
Microarchitectural Attacks and Defenses in JavaScript

Michael Schwarz, Daniel Gruss, Moritz Lipp

25.01.2018

www.iaik.tugraz.at

1 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Microarchitecture www.tugraz.at

Microarchitecture...

• is not defined on the architectural state

• should not be visible to software

• is hardware specific and not fully documented

• changes to some extend with new processor generations

2 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Microarchitecture www.tugraz.at

Microarchitecture...

• is not defined on the architectural state

• should not be visible to software

• is hardware specific and not fully documented

• changes to some extend with new processor generations

2 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Microarchitecture www.tugraz.at

Microarchitecture...

• is not defined on the architectural state

• should not be visible to software

• is hardware specific and not fully documented

• changes to some extend with new processor generations

2 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Microarchitecture www.tugraz.at

Microarchitecture...

• is not defined on the architectural state

• should not be visible to software

• is hardware specific and not fully documented

• changes to some extend with new processor generations

2 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Microarchitectural Attacks www.tugraz.at

Microarchitectural states can be used for attacks

• Cache state ⇒ data access

• DRAM buffers ⇒ data access

• Interrupts ⇒ keystrokes

• Branch predictors ⇒ program flow

• Timings ⇒ data values

3 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Microarchitectural Attacks www.tugraz.at

Microarchitectural states can be used for attacks

• Cache state ⇒ data access

• DRAM buffers ⇒ data access

• Interrupts ⇒ keystrokes

• Branch predictors ⇒ program flow

• Timings ⇒ data values

3 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Microarchitectural Attacks www.tugraz.at

Microarchitectural states can be used for attacks

• Cache state ⇒ data access

• DRAM buffers ⇒ data access

• Interrupts ⇒ keystrokes

• Branch predictors ⇒ program flow

• Timings ⇒ data values

3 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Microarchitectural Attacks www.tugraz.at

Microarchitectural states can be used for attacks

• Cache state ⇒ data access

• DRAM buffers ⇒ data access

• Interrupts ⇒ keystrokes

• Branch predictors ⇒ program flow

• Timings ⇒ data values

3 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Microarchitectural Attacks www.tugraz.at

Microarchitectural states can be used for attacks

• Cache state ⇒ data access

• DRAM buffers ⇒ data access

• Interrupts ⇒ keystrokes

• Branch predictors ⇒ program flow

• Timings ⇒ data values

3 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Side-Channel Attacks www.tugraz.at

Side-channel attacks exploit side effects of operations

• Microarchitectural attacks are usually side-channel attacks

• Sensors ⇒ user activity

• Timings ⇒ data values, activity

4 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Side-Channel Attacks www.tugraz.at

Side-channel attacks exploit side effects of operations

• Microarchitectural attacks are usually side-channel attacks

• Sensors ⇒ user activity

• Timings ⇒ data values, activity

4 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Side-Channel Attacks www.tugraz.at

Side-channel attacks exploit side effects of operations

• Microarchitectural attacks are usually side-channel attacks

• Sensors ⇒ user activity

• Timings ⇒ data values, activity

4 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

One Important Component www.tugraz.at

• A core component of many such attacks: Timers

• Side-channel attacks often require high-resolution timers

• Differences to measure are often in the range of nanoseconds or

microseconds

• Microarchitectural attacks usually require highest precision

5 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

One Important Component www.tugraz.at

• A core component of many such attacks: Timers

• Side-channel attacks often require high-resolution timers

• Differences to measure are often in the range of nanoseconds or

microseconds

• Microarchitectural attacks usually require highest precision

5 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

One Important Component www.tugraz.at

• A core component of many such attacks: Timers

• Side-channel attacks often require high-resolution timers

• Differences to measure are often in the range of nanoseconds or

microseconds

• Microarchitectural attacks usually require highest precision

5 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

One Important Component www.tugraz.at

• A core component of many such attacks: Timers

• Side-channel attacks often require high-resolution timers

• Differences to measure are often in the range of nanoseconds or

microseconds

• Microarchitectural attacks usually require highest precision

5 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Attacks in JavaScript

First Side-Channel Attack www.tugraz.at

First side-channel attack in JavaScript

• Stone et al. (2013): Pixel perfect timing attacks with HTML5

• Timing of various redraw events (e.g., visited state of links)

• SVG filter timing to extract individual pixels (already 2011)

• High-resolution timer was available in browser

6 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

First Side-Channel Attack www.tugraz.at

First side-channel attack in JavaScript

• Stone et al. (2013): Pixel perfect timing attacks with HTML5

• Timing of various redraw events (e.g., visited state of links)

• SVG filter timing to extract individual pixels (already 2011)

• High-resolution timer was available in browser

6 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

First Side-Channel Attack www.tugraz.at

First side-channel attack in JavaScript

• Stone et al. (2013): Pixel perfect timing attacks with HTML5

• Timing of various redraw events (e.g., visited state of links)

• SVG filter timing to extract individual pixels (already 2011)

• High-resolution timer was available in browser

6 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

First Side-Channel Attack www.tugraz.at

First side-channel attack in JavaScript

• Stone et al. (2013): Pixel perfect timing attacks with HTML5

• Timing of various redraw events (e.g., visited state of links)

• SVG filter timing to extract individual pixels (already 2011)

• High-resolution timer was available in browser

6 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

First Microarchitectural Attack www.tugraz.at

First microarchitectural attack in JavaScript

• Oren et al. (2015): The Spy in the Sandbox

• Timing of memory accesses

• Allows to determine whether data is cached or uncached

• Possibility to infer info about other programs from browser

7 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

First Microarchitectural Attack www.tugraz.at

First microarchitectural attack in JavaScript

• Oren et al. (2015): The Spy in the Sandbox

• Timing of memory accesses

• Allows to determine whether data is cached or uncached

• Possibility to infer info about other programs from browser

7 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

First Microarchitectural Attack www.tugraz.at

First microarchitectural attack in JavaScript

• Oren et al. (2015): The Spy in the Sandbox

• Timing of memory accesses

• Allows to determine whether data is cached or uncached

• Possibility to infer info about other programs from browser

7 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

First Microarchitectural Attack www.tugraz.at

First microarchitectural attack in JavaScript

• Oren et al. (2015): The Spy in the Sandbox

• Timing of memory accesses

• Allows to determine whether data is cached or uncached

• Possibility to infer info about other programs from browser

7 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

8 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Timers in JavaScript www.tugraz.at

• We need a high-resolution timer to measure such small differences

• Native: rdtsc - timestamp in CPU cycles

• JavaScript: performance.now() has the highest resolution

performance.now()

[...] represent times as floating-point numbers with up to microsecond precision.

— Mozilla Developer Network

9 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Timers in JavaScript www.tugraz.at

• We need a high-resolution timer to measure such small differences

• Native: rdtsc - timestamp in CPU cycles

• JavaScript: performance.now() has the highest resolution

performance.now()

[...] represent times as floating-point numbers with up to microsecond precision.

