
FetchBench: Systematic Identification and Characterization of
Proprietary Prefetchers

Till Schlüter
till.schlueter@cispa.de

CISPA Helmholtz Center for
Information Security

Amit Choudhari
amit.choudhari@cispa.de

CISPA Helmholtz Center for
Information Security

Lorenz Hetterich
lorenz.hetterich@cispa.de
CISPA Helmholtz Center for

Information Security

Leon Trampert
leon.trampert@cispa.de

CISPA Helmholtz Center for
Information Security

Hamed Nemati
hamed.nemati@cispa.de

CISPA Helmholtz Center for
Information Security

Ahmad Ibrahim
ahmad-ibrahim@hotmail.de

Unaffiliated

Michael Schwarz
michael.schwarz@cispa.de
CISPA Helmholtz Center for

Information Security

Christian Rossow
rossow@cispa.de

CISPA Helmholtz Center for
Information Security

Nils Ole Tippenhauer
tippenhauer@cispa.de

CISPA Helmholtz Center for
Information Security

ABSTRACT
Prefetchers speculatively fetch memory using predictions on fu-
ture memory use by applications. Different CPUs may use different
prefetcher types, and two implementations of the same prefetcher
can differ in details of their characteristics, leading to distinct run-
time behavior. For a few implementations, security researchers
showed through manual analysis how to exploit specific prefetch-
ers to leak data. Identifying such vulnerabilities required tedious
reverse-engineering, as prefetcher implementations are proprietary
and undocumented. So far, no systematic study of prefetchers in
common CPUs is available, preventing further security assessment.

In this work, we address the following question: How can we
systematically identify and characterize under-specified prefetchers
in proprietary processors? To answer this question, we systemat-
ically analyze approaches to prefetching, design cross-platform
tests to identify and characterize prefetchers on a given CPU, and
demonstrate that our implementation FetchBench can character-
ize prefetchers on 19 different ARM and x86-64 CPUs. For exam-
ple, FetchBench uncovers and characterizes a previously unknown
replay-based prefetcher on the ARM Cortex-A72 CPU. Based on
these findings, we demonstrate two novel attacks that exploit this
undocumented prefetcher as a side channel to leak secret informa-
tion, even from the secure TrustZone into the normal world.

CCS CONCEPTS
• Security and privacy → Side-channel analysis and counter-
measures.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11. . . $15.00
https://doi.org/10.1145/3576915.3623124

KEYWORDS
Microarchitecture, Side Channel, Prefetching
ACM Reference Format:
Till Schlüter, Amit Choudhari, Lorenz Hetterich, Leon Trampert, Hamed
Nemati, Ahmad Ibrahim, Michael Schwarz, Christian Rossow, and Nils Ole
Tippenhauer. 2023. FetchBench: Systematic Identification and Characteri-
zation of Proprietary Prefetchers. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’23), November
26–30, 2023, Copenhagen, Denmark. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3576915.3623124

1 INTRODUCTION
Fast and efficient CPUs are the backbone of our digital infrastruc-
ture. To provide the high level of performance we are used to today,
modern CPUs are equipped with a myriad of elaborate, proprietary,
and often undocumented optimization mechanisms. Unfortunately,
those mechanisms often come at the cost of security vulnerabilities
that break fundamental guarantees by the platform, such asmemory
isolation. For example, transient execution attacks exploit code that
the CPU executes only transiently, e.g., speculatively after control
or data-flow mispredictions (Spectre-type attacks), or out-of-order
after a faulting instruction (Meltdown-type attacks) [6, 21, 24].

While security issues related to transient execution received a lot
of attention, less scrutiny has been given to predictive fetching of
memory by hardware prefetchers, or prefetchers for short. Prefetch-
ers are proprietary components of a CPU that try to predict future
memory accesses and bring blocks of memory into the cache before
they are actually requested. As the problem of detecting and acceler-
ating memory access patterns can be approached in many different
ways, a multitude of prefetcher design options is available to the
chip designers [11]. Because prefetch operations are transparent to
software applications, vendors usually do not disclose any detailed
information on the types of prefetchers they use, characteristics of
these prefetchers, and their implementation. For example, Intel has
confirmed the existence of certain types of prefetchers by disclosing
documentation on how to disable them [37] but limits public docu-
mentation of their characteristics to superficial recommendations

https://doi.org/10.1145/3576915.3623124
https://doi.org/10.1145/3576915.3623124

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Till Schlüter et al.

for software developers [19]. ARM is even more restrictive: For
instance, the technical reference manual for the ARM Cortex-A72
confirms the existence of a prefetcher for data but does not even
specify what kind of memory access patterns it detects [1].

This secrecy is especially problematic since security researchers
identified several vulnerabilities that arise out of specific prefetcher
implementations. For example, prior work characterized the stride
prefetcher in certain Intel CPUs and exploited the reverse-engineer-
ed characteristics to build covert channels [7, 8] or to leak private
keys from ECDH [32] or RSA [7] computations. Researchers also
identified and characterized a prefetcher that dereferences pointers
on the Apple M1 [29]. They exploited this prefetcher as an oracle
for the validity of virtual addresses and thus to circumvent Address
Space Layout Randomization (ASLR). These examples show that
prefetchers are a security-relevant component of a CPU that re-
quires systematic investigation. However, all prior work focused
on a narrow set of prefetcher designs and CPUs; so far, no system-
atic analysis of a wide range of prefetcher architectures and their
security implications has been provided.

Research Questions and Challenges. In this work, we close
this gap by answering the following three research questions:

RQ1: How can we systematically identify and characterize
prefetching mechanisms on unspecified architectures?

RQ2: What are the main types and characteristics of prefetch-
ers in modern CPUs?

RQ3: What are the security implications of so-far unexplored
prefetcher types?

We identified the following three main research challenges when
addressing these questions: First, we need to collect and system-
atize possible prefetcher designs that CPU vendors are likely to use,
despite having only limited documentation available. In addition,
we have to identify the prefetcher’s relevant implementation vari-
ables (characteristics). Second, as a CPU does not directly expose
the prefetcher’s internals, the identification and characterization of
the prefetcher have to be performed based on its behavior during
operation. While prior work mainly focused on characterizing a
specific type of prefetcher [7, 8, 29, 32], we need solutions that allow
identifying multiple prefetcher designs and characterizing each of
them appropriately. Third, we want to verify that security-relevant
inner workings of prefetcher designs enable new vulnerabilities.
Such demonstrations will also require means of synchronization
between victim and attacker code.

Proposed Approach.We first classify different prefetcher de-
signs and create a taxonomy (see Figure 1), allowing us to relate
prefetcher designs to each other and to identify common properties
as well as fundamental differences. We then design and implement
FetchBench, a modular framework that uses our taxonomy to iden-
tify a prefetcher design on a given CPU. In addition, our framework
characterizes the prefetcher w.r.t. the most relevant characteristics
(such as the trigger method or prefetch depth) for this particular
design. We apply our framework to 19 processors of seven different
vendors and two architectures (ARMv8 and x86-64).

With FetchBench, we are able to identify a variant of the replay-
based Spatial-Memory-Streaming (SMS) prefetcher [35] in three
ARM Cortex-A-series processors. We investigate the security prop-
erties of this prefetcher, which has received little attention so far.

Design A

Design B

2048

512

4096

2048

512

4096

2048

512

4096

2048

512

4096

… …

Design CPUs,
Characteristics

CPU

A
B
C
D
E

Framework

2. Identification & Characterization1. Classification

A
B
C
D
E

Design BDesign E

Design A Design C

Design D

3. Exploitation

Aacker Process

Victim Process

Information
Leakage

Prefetcher

Figure 1: Proposed Approach

We demonstrate use cases for selected vulnerabilities. In particular,
we exploit the SMS prefetcher to leak half of an AES key across
process boundaries and show that the prefetcher’s state is exempted
from the usual separation between secure and non-secure world
on TrustZone-enabled ARM CPUs. We build a covert channel that
has a data rate of 1245 Bytes/s at 5.02 % error rate.

Contributions. Our main contributions are as follows:
• We compile and classify seven hardware data prefetcher
designs based on a novel taxonomy.

• We design and implement FetchBench, a modular framework
to identify and characterize prefetchers on real CPUs, and
apply those tests to 19 CPUs of seven different vendors and
two different architectures. FetchBench uncovers and char-
acterizes a previously unknown, replay-based prefetcher on
a series of ARM Cortex-A processors.

• We present a novel attack on the replay-based prefetcher
of the ARM Cortex-A72, leaking 64 bits of an AES-128 key
through the prefetcher. As part of the attack, we address the
non-trivial problem of synchronizing the attacker process
with the victim process to make the attack practical on Linux
in presence of a scheduler.

• We show that the prefetcher’s internal state is not separated
between normal and secure world, leaking metadata across
the TrustZone privilege boundary.

Disclosure.ARMacknowledged our findings on shared prefetcher
state across hardware contexts and assigned CVE-2023-33936.

2 BACKGROUND
CPU Memory Hierarchy and Prefetching. Contemporary pro-
cessors employ a hierarchy of memory denoted by caches to reduce
the gap between processing time and memory access time. Caches
decrease the time spent on memory operations as perceived by the
processor by storing recently or frequently used chunks of data in
fast memory. A cache is divided into fixed-size cache lines (CLs),
which describe the basic unit for data transfers between thememory
(in terms of “memory lines”) and the processor.

Traditionally, caches contain memory that was requested by the
CPU in the past, improving the memory latency for subsequent
accesses to the same data. In contrast, prefetching aims to improve
the latency on the initial load of a memory line. For this, cache lines
that are likely needed in the near future are identified and fetched
into the cache in advance. There are two fundamentally different
approaches to prefetching: software and hardware prefetching. Soft-
ware prefetching relies on prefetch instructions. These instructions
indicate which memory addresses will soon be accessed, so that
the CPU can bring them into the cache before they are used.

FetchBench: Systematic Identification and Characterization of Proprietary Prefetchers CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Hardware Prefetcher

Extrapolation

Replay

prediction strategy

Location

Content

source

Location

Content

Stride (3.2.1)

Adjacent Cache Line (3.2.2)

Stream (3.2.3)

Pointer Array (3.2.4)

Pointer Chase (3.2.5)

SMS (3.2.6)

Region-Unbounded
Replay (3.2.7)

GHB

TMS

STeMS

Markov

DCPT

Figure 2: Prefetcher taxonomy. Yellow leaf nodes identify
prefetcher designs that we experimentally observed in CPUs.

