but can be shared with
other domains. Starting in the root domain, a program can
set up child domains (line 8) with different permissions, also
for cross-domain shared memory. A domain can request new
protection keys (line 4), tag memory areas with them (line 4),
and assign them to other domains for shared memory (line 9).
Domain switches require explicit switching permission and
well-defined entry points (dcalls) that prevent cross-domain
control-flow diversion attacks (lines 11 and 12). Parent do-
mains may drop permissions for child domains (line 14) to
reduce attack surface, or to implement a secure software vault
(cf. Figure 1). Furthermore, Donky API distinguishes protec-
tion key ownership (e.g., for memory mapping) from mere
access permission. In line 9, the child domain is only given a
copy of the protection key without ownership. E.g., DonkyLib
uses this to make its own dynamic string tables read-only vis-
ible to others (necessary for the dynamic loader). Finally,
DonkyLib ensures that protection keys can only be freed if
they are no longer in use, preventing use-after-free [64].

Domain Transitions. Previous work on memory protection
keys either requires kernel interaction [15, 99, 99] or Write-
XOR-Execute [82] for domain switches. DonkyLib provides
fast and secure domain switches without kernel interaction.
As shown in Figure 2, dcalls are used to call a function in a
different domain and return to the caller again. A dcall invokes
the hardware call-gate mechanism to securely trap to Donky
Monitor, which handles the domain transition. Automatically
generated wrapper code hides interaction with Donky Monitor
from the application developer. This is similar to the code
generation for SGX’s enclave entry points. Moreover, the
generated wrapper code has the same type signature as the
desired dcall, such that code can transparently invoke dcalls
without reordering arguments or return values. DonkyLib
also supports nested dcalls, even across an arbitrary number
of domains (only constrained by stack size).

DonkyLib registers dcall with unique IDs and their entry
addresses to ensure trusted and unforgeable dcalls. At runtime,
the monitor is provided with the ID and the information if it
is a call or return. It can then decide if the action is allowed

and perform the switch to the target domain, which securely
switches the protection key policy register and the stack.

As shown in Figure 2, wrappers exist for both the call-
ing and the target domain. They are responsible for interact-
ing with Donky Monitor, saving and restoring non-argument
registers before and after a dcall, as well as optionally wip-
ing registers. This ensures integrity and confidentiality of
CPU registers across domain transitions. We currently pro-
vide macros to auto-generate wrapper code for C functions,
and a C++ template class for wrapping C++ member func-
tions in a dcall. The C++ template class furthermore catches
uncaught exceptions in the target domain, sanitizes them to
avoid information leakage, and re-throws them in the calling
domain. Our wrappers support efficient argument passing via
CPU registers similar to the system call interface. Large data
structures can be passed across domains via shared memory.
Tools such as Intel SGX Edger8r [21] could be repurposed
for automated copying of such data structures across dcalls.
Multithreading. Donky natively supports POSIX threads.
DonkyLib assigns threads to the domain that creates them.
Each thread executes in exactly one domain at any point
in time. It can switch domains via dcalls. Domains have
private user stacks per thread, allocated lazily on first use. For
example, in Figure 2, domain A has three threads, of which
the second does a dcall. Since domain B was never entered
before, Donky Monitor allocates a new stack for this thread.

Each thread gets assigned a separate exception stack, which
is protected by Donky Monitor (cf. Figure 2). When invoked,
DonkyLib immediately switches to the exception stack in
low-level assembler. This ensures that multiple threads can
call into DonkyLib. Donky Monitor stores critical thread data
in a protected thread-local storage (TLS) area, which we allo-
cate page-aligned in the static TLS and assign it the private
protection key of Donky Monitor.
Dynamic System Call Filtering. Controlling system calls
is essential for realizing sandboxed environments. Prior work
either defines system call protection as an orthogonal prob-
lem [35] or demands intrusive changes to the kernel [99].

We filter system calls entirely in userspace using per-
domain rules. Compared to kernel filters, our approach of-
fers key advantages: First, we allow fully dynamic filter rules
that can be expressed as normal program flow, as opposed
to seccomp [47] and eBPF [25]. Appendix A gives an ex-
ample. Second, we interpose relevant library calls and, thus,
can filter at a higher abstraction level.5 For example, we in-
terpose pthread_create, while only blacklisting the under-
lying clone system call. Third, userspace filtering reduces
complexity and, thus, also the attack surface of the kernel.

Library interposition is only a convenience, not a security
feature. If a malicious domain bypasses it (e.g., by issuing a
system call), an exception is raised. We discuss an appropriate
hardware and a software mechanism in Section 5.1.

5We interpose functions marked with õ in Table 1 via preloading (i.e.,
LD_PRELOAD, dlsym) or rewriting symbols with objcopy.



0 15

48 6354

Physical Page Number
V R W X U G A D RSW

10-bit Protection Key

Figure 3: Donky uses reserved top 10 bits of RISC-V
page-table entries for protection keys.

Signals. Donky is compatible with POSIX signals. It in-
stalls a self-protected signal handler for all signals, and regis-
ters its own protected signal stack (e.g., using sigaction and
sigaltstack). Moreover, Donky Monitor interposes signal-
related system calls to protect its own handler and to allow
domains to register their own signal handlers. Donky Monitor
dispatches arriving signals to the domain that registered the
corresponding handler, if any, and prepares the protection key
policy register and the signal stack accordingly. Normally,
Donky Monitor retrieves the stack pointer from the context
information given to its signal handler. If interrupted in a
domain different from the one registering the handler, Donky
Monitor obtains the stack pointer from its internal bookkeep-
ing data. If no stack exists yet, Donky Monitor allocates a
new stack, similarly to dcalls (cf. Section 4). Donky Monitor
also pushes signal-specific arguments onto the stack, ensuring
correct operation of domain signal handlers.

5 Hardware Design of Donky

In this section, we present our hardware implementation of
Donky on RISC-V. We design memory protection keys from
the ground up on RISC-V and repurpose the RISC-V N ex-
tension to implement secure call gates in userspace. Further-
more, we describe minimal hardware changes required for
Intel MPK to fully support Donky on x86.

5.1 Donky for RISC-V
To evaluate and fully implement Donky on a hardware level,
we use the Ariane RISC-V core, a 6-stage, single issue, in-
order CPU supporting the RV64IMAC instruction set.

We design memory protection keys for RISC-V, including
our protection key policy register and permission checks in
the MMU. Furthermore, we augment the Ariane CPU with
the N extension and repurpose it to support secure hardware
call gates in userspace. As of now, N extension has only been
used for securing embedded systems [65] (cf. Section 2). To
our knowledge, we are the first to implement and utilize it
for securing a non-embedded system. Our Donky exception
mechanism not only guarantees the security of memory pro-
tection keys itself. It additionally enables lazy scheduling of
protection keys, system call filtering in userspace, as well as
virtualization of Donky and the N extension.
Memory Protection Keys. Protection keys are configured
in the page-table entries (PTE) of a process. RISC-V currently

64 63 011223344

M SW Slot 0Slot 1Slot 2Slot 3

223233

WD 10-bit Protection Key

Figure 4: Our RISC-V Donky userspace register (DKRU)
has four protection key slots with optional write-disable
(WD), a monitor bit, and software-defined (SW) space.

defines two 64-bit virtual memory systems: Sv39 and Sv48,
with 39 and 48-bit address spaces, respectively. As shown in
Figure 3, both have the upmost 10 bits of a PTE reserved for
possible future extensions and to facilitate research experi-
mentation [27]. For Donky, we use these 10 bits for memory
protection keys, allowing 1024 different protection keys.
Policy register. Intel MPK keeps the permissions for their
16 protection keys in a single 32-bit register. However, as
Donky supports a much higher number of 1024 keys, this is
not possible. Instead, we implement key slots, allowing for
four simultaneously loaded protection keys in our 64-bit DKRU
register (cf. Figure 4). Each key slot holds a 10-bit protection
key. Only if a protection key is loaded, its associated memory
pages can be read or written. Furthermore, each slot has a
write-disable bit in the upmost slot bit to enforce read-only
memory. While previous architectures [22, 63] also supported
large keys, Donky only uses a single register and allows pure
userspace management of the DKRU register.