— Mozilla Developer Network

9 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Timers in JavaScript www.tugraz.at

• We need a high-resolution timer to measure such small differences

• Native: rdtsc - timestamp in CPU cycles

• JavaScript: performance.now() has the highest resolution

performance.now()

[...] represent times as floating-point numbers with up to microsecond precision.

— Mozilla Developer Network

9 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Timers in JavaScript www.tugraz.at

• We need a high-resolution timer to measure such small differences

• Native: rdtsc - timestamp in CPU cycles

• JavaScript: performance.now() has the highest resolution

performance.now()

[...] represent times as floating-point numbers with up to microsecond precision.

— Mozilla Developer Network

9 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

...up to microsecond precision? www.tugraz.at

Firefox ≤ 36

Edge 38

W3C standard

Firefox ≥ 37/Chrome/Safari

Tor

Fuzzyfox

1 · 10−3

1

5

5

0

0

1 · 10−3

10 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

...up to microsecond precision? www.tugraz.at

Firefox ≤ 36

Edge 38

W3C standard

Firefox ≥ 37/Chrome/Safari

Tor

Fuzzyfox

1 · 10−3

1

5

5

0

0

1 · 10−3

1

10 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

...up to microsecond precision? www.tugraz.at

Firefox ≤ 36

Edge 38

W3C standard

Firefox ≥ 37/Chrome/Safari

Tor

Fuzzyfox

1 · 10−3

1

5

5

0

0

1 · 10−3

1

5

10 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

...up to microsecond precision? www.tugraz.at

Firefox ≤ 36

Edge 38

W3C standard

Firefox ≥ 37/Chrome/Safari

Tor

Fuzzyfox

1 · 10−3

1

5

5

0

0

1 · 10−3

1

5

5

10 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

...up to microsecond precision? www.tugraz.at

Firefox ≤ 36

Edge 38

W3C standard

Firefox ≥ 37/Chrome/Safari

Tor

Fuzzyfox

1 · 10−3

1

5

5

0

0

1 · 10−3

1

5

5

0 1 · 105

10 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

...up to microsecond precision? www.tugraz.at

Firefox ≤ 36

Edge 38

W3C standard

Firefox ≥ 37/Chrome/Safari

Tor

Fuzzyfox

1 · 10−3

1

5

5

0

0

1 · 10−3

1

5

5

0 1 · 105

0 1 · 105

10 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

New timer

We require a higher resolution www.tugraz.at

• Current precision is not sufficient to measure cycle differences

• We have two possibilities

• Recover a higher resolution from the available timer

• Build our own high-resolution timer

11 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

We require a higher resolution www.tugraz.at

• Current precision is not sufficient to measure cycle differences

• We have two possibilities

• Recover a higher resolution from the available timer

• Build our own high-resolution timer

11 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

We require a higher resolution www.tugraz.at

• Current precision is not sufficient to measure cycle differences

• We have two possibilities

• Recover a higher resolution from the available timer

• Build our own high-resolution timer

11 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

We require a higher resolution www.tugraz.at

• Current precision is not sufficient to measure cycle differences

• We have two possibilities

• Recover a higher resolution from the available timer

• Build our own high-resolution timer

11 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Recovering resolution - Clock interpolation www.tugraz.at

• Measure how often we can increment a variable between two timer

ticks

• Average number of increments is the interpolation step

• To measure with high resolution:

• Start measurement at clock edge

• Increment a variable until next clock edge

• Highly accurate: 500 ns (Firefox/Chrome), 15 µs (Tor)

12 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Recovering resolution - Clock interpolation www.tugraz.at

• Measure how often we can increment a variable between two timer

ticks

• Average number of increments is the interpolation step

• To measure with high resolution:

• Start measurement at clock edge

• Increment a variable until next clock edge

• Highly accurate: 500 ns (Firefox/Chrome), 15 µs (Tor)

12 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Recovering resolution - Clock interpolation www.tugraz.at

• Measure how often we can increment a variable between two timer

ticks

• Average number of increments is the interpolation step

• To measure with high resolution:

• Start measurement at clock edge

• Increment a variable until next clock edge

• Highly accurate: 500 ns (Firefox/Chrome), 15 µs (Tor)

12 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Recovering resolution - Clock interpolation www.tugraz.at

• Measure how often we can increment a variable between two timer

ticks

• Average number of increments is the interpolation step

• To measure with high resolution:

• Start measurement at clock edge

• Increment a variable until next clock edge

• Highly accurate: 500 ns (Firefox/Chrome), 15 µs (Tor)

12 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Recovering resolution - Clock interpolation www.tugraz.at

• Measure how often we can increment a variable between two timer

ticks

• Average number of increments is the interpolation step

• To measure with high resolution:

• Start measurement at clock edge

• Increment a variable until next clock edge

• Highly accurate: 500 ns (Firefox/Chrome), 15 µs (Tor)

12 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Recovering resolution - Clock interpolation www.tugraz.at

• Measure how often we can increment a variable between two timer

ticks

• Average number of increments is the interpolation step

• To measure with high resolution:

• Start measurement at clock edge

• Increment a variable until next clock edge

• Highly accurate: 500 ns (Firefox/Chrome), 15 µs (Tor)

12 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Recovering resolution - Edge thresholding www.tugraz.at

• We can get a higher resolution for a classifier only

• Often sufficient to see which of two functions takes longer

• Edge thresholding: apply padding such that the slow function crosses one more clock edge

than the fast function.

13 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Recovering resolution - Edge thresholding www.tugraz.at

• We can get a higher resolution for a classifier only

• Often sufficient to see which of two functions takes longer

• Edge thresholding: apply padding such that the slow function crosses one more clock edge

than the fast function.

13 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Recovering resolution - Edge thresholding www.tugraz.at

• We can get a higher resolution for a classifier only

• Often sufficient to see which of two functions takes longer

fslow

ffast

• Edge thresholding: apply padding such that the slow function crosses one more clock edge

than the fast function.

13 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Recovering resolution - Edge thresholding www.tugraz.at

• We can get a higher resolution for a classifier only

• Often sufficient to see which of two functions takes longer

fslow

ffast Padding

Padding

• Edge thresholding: apply padding such that the slow function crosses one more clock edge

than the fast function.