Hardware prefetching, which is our focus, comprises all mech-
anisms that analyze memory accesses performed at runtime and
dynamically predict which addresses are likely to be loaded next.
While various CPU buffersmay support prefetching, such as instruc-
tion caches, data caches [33], and Translation Lookaside Buffers
(TLBs) [31], we focus on prefetching into data caches. The two
core aspects of a prefetcher implementation are the design of the
training and the prediction mechanism. The (sometimes optional)
training mechanism determines how the prefetcher learns patterns.
The prediction mechanism uses the previously trained patterns to
decide which addresses to prefetch next. CPUs often implement
multiple hardware prefetchers that complement each other.

Timing Attacks. Due to limited resources available on contem-
porary computing devices, resource sharing among processes is
inevitable. However, if not done carefully, resource sharing can
introduce unintended information flow channels, known as side
channels, which are potentially exploitable by a malicious pro-
cess to exfiltrate secret information on a system. Prominent rep-
resentatives of such attack techniques are Flush+Reload [41] and
Prime+Probe [26]. In Flush+Reload, an attacker process first flushes
the shared cache lines from the cache. Second, the victim process
executes and, depending on a secret value, either loads the flushed
entries or not. Finally, the attacker measures the time needed to
reload these entries. Depending on the reload latency, the attacker
decides whether the cache entry was accessed by the victim and
is thereby capable of extracting the secret. In Prime+Probe, the
attacker first primes the selected cache entries. When the victim re-
turns, the attacker measures the victim’s secret-dependent memory
operations on the primed entries to infer the secret.

3 SYSTEMATIC CLASSIFICATION OF
HARDWARE PREFETCHERS

In this section, we describe and identify prefetcher designs com-
monly found in CPUs and in academic literature. In Section 3.1, we
propose a two-level taxonomy based on the strategy used to decide
what to prefetch and on the information source the prefetcher is
trained on. Based on our taxonomy, we present a framework to
automatically detect and characterize prefetchers (Section 3.2).

3.1 Hardware Prefetcher Taxonomy
Prefetcher Design Selection. A plethora of prefetcher designs
have been discussed in the past, either in form of academic propos-
als, reverse-engineering results, or hardware documentation. With
our goal of identifying prefetchers in real-world hardware in mind,
we focus on designs that we consider likely to be implemented. We
use the Primer on Hardware Prefetching by Falsafi and Wenisch [11]
as a starting point. From their selection, we focus mainly on designs
that (i) are known to be present in real-world hardware or (ii) do
not require large (off-chip) data structures to keep their state. We
follow the conjecture of Ayers et al. [3] that prefetchers with high
memory requirements have a higher “implementation burden” and
are less likely to be implemented. We further include designs that
are present in real-world hardware but not covered by [11].

Figure 2 summarizes our prefetcher classification with respect to
two dimensions that we describe in the following: (i) the prediction
strategy and (ii) the source of prediction knowledge.

Prediction Strategy. We distinguish two types of strategies
used for the prediction, extrapolation and replay:

• Extrapolation-based prefetchers detect sequences in recent
memory accesses and extend these by prefetching likely
future accesses—notably irrespective of (and agnostic to)
past accesses to these prefetched locations.

• Replay-based prefetchers repeat known access patterns and
thereby prefetch previously-observed accesses (only)—with-
out trying to extend access sequences.

Extrapolation-based prefetchers aim to identify and extend mem-
ory access patterns. Once identified, the prefetcher uses these pat-
terns to compute (“extrapolate”) which memory locations are likely
to be accessed next. This way, those prefetchers can boost perfor-
mance even if a memory region is not accessed repeatedly. Usually,
extrapolation-based prefetchers do not need to maintain an exten-
sive access history, and—depending on the prefetcher—can even
be fully stateless. Consequently, such prefetchers typically have a
more lightweight internal state. A disadvantage of these prefetchers
is that they cannot predict more complex access patterns.

Replay-based prefetchers repeat past memory accesses patterns.
Unlike extrapolating prefetchers, they are not bound to simple pat-
terns (e.g., monotonic access sequences). Instead, they rely on more
involved data structures to capture even complex access patterns.
The prefetched access patterns are thereby identical to (or a subset
of) previously-observed accesses. Replay prefetchers do not extend
access patterns but may replay accesses in other contexts (e.g., at
different locations). Designs in this domain differ in the way how
the history is stored and filtered and how the prediction is triggered.
Some prefetchers operate on fixed-size memory regions [35], oth-
ers are region-unbounded. Moreover, there are different trade-offs
between memory consumption and accuracy, e.g., by deciding to
only store longer and more frequent patterns [11, 38].

Prediction Source. For the second level of our classification, we
use the source of the prediction, i.e., what property the hardware
prefetcher uses to decide on the address to prefetch. We distinguish
between location-based and content-based sources.

• Location: Only the location, i.e., address, of the memory load
is used to decide what to prefetch.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Till Schlüter et al.

Architecture-
specific

timing

flushing

barriers

Primitives

Pefetcher
design-specific

Testcases

FetchBench

Processor-specific prefetcher existence and characteristics information

thresholds

Identification and characterization
(testcase execution)

noise

signal
cache hit cache miss

Framework execution flow
on a specific processor

Calibration

Figure 3: FetchBench Framework Overview

• Content: The content of the memory load is used to decide
what to prefetch.

The location of memory loads is a common source for many hard-
ware prefetchers, both for extrapolating as well as for replaying
prefetchers. Typically, these prefetchers detect common patterns
found in many applications [3] or previously-observed access pat-
terns. Simple patterns include strides, i.e., the linear access to mem-
ory with a constant offset between the accessed memory addresses.
Based on the strategy of the prefetcher, a detected pattern either
leads to an extrapolated completion or a history-based completion.

Prefetchers using the content of memory loads as a prediction
source can prefetch indirect memory loads. The prefetcher predicts
future accesses based on the observed value, not on the address
where a value is stored. Such prefetchers can (heuristically) detect
pointers and start to prefetch the target memory location, e.g., to
improve the performance of linked lists or trees. These data struc-
tures are usually not contiguous, as the next item that is accessed
during a list traversal is only referenced via a pointer.

3.2 FetchBench: Automatically Identifying and
Characterizing Prefetchers

In this section, we propose FetchBench, an automated modular
software framework to identify and characterize hardware prefetch-
ers. Whereas knowledge about the existence and characteristics of
prefetchers can, in principle, be acquired manually, such tedious
efforts are typically bound to single CPU models. Time-consuming
manual attempts thereby cannot generalize the findings to the by-
now large landscape of CPU models.

Deep knowledge of prefetchers and their implementations is
critical for security. First, the sole existence of a certain prefetcher
determines if a given system is vulnerable to prefetcher-based side-
channel attacks [7, 32] in principle. Second, only the precise knowl-
edge of the exact characteristics of a given prefetcher implementa-
tion—which is normally not or only sparsely documented by CPU
vendors—helps to understand if a particular defense is effective.
Third, new insights into prefetcher implementations may reveal
novel prefetcher-based side-channel vulnerabilities.

Overall Design. Figure 3 provides a high-level overview of
FetchBench. The framework consists of one module for each po-
tential prefetcher design. Each module implements test cases that
first detect whether a prefetcher is implemented and, if so, what its

I1 I1 I1

d d d d
I2

d d

(a)

(c)

d

I1 I1

d d d dd d d

I1 I1

1 2 3 n

1

(d)

I1 I2 I3 In

d d d dd d d

1 2 3 n

n

2 3

(b)

I1 I1 I1

d dd dd

page boundary

d

n-2 n-1 n

Figure 4: Stride prefetcher tests. Dashed boxes represent
cache lines within a memory page. Arrows indicate loads and
are labeled with the load instruction (Ix). Red CLs are cached
due to architectural loads, blue CLs are potential prefetch
locations. Boxes are numbered by the order of access.

characteristics are. We focus especially on characteristics that we
consider security-relevant, i.e., those that may enable a side-channel
or impact the quality or throughput of a potential side-channel.
Modules essentially provide memory access patterns and queries
for the cache state of memory locations. Based on a sequence of
tests, a module infers the inner workings of the prefetcher. Tests
are architecture-agnostic, as only access sequences and expected
cache states are defined. This modular design allows adding new
tests for different prefetchers. The functionality to access memory
and query the cache state of specific cache lines is common for all
modules but specific to the architecture that the framework runs
on. On a given CPU, the framework first calibrates the primitives
used to measure cache states. It then runs the test cases specified
by the modules for the different prefetcher designs. In the end,
the experimental results indicate the existence and characteristics
of the tested prefetcher designs on the CPU. For our FetchBench
prototype, we implement modules for seven prefetchers. In the
following, we describe the design of these modules and how they
detect and characterize hardware prefetchers.

3.2.1 Stride. Stride prefetching [4, 11] aims to detect sequences of
accesses that are spaced a constant offset (stride) apart from each
other. Once the prefetcher has detected such a pattern, a trigger
causes it to extrapolate: The prefetcher predicts data locations by
adding multiples of the detected stride to the last accessed address.
Figure 4 (a) shows a sequence of 𝑛 memory accesses (in red) that
form a patternwith a stride of𝑑 = 3 cache lines, alongwith potential
prefetch locations (in blue).

Characteristics.We distinguish between the following stride
prefetcher characteristics: (i) Does the prefetcher also learn back-
ward strides? (ii) Which are the smallest/largest strides that are
supported? (iii) What is the minimal training size, how large is the
prefetched set? (iv) Does the prefetcher cross the page boundary? (v)
On which granularity, i.e., minimal data unit (e.g., cache line), does
the prefetcher operate? (vi)What triggers the prefetching phase, e.g.,

FetchBench: Systematic Identification and Characterization of Proprietary Prefetchers CCS ’23, November 26–30, 2023, Copenhagen, Denmark

a previously-trained instruction or an accessed memory address,
and can there be trigger collisions?

Identification and Characterization. Figure 4 (a) illustrates
how we test for the presence of a stride prefetcher. In our base test,
we train a cache-line-aligned stride pattern repetitively (in red) and
measure if the CPU caches memory past our accesses (in blue). We
then expand our base test to measure each of the characteristics
individually. To reveal the direction, supported strides, and training
size, we change the direction, offsets, and number of data accesses,
respectively, and test whether prefetching occurs. The number of
prefetched cache lines may depend on the selected stride and the
number of preceding training accesses, so we analyze the number
of prefetches for different strides and after different numbers of
training steps. To test whether the prefetcher crosses the page
boundary, we align the sequence of training accesses to the end of
a page, as illustrated in Figure 4 (b). If we see any prefetching on
the following page, the prefetcher can cross the page boundary. To
test the granularity, we use known-good parameters for the stride
and the number of training steps but add a small random offset
between 0 and (cache line size − 1) to each loaded address. If the
prefetcher detects this pattern and completes it, we conclude that
the prefetcher operates on addresses at cache-line granularity.