We add the DKRU register as a user-mode control and status
register (CSR). Thus, DKRU can be, in principle, configured
with standard CSR instructions from all privilege levels. The
upmost bit of the DKRU register is the so-called monitor bit.
If cleared, any access to DKRU is disallowed from user mode
(see Figure 4). Thus, by clearing this monitor bit, Donky
Monitor can prevent unauthorized alteration of the protection
key policy. The monitor bit can only be set again by privileged
software or by triggering the hardware call gate into Donky
Monitor. Finally, DKRU offers 19 software-defined bits (SW),
which Donky Monitor can freely use to store metadata, such
as the domain ID. To support multicore systems, DKRU is
core-local, as is PKRU for x86.
Donky CPU exception. We define a new CPU exception
called Donky exception. It is raised whenever Donky detects
a security violation while the monitor bit in DKRU is cleared.
This includes memory access checks as well as illegal access
to DKRU or CSR’s defined by the N extension. We extend
the memory management unit (MMU) of the Ariane core
to verify that for any data access, the protection key in the
corresponding PTE matches at least one key loaded in DKRU.
For store operations, the MMU also checks the corresponding
write-disable bits in DKRU. For backward compatibility, we
exempt protection key zero, which is the default value of
PTEs, from the above checks.
Hardware call gate and the N extension. The N extension
allows the kernel to delegate interrupts and exceptions to a



user mode exception handler via the sedeleg CSR. This user
handler can be specified via utvec. A separate uscratch
register offers scratch space for setting up an exception stack.

We integrate our Donky hardware call gate into the N exten-
sion as follows: First, the utvec and uscratch CSRs cannot
be accessed if the monitor bit in the DKRU register is cleared.
Second, for any delegated user exception, the CPU sets the
monitor bit, disabling Donky protection. Third, when return-
ing from the user handler with uret, the CPU automatically
clears the monitor bit, enforcing protection again. This call
gate mechanism ensures the security of Donky Monitor. At
initialization, Donky Monitor configures utvec to point to
its entry point and clears the monitor bit. Since Donky Mon-
itor protects its own memory using protection keys, Donky
Monitor can only be invoked at this well-defined entry point
by triggering, e.g., a Donky exception. Any other attempt to
divert code execution into Donky Monitor will keep the mon-
itor bit cleared and, thus, prevent manipulation of DKRU and,
consequently, Donky Monitor data.
Scheduling of protection keys. If a domain accesses mem-
ory for which no protection key is loaded, a Donky exception
is triggered that invokes Donky Monitor. Donky Monitor val-
idates whether the access is allowed, and loads the missing
protection key into DKRU. This happens completely transpar-
ent to the domain. To decide which slot to use for the new key,
Donky Monitor currently uses a round-robin based technique
on key slots 1-3. Slot 0 is always reserved for the domain’s
default key. Of course, more sophisticated key scheduling
methods can be implemented as well. As our scheduling
mechanism purely operates on userspace data structures, it
does not need expensive kernel invocations to schedule keys
and permissions in the PTEs [64].
Syscall filtering in userspace. Donky supports lightweight
system call filtering entirely in userspace. On RISC-V, system
calls are triggered via the ecall instruction, which throws
a dedicated exception. We use the same N extension dele-
gation mechanism (sedeleg) to delegate these system call
exceptions directly to Donky Monitor. If the monitor bit is
set, however, the system call is forwarded to the kernel. This
allows Donky Monitor to do actual system calls.

Note that, while part of our design, our proof-of-concept
prototype does not use system call delegation but instead uses
a small kernel module to enforce system call interposition.
This simplifies the evaluation of our x86 emulation mode.
Virtualization. Donky supports virtualization of the DKRU
and the N extension CSRs. As long as the monitor bit is
cleared, all accesses to the corresponding CSRs are blocked.
Instead, they raise a Donky exception that traps to Donky
Monitor, allowing it to emulate the desired behavior of both,
DKRU and the N extension. This is in line with RISC-V’s trap-
and-emulate approach to, e.g., implement missing hardware
extensions in software. Hence, other schemes can utilize the
N extension or protection keys for their own purposes without
knowledge of Donky, e.g., to achieve CFI [41].

Linux support. The Linux kernel already supports the
RISC-V ISA. However, it does not support its N extension
yet. We extended the Linux kernel 5.1 with our modified N
extension and have ported the memory protection key fea-
ture, which already existed for other architectures. For this,
we added all registers necessary for the N extension, as well
as DKRU, to the relevant per-thread kernel structs used during
context-switch. The kernel also delegates Donky exceptions
to the userspace by configuring sedeleg. In total, 700 LoC
were changed to support Donky on RISC-V.
Hardware Utilization. The total utilization of our modified
Ariane RISC-V CPU on our evaluation board is 69 321 LUTs
(+1.85 %) and 51 395 FFs (+0.94 %) to the unmodified CPU.
The increase is due to the CSRs of the N extension as well as
our DKRU CSR, and the corresponding control logic.

5.2 Extension to Intel MPK
Intel MPK lacks a mechanism for safeguarding its protection
key policy register. The PKRU register can be changed by
anyone via the unprivileged WRPKRU instruction. Thus, MPK
does not provide the same security as Donky, and schemes
using it impose limitations (CFI, W⊕X, and binary scanning).

We propose the following adaptations to make MPK benefit
from Donky. Similar to RISC-V, we propose a secure hard-
ware call gate to a trusted handler (Donky Monitor), which
safeguards access to PKRU. This can be achieved by having
one additional Donky Handler Register (DKHR), similar to
utvec, specifying the handler address. Two new instructions
allow entering and exiting the handler. The DENTER instruc-
tion acts similarly to SYSENTER. It enables write access to the
PKRU and jumps to the address in DKHR. The register rcx will
contain the return address (i.e., the address following DENTER).
Similar to SYSRET, DRET returns to the previous code (stored
in rcx, and disables write access to PKRU.

We propose using the top-most bit of DKHR as the monitor
bit to control write access to PKRU as well as DKHR. It is set and
cleared by DENTER and DRET, respectively. The monitor bit
also decides if MPK access violations should be triggered and
delegated to DKHR. This is required to permit Donky Monitor
to access all application memory. DKHR exists per core, and
the operating system saves and restores it at context switches.
New processes automatically have the top-most bit set, so that
they can set up DKHR themselves. This also provides backward
compatibility for programs unaware of DKHR.

While x86 does not have a native system call delegation
feature like RISC-V, it could be implemented via a hypervisor.
However, for better performance, we envision a lightweight
hardware extension similar to our RISC-V design: while the
monitor bit is set, syscalls should be delegated to the monitor.
More keys. MPK currently only uses 4 PTE bits, supporting
16 protection keys. Since PTE bits 46-51 are reserved for
future use, they could be repurposed to support 1024 keys.
The same key slotting, as in Figure 4, could be used for PKRU.



6 Security and Performance Evaluation

In this section, we evaluate both the security of Donky, as well
as its performance using both micro and macro benchmarks.

6.1 Security Evaluation
The security of Donky is built on several layers. First, the
security of its building blocks, i.e., memory isolation, call
gates, and kernel interaction via system calls and signals.
Second, the security of Donky Monitor, its API, and dcalls.
And third, the security of a concrete application leveraging
Donky. We defer the latter to our case studies in Section 7.
Hardware Call Gates. We prevent code-reuse attacks on
Donky Monitor as it can only be legitimately entered via a
hardware call gate. Donky exceptions are delivered to this
call gate, and the CPU enables the monitor bit inside DKRU.

Note that for Donky and Intel MPK, code fetches are not
subject to protection key checks, as opposed to read and write
data accesses. However, this is not a security issue. If a domain
jumps into Donky Monitor code, it cannot manipulate DKRU,
utvec, and uscratch since the monitor bit in DKRU is still
cleared. Moreover, it cannot access Donky Monitor data since
it uses a different protection key. Exempting code fetches from
protection key checks simplifies code sharing across domains
and also allows implementing execute-only memory [97]. As
our threat model already considers arbitrary code execution,
access to more code does not weaken our security guarantees.
System Calls and Signals. A third building block is to safe-
guard kernel functionality, i.e., system calls and signals that
allow bypassing Donky. Donky interposes system calls by
redirecting them to Donky Monitor such that a malicious
domain cannot bypass it. For our prototype, we implement
a traditional approach, blacklisting dangerous system calls
directly in the kernel unless issued by Donky Monitor. For
RISC-V, we describe a hardware mechanism to interpose sys-
tem calls without kernel involvement. Donky Monitor filters
system calls based on two criteria. First, it constrains syscalls
to uphold domain isolation. Second, an application can install
arbitrary domain-specific system call filters, similar to sec-
comp. Definition of appropriate filter rules is crucial for any
domain isolation scheme, yet an orthogonal problem to study
(e.g., boomerang attacks [52]). To demonstrate feasibility, our
prototype filters memory-related system calls (e.g., mmap,
mprotect) to only operate on memory of the current domain.

