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Microarchitecture www.tugraz.at

Microarchitecture...

• is not defined on the architectural state

• should not be visible to software

• is hardware specific and not fully documented

• changes to some extend with new processor generations
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Microarchitectural Attacks www.tugraz.at

Microarchitectural states can be used for attacks

• Cache state ⇒ data access

• DRAM buffers ⇒ data access

• Interrupts ⇒ keystrokes

• Branch predictors ⇒ program flow

• Timings ⇒ data values
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Side-Channel Attacks www.tugraz.at

Side-channel attacks exploit side effects of operations

• Microarchitectural attacks are usually side-channel attacks

• Sensors ⇒ user activity

• Timings ⇒ data values, activity
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One Important Component www.tugraz.at

• A core component of many such attacks: Timers

• Side-channel attacks often require high-resolution timers

• Differences to measure are often in the range of nanoseconds or

microseconds

• Microarchitectural attacks usually require highest precision
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Attacks in JavaScript



First Side-Channel Attack www.tugraz.at

First side-channel attack in JavaScript

• Stone et al. (2013): Pixel perfect timing attacks with HTML5

• Timing of various redraw events (e.g., visited state of links)

• SVG filter timing to extract individual pixels (already 2011)

• High-resolution timer was available in browser
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First Microarchitectural Attack www.tugraz.at

First microarchitectural attack in JavaScript

• Oren et al. (2015): The Spy in the Sandbox

• Timing of memory accesses

• Allows to determine whether data is cached or uncached

• Possibility to infer info about other programs from browser
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Timers in JavaScript www.tugraz.at

• We need a high-resolution timer to measure such small differences

• Native: rdtsc - timestamp in CPU cycles

• JavaScript: performance.now() has the highest resolution

performance.now()

[...] represent times as floating-point numbers with up to microsecond precision.

— Mozilla Developer Network
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...up to microsecond precision? www.tugraz.at

Firefox ≤ 36

Edge 38

W3C standard

Firefox ≥ 37/Chrome/Safari

Tor

Fuzzyfox

1 · 10−3

1

5

5

0

0

1 · 10−3

10 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at



...up to microsecond precision? www.tugraz.at

Firefox ≤ 36

Edge 38

W3C standard

Firefox ≥ 37/Chrome/Safari

Tor

Fuzzyfox

1 · 10−3

1

5

5

0

0

1 · 10−3

1

10 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at



...up to microsecond precision? www.tugraz.at

Firefox ≤ 36

Edge 38

W3C standard

Firefox ≥ 37/Chrome/Safari

Tor

Fuzzyfox

1 · 10−3

1

5

5

0

0

1 · 10−3

1

5

10 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at



...up to microsecond precision? www.tugraz.at

Firefox ≤ 36

Edge 38

W3C standard

Firefox ≥ 37/Chrome/Safari

Tor

Fuzzyfox

1 · 10−3

1

5

5

0

0

1 · 10−3

1

5

5

10 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at



...up to microsecond precision? www.tugraz.at

Firefox ≤ 36

Edge 38

W3C standard

Firefox ≥ 37/Chrome/Safari

Tor

Fuzzyfox

1 · 10−3

1

5

5

0

0

1 · 10−3

1

5

5

0 1 · 105

10 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at



...up to microsecond precision? www.tugraz.at

Firefox ≤ 36

Edge 38

W3C standard

Firefox ≥ 37/Chrome/Safari

Tor

Fuzzyfox

1 · 10−3

1

5

5

0

0

1 · 10−3

1

5

5

0 1 · 105

0 1 · 105

10 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at



New timer



We require a higher resolution www.tugraz.at

• Current precision is not sufficient to measure cycle differences

• We have two possibilities

• Recover a higher resolution from the available timer

• Build our own high-resolution timer
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Recovering resolution - Clock interpolation www.tugraz.at

• Measure how often we can increment a variable between two timer

ticks

• Average number of increments is the interpolation step

• To measure with high resolution:

• Start measurement at clock edge

• Increment a variable until next clock edge

• Highly accurate: 500 ns (Firefox/Chrome), 15 µs (Tor)
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Recovering resolution - Edge thresholding www.tugraz.at

• We can get a higher resolution for a classifier only

• Often sufficient to see which of two functions takes longer

• Edge thresholding: apply padding such that the slow function crosses one more clock edge

than the fast function.
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• We can get a higher resolution for a classifier only

• Often sufficient to see which of two functions takes longer

fslow

ffast Padding

Padding

• Edge thresholding: apply padding such that the slow function crosses one more clock edge

than the fast function.
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Recovering resolution - Edge thresholding www.tugraz.at
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• Yields nanosecond resolution