To identify the trigger, we perform three different tests. The
most likely triggers are the instruction address of a load instruction,
the data address accessed, or fractions or combinations of these.
To verify this assumption, we start with a negative test. We train
the prefetcher on a first memory page using a first load instruction
(I1) and try to trigger it on a second memory page using a second
load instruction (I2), as illustrated in Figure 4 (c). If the prefetcher
is triggered by a combination of instruction and memory addresses,
we expect no prefetching, since we changed significant portions
of both. Next, we test whether the prefetcher can successfully be
trained by different load instructions loading from the samememory
page (Figure 4 (d)). Lastly, we test whether the prefetcher can be
trained by a single load instruction that is executed with different
operands multiple times (for example in a loop) across different
pages. This is similar to Figure 4 (c), but using I1 throughout all
accesses. If we observe prefetching for the instruction address test
but not for the memory page test, we conclude that the instruction
address is the only trigger. In the opposite case, the memory address
is the trigger. If both tests show prefetching, the prefetcher uses
either the instruction address or the memory address as a trigger.
For prefetchers that use an instruction address as a trigger, we
further test whether only a fraction of that address is considered.We
re-use the experimental setup of Figure 4 (c) but align the addresses
of I1 and I2 such that their 𝑐 least-significant bits (LSBs) match. We
increase 𝑐 and stop as soon as we start seeing prefetching, indicating
a collision. If a collision occurs, we conclude that the prefetcher
only stores the 𝑐 LSBs of the instruction address as a trigger.

3.2.2 Adjacent Cache Line. When accessing a cache line, the adja-
cent-cache-line prefetcher [37] automatically prefetches one of the
neighboring lines.

Characteristics. The prefetcher can either be forward-fetching
or block-fetching. A forward-fetching prefetcher always loads the
line after the accessed one. In contrast, a block-fetching prefetcher
divides memory into blocks of 2 cache lines, starting at an address

I1 I2

page size

1 2

I3

3

I4

4

I5

5

I6

6

I7

7

No
Prefetch

Access direction

Figure 5: Stream prefetcher experiment. Load instructions
(Ix) are performed in one direction.

that is a multiple of 2 cache line sizes. When a memory address is
accessed, this prefetcher always loads the sibling cache line from
the same block, i.e., preceding or subsequent cache line.

Identification and Characterization. First, we access a cache
line at an address that is a multiple of 2 cache line sizes. If the
following line is prefetched, we identified an adjacent-cache-line
prefetcher. We further access a cache line that would be the second
line in a 2-cache-line block. If this access prefetches one cache line
in backward direction, the prefetcher is block-fetching. Otherwise,
we characterize it as forward-fetching.

3.2.3 Stream. A stream prefetcher [19, 28] is designed to prefetch
subsequent locations for an irregular access pattern that runs in
a constant direction, using extrapolation. Although its behavior
may appear similar to that of an adjacent-cache-line prefetcher,
there are three key differences. First, the stream prefetcher starts
prefetching only when the direction is known, which requires at
least two accesses. Second, it can prefetch multiple subsequent
cache lines. Third, it prefetches cache lines in the same direction as
the access, whereas an adjacent-cache-line prefetcher exhibits block
or constant prefetching. Compared to the stride prefetcher, which
is also directional and extrapolation based, the stream prefetcher
does not need a regular pattern to initiate prefetching.

Identification.Wedevelop an identification test to detect stream
prefetchers by generalizing previously reverse-engineered prop-
erties of the Intel Kaby Lake CPU [28]. As illustrated in Figure 5,
the test involves initiating a load instruction I1 at a specific cache
line (in this example, the 10th line). Thereafter the test continues to
access cache lines in an irregular pattern using load instructions I2,
I3, and I4, on cache lines 16, 18, and 32, respectively, in that order.
These irregular loads stop at the end of a page, and we measure
the prefetched lines. Our test ensures that no two consecutive pairs
of accesses have the same stride to prevent false positives from
other types of prefetchers, such as the stride. Additionally, we use
distinct load instructions for every load to prevent false prefetches
from replay-based prefetchers that trigger based on the Program
Counter (PC). In order to not restrict the test to just Intel’s im-
plementation [28], we perform more than four directional loads
before observing the prefetches. We consider the test successful and
identify a stream prefetcher when all prefetches run in the same
direction, there is at least one instance of consecutive prefetches
adjacent to load (e.g., cache lines 11 and 12), and no prefetching is
observed before the first access (I1).

3.2.4 Pointer Array. Arrays of pointers are common data struc-
tures that linearly store addresses of relevant data locations. The
target addresses do not necessarily point to linear memory loca-
tions. Pointer array prefetchers [29, 42] analyze memory content
to identify arrays of pointers and then prefetch their targets.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Till Schlüter et al.

E2 E3 En E1

1 2 3 n

pointer array (parr)

target array (tarr)

n+1 n+2

En+2 En+1

Figure 6: Pointer array experiment. Dashed boxes represent
cache lines within a memory page. Red CLs are cached due
to architectural loads during training, yellow and blue CLs
are potential prefetch locations. Boxes are numbered by the
order of access.

Characteristics. We distinguish the following prefetcher char-
acteristics: (i) Does the prefetcher also detect backward iterations?
(ii) How many training accesses are required? (iii) What is the max-
imum amount of data that is prefetched? (iv) How many pointers
are prefetched? (v) Is the trigger instruction pointer dependent?

Identification and Characterization. Figure 6 shows how we
test for the presence and features of a pointer array prefetcher. In
our test, we set up an array of pointers (parr), each referring to
random entries within a sparse target array (tarr). First, we evict
all entries of parr and tarr from the cache. Second, we ensure the
address translation is cached for each page of tarr by accessing
one cache line on each page. After that, we iterate over parr and
dereference the first n training pointers. Then, we measure the time
it takes to dereference pointer 𝑛 + 1 and access a predetermined
random entry of tarr that was not accessed during training. If
a pointer array prefetcher is present, we observe a cache hit for
pointer 𝑛 + 1 but a cache miss for the random entry.

To unveil parameters of the prefetcher, we vary the number of
training pointers 𝑛 in parr, the offset of the measurement pointer
from the last accessed parr pointer, and the number of bytes we
measure past the start of a possibly prefetched tarr entry. To iden-
tify whether the prefetcher also activates on backward iteration,
we start accessing and dereferencing the last entry of parr and
decrement the index with each iteration. To determine whether the
prefetching behavior depends on the memory location of the in-
struction accessing parr or dereferencing the pointer, we unroll the
loop accessing and dereferencing pointers in parr. In an additional
test, we spread these instructions across different memory pages
and align them to different page offsets.

3.2.5 Pointer Chasing. In a chain of pointers, each pointer depends
on its predecessor in the access sequence. The next address is stored
where the previous pointer points to, as for example in a linked
list. A pointer-chasing prefetcher [3, 11] loads subsequent pointers,
reducing the stalling times when traversing such data structures.
Note that related work [29] uses the term “pointer chase” to describe
any behavior where data is directly used as an address. Our work,
however, only uses the term in scenarios where the address of the
next element of the data structure is unknown until it can be read
from memory (e.g., a linked list). This effectively serializes memory
accesses and prefetching, preventing parallelization.

Identification. As, to our knowledge, this type of prefetcher
cannot be found in commodity hardware, we do not distinguish
any characteristics for this type of prefetcher and only present an

(a)

I1 I1I1 I1

1 134

(b)

(c)

Spatial region n Spatial region m

2

I1 I1I1 I1I1

1 5 13

3

4

Guess region size: 5 Observed region size: 5

2

I1 I1I1 I1 I1 I1

I1

1 1

n+1

n+1n

Guess region size: n+1 Observed region size: n

No prefetch

2

I1

Prefeched regionTrained regions

I1 I2I1 In

1 2n+
1

n

r1

I1

r2 rn rm

Figure 7: SMS prefetcher experiments. Dashed boxes repre-
sent cache lines, bold boxes represent the spatial region. The
red cross represents a miss for an expected prefetch.

existence benchmark. In our test, we set up a linked list where
each node of the list resides on a different cache line. The order
of the list is randomized to prevent other extrapolation-based or
replay-based prefetchers from interfering. First, we evict all entries
of the array from the cache. Next, we iterate over the pointer chase
and dereference the first n training pointers. Then, we measure the
access time to pointer n+1 and a predetermined random entry that
was not previously accessed. If the prefetcher is present, we detect
a cache hit for pointer n+1 but a cache miss for the random entry.

3.2.6 Spatial Memory Streaming (SMS). Load instructions often
access structured elements and exhibit repetitive access patterns
in spatially-nearby memory relative to initial memory access. An
SMS prefetcher [35] targets such use cases, which are common
for a repetitive data structure such as socket buffers (sk_buff) in
Linux. The prefetcher operates in two stages: training and predic-
tion, which can be triggered by a particular load instruction (PC-
triggered) or memory location (Mem-triggered). For instance, in
the training stage, a PC-triggered prefetcher learns all the memory
accesses over a given load instruction in spatial memory. Even-
tually, when a different spatial region is accessed with the same
load instruction, it initiates the prediction stage to prefetch learned
memory access patterns—speculating that the load instruction will
show similar access patterns in other regions.

Characteristics. We identify the following characteristics of
an SMS prefetcher. (i) What triggers the prefetcher to start learn-
ing memory access patterns? (ii) What spatial boundary does the
prefetcher use for learning memory accesses? (iii) Is there a differ-
ence in the prefetching behavior in forward or backward direction
from the first load from a region? (iv) Can the training continue
when another load instruction’s address partially collides with the
trigger instruction? (v) Howmany spatial regions can the prefetcher
learn simultaneously in the training stage?

Identification and Characterization. We leverage the two
stages of the SMS prefetchers to design our tests. As depicted in
Figure 7, we demonstrate the PC-triggered SMS prefetcher tests.
First, we induce a pattern in the prefetcher’s training stage. Second,

FetchBench: Systematic Identification and Characterization of Proprietary Prefetchers CCS ’23, November 26–30, 2023, Copenhagen, Denmark

we trigger the prefetching stage to measure the prefetched cache
lines in a different spatial region. Figure 7 (a) shows the base test
case where we induce a pattern by accessing spatially-nearby cache
lines in one region, followed by trigger access in a new region (in
red). We then compare the cache lines prefetched in the new spatial
region (in blue) with the memory accesses in the trained region.
If they are identical, the test confirms the presence of the SMS
prefetcher. Extending the base test, we develop tests to identify
the relevant factors for successful training and prediction stages.
These factors comprise the address of the load instruction and the
address offset of the first memory access. Figure 7 (b) illustrates the
technique used to determine the spatial boundary for the prefetcher.
We gradually increase the spatial size and stop when the prefetched
cache lines do not match the trained pattern. Knowing the spatial
boundary, we also investigate the maximum size of the induced
pattern for training when the consecutive memory accesses are in
the same direction (forward or backward).