Our prototype does not yet implement signal handling, as
this is merely an engineering effort. Since our use case studies
do not strictly demand signals, this has no effect on perfor-
mance. Nevertheless, we argue why signal handling with
Donky can be implemented securely. First, Donky Monitor
can protect the signal origin by only accepting signals from
the kernel, discarding fake ones (i.e., induced by malicious
code jumping into the monitor’s signal handler). Since Linux
drops PKRU privileges to protection key zero during signal

dispatch, which malicious domains cannot achieve, this boils
down to a simple PKRU check. Second, signal delivery is safe-
guarded by interposing the registration of signal handlers and
loading the correct stack and protection key policy register.
Third, interruption of Donky Monitor itself (e.g., via asyn-
chronous signals) is not a security issue when using its own
protected signal stack and blocking normal Donky API calls
and dcalls for the interrupted thread until signal handling is
finished.
Donky Monitor. The above building blocks guarantee the
security of Donky Monitor, which is the base for all security
services offered by the Donky API. For domains, Donky Mon-
itor stores critical domain metadata in its internal protected
data structures, and per-thread information is kept in protected
thread-local storage. Donky Monitor carefully validates all
untrusted input given to Donky API to avoid confused deputy
or corruption attacks [12, 36]. Furthermore, we ensure that
stack pointers are within a domain’s memory before accessing
it inside Donky Monitor.
Donky API. The expressiveness of Donky API allows to
represent a variety of protection models, e.g., hierarchical
sandboxing, vaults, shared memory, and mutual distrust. To
study the concrete security guarantees of a program using
Donky is a research field on its own, and a general statement
cannot be made. One could, for example, analyze concrete
security properties as a sequence of graphs via the take-grant
model [49]. Since this is orthogonal to our work, we will focus
on the security of our use case scenarios from a programmer’s
perspective instead, which we defer to Section 7.

We informally describe Donky API rules in terms of the
take-grant model. Donky API is designed such that domains
can only handle their own resources. These resources include
a domain’s memory, protection keys, call gates as well as its
child domains. A domain can request new resources (create
rule), constrain their usage (remove rule), grant permission to
other domains (grant rule), but not access foreign resources
(limited take rule). The grant rule allows domains to open
up its call gates to other domains, or share their protection
keys. The remove rule fosters the concept of least privilege
by dropping ownership of protection keys, reducing their us-
age rights, or releasing a parent-child relationship. Unless
released, a parent domain can always act on behalf of its child
domains. The limited take rule only allows elevating privi-
leges on resources for which a domain already has ownership.
For example, if a domain owns a protection key, it is eligible
to reprotect the associated memory, e.g., from read-only to
read-write (mprotect system call). For granting another do-
main read-only access to its memory, a domain would create
a copy of the associated protection key without ownership.
Secure dcalls. Domain transitions via dcalls demand proper
stack management and handling of CPU registers. On the
one hand, DonkyLib maintains the call stack abstraction to
prevent domains from returning from a dcall that has not
been called [12]. We do so by pushing metadata on the caller



stack inaccessible to the target domain upon each dcall. Thus,
Donky Monitor can verify its validity when the target domain
attempts to return. On the other hand, a target domain might
violate the calling convention defined by the application bi-
nary interface (ABI) and corrupt callee-saved registers. Our
call wrapper ensures that these registers are restored. Fur-
thermore, the call wrapper optionally erases non-argument
registers upon a dcall to avoid information leakage towards
the target domain. Similarly, to prevent information leakage
to the calling domain, the target wrapper optionally erases the
non-return-argument caller-saved registers before returning.
Spectre attacks. Although Spectre attacks [40] are out-
side our threat model, Donky can also reduce the attack sur-
face by means of protection keys on Meltdown-resilient sys-
tems [13,48]. Kiriansky et al. [39] proposed to use Intel MPK
to mitigate Spectre attacks by shielding sensitive data with
a separate protection key. We reproduced this result with
DonkyLib by constructing a Spectre V1 gadget that leaks a
secret but is blocked as soon as protection keys are enforced.
Therefore, Donky reduces the attack surface of Spectre at-
tacks significantly, just as process-based isolation (e.g., site
isolation [67]) at significantly lower domain switch costs.

6.2 Performance Evaluation
Donky’s performance is characterized by the domain switch
latency and the execution speed of isolated code and system
call interposition. We used microbenchmarks to measure the
domain switch latency and macro benchmarks to measure
the performance impact of isolated code. The performance of
real-world applications is evaluated in Section 7.
Setup. We evaluated the performance on three different
machines (1) an Intel Xeon 4208 running at 2.1 GHz and
with 16 GB RAM, (2) an Amazon AWS c5.2xlarge instance
with an Intel Xeon 8275CL running at 3.6 GHz and 16 GB
RAM, and (3) our modified Ariane RISC-V CPU running on
Xilinx Kintex-7 FPGA KC705 at 50 MHz. We use the Linux
kernel version 5.0.0 for (1), 5.3.0 for (2), and 5.1.0 for (3)
in its default configuration. Our microbenchmarks measure
the latency in CPU cycles and compare it to the system call
latency measured using LMbench [54].
Code size. DonkyLib consists of 2693 lines of C code and
34 lines of generic assembly macros, as measured by sloc-
count. RISC-V adds 605+272, and our x86 implementation
516+226 lines of C and assembly code, respectively. This
includes extensive error checks and debugging code.
Latency. Figure 5 shows Donky latencies relative to a null
system call, as this represents the lowest possible time a
kernel-based protection mechanism would need to switch
domains. We ran each test 1000 times and plotted the mean
runtime as well as the standard deviation. Simple Donky
API calls to DonkyLib take 160 cycles (σ = 1.4%) on RISC-
V, as opposed to the getpid system call taking 724 cycles
(σ = 1.9%), as DonkyLib only needs to prepare its stack and

10−1
100
101
102

0.2
1.2 2.8 1.0

3.3 2.1

40.5
14.1 19.9

67.7113.9RISC-V

10−1
100
101
102

Ex
ec

ut
io

n 
tim

e 
re

la
tiv

e 
to

 a
 n

ul
l s

ys
ca

ll

0.6 1.1 2.2 1.0
2.6 1.9

14.2 13.5 29.7 74.0157.4
Xeon 4208

Sim
ple

 A
PI C

all

Dom
ain

 Switc
h

Iso
lat

ed
 fu

nc
tio

n

Null
 Sysc

all

Read
 Sysc

all

W
rite

 Sysc
all

Ope
n/C

los
e

Sign
al 

Han
dle

r

Con
tex

t S
witc

h
Pipe Soc

k

10−1
100
101
102

0.1 0.2 0.3
1.0 1.3 1.1

4.4 3.4
19.0 44.9 38.5Xeon 8275CL

Figure 5: Donky latency for domain switches , com-
pared to system call latency (LMbench) .

Table 2: Hardware-based In-process Isolation Systems

Scheme
dcall/syscall
(dcall cycles) CPU

(Linux)
kernel

lwC [50] j n.a. (5350*) Xeon X5650 FreeBSD11
x86-Rings [44] j n.a. (~1400/1200) i7-4770/AMD1800X 4.13
vmfunc [51] U >2x (n.a.) Xeon 3.4GHz 3.13.7
CHERI [88] C j n.a. (500) CHERI 64-bit MIPS CheriBSD
CODOMs [85] C 0.1x (30) gem5-Nehalem 2.6.27
SGX [41] � 71x (7664) E3-1240v5 3.19
ARMLock [99]¤ j 2.6x (385*) Raspberry Pi 3.6.11
Shreds [15] ¤jÉ 41.7x (n.a.) Raspberry Pi 2 B 4.1.15
ERIM [82] ¤ UÉ 0.65x (99) Xeon 6142 4.9.60
Donky ¤ 2.8x (2136) RISC-V Ariane 5.1.0
Donky ¤ 2.2x (455) Xeon 4208 5.0.0
Donky ¤ 0.3x (428) Xeon 8275CL 5.3.0

C Capabilities � Enclave ¤ Protection keys * Computed from CPU freq.
j Domain switch via kernel U No full context switch É Instrumentation/CFI

save a few registers. Due to the low latency, performance
numbers vary across CPUs and Linux kernel versions. On
Xeon 8275CL, simple API calls are even eleven times faster
than a system call. To measure a single domain switch, we
tested the latency of returning from a dcall to its caller (i.e.,
the dashed lines in Figure 2). To measure an isolated function
call, we tested a full dcall that returns a static value (i.e., the
solid and dashed lines in Figure 2). Their runtime is domi-
nated by the domain switches, which include register saving
and stack switching, alongside several security checks. Still,
dcalls can compete with the fastest possible system calls. On
RISC-V, it takes 2.8x the time of a null system call. For our
Xeon 4208, it is 2.2x, while on a Xeon 8275CL CPU used in
Amazon Web Services, it is even 66.9 % faster than a null sys-
tem call. When compared to a full process context switch, as
reported by LMbench, Donky is even 16–116x faster, making
it a viable alternative for process-based isolation mechanisms.