13 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Recovering resolution - Edge thresholding www.tugraz.at

unaligned aligned padded

0

50

100

13
0

8287
100

18
0 0 0

p
er

ce
n

ta
ge

both correct fslow misclassified ffast misclassified

• Yields nanosecond resolution

• Firefox/Tor (2 ns), Edge (10 ns), Chrome (15 ns)

14 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Recovering resolution - Edge thresholding www.tugraz.at

unaligned aligned padded

0

50

100

13
0

8287
100

18
0 0 0

p
er

ce
n

ta
ge

both correct fslow misclassified ffast misclassified

• Yields nanosecond resolution

• Firefox/Tor (2 ns), Edge (10 ns), Chrome (15 ns)

14 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Recovering resolution - Edge thresholding www.tugraz.at

unaligned aligned padded

0

50

100

13
0

8287
100

18
0 0 0

p
er

ce
n

ta
ge

both correct fslow misclassified ffast misclassified

• Yields nanosecond resolution

• Firefox/Tor (2 ns), Edge (10 ns), Chrome (15 ns)

14 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Building a timer www.tugraz.at

• Goal: counter that does not block main thread

• Baseline setTimeout: 4 ms (except Edge: 2 ms)

• CSS animation: increase width of element as fast as possible

• Width of element is timestamp

• However, animation is limited to 60 fps → 16 ms

15 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Building a timer www.tugraz.at

• Goal: counter that does not block main thread

• Baseline setTimeout: 4 ms (except Edge: 2 ms)

• CSS animation: increase width of element as fast as possible

• Width of element is timestamp

• However, animation is limited to 60 fps → 16 ms

15 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Building a timer www.tugraz.at

• Goal: counter that does not block main thread

• Baseline setTimeout: 4 ms (except Edge: 2 ms)

• CSS animation: increase width of element as fast as possible

• Width of element is timestamp

• However, animation is limited to 60 fps → 16 ms

15 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Building a timer www.tugraz.at

• Goal: counter that does not block main thread

• Baseline setTimeout: 4 ms (except Edge: 2 ms)

• CSS animation: increase width of element as fast as possible

• Width of element is timestamp

• However, animation is limited to 60 fps → 16 ms

15 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Building a timer www.tugraz.at

• Goal: counter that does not block main thread

• Baseline setTimeout: 4 ms (except Edge: 2 ms)

• CSS animation: increase width of element as fast as possible

• Width of element is timestamp

• However, animation is limited to 60 fps → 16 ms

15 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Building a timer - Web worker www.tugraz.at

• JavaScript can spawn new threads called web worker

• Web worker communicate using message passing

• Let worker count and request timestamp in main thread

• Multiple possibilities: postMessage, MessageChannel or

BroadcastChannel

• Yields microsecond resolution (even on Tor and Fuzzyfox)

16 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Building a timer - Web worker www.tugraz.at

• JavaScript can spawn new threads called web worker

• Web worker communicate using message passing

• Let worker count and request timestamp in main thread

• Multiple possibilities: postMessage, MessageChannel or

BroadcastChannel

• Yields microsecond resolution (even on Tor and Fuzzyfox)

16 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Building a timer - Web worker www.tugraz.at

• JavaScript can spawn new threads called web worker

• Web worker communicate using message passing

• Let worker count and request timestamp in main thread

• Multiple possibilities: postMessage, MessageChannel or

BroadcastChannel

• Yields microsecond resolution (even on Tor and Fuzzyfox)

16 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Building a timer - Web worker www.tugraz.at

• JavaScript can spawn new threads called web worker

• Web worker communicate using message passing

• Let worker count and request timestamp in main thread

• Multiple possibilities: postMessage, MessageChannel or

BroadcastChannel

• Yields microsecond resolution (even on Tor and Fuzzyfox)

16 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Building a timer - Web worker www.tugraz.at

• JavaScript can spawn new threads called web worker

• Web worker communicate using message passing

• Let worker count and request timestamp in main thread

• Multiple possibilities: postMessage, MessageChannel or

BroadcastChannel

• Yields microsecond resolution (even on Tor and Fuzzyfox)

16 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Building a timer - Web worker www.tugraz.at

• Experimental feature to share data: SharedArrayBuffer

• Web worker can simultaneously read/write data

• No message passing overhead

• One dedicated worker for incrementing the shared variable

• Firefox/Fuzzyfox: 2 ns, Chrome: 15 ns

• Sufficient for microarchitectural attacks

17 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Building a timer - Web worker www.tugraz.at

• Experimental feature to share data: SharedArrayBuffer

• Web worker can simultaneously read/write data

• No message passing overhead

• One dedicated worker for incrementing the shared variable

• Firefox/Fuzzyfox: 2 ns, Chrome: 15 ns

• Sufficient for microarchitectural attacks

17 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Building a timer - Web worker www.tugraz.at

• Experimental feature to share data: SharedArrayBuffer

• Web worker can simultaneously read/write data

• No message passing overhead

• One dedicated worker for incrementing the shared variable

• Firefox/Fuzzyfox: 2 ns, Chrome: 15 ns

• Sufficient for microarchitectural attacks

17 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Building a timer - Web worker www.tugraz.at

• Experimental feature to share data: SharedArrayBuffer

• Web worker can simultaneously read/write data

• No message passing overhead

• One dedicated worker for incrementing the shared variable

• Firefox/Fuzzyfox: 2 ns, Chrome: 15 ns

• Sufficient for microarchitectural attacks

17 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Building a timer - Web worker www.tugraz.at

• Experimental feature to share data: SharedArrayBuffer

• Web worker can simultaneously read/write data

• No message passing overhead

• One dedicated worker for incrementing the shared variable

• Firefox/Fuzzyfox: 2 ns, Chrome: 15 ns

• Sufficient for microarchitectural attacks

17 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Building a timer - Web worker www.tugraz.at

• Experimental feature to share data: SharedArrayBuffer

• Web worker can simultaneously read/write data

• No message passing overhead

• One dedicated worker for incrementing the shared variable

• Firefox/Fuzzyfox: 2 ns, Chrome: 15 ns

• Sufficient for microarchitectural attacks

17 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Timer evaluation www.tugraz.at

300 350 400 450 500 550 600 650 700 750

100

200

300

Access time [SharedArrayBuffer increments]

N
u

m
b

er
of

ca
se

s

cache hit cache miss

18 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Attack Requirements

Attack requirements www.tugraz.at

• Timers were always the main focus

• Reducing timer resolution is not sufficient

• Timers can (always) be built

• Some attacks do not require timers at all

• Important to understand requirements before designing

countermeasures

19 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Attack requirements www.tugraz.at

• Timers were always the main focus

• Reducing timer resolution is not sufficient

• Timers can (always) be built

• Some attacks do not require timers at all

• Important to understand requirements before designing

countermeasures

19 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Attack requirements www.tugraz.at

• Timers were always the main focus

• Reducing timer resolution is not sufficient

• Timers can (always) be built

• Some attacks do not require timers at all

• Important to understand requirements before designing

countermeasures

19 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Attack requirements www.tugraz.at

• Timers were always the main focus

• Reducing timer resolution is not sufficient

• Timers can (always) be built

• Some attacks do not require timers at all

• Important to understand requirements before designing

countermeasures

19 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Attack requirements www.tugraz.at

• Timers were always the main focus

• Reducing timer resolution is not sufficient

• Timers can (always) be built

• Some attacks do not require timers at all

• Important to understand requirements before designing

countermeasures

19 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Identify requirements www.tugraz.at

• Currently 11 microarchitectural and side-channel attacks in JavaScript

• Analyse requirements for every attack

• Results in 5 categories

• Memory addresses

• Accurate timing

• Multithreading

• Shared data

• Sensor API

• Every attack is in at least one category

20 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Identify requirements www.tugraz.at

• Currently 11 microarchitectural and side-channel attacks in JavaScript

• Analyse requirements for every attack

• Results in 5 categories

• Memory addresses

• Accurate timing

• Multithreading

• Shared data

• Sensor API

• Every attack is in at least one category

20 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Identify requirements www.tugraz.at