We further designed tests to identify the number of independent
spatial patterns that can be learned simultaneously in the training
stage. As illustrated in Figure 7 (c), we train the subject region r1
with a few loads (I1). We continue training 𝑛 − 1 additional regions
r2, r3, until rn. The training phase completes with one additional
(𝑛+1) load I1 in region r1. For the load (I1), we measure the prefetch
corresponding to the last access (𝑛 + 1) in region rm. If cache line
(𝑛 + 1) is prefetched, the spatial region r1 was not evicted from the
training stage. The probability of eviction of the region r1 increases
with the number of simultaneously trained regions. However, due to
unknown replacement policies, this test only provides an estimate.

3.2.7 Generalized Region-Unbounded Replay Prefetchers. As ex-
plained in Section 3.1, replay-based prefetchers aim to prefetch ir-
regular but repetitive memory access patterns. The SMS prefetcher
(Section 3.2.6) covers accesses that occur in spatially-nearby loca-
tions, but cannot cope with spatially-distant accesses. This is where
region-unbounded replay prefetchers come into play. For example,
when scanning a large unclustered database, although the data-
base is logically sequential, the memory allocation is fragmented,
making region-unbounded replay prefetchers more effective.

These prefetchers typically require more space to store the meta-
data necessary to detect unbounded and irregular patterns. To
balance the accuracy and space trade-off, researchers have pro-
posed innovative designs such as circular FIFO buffers, as imple-
mented in the Global History buffer (GHB) [25], table-based as
in Markov [20], storing a history in off-chip memory as in Tem-
poral Memory Streaming (TMS) [39] and Spatio-Temporal Mem-
ory Streaming (STeMS) [34], and storing relative distance instead
of complete addresses as in Delta Correlating Prediction Tables
(DCPT) [13]. Despite these differences in design, the fundamental
property to learn a sparse access pattern and replay it when detected
remains common to all region-unbounded replay prefetchers.

Identification. As illustrated in Figure 8, we train the prefetcher
by repeatedly accessing a sequence of a few memory locations
at spatially-distant locations, where every memory access results
in a cache miss. Subsequently, we flush the page from the cache
and access only the initial few locations of the sequence to test
the prefetching behavior. If the prefetcher correctly prefetches the

Training

Testing
page 1 page 2 page 3 page n

1

I1

2

I1

6

I1

7

I1

5

I1

4

I1

3

I1

page 1 page 2 page 3 page n

1

I1

2

I1

6

I1

7

I1

5

I1

4

I1

3

I1

Figure 8: Region-unbounded prefetcher identification test

subsequent memory locations, a region-unbounded prefetcher is
present.

Classification. There are many academic variations of region-
unbounded replay prefetchers but no known instances on real
CPUs. Existing tests in FetchBench, such as tests for the trigger
or the number of prefetches, can serve as a reference for more
detailed identification tests. For instance, a variant of the GHB
prefetcher (GHB PC/AC) utilizes the PC to localize a cache miss and
subsequently employs address correlation (AC) to detect the access
pattern. Using the memory correlation primitive in FetchBench is
sufficient to identify such a prefetcher, as it will prefetch for the
same memory address but not for a different address.

4 CHARACTERIZING ARMV8 AND X86-64
PREFETCHERS

4.1 Implementation
Our framework is implemented in C/C++ and Assembly, consist-
ing of approximately 8,100 lines of code. It currently supports the
ARMv8 and x86-64 architectures. The source code of our framework
is available at https://github.com/scy-phy/FetchBench.

To implement the tests outlined in Section 3.2, we require three
primitives on each platform: a precise timing source, a method
to flush cache lines from the cache, and memory barriers. The
flushing primitive allows training or triggering the prefetcher from
a clean cache state. The timing source and the barrier enable us
to determine whether a memory line is cached or not through a
Flush+Reload cache side channel [41]. This allows us to observe
prefetching behavior. On x86-64 CPUs, we use the clflush instruc-
tion to flush cache lines. On ARM-based platforms, we flush using
the DC CIVAC instruction. On the Apple M1, we enable this feature
through the privileged model-specific register S3_0_C15_C4_X first.
To collect precise timestamps, we either call clock_gettime, use a
counter thread, or use architecture-specific means like the rdtscp
instruction on x86-64 or the Performance Monitors Cycle Count Reg-
ister (PMCCNTR) on ARM (if available). We observe different noise
characteristics for these methods across different platforms, so we
choose the option that produces the least noise for each of them.

To ensure that the memory activities of the Flush+Reload side
channel do not impact the results, we always probe one cache line at
a time. More precisely, we run an experiment, probe the cache state
of one memory location, repeat the experiment, probe a different
location, and so on. This ensures that our probe accesses do not
form patterns that could impact the prefetcher’s behavior.

https://github.com/scy-phy/FetchBench

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Till Schlüter et al.

Table 1: Prefetcher identification and characterization results. Bold tests are existence tests.

(a) Stride Prefetcher (3.2.1)

Processor →
↓ Characteristics

A53 A55 A72 A73 A76 M1i M1f
i7SB, i5HW,
XeSL, XeCL,

i7CL

i3IL,
i7TL,
XeIL

i9ALp
R5Z,
R5Z+

R7Z3,
R9Z3+

Pos./neg. direction / / / / / / / / / / / /

Min./max. stride (B) ±64/
±256

±64/
±2048

±64/
±4096

±64/
±2048

±64/
±8192

±128/
±256

±128/
±8192

±64/
±1024

±64/
±8192

±64/
±16384

±64/
±8192

±64/
> ±16384

Min./max. prefetches 3/5 1/28 1/16 1/31 1/18 8/20 8/16 1/2-5 1/2-6 1/8 1/5-7 5/15
Trigger Mem PC/Mem PC/Mem PC/Mem PC/Mem Mem Mem PC PC PC PC Mem

PC collision (bits) N/A — 12 — 15 N/A N/A 8 10 10 12 N/A
Cross page boundary?

Strides < 1 CL?
Strides with random

inner-CL offsets?

Not identified on i9ALe.

(b) Ptr. Array Prefetcher (3.2.4)

Processor →
↓ Characteristics

M1f

Existence
Trigger Mem

Pos./neg. direction /
Max. prefetch size 256

Max. prefetch amount 16 ptrs.
No. training pointers 2

Not identified on all other processors.

(c) SMS Prefetcher (3.2.6)

Processor →
↓ Characteristics

A72 A73 A76

Trigger PC PC Mem
Region size (B) 1024 1024 1024

PC collision (bits) 12 — —
Pos./neg. direction 12/9 16/11 12/9
No. of entries (est.) 5 9 10

Not identified on all other processors.

(d) Other Prefetchers

Processor →
↓ Prefetcher

i7SB, i5HW,
XeSL, XeCL,

i7CL

i3IL,
i7TL,
XeIL

i9ALe

Adjacent CL (3.2.2) B F F

Stream (3.2.3)
Pointer chase (3.2.5)
Region-unbounded

replay (3.2.7)
B Block F Forward; None identified on all others.

4.2 Experimental Setup
We run FetchBench on 19 different processors in total, comprising
six ARMv8 SoCs, nine Intel x86-64 CPUs, and four AMD Ryzen
CPUs. We provide a list of all testing environments in Table 2 in
the appendix, where we also assign them short IDs to refer to
them throughout the paper. Our selection of ARM-based platforms
comprises five Cortex-A-series designs, ranging from the Cortex-
A53 to the Cortex-A76, as well as the low-energy and performance
cores of the Apple M1 Max SoC (dubbed Icestorm and Firestorm).
The selected Intel CPUs comprise Core and Xeon models from the
Sandy Bridge to the Alder Lake generation. We further test four
AMD Ryzen CPUs from the Zen to the Zen 3+ microarchitecture.
We run all our tests on each processor. We assume the analyst
has root access to the systems under evaluation. We use a Linux
distribution that is provided or recommended by the respective
vendor for each of the ARM boards, as listed in Table 2.

4.3 Experimental Results
According to our tests, all processors we examined implement at
least one prefetcher design, most even two or more. We present the
detailed results of our identification and characterization in Table 1
and summarize the most significant findings.

To the best of our knowledge, we are the first to identify and
characterize a replay-based prefetcher in real-world hardware. As
shown in Table 1 (c), our tests uncover previously unknown SMS
prefetchers in the ARM Cortex-A72, -A73, and -A76 processors. All

use a region size of 1 KiB. The prefetchers in A72 and A73 use the
Program Counter (PC) as a trigger, i.e., they map the instruction
address of a load instruction to a spatially-bounded memory access
pattern. The A72’s prefetcher cannot distinguish trigger instruc-
tion addresses with 12 or more identical least-significant bits. This
enables address collisions, causing the prefetcher to apply spatial
access patterns learned in one region to another. As we show in
Section 4.3, such collisions pose a security risk, as they leak memory
access patterns across privilege domains. The SMS prefetcher on
A76 is memory-triggered, i.e., it stores an access pattern for a par-
ticular spatial region in memory. In addition, we discover that the
SMS prefetchers on both A72 and A73 store the accessed memory
locations within a region as distances relative to the first accessed
memory line of a region. We suspect that the prefetcher stores the
cache state of a limited number of memory lines around the initial
access as a bit vector. Consequently, these prefetchers miss accesses
at one end of the region when the initial access occurs close to a
region boundary. Due to unknown replacement policies, we only
estimate for the number of entries in the SMS prefetchers: 5 entries
on the A72, 9 entries on the A73, and 10 entries on A76.

As revealed in Table 1 (a), the most commonly identified prefet-
cher in our test is the stride prefetcher, implemented in all of the
tested processors except the Alder Lake efficiency core (i9ALe). The
ARM-based CPUs in our test show considerably different stride-
prefetch behavior. The prefetcher on A53 is the least aggressive:
The maximum stride is low (256 B), and at most 5 cache lines

FetchBench: Systematic Identification and Characterization of Proprietary Prefetchers CCS ’23, November 26–30, 2023, Copenhagen, Denmark

are fetched in advance. In contrast, the stride prefetcher on A76
detects strides up to 8 KiB. More aggressive prefetching can also
be observed on A55 and A73, loading up to 28 and 31 cache lines
upfront, respectively. While stride prefetching can be triggered
by a matching load instruction address or an access to a nearby
memory address for most Cortex-A-cores, the A53 and the Apple
M1 (M1i, M1f) rely only on memory addresses as a trigger. The
stride prefetchers on the Intel CPUs from the Sandy Bridge to
the Comet Lake generations (i7SB, i5HW, XeSL, XeCL, i7CL) behave
almost identically in our test, only differing in themaximumnumber
of prefetched cache lines. We confirm the finding of Chen et al.
that this prefetcher uses only the 8 least-significant bits of a load
instruction to reference a stride pattern internally [7]. In line with
Xiao et al., we see prefetching for strides smaller than the cache line
size [40]. In the Ice Lake and Tiger Lake generations (i3IL, i7TL,
XeIL), the stride prefetcher is enhanced to detect larger strides of up
to 8 KiB. The number of relevant instruction address bits increases
from 8 to 10. Our Alder Lake CPU features a hybrid design. On its
performance cores (i9ALp), strides up to 16 KiB are detected. We
did not identify a stride prefetcher on the efficient cores (i9ALe). On
the AMD CPUs based on the Zen and Zen+ microarchitectures (R5Z,
R5Z+), we find a PC-triggered prefetcher that detects strides up to
8 KiB. In contrast, the prefetcher in the Zen3 and Zen3+ generations
(R7Z3, R9Z3+) is memory-triggered and detects strides up to a size
that exceeds our testing capabilities. All stride prefetchers in our
test can be triggered by a pattern that forms a regular stride at
cache-line granularity but has random inner-cache-line offsets.