Comparing against related work. Table 2 compares iso-
lated function calls (dcalls) to other in-process schemes, ac-
cording to their reported numbers. We collect the dcall/syscall



600.perl
bench

602.gcc

605.m
cf

620.omnetp
p

623.xala
ncbmk

625.x264

631.deep
sje

ng

641.lee
la

648.ex
change2

657.xz

geomean
0.95

1.00

1.05
Xeon 8275CL Xeon 4208

Figure 6: Normalized SPECint 2017 score, isolated with
Donky. (Higher is better.)

ratio and raw dcall cycles to highlight architectural differences.
Donky easily outperforms OS-based schemes [44, 50]. While
virtualization seems to achieve good performance [51], the
numbers only report overhead for switching translation tables,
i.e., extended page tables, but do not prepare stacks or CPU
registers necessary for a full dcall. Although the performance
of capability-based systems is compelling [85, 88], they re-
quire significant changes to both hardware and software. SGX
has a different threat model, protecting enclaves from mali-
cious operating systems [41]. Other protection key systems
either require significant kernel support for domain switches,
instrumentation+CFI+W⊕X, or both [15, 82, 99]. Especially
CFI enforcement adds significant runtime overhead [82] not
shown here, as opposed to Donky. ARM discontinued pro-
tection key support, whose domain switch overhead could
compete with Donky [99] at the expense of kernel changes.
Syscalls. To benchmark system call interposition on x86,
we run LMbench once with and without our system call black-
listing kernel module. We could not observe measurable over-
head even for the fastest Null system call, i.e., the overhead is
below the variance. Triggering a blocked system call outside
Donky Monitor terminates the application. To evaluate the
performance overhead of our proposed RISC-V system call
delegation, we benchmark the most restrictive sandboxing fil-
ter rule that denies all system calls for the sandboxed domain
while allowing them for the root domain. As Donky Monitor
can check the domain ID in optimized assembly, the overhead
is only 30 cycles (13 instructions), compared to an unfiltered
syscall. Thus, on RISC-V, the fastest system call (null system
call) is slowed down by only 3.7 %.
Computation. To test the impact of Donky on computation
intense workloads without domain switches, we ran the SPEC
CPU 2017 intspeed [73] benchmark suite. Since SPEC is long-
running, it recommends three runs. To increase significance,
we used ten runs. We preloaded DonkyLib with LD_PRELOAD
and LD_BIND_NOW, which initializes itself upon process start
and wraps the entire benchmark in a single domain. For com-
parison, we ran SPEC natively with LD_BIND_NOW to avoid
bias. As expected, Figure 6 shows that the isolated code
runs de-facto at the same speed as native code. The geomet-
ric mean runtime overhead for the Xeon 8275CL is -0.16%
(σ = 0.91%) and 0.10% (σ = 0.32%) for the Xeon 4208. Due
to its high memory requirements, we could not run SPEC on
our RISC-V platform.

Allocator

WASM Engine Allocator

JS Allocator

WASM Module

Root-Domain (A) V8 Isolate (B)

Create Domain

Run Script

Delete Domain

WASM Allocation

K1 K2 K3 k3 K2

K1

K3

K2

k3

Read-only copy

Figure 7: Interactions between root domain and V8 Iso-
lates. Each Isolate and the WASM-Engine share a key. A
separate allocator is created in the root domain.

Memory overhead. DonkyLib uses metadata for manag-
ing domains, which mainly consist of an exception stack for
each thread (i.e., 64 KiB), a stack for each actively used thread-
domain combination (i.e., with the system’s default stack size),
and static domain data. This static data includes a list of mem-
ory regions along with their permissions and owners and a list
of domains with their protection keys and trust-relationships.
For 256 domains, each with at most 4096 memory regions,
1024 keys, and 256 threads, this amounts to 2 MiB of static
data. Of course, these numbers could be optimized, e.g., by
dynamically allocating only as much as is needed.

7 Case Studies

In this section, we evaluate three different real-world use
cases. First, we modify the JavaScript engine V8 to pro-
vides strong Donky isolation, similar to process isolation (e.g.,
site isolation). Second, we sandbox the XML-parsing library
TinyXML-2 [45], without changing the library. Third, we iso-
late the cryptographic library Mbed TLS without changing
the library.

7.1 Case Study 1: Strong JavaScript Isolation
JavaScript engines have a huge potential for vulnerabilities,
such as memory corruption, incorrect compiler optimizations,
type confusion, or erroneous code generation [33]. The popu-
lar V8 JavaScript engine already uses so-called Isolates for
separation, where an Isolate is one instance of a JavaScript
runtime environment. While V8 Isolates already encapsulate
all the required data, there is no hardware-enforced isolation.
Hence, typical exploits escape V8 Isolates by injecting shell-
code in their writable code cache [70], and previous work
enforced a W⊕X policy [64]. However, advanced sandbox
escapes are still possible [33, 68].

In V8, WASM memory is writable and executable by de-
fault [79], allowing for the same injection attacks as on the
code cache. As a first layer of defense, we use Donky to en-
force a W⊕X policy on WASM memory. Furthermore, we
add in-process isolation to V8 by encapsulating each Isolate
in a separate domain. That is, each Isolate is assigned one
domain key. Thus, even if an Isolate gains arbitrary code
execution, it is sandboxed in its domain.



Kraken Sunspider Octane
0.9

1.0

1.1
Xeon 8275CL Xeon 4208

Figure 8: V8 benchmark score with standard deviation
running in Donky-protected V8 Isolates, compared to un-
protected V8 (dotted line). Higher is better.

We modify V8 (version 8.1.99) to use one allocator per
Isolate instead of a global allocator. These per-Isolate alloca-
tors leverage DonkyLib to allocate memory with the domain
key of the Isolate. The root domain (A) creates Isolates and
sets up protection keys and call gates. If a script is executed,
the root domain dispatches the script execution to an Isolate,
and we switch execution into its domain (B) (see Figure 7).
In V8, the WebAssembly (WASM) engine is shared between
Isolates. Thus, we create a separate WASM allocator with
an additional protection key (K3). Since WASM compilation
happens in the root domain, we give the Isolate a read-only
copy of its key (k3). Hence, a compromised Isolate cannot use
WASM memory to inject custom shellcode. Even if it gains
arbitrary code execution, the Isolate cannot access the root
domain, since it does not have access to the root key (K1).
Only a total of 358 LoC were changed in the V8 engine.
Evaluation. To evaluate sandboxing of V8, we run three
JavaScript benchmarks, namely Octane, Kraken, and SunSpi-
der 500 times each. Note that the recommended number of
repetitions is 10 for Octane, 100 for SunSpider, and 80 for
Kraken [81]. Figure 8 shows the overall scores. In total, there
is a performance overhead of 0 to 2 %.

WASM memory corruption is prevented by making its
memory writable only by the root domain. To evaluate it, we
ported a standard C benchmark program [76] to WASM and
measured the overhead between DonkyLib and the original
unprotected code. We looped the setup of the WASM program
and the calculations 100 times internally to produce WASM
memory allocations, with 100 test repetitions, thus giving
10 000 repetitions of the experiment. In total, we observe a
runtime overhead of about 2.96 % (σ = 1.02%).

To evaluate the security of our Donky V8 sandboxing, we
model a strong attacker by providing an arbitrary read and
write primitive accessible as global JavaScript functions. We
simulate an exploit by performing reads and writes on mem-
ory that is not owned by the Isolate’s domain. As expected, all
memory corruption attempts on memory that is not explicitly
assigned to the Isolate domain fail. Since unprotected memory
(key zero) might still be vulnerable, one would also protect
memory outside V8 from corruption by means of Donky.

7.2 Case Study 2: Third-Party Library
In the second case study, we consider an untrusted third-party
library. In the threat model, we assume that the third-party

3DES
AES

ARC4

Blowfish

Cam
elli

a

ChaCha20

DHE-2048

HMAC_DRBG

Poly1305

RSA-2048

SHA-256

SHA-512

geomean

0.8

0.9

1.0

Xeon 8275CL Xeon 4208 RISC-V

Figure 9: Relative performance of Mbed TLS [6] bench-
marks [5], when protected with Donky (higher is better).
Similar cryptographic functions are grouped.