• Currently 11 microarchitectural and side-channel attacks in JavaScript

• Analyse requirements for every attack

• Results in 5 categories

• Memory addresses

• Accurate timing

• Multithreading

• Shared data

• Sensor API

• Every attack is in at least one category

20 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Identify requirements www.tugraz.at

• Currently 11 microarchitectural and side-channel attacks in JavaScript

• Analyse requirements for every attack

• Results in 5 categories

• Memory addresses

• Accurate timing

• Multithreading

• Shared data

• Sensor API

• Every attack is in at least one category

20 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Identify requirements www.tugraz.at

• Currently 11 microarchitectural and side-channel attacks in JavaScript

• Analyse requirements for every attack

• Results in 5 categories

• Memory addresses

• Accurate timing

• Multithreading

• Shared data

• Sensor API

• Every attack is in at least one category

20 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Attacks and Categories www.tugraz.at

M
em

or
y
a
d
d
re
ss
es

A
cc
u
ra
te

ti
m
in
g

M
u
lt
it
h
re
a
d
in
g

S
h
ar
ed

d
a
ta

S
en

so
r
A
P
I

Rowhammer.js

Practical Memory Deduplication Attacks in Sandboxed Javascript

Fantastic Timers and Where to Find Them †

ASLR on the Line †

The spy in the sandbox

Loophole

Pixel perfect timing attacks with HTML5 †

The clock is still ticking

Practical Keystroke Timing Attacks in Sandboxed JavaScript †

TouchSignatures

Stealing sensitive browser data with the W3C Ambient Light Sensor API

† If accurate timing is not available, it can be approximated using a combination of multithreading and shared data.

21 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Memory Addresses www.tugraz.at

• Language does not provide addresses to programmer

• Closest to virtual address: array indices

• ArrayBuffer is page aligned, leaks 12 bits of address

• If 2 MB backing pages are used, 21 bits of address known

• If not page aligned: detect page faults through timing

22 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Memory Addresses www.tugraz.at

• Language does not provide addresses to programmer

• Closest to virtual address: array indices

• ArrayBuffer is page aligned, leaks 12 bits of address

• If 2 MB backing pages are used, 21 bits of address known

• If not page aligned: detect page faults through timing

22 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Memory Addresses www.tugraz.at

• Language does not provide addresses to programmer

• Closest to virtual address: array indices

• ArrayBuffer is page aligned, leaks 12 bits of address

• If 2 MB backing pages are used, 21 bits of address known

• If not page aligned: detect page faults through timing

22 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Memory Addresses www.tugraz.at

• Language does not provide addresses to programmer

• Closest to virtual address: array indices

• ArrayBuffer is page aligned, leaks 12 bits of address

• If 2 MB backing pages are used, 21 bits of address known

• If not page aligned: detect page faults through timing

22 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Memory Addresses www.tugraz.at

• Language does not provide addresses to programmer

• Closest to virtual address: array indices

• ArrayBuffer is page aligned, leaks 12 bits of address

• If 2 MB backing pages are used, 21 bits of address known

• If not page aligned: detect page faults through timing

22 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Accurate Timing www.tugraz.at

• Nearly all attacks require accurate timing

• No absolute timestamps required, only time differences

• Required accuracy varies between milliseconds and nanoseconds

• Such timers can be built if not available (e.g., message passing)

• If attack is repeatable, less accurate timing can be sufficient

23 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Accurate Timing www.tugraz.at

• Nearly all attacks require accurate timing

• No absolute timestamps required, only time differences

• Required accuracy varies between milliseconds and nanoseconds

• Such timers can be built if not available (e.g., message passing)

• If attack is repeatable, less accurate timing can be sufficient

23 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Accurate Timing www.tugraz.at

• Nearly all attacks require accurate timing

• No absolute timestamps required, only time differences

• Required accuracy varies between milliseconds and nanoseconds

• Such timers can be built if not available (e.g., message passing)

• If attack is repeatable, less accurate timing can be sufficient

23 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Accurate Timing www.tugraz.at

• Nearly all attacks require accurate timing

• No absolute timestamps required, only time differences

• Required accuracy varies between milliseconds and nanoseconds

• Such timers can be built if not available (e.g., message passing)

• If attack is repeatable, less accurate timing can be sufficient

23 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Accurate Timing www.tugraz.at

• Nearly all attacks require accurate timing

• No absolute timestamps required, only time differences

• Required accuracy varies between milliseconds and nanoseconds

• Such timers can be built if not available (e.g., message passing)

• If attack is repeatable, less accurate timing can be sufficient

23 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Multithreading www.tugraz.at

• JavaScript introduced multi threading with web workers

• Enables new side-channel attacks

• Dispatch latency of event queue allows to infer activity of other tabs

• Endless loop in worker allows to detect hardware interrupts

24 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Multithreading www.tugraz.at

• JavaScript introduced multi threading with web workers

• Enables new side-channel attacks

• Dispatch latency of event queue allows to infer activity of other tabs

• Endless loop in worker allows to detect hardware interrupts

24 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Multithreading www.tugraz.at

• JavaScript introduced multi threading with web workers

• Enables new side-channel attacks

• Dispatch latency of event queue allows to infer activity of other tabs

• Endless loop in worker allows to detect hardware interrupts

24 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Multithreading www.tugraz.at

• JavaScript introduced multi threading with web workers

• Enables new side-channel attacks

• Dispatch latency of event queue allows to infer activity of other tabs

• Endless loop in worker allows to detect hardware interrupts

24 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Shared Data www.tugraz.at

• Usually no shared data between threads due to synchronization issues

• Exception: SharedArrayBuffer

• Only useful in combination with web workers

• Allows to build timers with extremely high resolution (up to 1 ns)

• Not enabled by default

25 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Shared Data www.tugraz.at

• Usually no shared data between threads due to synchronization issues

• Exception: SharedArrayBuffer

• Only useful in combination with web workers

• Allows to build timers with extremely high resolution (up to 1 ns)

• Not enabled by default

25 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Shared Data www.tugraz.at

• Usually no shared data between threads due to synchronization issues

• Exception: SharedArrayBuffer

• Only useful in combination with web workers

• Allows to build timers with extremely high resolution (up to 1 ns)

• Not enabled by default

25 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Shared Data www.tugraz.at

• Usually no shared data between threads due to synchronization issues

• Exception: SharedArrayBuffer

• Only useful in combination with web workers

• Allows to build timers with extremely high resolution (up to 1 ns)

• Not enabled by default

25 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Shared Data www.tugraz.at

• Usually no shared data between threads due to synchronization issues

• Exception: SharedArrayBuffer

• Only useful in combination with web workers

• Allows to build timers with extremely high resolution (up to 1 ns)