In our test, all Intel CPUs from Sandy Bridge to Comet Lake
complement the stride prefetcher by a block-fetching adjacent-
cache-line prefetcher and a stream prefetcher. Starting from Ice
Lake, the adjacent-cache-line prefetcher is forward-fetching instead.
The Alder-Lake CPU has no stream prefetcher and an adjacent-
cache-line prefetcher only on the efficient core.

Matching Sanchez Vicarte et al.’s results [29], we identify a
pointer array prefetcher on the Firestorm cores of the Apple M1
CPU (M1f). We confirm that the trigger does not depend on the
location of the instruction and examine additional features such as
the size of prefetched entries. We detect prefetching starting with
2 training pointers in contrast to 3 as reported in prior work [29].

None of our CPUs feature a pointer-chasing prefetcher or a
region-unbounded prefetcher. We suspect the primary reason for
this is storage limitations. Region-unbounded prefetchers tend to
require significant amounts of memory to store an access history,
making their implementation expensive in practice. To verify that
our test for region-unbounded prefetchers works in general, we
execute it on the implementation of the DCPT (Delta Correlating
Prediction Table) prefetcher [13] in the gem5 microarchitecture
simulator [5]. The DCPT prefetcher uses a PC-indexed table point-
ing to a circular buffer of deltas. Our test case successfully detects
the region-unbounded prefetcher in this simulation.

The execution time of FetchBench mainly depends on the CPU
performance and the identified prefetchers. In our tests, the runtime
ranged from 27 minutes (R9Z3+) to 6.2 hours (A53). We illustrate
the success rates of our experiments in Appendix B.

5 EXPLOITING PREFETCHERS
In this section, we investigate the security properties of a prefetcher
that we identified in hardware for the first time: The SMS prefetcher.
We know from FetchBench’s results (see Table 1 (c)) that the im-
plementation of this prefetcher on the ARM Cortex-A72 is PC-
triggered. Further, trigger collisions may occur when the addresses
of two load instructions share the 12 least-significant bits. This com-
bination of characteristics is problematic, as it allows us to train a
prefetcher in one context and observe its prefetching behavior in
another. We present two case studies to illustrate this finding. First,
we show that we can exploit the prefetcher’s characteristics to leak
secret-dependent memory accesses from one process to another.
Second, we demonstrate that the prefetcher does not properly sep-
arate patterns from normal world and secure world, allowing for
side-channel leakage from TrustZone.

5.1 Case Study: AES Attack
We exploit the SMS prefetcher on the ARM Cortex-A72 to leak
parts of an AES key from one userspace process to another. Lookup-
table-based AES implementations have been target of side-channel
attacks in the past [15, 36]. Some attempts relied on tables being
shared between attacker and victim process, enabling techniques
such as Flush+Reload and Flush+Flush [15]. Approaches not based
on shared memory faced the non-trivial challenge of profiling tables
without knowing their addresses and cache-set mappings [36].

Our attack targets an implementation where lookup tables are
not shared, making Flush+Flush and Flush+Reload infeasible. In
contrast to prior approaches, we avoid the need to learn the table’s
memory addresses by exploiting the prefetcher. The prefetcher uses
partial instruction addresses as a trigger, making it susceptible to
address collisions—an insight gained from FetchBench. This allows
us to leak memory access patterns in a targeted way based on the
addresses of load instructions that access the tables. Prior attacks
considered the prefetcher rather a source of noise [36], while we
use it as a source of leakage.

We further address the problem of extracting a secret-dependent
prefetcher state before it is overwritten or evicted by subsequent
memory loads. While prior work modified the victim code to work
around this problem [32], we synchronize the attacker process
with the victim and interrupt it soon after the first AES key addi-
tion. We implement this synchronization primitive by combining
Flush+Reload on code [41] with inter-processor interrupts [22].

System and Attacker Model. We perform the attack on our
A72 system, a Raspberry Pi 4 with four ARM Cortex-A72 cores.
We attack the default AES-128 implementation of Mbed TLS 3.3.0
(released December 2022), which is based on T-tables. We assume a
chosen-plaintext scenario: The victim process encrypts an attacker-
specified plaintext using a fixed 128-bit key targeted by the attacker.

The attacker can execute native code in userspace on the same
CPU core as the victim and uses the PMCCNTR register as a timing
source. We assume that the attacker can execute the victim program
repeatedly, each time providing an arbitrary plaintext. Both the
attacker and the victim process have access to the same (shared)
Mbed TLS instance in memory. However, we emphasize that only
the library code is shared in memory, not the T-tables. The tables
are generated in victim memory during library initialization. The

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Till Schlüter et al.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 3 2 4

4 2 1 3

1 4 3 2

LUT0

LUT1

LUT2

LUT3

LUTRound 1
load
and
XOR

Interrupt

4 2 3
-4 +6

+7
1

architectural load (numbers indicate order
of access within region)

prefetcher
training

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Round 2

⋮

LUT

Plaintext

Key k0

16 B

16 B

16 B

Key k1

Library code (shared) Victim memory (not shared)

Victim

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Aacker Memory

Aacker Process

1

load

architectural load
prefetch

? ? ?
-4 +6

+7

Attacker

Figure 9: Loads and prefetches in victim/attacker process

attacker can thus apply Flush+Reload only to code (to synchronize
with the victim process) but not to the T-tables (as prior attacks did
to infer access patterns; we exploit the prefetcher instead).

Victim Program Procedure. The victim process receives a
plaintext as a command line parameter and encrypts it using the
Mbed-TLS library. During library initialization, four lookup tables
of 256 4-byte integers each are generated. The generated tables are
local to the victim process and thus inaccessible to the attacker. The
default table size of 1 KiB (or 16 cache lines) matches the region
size of the A72’s prefetcher. As illustrated in Figure 9, the attacker-
provided plaintext bytes are XORed with the AES key 𝑘0 in the first
encryption round. The 16 resulting bytes are secret-dependent and
are used as indices to load elements from the lookup tables—the
source for the prefetcher-based leak.

Cache-Line Granularity. Each cache line of the lookup ta-
bles contains 16 table elements and we expect the same prefetch
behavior regardless of which of those elements is accessed. As a
consequence, our attack cannot distinguish offsets within a cache
line and can thus only infer the upper 4 bits of each access loca-
tion and key byte. This limits us to leaking only half of the AES
key. We emphasize however that knowing 64 key bits reduces the
brute-force effort significantly, as an attacker knows which key
bits are missing. To illustrate this, we refer to past approaches to
brute-force block cipher keys. Deep Crack, a machine built in 1998
to brute-force a DES key, tried 92 billion keys per second [10]. At
this pace, brute-forcing a full AES key would take 5.9 · 1019 years
on average, while 64 key bits could be found in only 3.2 years on
average. As brute-forcing can be parallelized, for example in the
cloud, a modern solution could be even faster.

Prefetcher Activation.When a lookup table is first accessed in
the victim process, the prefetcher is activated, sets up a new region,
and associates it with the address of the initial load instruction. For
all subsequent loads from the same lookup table, the prefetcher
stores the distances (in cache lines) between the initial memory ad-
dress and the memory addresses of the three following accesses. For
instance, in Figure 9, the initial load from LUT0 targets cache line

7, and the next three loads target lines 13, 14, and 3. The prefetcher
stores the secret-dependent distances relative to the first access, i.e.,
13 − 7 = 6, 14 − 7 = 7, and 3 − 7 = −4.

Attack Procedure. Our attack has 3 steps. First, we determine
the distances between the initial access and the three later accesses
to a lookup table. Second, we find the offset of the initial access
from the beginning of the lookup table. Finally, we decide which of
the three leaking distances is influenced by which key byte. Since
the procedure is the same for all tables, we describe it for only one.

Initial leakage. The attacker provides an arbitrary plaintext to the
victim process, interrupts it after the first AES round, and extracts
the prefetcher’s state. We explain the interrupt mechanism in the
next section. To extract the state, the attacker executes a load in-
struction that is located at a colliding address to the first load in the
library accessing the table. This instruction address is public and
can be extracted from the shared library binary. The address is also
unaffected from ASLR, as the relevant lower address bits are usually
not randomized. Executing the colliding load instruction activates
the prefetcher in the attacker’s memory space, as shown in Figure 9.
The prefetcher erroneously associates the load with earlier memory
activity in the victim process and prefetches three more addresses
according to the previously recorded distances, starting from the
initial load location in the attacker’s memory. The attacker recovers
the distances from the cache state of their own memory using a
Flush+Flush cache side channel. However, the three distances are
insufficient to recover the corresponding key bits. Additionally, (i)
the offset of the initial load from the beginning of the table, and (ii)
the order of the three later accesses are required.

Leaking the initial offset. To identify the offset of the initial access
from the beginning of the table, the attacker needs to determine the
4 most-significant bits (MSBs) of the byte that influences the initial
load from the table. To this end, the attacker flips one of the 4 MSBs
of the corresponding plaintext byte and repeats the experiment. As
a result, all three leaking distances move by a constant offset in
either a positive or negative direction. The direction reveals the bit.
The attacker repeats this process for each of the 4 MSBs.

Leaking the remaining offsets. The attacker already knows the
three distances between the initial and the later loads but does not
know which input bytes influence which of the distances. To find
this mapping, the attacker flips a bit in one of the plaintext bytes that
control the three later table accesses and repeats the experiment. As
a result, only one of the three distances changes. The attacker maps
this distance to the mutated plaintext byte and uses this knowledge
to compute the four key bits for the corresponding key byte.

After this process is completed for all four lookup tables, the
attacker successfully leaked 64 bits of the AES-128 key.

Synchronization. The attacker faces two challenges when syn-
chronizing their process with the victim. First, they need to in-
terrupt the victim process when the prefetcher’s state is secret-
dependent, as later memory accesses could alter that state. Second,
they have to schedule attacker code that extracts the prefetcher’s
state as soon as possible after the interrupt on the victim’s CPU core.
We approach the challenge of synchronizing attacker and victim
with a Flush+Reload attack on the library code [41] to identify the
right moment for an interrupt and an inter-processor interrupt [22]
to schedule attacker code.