16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K
100

101

102

Xeon 8275CL
Xeon 4208
RISC-V

Figure 10: Runtime of different block sizes of
Mbed TLS’s Poly1305 with process-based isolation
(upper three lines) and Donky (lower three lines),
normalized using unprotected version.

library contains a vulnerability that can be exploited for ar-
bitrary code execution. As this is often the case for parsing-
related activities, we show that Donky can isolate TinyXML-
2 [45], an XML-parsing library.

To sandbox the library, we wrap the XMLDocument and
XMLElement classes behind Donky dcalls. As these wrap-
pers only call the original methods and handle the domain
switch, they can be generated fully automated, similar to SGX
Edger8r. Hence, the only difference for an application devel-
oper is a different name for the base class. This case study
consists of 105 LoC and uses the unmodified TinyXML-2
library. We provide it as part of our open-source code.
Evaluation. To evaluate the security benefits of sandboxing
TinyXML-2, we introduce an artificial vulnerability in the
library. Donky prevents the library from manipulating any
data structures in the host domain, such as the stack. We
verified that any such access to host data structures leads to
an immediate abortion of the application. Hence, the library
cannot mount return-oriented programming attacks on the
host, as this can be done from SGX enclaves [71], for example.

7.3 Case Study 3: Library as a Vault
In this case study, we show a different threat model, where
DonkyLib protects a library from the rest of the application in
a vault. We use Mbed TLS, a cryptographic library, with cryp-
tographic keys as the assets to protect. In the threat model, we
assume a vulnerability in the host application, which allows
arbitrary memory reads, similar to the Heartbleed bug [93].

We isolate Mbed TLS in its own domain and expose all
functions as dcalls. The host application can provide a custom



memory allocator to Mbed TLS. By providing the memory
management functions from DonkyLib, we ensure that all
internal data structures and states of the library are protected
with the same domain key. Furthermore, all cryptographic
secrets are allocated using DonkyLib to protect them with the
same key as the library. Cryptographic secrets are protected
from the host application and are only modified through the
API, resulting in a strong protection of these assets.

Evaluation. To evaluate the performance impact of the iso-
lation using DonkyLib, we use Mbed TLS’s integrated bench-
marking suite [5]. We added 95 LoC to the benchmark, which
then uses the unmodified Mbed TLS library.

Figure 9 shows the overhead when using the cryptographic
functions on a 1 KiB block of input data, which is the default
choice. Internally, the benchmark runs for 1000 iterations for
each cipher. We ran this experiment 10 times, resulting in a to-
tal number of 10 000 repetitions, and plotted their mean values
as well as the standard deviations across the 10 runs. As a base-
line, we use the performance of the unprotected Mbed TLS
library. We group similar cryptographic functions (e.g., same
algorithm but different key size) by summing up their respec-
tive runtimes. With a throughput of 96 % (geomean) com-
pared to the unprotected version, the performance impact of
Donky is minimal. Even the fastest operation (Poly1305), i.e.,
the function requiring the most domain switches, has only a
small throughput reduction of 15 %.

To account for different block sizes, we compared Donky
with process-based isolation by isolating Poly1305 using
both techniques. We chose Poly1305 as it does most domain
switches. Other algorithms would show significantly less over-
head. For process isolation, we used a semaphore and shared
memory for synchronization and pinned both processes to the
same CPU core. As shown in Figure 10, at a block size of
16 Bytes, process-based isolation runs 42–118x slower, while
Donky is only 2.9–4.7x slower.

8 Discussion

In this section, we discuss limitations as well as future work
and elaborate on related work.

8.1 Limitations and Future Work

Static Limits. Our prototype uses statically allocated ar-
rays to store its metadata, which poses an upper limit on the
number of domains, memory regions, and keys. To overcome
these limits, one could dynamically allocate Donky Monitor’s
memory. Moreover, Donky is limited to 16 protection keys
for x86 and 1024 for RISC-V. If an application needs more
keys, one could schedule protection keys, as done by [64]. Al-
ternatively, one could resort to weaker probabilistic protection
by reusing protection keys. We prototyped a virtualization
scheme that hands out protection keys marked for virtualiza-

tion multiple times. One could also increase the number of
keys supported by the hardware, as mentioned in Section 5.
Availability. DonkyLib is designed for security and, in-line
with related shielding technologies, e.g., Intel SGX, denial-of-
service attacks are possible. One could retrofit DonkyLib with
safety guarantees, e.g., by limiting the number of protection
keys a domain can allocate, or rate-limiting the API calls.
Thread-Local Storage. Previous work largely ignores the
security of the TLS across domain switches. While Intel SGX
is a notable exception, we believe more research is needed.
SGX switches the TLS at enclave entry and exit, and Donky
could similarly swap the TLS pointer for dcalls.6 However,
SGX enclaves are built as standalone libraries without exter-
nal dependencies, and code is never shared across domains. It
is unclear whether and how secure code reuse across domains
is possible, should this code make use of TLS.

8.2 Related Work
Software-based Approaches. Software Fault Isolation
(SFI) schemes [24, 26, 53, 72, 86, 95, 98] use CFI and binary
rewriting to confine sandboxes to a restricted memory area.
In comparison to SFI, our context-switching overheads are
higher, but the overhead within a domain is lower. Further-
more, Donky’s threat model is stronger. We can isolate un-
modified code without enforcing the control-flow integrity of
isolated code. Because CFI usually requires W⊕X, it cannot
easily support self-modifying code. This is a clear advantage
for Donky. Also, some CFI schemes only offer probabilistic
protection [42].

NaClJIT [3] adds SFI to a JIT compiler with a runtime
overhead of 50 to 60 % for V8. Other works [7, 10, 35, 50, 74]
rely on substantial kernel modifications to provide isolation
between domains, such as, e.g., separate address spaces for
threads [35, 87].

NaCl [95] and Dune [7] can provide similar software-based
system call filtering as Donky. However, in contrast to NaCl,
Donky provides a mechanism to enforce these filters even
when the application manages to break out of its SFI/CFI
sandbox. Compared to Dune, Donky addresses multiple in-
process compartments not only on a thread boundary. Also,
Donky’s syscalls are significantly faster than Dune’s.
Hardware Protection Key Approaches. ERIM [82] uses
MPK for in-process isolation. Unlike Donky, they demand
binary scanning and rewriting, alongside W⊕X. While they
defer setting up private stacks to the developer, DonkyLib
provides them by default. ERIM’s binary rewriting could be
integrated into a JIT compiler. However, it may lead to crashes
if the compiler accidentally emits unsafe WRPKRU instructions.
Also, the performance and implementation costs to adapt JIT
compilers accordingly is unclear. However, NaClJIT [3] could
serve as a starting point for further research. Koning et al. [41]

6E.g., Donky Monitor could update the RISC-V tp register, which is
otherwise protected by the monitor bit in DKRU.



survey different hardware isolation mechanisms such as Intel
MPK and isolate safe regions (e.g., shadow stacks) atop of
them. libmpk [64] schedules protection keys for Intel MPK
via expensive PTE updates if more than 16 keys are used.

ARMLock [99] implements an in-process isolation frame-
work using ARM’s Memory Domains [4]. Binary scanning is
not required on ARM, as their protection key policy register
cannot be written in userspace. ARMLock implements do-
mains in the kernel, which increases the attack surfaces and
likely impedes wide adoption. Also, ARM removed Memory
Domains on 64-bit architectures. In contrast, Donky manages
domain metadata and domain transitions entirely in userspace,
which allows for faster inter-domain calls.

Shreds [15] uses ARM’s Memory Domains to isolate so-
called shreds from the rest of an application. They do not
support the sandboxing scenario, demand recompilation of in-
shred code, and a coarse-grained CFI policy. Different shreds
cannot easily share data. Protection keys are lazily switched
during context switches using an expensive page-table walk.

Apart from [41, 64, 82], others did not open-source their
code, hindering further research. We open-source both
DonkyLib and our RISC-V hardware.
Trusted Execution Environments. Intel SGX [20], ARM
TrustZone [60], Sancus [62], and proposed RISC-V exten-
sions [23, 43] protect against a malicious operating system.
However, they require extensive hardware modifications, and
communication between domains is typically slow.