• Firefox/Tor (2 ns), Edge (10 ns), Chrome (15 ns)
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Building a timer www.tugraz.at

• Goal: counter that does not block main thread

• Baseline setTimeout: 4 ms (except Edge: 2 ms)

• CSS animation: increase width of element as fast as possible

• Width of element is timestamp

• However, animation is limited to 60 fps → 16 ms
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Building a timer - Web worker www.tugraz.at

• JavaScript can spawn new threads called web worker

• Web worker communicate using message passing

• Let worker count and request timestamp in main thread

• Multiple possibilities: postMessage, MessageChannel or

BroadcastChannel

• Yields microsecond resolution (even on Tor and Fuzzyfox)
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Building a timer - Web worker www.tugraz.at

• Experimental feature to share data: SharedArrayBuffer

• Web worker can simultaneously read/write data

• No message passing overhead

• One dedicated worker for incrementing the shared variable

• Firefox/Fuzzyfox: 2 ns, Chrome: 15 ns

• Sufficient for microarchitectural attacks

17 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at



Building a timer - Web worker www.tugraz.at

• Experimental feature to share data: SharedArrayBuffer

• Web worker can simultaneously read/write data

• No message passing overhead

• One dedicated worker for incrementing the shared variable

• Firefox/Fuzzyfox: 2 ns, Chrome: 15 ns

• Sufficient for microarchitectural attacks

17 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at



Building a timer - Web worker www.tugraz.at

• Experimental feature to share data: SharedArrayBuffer

• Web worker can simultaneously read/write data

• No message passing overhead

• One dedicated worker for incrementing the shared variable

• Firefox/Fuzzyfox: 2 ns, Chrome: 15 ns

• Sufficient for microarchitectural attacks

17 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at



Building a timer - Web worker www.tugraz.at

• Experimental feature to share data: SharedArrayBuffer

• Web worker can simultaneously read/write data

• No message passing overhead

• One dedicated worker for incrementing the shared variable

• Firefox/Fuzzyfox: 2 ns, Chrome: 15 ns

• Sufficient for microarchitectural attacks

17 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at



Building a timer - Web worker www.tugraz.at

• Experimental feature to share data: SharedArrayBuffer

• Web worker can simultaneously read/write data

• No message passing overhead

• One dedicated worker for incrementing the shared variable

• Firefox/Fuzzyfox: 2 ns, Chrome: 15 ns

• Sufficient for microarchitectural attacks

17 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at



Building a timer - Web worker www.tugraz.at

• Experimental feature to share data: SharedArrayBuffer

• Web worker can simultaneously read/write data

• No message passing overhead

• One dedicated worker for incrementing the shared variable

• Firefox/Fuzzyfox: 2 ns, Chrome: 15 ns

• Sufficient for microarchitectural attacks

17 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at



Timer evaluation www.tugraz.at
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Attack Requirements



Attack requirements www.tugraz.at

• Timers were always the main focus

• Reducing timer resolution is not sufficient

• Timers can (always) be built

• Some attacks do not require timers at all

• Important to understand requirements before designing

countermeasures
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Identify requirements www.tugraz.at

• Currently 11 microarchitectural and side-channel attacks in JavaScript

• Analyse requirements for every attack

• Results in 5 categories

• Memory addresses

• Accurate timing

• Multithreading

• Shared data

• Sensor API

• Every attack is in at least one category
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Attacks and Categories www.tugraz.at
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Rowhammer.js

Practical Memory Deduplication Attacks in Sandboxed Javascript

Fantastic Timers and Where to Find Them †

ASLR on the Line †

The spy in the sandbox

Loophole

Pixel perfect timing attacks with HTML5 †

The clock is still ticking

Practical Keystroke Timing Attacks in Sandboxed JavaScript †

TouchSignatures

Stealing sensitive browser data with the W3C Ambient Light Sensor API

† If accurate timing is not available, it can be approximated using a combination of multithreading and shared data.
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Memory Addresses www.tugraz.at

• Language does not provide addresses to programmer

• Closest to virtual address: array indices

• ArrayBuffer is page aligned, leaks 12 bits of address

• If 2 MB backing pages are used, 21 bits of address known

• If not page aligned: detect page faults through timing
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Accurate Timing www.tugraz.at

• Nearly all attacks require accurate timing

• No absolute timestamps required, only time differences

• Required accuracy varies between milliseconds and nanoseconds

• Such timers can be built if not available (e.g., message passing)