FetchBench: Systematic Identification and Characterization of Proprietary Prefetchers CCS ’23, November 26–30, 2023, Copenhagen, Denmark
a

ac
ke

r
vi

ct
im

un
re

-
la

te
d

Time

C
P

U
 C

or
e

Core MigrationFork Flush+Reload

aacker/sleeper
victim

victim

aacker/main
aacker/sleeper

victim

1
2

3

4

5a

5v 6

7

Figure 10: Synchronization of attacker and victim processes

The detailed procedure we use is illustrated in Figure 10. We
are interested in the prefetcher’s state as soon as possible after
the first round of accesses to the AES lookup tables is completed
(highlighted in red in Figure 9). After starting the main attacker
process, we fork a child process (1), which we refer to as the sleeper
process, and move it to the core where we later run the victim
on. We block the sleeper process, for instance by making it wait
for a semaphore controlled by the main attacker process. Next,
the main attacker process starts the victim process (3) and moves
it to the victim core (4). While the victim runs and performs the
encryption (5v), the main attacker process performs a Flush+Reload
attack on the shared library code (5a). More precisely, we select
the address of a function that is called just before the encryption
(mbedtls_aes_setkey_enc) as a trigger. We flush this address in a
loop and reload it while measuring the memory latency. As soon as
we notice a low latency, we know that the victim called the function.
At this point, the main attacker process wakes the blocking sleeper
process through the semaphore and triggers an inter-processor
interrupt, e.g., by moving the victim process to another core (6) or
calling the membarrier system call [22]. The scheduler interrupts
the victim process on the victim core and schedules the sleeper
process (7). The sleeper can then perform a memory load from an
instruction at a colliding code address and inspect the cache state
of its own memory to recover the prefetcher’s state.

The synchronization may interrupt the victim process slightly
too early or too late. However, we can easily filter the recovered
prefetcher states based on the number of accesses: If we interrupt
the victim process at the right moment, we expect to leak three
distances. We ignore all other samples for our attack.

Evaluation. We repeated the attack with 5 random keys on a
Raspberry Pi 4 and successfully recovered the 4 MSBs of 12.4 AES
key bytes on average (maximum: 16, minimum: 8). The average
runtime of our attack is 30 hours. We use 256 different plaintexts for
each execution run and repeat each plaintext encryption between
10 000 and 15 000 times. Our synchronization mechanism provides
us with the expected cache state in 0.19% of these cases. While
this hit rate may seem low, almost all unexpected samples are easy
to detect and filter out based on the number of cache hits, as we
primarily expect samples containing three distances.

Edge cases. The attack as described above assumes that the T-
tables are 1 KiB-aligned (i.e., aligned to prefetch regions) in memory.
The table alignment is determined at compile time and can change
between compiler versions. If the tables are misaligned and span
across two regions each, the attack can be adapted by tracking
accesses in both regions or by mutating the plaintexts such that
all accesses are moved into one of the regions. Similarly, if two

prefetched cache
lines

architectural load

SMS Prefetcher
State

Aacker Program
I2: 0x225BA

Encode: train

Deco
de:

pref
etc

h

PC
Spatial
Region
Paern

0x5BA 00110101
00100110

Se
cu

re

M
em

or
y

N
on

-s
ec

ur
e

M
em

or
y

Trusted Program
I1: 0x315BA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

110 1 1 11(1)0 0 0 0 0 0 0 0

I1 I1 I1 I1 I1 I1 I1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I2

110 1 1 11(1)0 0 0 0 0 0 0 0

Figure 11: Covert channel based on the SMS prefetcher. Top:
The sender encodes a bit vector in the SMS region (in red).
Bottom: The receiver triggers a PC-colliding load to reveal
this bit vector via the prefetcher regions (in blue).

memory accesses hit the same memory table element, less than
three distances are leaked. This problem can be solved by mutating
the plaintext until this is no longer the case.

5.2 Case Study: ARM TrustZone Covert Channel
Our second case study demonstrates a covert channel based on
the SMS prefetcher characteristics uncovered by FetchBench. Our
prefetcher-based covert channel uses the prefetcher’s state contain-
ing the access pattern—as encoded by the sender and retrieved by
the receiver—to implicitly send information between processes. We
demonstrate that such covert channels are possible even if the two
processes run in vastly different privilege domains. To this end,
we leverage FetchBench’s characterization of the SMS prefetcher
implementation on ARM Cortex-A72. Using ARM TrustZone [2],
we create a covert channel between a user space application in a
non-secure world and a trusted app in a secure world. The covert
channel thereby (a) demonstrates missing state separation between
secure and non-secure world in a prefetcher, (b) approximates the
upper bound of the data transmission rate.

The general idea of the covert channel is as follows. Given a
spatial region comprising 𝑁 cache lines, the sender uses one of
these lines as a trigger and encodes the bits to send into the state of
the remaining 𝑁 − 1 cache lines. The receiver uses a colliding load
instruction to trigger the prefetcher. Immediately thereafter, the re-
ceiver derives the transferred bits from the prefetcher’s prediction.

Implementation. To run our attack on a fully TrustZone-en-
abled platform, we prototype our attack on a Rock 4 SE board. This
board is based on a Rockchip RK3399-T SoC, which is TrustZone-
supported [27] and contains four Cortex-A53 and two Cortex-A72
processor cores. We only use the A72 cores for the covert channel.
We run Linux in a non-secure world and OP-TEE, an implementa-
tion of ARM TrustZone, in a secure world.

The concrete implementation of this covert channel requires
a detailed understanding of the underlying prefetcher internals.
We make use of the characterization obtained by FetchBench as
reported in Section 3.2.6: The spatial region size is 16 cache lines.
The prefetcher is PC-triggered and uses the 12 least-significant
bits of the PC to map it to a region pattern. This implies that the
sender and receiver applications only need to align 12 bits of their
load instruction addresses to map them to the same pattern in the
prefetcher’s state. FetchBench also identifies a limitation on the
A72 CPU: While a spatial region has a size of 16 cache lines, the

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Till Schlüter et al.

prefetcher is unable to capture the state of some of those lines in
some situations. More precisely, the prefetcher can only record the
state of up to 9 cache lines before and 12 cache lines after the initial
(trigger) access to a region. Hence we choose the trigger location
as the middle of the region, allowing us to make use of all cache
lines of a region. Furthermore, FetchBench finds that at least five
region patterns can be stored simultaneously in the SMS prefetcher.
Thus, we optimize the data rate by trainingmultiple region patterns
in each iteration; we then empirically validated that training four
region patterns in parallel hits the sweet spot between low error
rate and high throughput.

Figure 11 illustrates the covert channel in detail. First, the at-
tacker aligns the userspace code such that the least-significant
12 bits of the receiving load instruction collide with those of the
sending load instruction in the secure world. Second, the sender
encodes data into the prefetcher’s state as discussed before—we use
the cache state of each cache line within a region to encode one
bit of information. Every accessed cache line (in red) corresponds
to a set bit, while cache lines corresponding to unset bits are not
accessed. Because one cache line (here: the 7th) serves as the trigger
which must always be accessed, we cannot use this cache line to en-
code a data bit. Consequently, we encode 15 bits of data per region
pattern into the SMS prefetcher’s state. Finally, the receiver triggers
prefetching (in blue) in userspace by accessing the 7th cache line
in a region in the receiver’s memory space using a colliding load
instruction. By simultaneously training four region patterns in this
way, we can transfer 60 bits per iteration.

Evaluation. To evaluate the performance of the covert channel,
we transfer 1 MiB of test data from secure to non-secure memory.
The accuracy is computed as the percentage of error bits while
transferring the test data, and the data rate is computed as the total
time required for transferring the test data. After decoding the data,
we observed a bit error rate of 5.02 % and a data rate of 1245 Bytes/s.

Applicability to Other Prefetchers. Stride- and stream-based
covert channels encode data in strides. Existing approaches [7] use
two different stride widths to represent 0 or 1; i.e., 1-bit information
per prefetcher entry. In comparison, the region-based prefetcher
allowed us to encode more bits and achieve a significantly higher
data rate, ten times higher than existing approaches. Furthermore,
using FetchBench’s insights into prefetcher characteristics allowed
us to minimize the error rate and improve the data rate. We believe
that our new insights into various prefetcher types can also improve
related covert channels. For example, one could use FetchBench to
characterize a stride prefetcher and encode more bits per pattern
by also considering larger stride lengths.

6 RELATEDWORK
6.1 Prefechter Reverse-Engineering
Most existingwork focused on the x86 architecture. Rohan et al. [28]
reverse-engineered the Intel Kaby Lake stream prefetcher and find
the stream table size and the direction of its entries, the trigger
condition of the prefetcher, and if the prefetcher is shared between
different cores of the processor. Chen et al. [7] reverse-engineered
and characterized the Intel IP-stride prefetcher in the Haswell and
Coffee Lake microarchitectures, while Xiao et al. [40] investigated
the behavior of the Intel Comet Lake IP-stride prefetcher for small

strides. CacheObserver [9] characterized the L2 Stream prefetcher
and the adjacent-cache-line prefetcher on the Intel Whiskey and
Coffee Lake microarchitectures. While the aforementioned works
focus on data prefetching, Zhang et al. [43] reverse-engineered the
instruction prefetcher on a number of Intel CPUs and find that it
follows branch predictions from the branch target buffer (BTB).

Only a few publications investigated prefetchers on ARM ar-
chitectures. Sanchez Vicarte et al. [29] presented an approach to
test the existence of the Array-of-Pointers prefetcher for the Ap-
ple M1 processors and characterize it by reverse-engineering its
parameters, i.e., the activation condition and the access memory re-
gions. Plumber [17] is a framework to facilitate reverse-engineering
hardware features by leveraging instruction and operand fuzzing
and statistical analysis. The authors used Plumber to study the
prefetcher of ARM Cortex-A53 to, e.g., find out its trigger condition
and whether prefetching respects page boundaries.

In contrast to prior works, our prefetcher characterization ap-
proach covers a multitude of data prefetcher designs. We are the
first to identify and characterize a replay-based prefetcher design,
in particular, the SMS prefetcher on the ARM Cortex-A72 architec-
ture. Our approach enables us to better evaluate the security of a
high number of CPUs across the x86 and ARM architectures.

6.2 Prefetcher Exploitation
Prefetchers have been exploited to leak data from program memory
either through side channels [7, 17, 29, 30, 32] or by constructing
covert channels [7, 8, 28]. Side-channel attacks exploiting prefetch-
ing target either hardware-based or software-based prefetching.