Intel SGX [20] runs code in so-called enclaves, which only
allow an asymmetric trust model [90], in which an enclave
has access to the entire process. Furthermore, they have a
higher performance overhead [91]. Recent work used MPK
to also protect the host application from the enclave [90] or to
provide additional privilege separation within an enclave [55].
Compartmentalization. Decomposing software to run in
isolated compartments is an orthogonal problem. Previous
work aids in finding suitable isolation boundaries, but splitting
up existing software is still a hard problem [11, 34, 51, 83, 84].
Choosing an isolation boundary is always a trade-off between
fine isolation granularity and minimizing switching overhead
and, hence, it often cannot be fully automated. RLBox [59]
identifies such compartmentalization boundaries in Firefox
and designs secure interfaces. Furthermore, they automati-
cally sanitize pointers across compartments to prevent con-
fused deputy attacks. In contrast, Donky provides a strong,
generic isolation framework RLBox could use to enforce their
compartmentalization.

9 Conclusion

In this paper, we proposed Donky, a hardware-software co-
design solution for secure and efficient in-process isolation.
It provides strong isolation guarantees with a negligible per-
formance impact. It is fully backward compatible with exist-
ing software libraries and dynamically generated code (e.g.,

JIT). Donky relies on a small hardware extension of mem-
ory protection keys to back the security guarantees of our
software framework called DonkyLib. We presented a fully
working implementation on a RISC-V processor and showed
that Donky can be implemented on top of commodity x86
processors with a minimal hardware extension. Our trusted
monitor runs entirely in userspace, thus minimizing switch-
ing overhead as well as kernel complexity. DonkyLib works
on both x86 and RISC-V CPUs and provides pure userspace
domains atop protection keys through an intuitive API.

Donky combines the high performance of MPK with the se-
curity of kernel-based schemes. Donky cross-domain switches
are 16–116x faster than process context switches and have
only 4 % overhead compared to fully unprotected mbedTLS
cryptographic operations. We support self-modifying code,
just-in-time compilation, and in-process third-party binary
sandboxing without scanning or rewriting instructions. This
addresses recent challenges in JavaScript sandboxing, ranging
from browsers and desktop applications to the cloud.

Acknowledgments

We thank the anonymous reviewers, the artifact evaluators,
and especially our shepherd, Nathan Dautenhahn, for their
valuable suggestions and comments, which helped in improv-
ing the paper. This work has been supported by the Austrian
Research Promotion Agency (FFG) via the competence cen-
ter Know-Center (grant number 844595), which is funded in
the context of COMET – Competence Centers for Excellent
Technologies by BMVIT, BMWFW, and Styria, and via the
project ESPRESSO, which is funded by the province of Styria
and the Business Promotion Agencies of Styria and Carinthia.
This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No 681402). Additional funding was provided by generous
gifts from Intel and from Cloudflare. Any opinions, findings,
and conclusions or recommendations expressed in this paper
are those of the authors and do not necessarily reflect the
views of the funding parties.

References

[1] Ariane RISC-V CPU. https://github.com/pulp-
platform/ariane, 2019.

[2] A Collection of Chrome Sandbox Escape POCs/Exploits
for learning. https://github.com/allpaca/chrome-
sbx-db, 2019.

[3] Jason Ansel, Petr Marchenko, Úlfar Erlingsson, Elijah
Taylor, Brad Chen, Derek L. Schuff, David Sehr, Cliff
Biffle, and Bennet Yee. Language-independent sandbox-

https://github.com/pulp-platform/ariane
https://github.com/pulp-platform/ariane
https://github.com/allpaca/chrome-sbx-db
https://github.com/allpaca/chrome-sbx-db


ing of just-in-time compilation and self-modifying code.
In PLDI, pages 355–366, 2011.

[4] ARM. ARM Developer Suite Developer Guide. http:
//infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.dui0056d/BABBJAED.html, 2001.

[5] ARM. Mbed TLS Benchmark. https:
//github.com/ARMmbed/mbedtls/blob/master/
programs/test/benchmark.c, 2019.

[6] ARM. SSL Library Mbed TLS / PolarSSL. https:
//tls.mbed.org/, 2019.

[7] Adam Belay, Andrea Bittau, Ali José Mashtizadeh,
David Terei, David Mazières, and Christos Kozyrakis.
Dune: Safe User-level Access to Privileged CPU Fea-
tures. In OSDI, pages 335–348, 2012.

[8] Daniel J. Bernstein. Cache-Timing Attacks on AES,
2004.

[9] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso
Frassetto, and Ahmad-Reza Sadeghi. The Guard’s
Dilemma: Efficient Code-Reuse Attacks Against Intel
SGX. In USENIX Security Symposium, 2018.

[10] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad
Karp. Wedge: Splitting Applications into Reduced-
Privilege Compartments. In NSDI, 2008.

[11] David Brumley and Dawn Xiaodong Song. Privtrans:
Automatically Partitioning Programs for Privilege Sepa-
ration. In USENIX Security Symposium, 2004.

[12] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla
Aldoseri, Flavio D. Garcia, and Frank Piessens. A Tale
of Two Worlds: Assessing the Vulnerability of Enclave
Shielding Runtimes. In CCS, 2019.

[13] Claudio Canella, Jo Van Bulck, Michael Schwarz,
Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank
Piessens, Dmitry Evtyushkin, and Daniel Gruss. A Sys-
tematic Evaluation of Transient Execution Attacks and
Defenses. In USENIX Security Symposium, 2019.

[14] Miguel Castro, Manuel Costa, Jean-Philippe Martin,
Marcus Peinado, Periklis Akritidis, Austin Donnelly,
Paul Barham, and Richard Black. Fast byte-granularity
software fault isolation. In SOSP, 2009.

[15] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang
Sun, and Long Lu. Shreds: Fine-Grained Execution
Units with Private Memory. In S&P, 2016.

[16] Cloudflare. Introducing cloudflare workers:
Run javascript service workers at the edge.
https://blog.cloudflare.com/introducing-
cloudflare-workers/, 2017.

[17] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere,
and Bjorn De Sutter. Practical Mitigations for Timing-
Based Side-Channel Attacks on Modern x86 Processors.
In S&P, 2009.

[18] Jonathan Corbet. Deferring seccomp decisions to user
space. https://lwn.net/Articles/756233/, 2018.

[19] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developers Manual, October 2019.

[20] Intel Corporation. Intel Software Guard Extensions
(Intel SGX). https://software.intel.com/en-us/
sgx.

[21] Intel Corporation. Intel Software Guard Extensions (In-
tel SGX) SDK. https://software.intel.com/sgx-
sdk.

[22] Intel Corporation. Intel IA-64 architecture software
developer’s manual, revision 1.1. 2000.

[23] Victor Costan, Ilia A. Lebedev, and Srinivas Devadas.
Sanctum: Minimal Hardware Extensions for Strong Soft-
ware Isolation. In USENIX Security Symposium, 2016.

[24] Liang Deng, Qingkai Zeng, and Yao Liu. ISboxing: An
Instruction Substitution Based Data Sandboxing for x86
Untrusted Libraries. In SEC, volume 455 of IFIP Ad-
vances in Information and Communication Technology,
2015.

[25] Will Drewry. [RFC,PATCH 2/2] Documentation:
prctl/seccomp_filter. https://lwn.net/Articles/
475049/, 2012.

[26] Bryan Ford and Russ Cox. Vx32: Lightweight User-
level Sandboxing on the x86. In USENIX ATC, 2008.

[27] RISC-V Foundation. The RISC-V Instruction Set
Manual, Volume II: Privileged Architecture, version
1.10. https://content.riscv.org/wp-content/
uploads/2017/05/riscv-privileged-v1.10.pdf,
2017.

[28] RISC-V Foundation. The RISC-V Instruction Set
Manual, Volume I: User-Level ISA, document version
20191213. https://riscv.org/specifications/,
2019.

[29] RISC-V Foundation. The RISC-V Instruction Set
Manual, Volume II: Privileged Architecture, document
version 1.12-draft. https://github.com/riscv/
riscv-isa-manual/releases/download/draft-
20200212-c3d1f07/riscv-privileged.pdf, 2020.

[30] Tommaso Frassetto, Patrick Jauernig, Christopher
Liebchen, and Ahmad-Reza Sadeghi. IMIX: In-Process
Memory Isolation EXtension. In USENIX Security Sym-
posium, 2018.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0056d/BABBJAED.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0056d/BABBJAED.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0056d/BABBJAED.html
https://github.com/ARMmbed/mbedtls/blob/master/programs/test/benchmark.c
https://github.com/ARMmbed/mbedtls/blob/master/programs/test/benchmark.c
https://github.com/ARMmbed/mbedtls/blob/master/programs/test/benchmark.c
https://tls.mbed.org/
https://tls.mbed.org/
https://blog.cloudflare.com/introducing-cloudflare-workers/
https://blog.cloudflare.com/introducing-cloudflare-workers/
https://lwn.net/Articles/756233/
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://software.intel.com/sgx-sdk
https://software.intel.com/sgx-sdk
https://lwn.net/Articles/475049/
https://lwn.net/Articles/475049/
https://content.riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf
https://content.riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf
https://riscv.org/specifications/
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200212-c3d1f07/riscv-privileged.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200212-c3d1f07/riscv-privileged.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200212-c3d1f07/riscv-privileged.pdf


[31] Tal Garfinkel. Traps and Pitfalls: Practical Problems
in System Call Interposition Based Security Tools. In
NDSS, 2003.