• Not enabled by default

25 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Sensor API www.tugraz.at

• Some side-channel attacks only require access to sensors

• Several sensors are available in JavaScript

• Some require user consent, e.g., microphone

• Other can be used without user consent, e.g., ambient light

• There are attacks with these sensors

26 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Sensor API www.tugraz.at

• Some side-channel attacks only require access to sensors

• Several sensors are available in JavaScript

• Some require user consent, e.g., microphone

• Other can be used without user consent, e.g., ambient light

• There are attacks with these sensors

26 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Sensor API www.tugraz.at

• Some side-channel attacks only require access to sensors

• Several sensors are available in JavaScript

• Some require user consent, e.g., microphone

• Other can be used without user consent, e.g., ambient light

• There are attacks with these sensors

26 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Sensor API www.tugraz.at

• Some side-channel attacks only require access to sensors

• Several sensors are available in JavaScript

• Some require user consent, e.g., microphone

• Other can be used without user consent, e.g., ambient light

• There are attacks with these sensors

26 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Sensor API www.tugraz.at

• Some side-channel attacks only require access to sensors

• Several sensors are available in JavaScript

• Some require user consent, e.g., microphone

• Other can be used without user consent, e.g., ambient light

• There are attacks with these sensors

26 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Defenses

Countermeasures www.tugraz.at

• Countermeasures have to address all categories

• Should not be visible to the programmer

• Implementation is on the “microarchitectural” level of JavaScript

• If no category is usable for attacks anymore, future attacks are hard

27 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Countermeasures www.tugraz.at

• Countermeasures have to address all categories

• Should not be visible to the programmer

• Implementation is on the “microarchitectural” level of JavaScript

• If no category is usable for attacks anymore, future attacks are hard

27 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Countermeasures www.tugraz.at

• Countermeasures have to address all categories

• Should not be visible to the programmer

• Implementation is on the “microarchitectural” level of JavaScript

• If no category is usable for attacks anymore, future attacks are hard

27 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Countermeasures www.tugraz.at

• Countermeasures have to address all categories

• Should not be visible to the programmer

• Implementation is on the “microarchitectural” level of JavaScript

• If no category is usable for attacks anymore, future attacks are hard

27 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Memory Addresses www.tugraz.at

#1: Buffer ASLR

• Ensure arrays are not page aligned

• Attacker cannot assume that least significant 12 bits are ‘0’

• Only works for the first page

• Consecutive page borders can be detected through page faults

28 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Memory Addresses www.tugraz.at

#1: Buffer ASLR

• Ensure arrays are not page aligned

• Attacker cannot assume that least significant 12 bits are ‘0’

• Only works for the first page

• Consecutive page borders can be detected through page faults

28 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Memory Addresses www.tugraz.at

#1: Buffer ASLR

• Ensure arrays are not page aligned

• Attacker cannot assume that least significant 12 bits are ‘0’

• Only works for the first page

• Consecutive page borders can be detected through page faults

28 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Memory Addresses www.tugraz.at

#1: Buffer ASLR

• Ensure arrays are not page aligned

• Attacker cannot assume that least significant 12 bits are ‘0’

• Only works for the first page

• Consecutive page borders can be detected through page faults

28 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Memory Addresses www.tugraz.at

#1: Buffer ASLR

• Ensure arrays are not page aligned

• Attacker cannot assume that least significant 12 bits are ‘0’

• Only works for the first page

• Consecutive page borders can be detected through page faults

28 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Memory Addresses www.tugraz.at

#2: Preloading

• Instead of lazy initialization for arrays, ensure that they are always

memory backed

• Attacker cannot detect page borders through page faults anymore

• Does not work if swapping or page deduplication is enabled

• Has to be combined with Buffer ASLR

29 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Memory Addresses www.tugraz.at

#2: Preloading

• Instead of lazy initialization for arrays, ensure that they are always

memory backed

• Attacker cannot detect page borders through page faults anymore

• Does not work if swapping or page deduplication is enabled

• Has to be combined with Buffer ASLR

29 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Memory Addresses www.tugraz.at

#2: Preloading

• Instead of lazy initialization for arrays, ensure that they are always

memory backed

• Attacker cannot detect page borders through page faults anymore

• Does not work if swapping or page deduplication is enabled

• Has to be combined with Buffer ASLR

29 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Memory Addresses www.tugraz.at

#2: Preloading

• Instead of lazy initialization for arrays, ensure that they are always

memory backed

• Attacker cannot detect page borders through page faults anymore

• Does not work if swapping or page deduplication is enabled

• Has to be combined with Buffer ASLR

29 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Memory Addresses www.tugraz.at

#3: Non-determinism

• For every array access, add another random access

• Makes page border detection infeasible without requiring significantly

more memory

• Attacker always times two accesses

• Distinguishing cached from non-cached addresses is hard

30 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Memory Addresses www.tugraz.at

#3: Non-determinism

• For every array access, add another random access

• Makes page border detection infeasible without requiring significantly

more memory

• Attacker always times two accesses

• Distinguishing cached from non-cached addresses is hard

30 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Memory Addresses www.tugraz.at

#3: Non-determinism

• For every array access, add another random access

• Makes page border detection infeasible without requiring significantly

more memory

• Attacker always times two accesses

• Distinguishing cached from non-cached addresses is hard

30 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Memory Addresses www.tugraz.at

#3: Non-determinism

• For every array access, add another random access

• Makes page border detection infeasible without requiring significantly

more memory

• Attacker always times two accesses

• Distinguishing cached from non-cached addresses is hard

30 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Memory Addresses www.tugraz.at

#4: Array Index Randomization

• Ensures arrays are not linear

• Use a random linear function to map array index to underlying buffer

• Index x maps to f (x) = ax + b mod n, where n is array length and a

and b are randomly chosen

• Has to be combined with Buffer ASLR and either Preloading or

Non-determinism

31 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Memory Addresses www.tugraz.at

#4: Array Index Randomization

• Ensures arrays are not linear

• Use a random linear function to map array index to underlying buffer

• Index x maps to f (x) = ax + b mod n, where n is array length and a

and b are randomly chosen

• Has to be combined with Buffer ASLR and either Preloading or

Non-determinism

31 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Memory Addresses www.tugraz.at

#4: Array Index Randomization

• Ensures arrays are not linear

• Use a random linear function to map array index to underlying buffer

• Index x maps to f (x) = ax + b mod n, where n is array length and a

and b are randomly chosen

• Has to be combined with Buffer ASLR and either Preloading or

Non-determinism

31 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Memory Addresses www.tugraz.at

#4: Array Index Randomization

• Ensures arrays are not linear

• Use a random linear function to map array index to underlying buffer

• Index x maps to f (x) = ax + b mod n, where n is array length and a

and b are randomly chosen

• Has to be combined with Buffer ASLR and either Preloading or

Non-determinism

31 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Memory Addresses www.tugraz.at

• The four defenses prevent attackers from getting virtual and physical

addresses

• Prevents many microarchitectural attacks

• Have to be combined for maximum security

• Side effect: make exploits harder where addresses are required

32 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Memory Addresses www.tugraz.at

• The four defenses prevent attackers from getting virtual and physical

addresses

• Prevents many microarchitectural attacks

• Have to be combined for maximum security

• Side effect: make exploits harder where addresses are required

32 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Memory Addresses www.tugraz.at

• The four defenses prevent attackers from getting virtual and physical

addresses

• Prevents many microarchitectural attacks

• Have to be combined for maximum security

• Side effect: make exploits harder where addresses are required

32 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Memory Addresses www.tugraz.at