Hardware-based Approaches. The Intel IP-based stride prefet-
cher is a common target in literature. Cronin and Yang [8] exploited
it on a Skylake CPU to construct a bi-directional inter-process covert
channel between two adversary-controlled processes running on
the same core. Using their approach, the two processes commu-
nicate by periodically forcing the prefetcher to forget its learned
stride patterns, thus causing timing variations in memory accesses.

Shin et al. [32] exploit the same prefetcher as a side channel
to attack a constant-time Elliptic Curve Diffie-Hellman (ECDH)
implementation from OpenSSL to leak its private key. The Intel
IP-based stride prefetcher has also been exploited in AfterImage [7].
The attack showed how an adversary could mistrain the IP-stride
prefetcher in another context and use it to leak critical data from
userspace applications and kernel routines. The authors also used
AfterImage to attack RSA and successfully recovered the RSA key.
Also, Xiao et al. [40] exploit the same prefetcher to attack a lookup-
table-based AES implementation. BunnyHop [43] demonstrates
that the instruction prefetcher on Intel CPUs can be exploited to
leak cryptographic keys by causing partial eviction of lookup tables
or control flow inference from the prefetcher’s behavior.

Recent works [29, 30] examine data memory-dependent prefetch-
ers [42], such as the pointer-array prefetcher in Apple M1 proces-
sors [29]. This prefetcher is exploited to perform out-of-bounds
reads and retrieve leaked pointers. The attack technique assumes
the same memory space for the attacker and victim and relies
on Prime+Probe to retrieve data. Additionally, they present three
prefetching-based primitives on the ARM architecture that may
leak the control flow of programs and secret data from memory.

FetchBench: Systematic Identification and Characterization of Proprietary Prefetchers CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Compared to these works, we are the first to exploit a replay-
based data prefetcher design. Similar to AfterImage [7], we cross the
boundary between the operating system and the trusted execution
environment and show that the prefetcher’s internal data structure
can be exploited to leak information across these domains.

Software-basedApproaches.Gruss et al. [14] showed an attack
that exploits software prefetch instructions on Intel CPUs to infer
if an inaccessible page is physically backed. Lipp et al. [23] showed
that the software prefetch instruction on AMD additionally leaks
the TLB state of the prefetched page. Guo et al. [16] used the x86
prefetch instruction PREFETCHW to leak cryptographic keys through
the data-dependent access pattern of an application.

7 DISCUSSION
Limitations. Our approach enables us to identify and characterize
prefetcher designs we implemented test cases for, but not prefetch-
ers that operate or are triggered in a different way. However, both
our taxonomy and framework are extensible and can be adapted to
support further contemporary or future designs.

In addition to data prefetchers, modern CPUs also utilize instruc-
tion prefetchers that allow predictive fetching of instructions before
they are requested for execution. Data and instruction prefetch-
ers share a common goal but are fundamentally different in the
way they operate internally. For example, instruction prefetchers
can be coupled with the branch predictor [43]. Characterizing and
exploiting these prefetchers is an orthogonal research problem [12].

Countermeasures. A straightforward approach to mitigate
prefetcher-based attacks is to permanently disable prefetching,
which is possible on most recent processors through model-specific
registers. However, this might impact performance. Several other
countermeasures provide trade-offs between security, performance
overhead, and implementation effort. For example, prefetching
could be disabled selectively for security-relevant code. While caus-
ing less overhead than disabling prefetching completely, this coun-
termeasure requires modifications to both the kernel and compil-
ers, which need to expose and utilize this functionality, respec-
tively. CPU vendors could adapt the following countermeasures:
(i) partitioning the prefetcher state across processes and/or secu-
rity domains; (ii) implementing a special load instruction that does
not impact the prefetcher’s state, which can be used in security-
relevant code; (iii) implementing an instruction that flushes the
prefetcher’s state, which can be triggered upon context/domain
switches; (iv) storing complete instruction addresses to correlate
load instructions based on the program counter. Most of these
countermeasures also induce non-negligible performance overhead,
require kernel modifications, and may be incomplete. A software-
based countermeasure is constant-time programming, i.e., writing
code with secret-independent resource usage. More precisely, de-
velopers should ensure that runtime, code access patterns and data
access patterns do not depend on secret values [18]. This approach
could mitigate our attack on the AES implementation.

8 CONCLUSION
Due to their proprietary nature, the types and characteristics of
specific prefetcher implementations are not known to the public for
many common CPU models. This hinders systematic assessment of

security threats posed by prefetchers. In this work, we addressed
the following question: How can we systematically identify and
characterize under-specified prefetchers in proprietary processors?
We proposed a taxonomy for prefetcher designs that differentiates
based on prediction strategy and information source, leading to
seven different types of prefetchers that can be expected to be in use
in modern CPUs. For each, we provided a detailed description and
cross-platform test cases, which are used by our FetchBench frame-
work to identify and characterize implemented prefetchers. We
implemented and used this framework to characterize 19 different
ARM and x86-64 CPUs, and we found that all differed in the specific
behavior of their prefetchers. Our analysis and framework also
allowed identifying and characterizing the previously unknown
replay-based SMS prefetcher on the ARM Cortex-A72 CPU. To illus-
trate how accurate knowledge of prefetcher characteristics impacts
prefetcher security, we demonstrated two side-channel attacks us-
ing the Cortex-A72 prefetcher to leak secret information, even from
the secure TrustZone into normal world.

REFERENCES
[1] Arm Ltd. 2016. ARM® Cortex®-A72 MPCore Processor Technical Reference

Manual.
[2] Arm Ltd. 2023. TrustZone for Cortex-A. https://developer.arm.com/Processors/

TrustZone%20for%20Cortex-A
[3] Grant Ayers, Heiner Litz, Christos Kozyrakis, and Parthasarathy Ranganathan.

2020. Classifying Memory Access Patterns for Prefetching. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’20). Association for Computing
Machinery, New York, NY, USA, 513–526.

[4] Jean-Loup Baer and Tien-Fu Chen. 1991. An Effective On-Chip Preloading
Scheme to Reduce Data Access Penalty. In Supercomputing ’91:Proceedings of the
1991 ACM/IEEE Conference on Supercomputing. 176–186.

[5] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit.
News 39, 2 (aug 2011), 1–7.

[6] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von
Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. 2019.
A Systematic Evaluation of Transient Execution Attacks and Defenses. In 28th
USENIX Security Symposium (USENIX Security 19) (Santa Clara (US)). USENIX
Association, 19.

[7] Yun Chen, Lingfeng Pei, and Trevor E. Carlson. 2023. AfterImage: Leaking
Control Flow Data and Tracking Load Operations via the Hardware Prefetcher.
In Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2. ACM, Vancouver
BC Canada, 16–32.

[8] Patrick Cronin and Chengmo Yang. 2019. A Fetching Tale: Covert Communication
with the Hardware Prefetcher. In 2019 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST).

[9] Guillaume Didier, Clémentine Maurice, Antoine Geimer, and Walid J. Ghandour.
2022. Characterizing Prefetchers using CacheObserver. In 2022 IEEE 34th Inter-
national Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD). 170–179.

[10] Electronic Frontier Foundation. 1998. Frequently Asked Questions (FAQ) About
the Electronic Frontier Foundation’s "DES Cracker" Machine. https://w2.eff.org/
Privacy/Crypto/Crypto_misc/DESCracker/HTML/19980716_eff_des_faq.html

[11] Babak Falsafi and Thomas F. Wenisch. 2014. A Primer on Hardware Prefetching.
Number 28 in Synthesis Lectures Computer Architecture. Morgan & Claypool.

[12] Lukas Gerlach, DanielWeber, Ruiyi Zhang, andMichael Schwarz. 2023. A Security
RISC: Microarchitectural Attacks on Hardware RISC-V CPUs. In IEEE Symposium
on Security and Privacy (S&P) 2023. IEEE Computer Society.

[13] Marius Grannaes, Magnus Jahre, and Lasse Natvig. 2010. Multi-Level Hardware
Prefetching Using Low Complexity Delta Correlating Prediction Tables with
Partial Matching. In Proceedings of the 5th International Conference on High
Performance Embedded Architectures and Compilers (Pisa, Italy) (HiPEAC’10).
247–261.

[14] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Man-
gard. 2016. Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR.

https://developer.arm.com/Processors/TrustZone%20for%20Cortex-A
https://developer.arm.com/Processors/TrustZone%20for%20Cortex-A
https://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/HTML/19980716_eff_des_faq.html
https://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/HTML/19980716_eff_des_faq.html

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Till Schlüter et al.

In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS ’16). Association for Computing Machinery, New York, NY,
USA, 368–379.

[15] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+Flush: A Fast and Stealthy Cache Attack. In Proceedings of the 13th Inter-
national Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment - Volume 9721 (DIMVA 2016).

[16] Yanan Guo, Andrew Zigerelli, Youtao Zhang, and Jun Yang. 2023. Adversarial
Prefetch: New Cross-Core Cache Side Channel Attacks. In IEEE Symposium on
Security and Privacy (S&P) 2022. IEEE Computer Society.

[17] Ahmad Ibrahim, Hamed Nemati, Till Schlüter, Nils Ole Tippenhauer, and Chris-
tian Rossow. 2022. Microarchitectural Leakage Templates and Their Application
to Cache-Based Side Channels. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’22).

[18] Intel Corp. 2022. Guidelines for Mitigating Timing Side Channels Against
Cryptographic Implementations. https://www.intel.com/content/www/
us/en/developer/articles/technical/software-security-guidance/secure-
coding/mitigate-timing-side-channel-crypto-implementation.html

[19] Intel Corp. 2023. Intel® 64 and IA-32 Architectures Optimization Reference
Manual.

[20] Doug Joseph and Dirk Grunwald. 1997. Prefetching Using Markov Predictors. In
Proceedings of the 24th Annual International Symposium on Computer Architecture
(Denver, Colorado, USA) (ISCA ’97). Association for Computing Machinery, New
York, NY, USA, 252–263.

[21] Paul Kocher, Jann Horn, Anders Fogh, and Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execu-
tion. In 40th IEEE Symposium on Security and Privacy (S&P’19).

[22] Yoochan Lee, Changwoo Min, and Byoungyoung Lee. 2021. ExpRace: Exploiting
Kernel Races through Raising Interrupts. In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, 2363–2380.

[23] Moritz Lipp, Daniel Gruss, and Michael Schwarz. 2022. AMD Prefetch Attacks
through Power and Time. In 31st USENIX Security Symposium (USENIX Security
22). USENIX Association, Boston, MA, 643–660.

[24] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In 27th USENIX Security Symposium (USENIX Security 18).

[25] Kyle J. Nesbit and James E. Smith. 2004. Data Cache Prefetching Using a Global
History Buffer. In 10th International Symposium on High Performance Computer
Architecture (HPCA’04). 96–96.