[32] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser.
A survey of microarchitectural timing attacks and coun-
termeasures on contemporary hardware. J. Crypto-
graphic Engineering, 8, 2018.

[33] Github: Tunz. Case Study of JavaScript Engine Vulner-
abilities. https://github.com/tunz/js-vuln-db.

[34] Khilan Gudka, Robert N. M. Watson, Jonathan An-
derson, David Chisnall, Brooks Davis, Ben Laurie, Il-
ias Marinos, Peter G. Neumann, and Alex Richardson.
Clean Application Compartmentalization with SOAAP.
In CCS, 2015.

[35] Terry Ching-Hsiang Hsu, Kevin J. Hoffman, Patrick
Eugster, and Mathias Payer. Enforcing Least Privilege
Memory Views for Multithreaded Applications. In CCS,
2016.

[36] Hong Hu, Zheng Leong Chua, Zhenkai Liang, and Pra-
teek Saxena. Identifying Arbitrary Memory Access
Vulnerabilities in Privilege-Separated Software. In ES-
ORICS, volume 9327 of LNCS, pages 312–331, 2015.

[37] IBM Corporation. Power ISA version 3.0b. 2017.

[38] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji-
Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai,
and Onur Mutlu. Flipping bits in memory without ac-
cessing them: An experimental study of DRAM distur-
bance errors. In ISCA, 2014.

[39] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe,
Srinivas Devadas, and Joel Emer. DAWG: A Defense
Against Cache Timing Attacks in Speculative Execution
Processors. ePrint 2018/418, May 2018.

[40] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre Attacks: Exploiting
Speculative Execution. In S&P, 2019.

[41] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida,
and Elias Athanasopoulos. No Need to Hide: Protecting
Safe Regions on Commodity Hardware. In EUROSYS,
2017.

[42] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer,
George Candea, R. Sekar, and Dawn Song. Code-Pointer
Integrity. In OSDI, 2014.

[43] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Dawn
Song, and Krste Asanovic. Keystone: A Framework for
Architecting TEEs. CoRR, abs/1907.10119, 2019.

[44] Hojoon Lee, Chihyun Song, and Brent ByungHoon
Kang. Lord of the x86 Rings: A Portable User Mode
Privilege Separation Architecture on x86. In CCS, 2018.

[45] Lee Thomason. TinyXML-2. https://github.com/
leethomason/tinyxml2, 2019.

[46] Linux kernel. Memory Protection Keys.
https://www.kernel.org/doc/Documentation/
x86/protection-keys.txt, 2017.

[47] Linux kernel. SECure COMPuting with filters.
https://www.kernel.org/doc/Documentation/
prctl/seccomp_filter.txt, 2017.

[48] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading Kernel Mem-
ory from User Space. In USENIX Security Symposium,
2018.

[49] Richard J. Lipton and Lawrence Snyder. A Linear Time
Algorithm for Deciding Subject Security. J. ACM, 24,
1977.

[50] James Litton, Anjo Vahldiek-Oberwagner, Eslam El-
nikety, Deepak Garg, Bobby Bhattacharjee, and Peter
Druschel. Light-Weight Contexts: An OS Abstraction
for Safety and Performance. In OSDI, 2016.

[51] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and
Yubin Xia. Thwarting Memory Disclosure with Efficient
Hypervisor-enforced Intra-domain Isolation. In CCS,
2015.

[52] Aravind Machiry, Eric Gustafson, Chad Spensky,
Christopher Salls, Nick Stephens, Ruoyu Wang, Anto-
nio Bianchi, Yung Ryn Choe, Christopher Kruegel, and
Giovanni Vigna. BOOMERANG: Exploiting the Se-
mantic Gap in Trusted Execution Environments. In
NDSS, 2017.

[53] Stephen McCamant and Greg Morrisett. Evaluating SFI
for a CISC Architecture. In USENIX Security Sympo-
sium, 2006.

[54] Larry W. McVoy and Carl Staelin. lmbench: Portable
Tools for Performance Analysis. In USENIX ATC, 1996.

[55] Marcela S. Melara, Michael J. Freedman, and Mic Bow-
man. EnclaveDom: Privilege Separation for Large-TCB
Applications in Trusted Execution Environments. CoRR,
abs/1907.13245, 2019.

[56] Lucian Mogosanu, Ashay Rane, and Nathan Dauten-
hahn. MicroStache: A Lightweight Execution Context
for In-Process Safe Region Isolation. In RAID, volume
11050 of LNCS, 2018.

https://github.com/tunz/js-vuln-db
https://github.com/leethomason/tinyxml2
https://github.com/leethomason/tinyxml2
https://www.kernel.org/doc/Documentation/x86/protection-keys.txt
https://www.kernel.org/doc/Documentation/x86/protection-keys.txt
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt


[57] Kit Murdock, David Oswald, Flavio D. Garcia,
Jo Van Bulck, Daniel Gruss, and Frank Piessens. Plun-
dervolt: Software-based fault injection attacks against
intel sgx. In Security and Privacy (S&P), 2020.

[58] Myoung Jin Nam, Periklis Akritidis, and David J.
Greaves. FRAMER: a tagged-pointer capability sys-
tem with memory safety applications. In ACSAC, 2019.

[59] Shravan Narayan, Craig Disselkoen, Tal Garfinkel,
Nathan Froyd, Eric Rahm, Sorin Lerner, Hovav
Shacham, and Deian Stefan. Retrofitting Fine Grain
Isolation in the Firefox Renderer (Extended Version).
CoRR, abs/2003.00572, 2020.

[60] Bernard Ngabonziza, Daniel Martin, Anna Bailey, Hae-
hyun Cho, and Sarah Martin. TrustZone Explained:
Architectural Features and Use Cases. In CIC, 2016.

[61] Node.js. https://nodejs.org/en/docs/es6/, 2019.

[62] Job Noorman, Jo Van Bulck, Jan Tobias Mühlberg,
Frank Piessens, Pieter Maene, Bart Preneel, Ingrid Ver-
bauwhede, Johannes Götzfried, Tilo Müller, and Felix C.
Freiling. Sancus 2.0: A Low-Cost Security Architecture
for IoT Devices. ACM Trans. Priv. Secur., 20, 2017.

[63] Hewlett Packard. PA-RISC 1.1 architecture and instruc-
tion set reference manual, third edition. 1994.

[64] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon,
and Taesoo Kim. libmpk: Software Abstraction for Intel
Memory Protection Keys (Intel MPK). In USENIX ATC,
2019.

[65] Sandro Pinto and Cesare Garlati. User mode interrupts:
A must for securing embedded systems. In Embedded
World Conference, 2019.

[66] Niels Provos, Markus Friedl, and Peter Honeyman. Pre-
venting Privilege Escalation. In USENIX Security Sym-
posium, 2003.

[67] Charles Reis, Alexander Moshchuk, and Nasko Oskov.
Site Isolation: Process Separation for Web Sites within
the Browser. In USENIX Security Symposium, 2019.

[68] Google Security Research. Google Chrome
72.0.3626.121 / 74.0.3725.0 - ’NewFixedDoubleArray’
Integer Overflow. https://github.com/riscv/
riscv-isa-manual/releases/download/draft-
20200212-c3d1f07/riscv-privileged.pdf, 2020.

[69] Jerome H. Saltzer and Michael D. Schroeder. The pro-
tection of information in computer systems. Proceed-
ings of the IEEE, 63, 1975.

[70] Samuel Gross. Exploiting Logic Bugs in JavaScript
JIT Engines. http://www.phrack.org/papers/
jit_exploitation.html.

[71] Michael Schwarz, Samuel Weiser, and Daniel Gruss.
Practical Enclave Malware with Intel SGX. In DIMVA,
volume 11543 of LNCS, 2019.

[72] David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko,
Egor Pasko, Karl Schimpf, Bennet Yee, and Brad Chen.
Adapting Software Fault Isolation to Contemporary
CPU Architectures. In USENIX Security Symposium,
2010.

[73] Standard Performance Evaluation Corporation. SPEC
CPU 2017. https://www.spec.org/cpu2017.