• If attack is repeatable, less accurate timing can be sufficient
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Multithreading www.tugraz.at

• JavaScript introduced multi threading with web workers

• Enables new side-channel attacks

• Dispatch latency of event queue allows to infer activity of other tabs

• Endless loop in worker allows to detect hardware interrupts
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Shared Data www.tugraz.at

• Usually no shared data between threads due to synchronization issues

• Exception: SharedArrayBuffer

• Only useful in combination with web workers

• Allows to build timers with extremely high resolution (up to 1 ns)

• Not enabled by default
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Sensor API www.tugraz.at

• Some side-channel attacks only require access to sensors

• Several sensors are available in JavaScript

• Some require user consent, e.g., microphone

• Other can be used without user consent, e.g., ambient light

• There are attacks with these sensors

26 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at



Sensor API www.tugraz.at

• Some side-channel attacks only require access to sensors

• Several sensors are available in JavaScript

• Some require user consent, e.g., microphone

• Other can be used without user consent, e.g., ambient light

• There are attacks with these sensors

26 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at



Sensor API www.tugraz.at

• Some side-channel attacks only require access to sensors

• Several sensors are available in JavaScript

• Some require user consent, e.g., microphone

• Other can be used without user consent, e.g., ambient light

• There are attacks with these sensors

26 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at



Sensor API www.tugraz.at

• Some side-channel attacks only require access to sensors

• Several sensors are available in JavaScript

• Some require user consent, e.g., microphone

• Other can be used without user consent, e.g., ambient light

• There are attacks with these sensors

26 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at



Sensor API www.tugraz.at

• Some side-channel attacks only require access to sensors

• Several sensors are available in JavaScript

• Some require user consent, e.g., microphone

• Other can be used without user consent, e.g., ambient light

• There are attacks with these sensors

26 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at



Defenses



Countermeasures www.tugraz.at

• Countermeasures have to address all categories

• Should not be visible to the programmer

• Implementation is on the “microarchitectural” level of JavaScript

• If no category is usable for attacks anymore, future attacks are hard
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Memory Addresses www.tugraz.at

#1: Buffer ASLR

• Ensure arrays are not page aligned

• Attacker cannot assume that least significant 12 bits are ‘0’

• Only works for the first page

• Consecutive page borders can be detected through page faults
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Memory Addresses www.tugraz.at

#2: Preloading

• Instead of lazy initialization for arrays, ensure that they are always

memory backed

• Attacker cannot detect page borders through page faults anymore

• Does not work if swapping or page deduplication is enabled

• Has to be combined with Buffer ASLR
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Memory Addresses www.tugraz.at

#3: Non-determinism

• For every array access, add another random access

• Makes page border detection infeasible without requiring significantly

more memory

• Attacker always times two accesses

• Distinguishing cached from non-cached addresses is hard
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Memory Addresses www.tugraz.at

#4: Array Index Randomization

• Ensures arrays are not linear

• Use a random linear function to map array index to underlying buffer

• Index x maps to f (x) = ax + b mod n, where n is array length and a

and b are randomly chosen

• Has to be combined with Buffer ASLR and either Preloading or

Non-determinism
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Memory Addresses www.tugraz.at

• The four defenses prevent attackers from getting virtual and physical

addresses

• Prevents many microarchitectural attacks

• Have to be combined for maximum security

• Side effect: make exploits harder where addresses are required
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Accurate Timing www.tugraz.at

• Reducing the resolution of performance.now() is a first step

• Only rounding the timestamps is not sufficient

• Fuzzy time (Vattikonda et al.) adds random jitter

• Timestamps are still monotonic, but clock edges are randomized
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Multithreading www.tugraz.at

• Only real solution is to prevent multithreading

• We used a polyfill to not completely break websites

• Some attacks can be prevented by adding random delays to

postMessage

• Prevents certain timing primitives and attacks on the event-queue

latency
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Shared Data www.tugraz.at

• Best countermeasures: do not allow shared data

• Many attacks are impossible without SharedArrayBuffer

• Alternative: delay access to buffer

• Still faster than message passing

• Degrades resolution of timing primitive to microseconds
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Sensor API www.tugraz.at

• Reduce resolution and update frequency of sensors

• Sensor APIs should always ask user for permission

• Every sensor is usable for attacks, even ambient light sensor

• To not break existing applications, sensors return constant value
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Implementation



Designing the Countermeasure www.tugraz.at

• Best solution is to implement defenses in the browser core

• Maintaining a browser fork is hard work

• We want a generic solution for multiple browsers

• Parsing JavaScript is hard

• Implementation in JavaScript → Virtual machine layering

• Proof-of-concept is implemented as browser extension
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User Experience www.tugraz.at