• The four defenses prevent attackers from getting virtual and physical

addresses

• Prevents many microarchitectural attacks

• Have to be combined for maximum security

• Side effect: make exploits harder where addresses are required

32 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Accurate Timing www.tugraz.at

• Reducing the resolution of performance.now() is a first step

• Only rounding the timestamps is not sufficient

• Fuzzy time (Vattikonda et al.) adds random jitter

• Timestamps are still monotonic, but clock edges are randomized

33 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Accurate Timing www.tugraz.at

• Reducing the resolution of performance.now() is a first step

• Only rounding the timestamps is not sufficient

• Fuzzy time (Vattikonda et al.) adds random jitter

• Timestamps are still monotonic, but clock edges are randomized

33 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Accurate Timing www.tugraz.at

• Reducing the resolution of performance.now() is a first step

• Only rounding the timestamps is not sufficient

• Fuzzy time (Vattikonda et al.) adds random jitter

• Timestamps are still monotonic, but clock edges are randomized

33 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Accurate Timing www.tugraz.at

• Reducing the resolution of performance.now() is a first step

• Only rounding the timestamps is not sufficient

• Fuzzy time (Vattikonda et al.) adds random jitter

• Timestamps are still monotonic, but clock edges are randomized

33 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Multithreading www.tugraz.at

• Only real solution is to prevent multithreading

• We used a polyfill to not completely break websites

• Some attacks can be prevented by adding random delays to

postMessage

• Prevents certain timing primitives and attacks on the event-queue

latency

34 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Multithreading www.tugraz.at

• Only real solution is to prevent multithreading

• We used a polyfill to not completely break websites

• Some attacks can be prevented by adding random delays to

postMessage

• Prevents certain timing primitives and attacks on the event-queue

latency

34 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Multithreading www.tugraz.at

• Only real solution is to prevent multithreading

• We used a polyfill to not completely break websites

• Some attacks can be prevented by adding random delays to

postMessage

• Prevents certain timing primitives and attacks on the event-queue

latency

34 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Multithreading www.tugraz.at

• Only real solution is to prevent multithreading

• We used a polyfill to not completely break websites

• Some attacks can be prevented by adding random delays to

postMessage

• Prevents certain timing primitives and attacks on the event-queue

latency

34 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Shared Data www.tugraz.at

• Best countermeasures: do not allow shared data

• Many attacks are impossible without SharedArrayBuffer

• Alternative: delay access to buffer

• Still faster than message passing

• Degrades resolution of timing primitive to microseconds

35 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Shared Data www.tugraz.at

• Best countermeasures: do not allow shared data

• Many attacks are impossible without SharedArrayBuffer

• Alternative: delay access to buffer

• Still faster than message passing

• Degrades resolution of timing primitive to microseconds

35 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Shared Data www.tugraz.at

• Best countermeasures: do not allow shared data

• Many attacks are impossible without SharedArrayBuffer

• Alternative: delay access to buffer

• Still faster than message passing

• Degrades resolution of timing primitive to microseconds

35 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Shared Data www.tugraz.at

• Best countermeasures: do not allow shared data

• Many attacks are impossible without SharedArrayBuffer

• Alternative: delay access to buffer

• Still faster than message passing

• Degrades resolution of timing primitive to microseconds

35 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Shared Data www.tugraz.at

• Best countermeasures: do not allow shared data

• Many attacks are impossible without SharedArrayBuffer

• Alternative: delay access to buffer

• Still faster than message passing

• Degrades resolution of timing primitive to microseconds

35 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Sensor API www.tugraz.at

• Reduce resolution and update frequency of sensors

• Sensor APIs should always ask user for permission

• Every sensor is usable for attacks, even ambient light sensor

• To not break existing applications, sensors return constant value

36 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Sensor API www.tugraz.at

• Reduce resolution and update frequency of sensors

• Sensor APIs should always ask user for permission

• Every sensor is usable for attacks, even ambient light sensor

• To not break existing applications, sensors return constant value

36 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Sensor API www.tugraz.at

• Reduce resolution and update frequency of sensors

• Sensor APIs should always ask user for permission

• Every sensor is usable for attacks, even ambient light sensor

• To not break existing applications, sensors return constant value

36 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Sensor API www.tugraz.at

• Reduce resolution and update frequency of sensors

• Sensor APIs should always ask user for permission

• Every sensor is usable for attacks, even ambient light sensor

• To not break existing applications, sensors return constant value

36 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Implementation

Designing the Countermeasure www.tugraz.at

• Best solution is to implement defenses in the browser core

• Maintaining a browser fork is hard work

• We want a generic solution for multiple browsers

• Parsing JavaScript is hard

• Implementation in JavaScript → Virtual machine layering

• Proof-of-concept is implemented as browser extension

37 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Designing the Countermeasure www.tugraz.at

• Best solution is to implement defenses in the browser core

• Maintaining a browser fork is hard work

• We want a generic solution for multiple browsers

• Parsing JavaScript is hard

• Implementation in JavaScript → Virtual machine layering

• Proof-of-concept is implemented as browser extension

37 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Designing the Countermeasure www.tugraz.at

• Best solution is to implement defenses in the browser core

• Maintaining a browser fork is hard work

• We want a generic solution for multiple browsers

• Parsing JavaScript is hard

• Implementation in JavaScript → Virtual machine layering

• Proof-of-concept is implemented as browser extension

37 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Designing the Countermeasure www.tugraz.at

• Best solution is to implement defenses in the browser core

• Maintaining a browser fork is hard work

• We want a generic solution for multiple browsers

• Parsing JavaScript is hard

• Implementation in JavaScript → Virtual machine layering

• Proof-of-concept is implemented as browser extension

37 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Designing the Countermeasure www.tugraz.at

• Best solution is to implement defenses in the browser core

• Maintaining a browser fork is hard work

• We want a generic solution for multiple browsers

• Parsing JavaScript is hard

• Implementation in JavaScript → Virtual machine layering

• Proof-of-concept is implemented as browser extension

37 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Designing the Countermeasure www.tugraz.at

• Best solution is to implement defenses in the browser core

• Maintaining a browser fork is hard work

• We want a generic solution for multiple browsers

• Parsing JavaScript is hard

• Implementation in JavaScript → Virtual machine layering

• Proof-of-concept is implemented as browser extension

37 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

User Experience www.tugraz.at

• Some defenses might impair user experience, e.g., disable

multithreading

• The user can choose one of several pre-defined protection levels

• Protection levels apply different combinations of defenses

• Each defense can either be disabled, enabled, or require user

permission

38 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

User Experience www.tugraz.at

• Some defenses might impair user experience, e.g., disable

multithreading

• The user can choose one of several pre-defined protection levels

• Protection levels apply different combinations of defenses

• Each defense can either be disabled, enabled, or require user

permission

38 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

User Experience www.tugraz.at

• Some defenses might impair user experience, e.g., disable

multithreading

• The user can choose one of several pre-defined protection levels

• Protection levels apply different combinations of defenses

• Each defense can either be disabled, enabled, or require user

permission

38 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

User Experience www.tugraz.at

• Some defenses might impair user experience, e.g., disable

multithreading

• The user can choose one of several pre-defined protection levels

• Protection levels apply different combinations of defenses

• Each defense can either be disabled, enabled, or require user

permission

38 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Virtual Machine Layering www.tugraz.at

• Functions and properties are replaced by wrappers

Script

Wrapper

Extension ContextPage Context

C
all

R
et

u
rn

Call

Allowed?