[26] Colin Percival. 2005. Cache Missing for Fun and Profit. In In Proc. of BSDCan
2005.

[27] Rockchip Electronics Co., Ltd. 2021. Rockchip RK3399-T Datasheet. Revision 1.0.
[28] Aditya Rohan, Biswabandan Panda, and Prakhar Agarwal. 2020. Reverse Engi-

neering the Stream Prefetcher for Profit. In IEEE European Symposium on Security
and Privacy Workshops, EuroS&P Workshops 2020, Genoa, Italy, September 7-11,
2020. 682–687.

[29] Jose Rodrigo Sanchez Vicarte, Michael Flanders, Riccardo Paccagnella, Grant
Garrett-Grossman, AdamMorrison, ChristopherW. Fletcher, and David Kohlbren-
ner. 2022. Augury: Using Data Memory-Dependent Prefetchers to Leak Data
at Rest. In IEEE Symposium on Security and Privacy (S&P) 2022. IEEE Computer
Society.

[30] Jose Rodrigo Sanchez Vicarte, Pradyumna Shome, Nandeeka Nayak, Caroline
Trippel, Adam Morrison, David Kohlbrenner, and Christopher W. Fletcher. 2021.
Opening Pandora’s Box: A Systematic Study of New Ways Microarchitecture
Can Leak Private Data. In 48th ACM/IEEE Annual International Symposium on
Computer Architecture, ISCA 2021, Valencia, Spain, June 14-18, 2021. 347–360.

[31] Ashley Saulsbury, Fredrik Dahlgren, and Per Stenstrom. 2000. Recency-Based
TLB Preloading. In Proceedings of 27th International Symposium on Computer
Architecture (ISCA 2000). 117–127.

[32] Youngjoo Shin, Hyung Chan Kim, Dokeun Kwon, Ji Hoon Jeong, and Junbeom
Hur. 2018. Unveiling Hardware-Based Data Prefetcher, a Hidden Source of
Information Leakage. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’18). Association for Computing
Machinery, New York, NY, USA.

[33] Alan Jay Smith. 1978. Sequential Program Prefetching in Memory Hierarchies.
Computer 11, 12 (Dec. 1978), 7–21.

[34] Stephen Somogyi, Thomas F. Wenisch, Anastasia Ailamaki, and Babak Falsafi.
2009. Spatio-Temporal Memory Streaming. In Proceedings of the 36th Annual
International Symposium on Computer Architecture (ISCA ’09). Association for
Computing Machinery, New York, NY, USA, 69–80.

[35] Stephen Somogyi, Thomas F. Wenisch, Anastassia Ailamaki, Babak Falsafi, and
Andreas Moshovos. 2006. Spatial Memory Streaming. In Proceedings of the
33rd Annual International Symposium on Computer Architecture (ISCA ’06). IEEE
Computer Society, USA.

[36] Eran Tromer, Dag Arne Osvik, and Adi Shamir. 2010. Efficient Cache Attacks on
AES, and Countermeasures. Journal of Cryptology 23, 1 (Jan. 2010), 37–71.

[37] Krishnaswamy Viswanathan. 2014. Disclosure of Hardware Prefetcher Control
on Some Intel® Processors. Intel. https://web.archive.org/web/20201112034737/
https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-
hw-prefetcher-control-on-some-intel-processors.html

[38] Thomas F. Wenisch, Michael Ferdman, Anastasia Ailamaki, Babak Falsafi, and
Andreas Moshovos. 2009. Practical Off-Chip Meta-Data for Temporal Mem-
ory Streaming. In 2009 IEEE 15th International Symposium on High Performance
Computer Architecture. 79–90.

[39] Thomas F. Wenisch, Stephen Somogyi, Nikolaos Hardavellas, Jangwoo Kim,
Anastassia Ailamaki, and Babak Falsafi. 2005. Temporal Streaming of Shared
Memory. In Proceedings of the 32nd Annual International Symposium on Computer
Architecture (ISCA 2005). 12.

[40] Chong Xiao, Ming Tang, and Sylvain Guilley. 2023. Exploiting the Microarchi-
tectural Leakage of Prefetching Activities for Side-Channel Attacks. Journal of
Systems Architecture (April 2023), 102877.

[41] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In 23rd USENIX Security Symposium
(USENIX Security 14). 719–732.

[42] Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, and Srinivas Devadas.
2015. IMP: indirect memory prefetcher. In Proceedings of the 48th International
Symposium on Microarchitecture, MICRO 2015, Waikiki, HI, USA, December 5-9,
2015. 178–190.

[43] Zhiyuan Zhang, Mingtian Tao, Sioli O’Connell, Chitchanok Chuengsatiansup,
Daniel Genkin, and Yuval Yarom. 2023. BunnyHop: Exploiting the Instruction
Prefetcher. In 32nd USENIX Security Symposium (USENIX Security 23).

A PROCESSORS UNDER EVALUATION
We provide a complete list of the processors under evaluation in
Table 2.

B EXPERIMENT SUCCESS RATES
In this section, we illustrate the success rates of our identification
and characterization experiments from Section 4. Since most of our
CPUs implement a stride prefetcher, we use the results of the stride
prefetcher existence test in positive direction as a representative
example.

Generally, we repeat each test case 40,000 times per CPU. Fig-
ure 12 visualizes the cache state of the cache lines in our testing
memory region after the experiment. The brighter the color, the
more often did we observe the respective cache line in cache after
completing the experiment. At the beginning of the memory area,
we usually observe a strong signal for the loads that we performed
to train and trigger the prefetcher (marked with blue dots). For
many CPUs, we observed prefetching (red dots) almost as strong
as the architectural loads without any false positives. For the A55,
we see a long sequence of strong prefetch signals that finally fades
out until the signal drops below the noise threshold (magenta dots).
For the A72, most prefetches produce a strong signal. However,
some prefetches have a significantly lower probability to occur. For
the A73, we observe some very strong prefetches accompanied by
some false positives at later cache lines. For the A76, we observe
an overall lower signal for prefetching. For the Ryzen CPUs (R5Z,
R5Z+, R7Z3, R9Z3+), we observe prefetching with a lower signal and
some noise at later cache lines.

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://web.archive.org/web/20201112034737/https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://web.archive.org/web/20201112034737/https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://web.archive.org/web/20201112034737/https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html

FetchBench: Systematic Identification and Characterization of Proprietary Prefetchers CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 2: List of hardware platforms under evaluation, prefetcher existence, and test runtime. For SoCs that combine multiple
different cores in a single package we highlight the tested cores in boldface.

System Information Prefetcher Existence
ID

Vendor/Model OS Arch. CPU/SoC CPU/SoC
Release Stride SMS Adj.

CL Stream R.-U.
Replay

Ptr.
Array

Ptr.
Chase

Test
Runtime
(min)

A53 Raspberry Pi 3 Raspberry Pi
OS 11 ARMv8 Broadcom BCM2837

(Cortex-A53) 2016 376.0

A55
HardKernel
Odroid C4 Ubuntu 20.04 ARMv8 Amlogic S905X3

(Cortex-A55) 2019 54.9

A72 Raspberry Pi 4 Raspberry Pi
OS 11 ARMv8 Broadcom BCM2711

(Cortex-A72) 2019 78.4

A73
96Boards
HiKey 960 Debian 9 ARMv8 HiSilicon Kirin 960

(Cortex-A53, -A73) 2016 79.7

A76 NanoPi R6S Ubuntu 22.04 ARMv8 Rockchip RK3588S
(Cortex-A55, -A76) 2021 56.6

M1i
Apple
Mac Studio Asahi Linux ARMv8 Apple M1 Max

Icestorm core 2021 269.8
M1f — " — — " — — " — Firestorm core — " — 236.5

i7SB
HP EliteBook
2760p Fedora 37 x86-64 Intel Core i7-2620M

(Sandy Bridge) 2011 36.2

i5HW
Lenovo ThinkPad
T440p Debian 11 x86-64 Intel Core i5-4300M

(Haswell) 2013 32.7

XeSL Mini PC Ubuntu 20.04 x86-64 Intel Xeon E3-
1505Mv5 (Skylake) 2015 49.0

XeCL Custom PC Ubuntu 20.04 x86-64 Intel Xeon E-2176M
(Coffee Lake) 2018 217.2

i7CL
Lenovo ThinkPad
X1 Carbon Gen 8 Ubuntu 22.04 x86-64 Intel Core i7-10510U

(Comet Lake) 2019 62.3

i3IL Mini PC Ubuntu 22.04 x86-64 Intel Core i3-1005G1
(Ice Lake) 2019 115.4

i7TL
Lenovo ThinkPad
X1 Carbon Gen 9 Ubuntu 22.04 x86-64 Intel Core i7-1165G7

(Tiger Lake) 2020 47.7

XeIL Custom PC Ubuntu 22.04 x86-64 Intel Xeon Gold
6346 (Ice Lake) 2021 363.0

i9ALp Custom PC Ubuntu 22.04 x86-64 Intel Core i9-12900K
(Alder Lake) Perf. core 2021 63.4

i9ALe — " — — " — — " — Efficient core — " — 340.1

R5Z Mini PC Ubuntu 22.04 x86-64 AMD Ryzen 5
2500U (Zen) 2017 59.5

R5Z+ Mini PC Ubuntu 22.04 x86-64 AMD Ryzen 5
3550H (Zen+) 2019 58.4

R7Z3 Mini PC Ubuntu 22.04 x86-64 AMD Ryzen 7
5700G (Zen 3) 2021 40.4

R9Z3+ Mini PC Ubuntu 22.04 x86-64 AMD Ryzen 9
6900HX (Zen 3+) 2022 27.4

Prefetcher identified, Prefetcher not identified

Figure 12: Visualization of experiment success rates. Blue dots indicate the locations of architectural loads that train and trigger
the prefetcher. Red crosses (x) indicate potential prefetch locations that were frequently observed in cache. Magenta crosses (+)
indicate potential prefetch locations that were observed only rarely (below the noise threshold).

	Abstract
	1 Introduction
	2 Background
	3 Systematic Classification of Hardware Prefetchers
	3.1 Hardware Prefetcher Taxonomy
	3.2 FetchBench: Automatically Identifying and Characterizing Prefetchers

	4 Characterizing ARMv8 and x86-64 Prefetchers
	4.1 Implementation
	4.2 Experimental Setup
	4.3 Experimental Results

	5 Exploiting Prefetchers
	5.1 Case Study: AES Attack
	5.2 Case Study: ARM TrustZone Covert Channel

	6 Related Work
	6.1 Prefechter Reverse-Engineering
	6.2 Prefetcher Exploitation

	7 Discussion
	8 Conclusion
	References
	A Processors under evaluation
	B Experiment success rates