• Some defenses might impair user experience, e.g., disable

multithreading

• The user can choose one of several pre-defined protection levels

• Protection levels apply different combinations of defenses

• Each defense can either be disabled, enabled, or require user

permission
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Virtual Machine Layering www.tugraz.at

• Functions and properties are replaced by wrappers

Script
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Extension ContextPage Context
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Original Function
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Default value

Filtered value
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Virtual Machine Layering www.tugraz.at

• Functions can be re-defined in JavaScript

var o r i g i n a l r e f e r e n c e = window . p e r f o r m a n c e . now ;

window . p e r f o r m a n c e . now = funct ion ( ) { return 0 ; } ;

// call the new function (via function name)

a l e r t ( window . p e r f o r m a n c e . now ( ) ) ; // == alert(0)

// call the original function (only via reference)

a l e r t ( o r i g i n a l r e f e r e n c e . c a l l ( window . p e r f o r m a n c e ) ) ;

• Properties can be replaced by accessor properties
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Virtual Machine Layering for Objects www.tugraz.at

• Objects are proxied

Script

Methods

Object

Methods

Filter

new Object

Proxy(Object)

• All properties and functions are handled by the original object

• Functions and properties can be overwritten in the proxy object
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Self Protection www.tugraz.at

• Attacker tries to circumvent JavaScript Zero

• Self protection is necessary if implemented in JavaScript

• Use closures to hide all references to original functions

( funct ion ( ) {
// original is only accessible in this scope

var o r i g i n a l = window . p e r f o r m a n c e . now ;

window . p e r f o r m a n c e . now = . . .

} ) ( ) ;

• Prevent objects from being modified: Object.freeze
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Evaluation



Page Border Detection www.tugraz.at

• Border of pages leak 12 or 21 bits (depending on page size)

• Create huge array

• Iterate over array, measure access time

• Page border raise pagefault, taking significantly longer to access
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Page Border Detection www.tugraz.at
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Page Border Detection with Random Access www.tugraz.at
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Prime+Probe www.tugraz.at

• Find addresses (= array indices) that fall into same cache set

• Physical address defines in which cache set the data is cached

• Enough addresses in one set evicts the set (Prime)

• Iterate again over addresses (Probe)

• If it is fast, they are still cached

• If it is slow, someone used this cache set and evicted our addresses
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Prime+Probe www.tugraz.at

47 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at



Prime+Probe with Random Access www.tugraz.at
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Interrupt Detection www.tugraz.at

• Multithreading allows to detect interrupts

• Endless loop which counts number of increments in time window

• Different number of increments indicate interrupt

• Fuzzy time prevents deterministic equally-sized time window
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Interrupt Detection www.tugraz.at
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Interrupt Detection with Fuzzy Time www.tugraz.at
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Event Queue Spying www.tugraz.at

• Messages between web workers are handled in the event queue

• User activity is also handled in the event queue

• Posting many messages allows to measure latency

• Latency indicates user input
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Event Queue Spying www.tugraz.at
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Event Queue Spying with Message Delay www.tugraz.at
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SharedArrayBuffer Timing Primitive www.tugraz.at

• SharedArrayBuffer allows to build a timing primitive with the

highest resolution

• One web worker continuously increments variable in the shared array

• Other worker uses this as a timestamp

• Adding random delay to access degrades resolution
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SharedArrayBuffer www.tugraz.at
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SharedArrayBuffer with Random Delay www.tugraz.at
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Defense

Prevents Rowham- Page Dedu- DRAM Covert Anti- Cache Keystroke Browser

mer.js plication Channel ASLR Eviction Timing

Buffer ASLR

Array preloading

Non-deterministic array

Array index randomization

Low-resolution timestamp

Fuzzy time * * * *

WebWorker polyfill

Message delay

Slow SharedArrayBuffer

No SharedArrayBuffer * * * *

Summary

Symbols indicate whether a policy fully prevents an attack, ( ), partly prevents and attack by

making it more difficult ( ), or does not prevent an attack ( ).

A star (*) indicates that all policies marked with a star must be combined to prevent an attack.
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User Experience www.tugraz.at
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Conclusion www.tugraz.at

• Just rounding timers is not sufficient

• Multithreading and shared data allow to build new timers

• Microarchitectural attacks in the browser are possible at the moment

• Efficient countermeasures can be implemented in browsers

• More microarchitectural attacks in JavaScript will appear
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