Original Function

Yes

No

Default value

Filtered value

39 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Virtual Machine Layering www.tugraz.at

• Functions can be re-defined in JavaScript

var o r i g i n a l r e f e r e n c e = window . p e r f o r m a n c e . now ;

window . p e r f o r m a n c e . now = funct ion () { return 0 ; } ;

// call the new function (via function name)

a l e r t (window . p e r f o r m a n c e . now ()) ; // == alert(0)

// call the original function (only via reference)

a l e r t (o r i g i n a l r e f e r e n c e . c a l l (window . p e r f o r m a n c e)) ;

• Properties can be replaced by accessor properties

40 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Virtual Machine Layering www.tugraz.at

• Functions can be re-defined in JavaScript

var o r i g i n a l r e f e r e n c e = window . p e r f o r m a n c e . now ;

window . p e r f o r m a n c e . now = funct ion () { return 0 ; } ;

// call the new function (via function name)

a l e r t (window . p e r f o r m a n c e . now ()) ; // == alert(0)

// call the original function (only via reference)

a l e r t (o r i g i n a l r e f e r e n c e . c a l l (window . p e r f o r m a n c e)) ;

• Properties can be replaced by accessor properties

40 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Virtual Machine Layering www.tugraz.at

• Functions can be re-defined in JavaScript

var o r i g i n a l r e f e r e n c e = window . p e r f o r m a n c e . now ;

window . p e r f o r m a n c e . now = funct ion () { return 0 ; } ;

// call the new function (via function name)

a l e r t (window . p e r f o r m a n c e . now ()) ; // == alert(0)

// call the original function (only via reference)

a l e r t (o r i g i n a l r e f e r e n c e . c a l l (window . p e r f o r m a n c e)) ;

• Properties can be replaced by accessor properties

40 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Virtual Machine Layering www.tugraz.at

• Functions can be re-defined in JavaScript

var o r i g i n a l r e f e r e n c e = window . p e r f o r m a n c e . now ;

window . p e r f o r m a n c e . now = funct ion () { return 0 ; } ;

// call the new function (via function name)

a l e r t (window . p e r f o r m a n c e . now ()) ; // == alert(0)

// call the original function (only via reference)

a l e r t (o r i g i n a l r e f e r e n c e . c a l l (window . p e r f o r m a n c e)) ;

• Properties can be replaced by accessor properties

40 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Virtual Machine Layering for Objects www.tugraz.at

• Objects are proxied

Script

Methods

Object

Methods

Filter

new Object

Proxy(Object)

• All properties and functions are handled by the original object

• Functions and properties can be overwritten in the proxy object

41 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Virtual Machine Layering for Objects www.tugraz.at

• Objects are proxied

Script

Methods

Object

Methods

Filter

new Object

Proxy(Object)

• All properties and functions are handled by the original object

• Functions and properties can be overwritten in the proxy object

41 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Virtual Machine Layering for Objects www.tugraz.at

• Objects are proxied

Script

Methods

Object

Methods

Filter

new Object

Proxy(Object)

• All properties and functions are handled by the original object

• Functions and properties can be overwritten in the proxy object

41 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Self Protection www.tugraz.at

• Attacker tries to circumvent JavaScript Zero

• Self protection is necessary if implemented in JavaScript

• Use closures to hide all references to original functions

(funct ion () {
// original is only accessible in this scope

var o r i g i n a l = window . p e r f o r m a n c e . now ;

window . p e r f o r m a n c e . now = . . .

}) () ;

• Prevent objects from being modified: Object.freeze

42 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Self Protection www.tugraz.at

• Attacker tries to circumvent JavaScript Zero

• Self protection is necessary if implemented in JavaScript

• Use closures to hide all references to original functions

(funct ion () {
// original is only accessible in this scope

var o r i g i n a l = window . p e r f o r m a n c e . now ;

window . p e r f o r m a n c e . now = . . .

}) () ;

• Prevent objects from being modified: Object.freeze

42 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Self Protection www.tugraz.at

• Attacker tries to circumvent JavaScript Zero

• Self protection is necessary if implemented in JavaScript

• Use closures to hide all references to original functions

(funct ion () {
// original is only accessible in this scope

var o r i g i n a l = window . p e r f o r m a n c e . now ;

window . p e r f o r m a n c e . now = . . .

}) () ;

• Prevent objects from being modified: Object.freeze

42 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Self Protection www.tugraz.at

• Attacker tries to circumvent JavaScript Zero

• Self protection is necessary if implemented in JavaScript

• Use closures to hide all references to original functions

(funct ion () {
// original is only accessible in this scope

var o r i g i n a l = window . p e r f o r m a n c e . now ;

window . p e r f o r m a n c e . now = . . .

}) () ;

• Prevent objects from being modified: Object.freeze

42 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Evaluation

Page Border Detection www.tugraz.at

• Border of pages leak 12 or 21 bits (depending on page size)

• Create huge array

• Iterate over array, measure access time

• Page border raise pagefault, taking significantly longer to access

43 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Page Border Detection www.tugraz.at

• Border of pages leak 12 or 21 bits (depending on page size)

• Create huge array

• Iterate over array, measure access time

• Page border raise pagefault, taking significantly longer to access

43 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Page Border Detection www.tugraz.at

• Border of pages leak 12 or 21 bits (depending on page size)

• Create huge array

• Iterate over array, measure access time

• Page border raise pagefault, taking significantly longer to access

43 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Page Border Detection www.tugraz.at

• Border of pages leak 12 or 21 bits (depending on page size)

• Create huge array

• Iterate over array, measure access time

• Page border raise pagefault, taking significantly longer to access

43 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Page Border Detection www.tugraz.at

0 0.2 0.4 0.6 0.8 1 1.2

·104

0

0.5

1
·105

Array offset [KB]

A
cc

es
s

ti
m

e

[c
yc

le
s]

44 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Page Border Detection with Random Access www.tugraz.at

0 1,000 2,000 3,000 4,000 5,000
0

0.5

1
·105

Array offset [KB]

A
cc

es
s

ti
m

e

[c
yc

le
s]

45 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Prime+Probe www.tugraz.at

• Find addresses (= array indices) that fall into same cache set

• Physical address defines in which cache set the data is cached

• Enough addresses in one set evicts the set (Prime)

• Iterate again over addresses (Probe)

• If it is fast, they are still cached

• If it is slow, someone used this cache set and evicted our addresses

46 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Prime+Probe www.tugraz.at

• Find addresses (= array indices) that fall into same cache set

• Physical address defines in which cache set the data is cached

• Enough addresses in one set evicts the set (Prime)

• Iterate again over addresses (Probe)