[74] Raoul Strackx, Pieter Agten, Niels Avonds, and Frank
Piessens. Salus: Kernel Support for Secure Process
Compartments. ICST Trans. Security Safety, 2, 2015.

[75] Adrian Tang, Simha Sethumadhavan, and Salvatore J.
Stolfo. CLKSCREW: Exposing the Perils of Security-
Oblivious Energy Management. In USENIX Security
Symposium, 2017.

[76] The Computer Language Benchmarks Game Team.
Nbody C Benchmark. https://benchmarksgame-
team.pages.debian.net/benchmarksgame/
description/nbody.html#nbody.

[77] Peter Teoh. How can eBPF be compromised by
vulnerabilities? https://tthtlc.wordpress.com/
2019/01/01/how-can-ebpf-be-compromised-by-
vulnerabilities/, 2019.

[78] The New York Times. The Loophole That Turns
Your Apps Into Spies. https://www.nytimes.com/
2019/09/24/opinion/facebook-google-apps-
data.html, 2019.

[79] V8. The official mirror of the V8 Git repos-
itory. https://github.com/v8/v8/blob/
3fbeb93760bcf663dcf84b57597f49d7d3b29c02/
src/flags/flag-definitions.h#L665, 2020.

[80] v8 - Untrusted code mitigations. https://v8.dev/
docs/untrusted-code-mitigations, 2019.

[81] v8 developer blog. https://v8.dev/docs, 2019.

[82] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O.
Duarte, Michael Sammler, Peter Druschel, and Deepak
Garg. ERIM: Secure, Efficient In-process Isolation with
Protection Keys (MPK). In USENIX Security Sympo-
sium, 2019.

https://nodejs.org/en/docs/es6/
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200212-c3d1f07/riscv-privileged.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200212-c3d1f07/riscv-privileged.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200212-c3d1f07/riscv-privileged.pdf
http://www.phrack.org/papers/jit_exploitation.html
http://www.phrack.org/papers/jit_exploitation.html
https://www.spec.org/cpu2017
https://benchmarksgame-team.pages.debian.net/benchmarksgame/description/nbody.html#nbody
https://benchmarksgame-team.pages.debian.net/benchmarksgame/description/nbody.html#nbody
https://benchmarksgame-team.pages.debian.net/benchmarksgame/description/nbody.html#nbody
https://tthtlc.wordpress.com/2019/01/01/how-can-ebpf-be-compromised-by-vulnerabilities/
https://tthtlc.wordpress.com/2019/01/01/how-can-ebpf-be-compromised-by-vulnerabilities/
https://tthtlc.wordpress.com/2019/01/01/how-can-ebpf-be-compromised-by-vulnerabilities/
https://www.nytimes.com/2019/09/24/opinion/facebook-google-apps-data.html
https://www.nytimes.com/2019/09/24/opinion/facebook-google-apps-data.html
https://www.nytimes.com/2019/09/24/opinion/facebook-google-apps-data.html
https://github.com/v8/v8/blob/3fbeb93760bcf663dcf84b57597f49d7d3b29c02/src/flags/flag-definitions.h#L665
https://github.com/v8/v8/blob/3fbeb93760bcf663dcf84b57597f49d7d3b29c02/src/flags/flag-definitions.h#L665
https://github.com/v8/v8/blob/3fbeb93760bcf663dcf84b57597f49d7d3b29c02/src/flags/flag-definitions.h#L665
https://v8.dev/docs/untrusted-code-mitigations
https://v8.dev/docs/untrusted-code-mitigations
https://v8.dev/docs


[83] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Daut-
enhahn, André DeHon, and Jonathan M. Smith. Towards
Fine-grained, Automated Application Compartmental-
ization. In PLOS, 2017.

[84] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan
Dautenhahn, André DeHon, and Jonathan M. Smith.
BreakApp: Automated, Flexible Application Compart-
mentalization. In NDSS, 2018.

[85] Lluís Vilanova, Muli Ben-Yehuda, Nacho Navarro, Yoav
Etsion, and Mateo Valero. CODOMs: Protecting soft-
ware with Code-centric memory Domains. In ISCA,
2014.

[86] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and
Susan L. Graham. Efficient Software-Based Fault Isola-
tion. In SOSP, 1993.

[87] Jun Wang, Xi Xiong, and Peng Liu. Between Mu-
tual Trust and Mutual Distrust: Practical Fine-grained
Privilege Separation in Multithreaded Applications. In
USENIX ATC, 2015.

[88] Robert N. M. Watson, Robert M. Norton, Jonathan
Woodruff, Simon W. Moore, Peter G. Neumann,
Jonathan Anderson, David Chisnall, Brooks Davis, Ben
Laurie, Michael Roe, Nirav H. Dave, Khilan Gudka,
Alexandre Joannou, A. Theodore Markettos, Ed Maste,
Steven J. Murdoch, Colin Rothwell, Stacey D. Son, and
Munraj Vadera. Fast Protection-Domain Crossing in the
CHERI Capability-System Architecture. IEEE Micro,
36, 2016.

[89] Robert N. M. Watson, Jonathan Woodruff, Peter G. Neu-
mann, Simon W. Moore, Jonathan Anderson, David
Chisnall, Nirav H. Dave, Brooks Davis, Khilan Gudka,
Ben Laurie, Steven J. Murdoch, Robert M. Norton,
Michael Roe, Stacey D. Son, and Munraj Vadera.
CHERI: A Hybrid Capability-System Architecture for
Scalable Software Compartmentalization. In S&P,
2015.

[90] Samuel Weiser, Luca Mayr, Michael Schwarz, and
Daniel Gruss. SGXJail: Defeating Enclave Malware
via Confinement. In RAID, 2019.

[91] Ofir Weisse, Valeria Bertacco, and Todd M. Austin. Re-
gaining Lost Cycles with HotCalls: A Fast Interface for
SGX Secure Enclaves. In ISCA, 2017.

[92] Mario Werner, Thomas Unterluggauer, Lukas Giner,
Michael Schwarz, Daniel Gruss, and Stefan Mangard.
ScatterCache: Thwarting Cache Attacks via Cache Set
Randomization. In USENIX Security Symposium, 2019.

[93] David A. Wheeler. Preventing Heartbleed. IEEE Com-
puter, 47, 2014.

[94] Emmett Witchel, Josh Cates, and Krste Asanovic. Mon-
drian memory protection. In ASPLOS, 2002.

[95] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley
Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native Client: A
Sandbox for Portable, Untrusted x86 Native Code. In
S&P, 2009.

[96] Florian Zaruba and Luca Benini. The Cost of
Application-Class Processing: Energy and Performance
Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V
Core in 22-nm FDSOI Technology. IEEE Trans. VLSI
Syst., 27, 2019.

[97] Mingwei Zhang, Ravi Sahita, and Daiping Liu.
executable-only-memory-switch (xom-switch): Hiding
your code from advanced code reuse attacks in one shot.
Black Hat Asia, 2018.

[98] Lu Zhao, Guodong Li, Bjorn De Sutter, and John Regehr.
ARMor: fully verified software fault isolation. In EM-
SOFT, 2011.

[99] Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang.
ARMlock: Hardware-based Fault Isolation for ARM. In
CCS, 2014.

A System Call Filter Example

1 int interpose_socket(int dom, int type, int prot) {
2 if (CURRENT_DOMAIN != 0) {
3 errno = EACCES;
4 return -1;
5 }
6 return socket(dom, type, prot);
7 }
8 int interpose_open(const char *path, int flags) {
9 if (!login || strchr(path, ’/’)) {

10 errno = EACCES;
11 return -1;
12 }
13 return open(path, flags);
14 }

Listing 2: DonkyLib user mode filters benefit from the
full application context.

Listing 2 shows how an application using Donky can con-
strain socket creation to the root domain (did=0) only (line 2).
Furthermore, opening of files is bound to some login proce-
dure via a global variable login and limited to the current
directory (line 9).

Recent additions to the Linux kernel similarly allow such
filters in userspace [18]. However, unlike Donky, it requires
kernel interaction and a separate thread or process.


	Introduction
	Background
	RISC-V
	Address Translation
	Memory Protection Keys
	JIT and JavaScript Engines

	Donky System Design
	Software Design of Donky
	Hardware Design of Donky
	Donky for RISC-V
	Extension to Intel MPK

	Security and Performance Evaluation
	Security Evaluation
	Performance Evaluation

	Case Studies
	Case Study 1: Strong JavaScript Isolation
	Case Study 2: Third-Party Library
	Case Study 3: Library as a Vault

	Discussion
	
	Related Work

	Conclusion
	System Call Filter Example