• If it is fast, they are still cached

• If it is slow, someone used this cache set and evicted our addresses

46 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Prime+Probe www.tugraz.at

• Find addresses (= array indices) that fall into same cache set

• Physical address defines in which cache set the data is cached

• Enough addresses in one set evicts the set (Prime)

• Iterate again over addresses (Probe)

• If it is fast, they are still cached

• If it is slow, someone used this cache set and evicted our addresses

46 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Prime+Probe www.tugraz.at

• Find addresses (= array indices) that fall into same cache set

• Physical address defines in which cache set the data is cached

• Enough addresses in one set evicts the set (Prime)

• Iterate again over addresses (Probe)

• If it is fast, they are still cached

• If it is slow, someone used this cache set and evicted our addresses

46 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Prime+Probe www.tugraz.at

• Find addresses (= array indices) that fall into same cache set

• Physical address defines in which cache set the data is cached

• Enough addresses in one set evicts the set (Prime)

• Iterate again over addresses (Probe)

• If it is fast, they are still cached

• If it is slow, someone used this cache set and evicted our addresses

46 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Prime+Probe www.tugraz.at

• Find addresses (= array indices) that fall into same cache set

• Physical address defines in which cache set the data is cached

• Enough addresses in one set evicts the set (Prime)

• Iterate again over addresses (Probe)

• If it is fast, they are still cached

• If it is slow, someone used this cache set and evicted our addresses

46 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Prime+Probe www.tugraz.at

47 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Prime+Probe with Random Access www.tugraz.at

48 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Interrupt Detection www.tugraz.at

• Multithreading allows to detect interrupts

• Endless loop which counts number of increments in time window

• Different number of increments indicate interrupt

• Fuzzy time prevents deterministic equally-sized time window

49 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Interrupt Detection www.tugraz.at

• Multithreading allows to detect interrupts

• Endless loop which counts number of increments in time window

• Different number of increments indicate interrupt

• Fuzzy time prevents deterministic equally-sized time window

49 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Interrupt Detection www.tugraz.at

• Multithreading allows to detect interrupts

• Endless loop which counts number of increments in time window

• Different number of increments indicate interrupt

• Fuzzy time prevents deterministic equally-sized time window

49 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Interrupt Detection www.tugraz.at

• Multithreading allows to detect interrupts

• Endless loop which counts number of increments in time window

• Different number of increments indicate interrupt

• Fuzzy time prevents deterministic equally-sized time window

49 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Interrupt Detection www.tugraz.at

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1,700
1,750
1,800
1,850

tap tap tap tap

Runtime [s]

D
el
ta

[c
o
u
n
te
r]

50 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Interrupt Detection with Fuzzy Time www.tugraz.at

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
600

700

800

900

tap tap tap tap

Runtime [s]

D
el
ta

[c
o
u
n
te
r]

51 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Event Queue Spying www.tugraz.at

• Messages between web workers are handled in the event queue

• User activity is also handled in the event queue

• Posting many messages allows to measure latency

• Latency indicates user input

52 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Event Queue Spying www.tugraz.at

• Messages between web workers are handled in the event queue

• User activity is also handled in the event queue

• Posting many messages allows to measure latency

• Latency indicates user input

52 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Event Queue Spying www.tugraz.at

• Messages between web workers are handled in the event queue

• User activity is also handled in the event queue

• Posting many messages allows to measure latency

• Latency indicates user input

52 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Event Queue Spying www.tugraz.at

• Messages between web workers are handled in the event queue

• User activity is also handled in the event queue

• Posting many messages allows to measure latency

• Latency indicates user input

52 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Event Queue Spying www.tugraz.at

2,560 2,570 2,580 2,590 2,600 2,610 2,620 2,630 2,640
0

0.5
1

1.5
2

Runtime [ms]

D
el
ta

[m
s]

53 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Event Queue Spying with Message Delay www.tugraz.at

2,860 2,870 2,880 2,890 2,900 2,910 2,920 2,930 2,940
0
1
2
3

Runtime [ms]

D
el
ta

[m
s]

54 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

SharedArrayBuffer Timing Primitive www.tugraz.at

• SharedArrayBuffer allows to build a timing primitive with the

highest resolution

• One web worker continuously increments variable in the shared array

• Other worker uses this as a timestamp

• Adding random delay to access degrades resolution

55 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

SharedArrayBuffer Timing Primitive www.tugraz.at

• SharedArrayBuffer allows to build a timing primitive with the

highest resolution

• One web worker continuously increments variable in the shared array

• Other worker uses this as a timestamp

• Adding random delay to access degrades resolution

55 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

SharedArrayBuffer Timing Primitive www.tugraz.at

• SharedArrayBuffer allows to build a timing primitive with the

highest resolution

• One web worker continuously increments variable in the shared array

• Other worker uses this as a timestamp

• Adding random delay to access degrades resolution

55 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

SharedArrayBuffer Timing Primitive www.tugraz.at

• SharedArrayBuffer allows to build a timing primitive with the

highest resolution

• One web worker continuously increments variable in the shared array

• Other worker uses this as a timestamp

• Adding random delay to access degrades resolution

55 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

SharedArrayBuffer www.tugraz.at

56 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

SharedArrayBuffer with Random Delay www.tugraz.at

57 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Defense

Prevents Rowham- Page Dedu- DRAM Covert Anti- Cache Keystroke Browser

mer.js plication Channel ASLR Eviction Timing

Buffer ASLR

Array preloading

Non-deterministic array

Array index randomization

Low-resolution timestamp

Fuzzy time * * * *

WebWorker polyfill

Message delay

Slow SharedArrayBuffer

No SharedArrayBuffer * * * *

Summary

Symbols indicate whether a policy fully prevents an attack, (), partly prevents and attack by

making it more difficult (), or does not prevent an attack ().

A star (*) indicates that all policies marked with a star must be combined to prevent an attack.

58 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

User Experience www.tugraz.at

59 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Conclusion www.tugraz.at

• Just rounding timers is not sufficient

• Multithreading and shared data allow to build new timers

• Microarchitectural attacks in the browser are possible at the moment

• Efficient countermeasures can be implemented in browsers

• More microarchitectural attacks in JavaScript will appear

60 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Conclusion www.tugraz.at

• Just rounding timers is not sufficient

• Multithreading and shared data allow to build new timers

• Microarchitectural attacks in the browser are possible at the moment

• Efficient countermeasures can be implemented in browsers

• More microarchitectural attacks in JavaScript will appear

60 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Conclusion www.tugraz.at

• Just rounding timers is not sufficient

• Multithreading and shared data allow to build new timers

• Microarchitectural attacks in the browser are possible at the moment

• Efficient countermeasures can be implemented in browsers

• More microarchitectural attacks in JavaScript will appear

60 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Conclusion www.tugraz.at

• Just rounding timers is not sufficient

• Multithreading and shared data allow to build new timers

• Microarchitectural attacks in the browser are possible at the moment

• Efficient countermeasures can be implemented in browsers

• More microarchitectural attacks in JavaScript will appear

60 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

Conclusion www.tugraz.at

• Just rounding timers is not sufficient

• Multithreading and shared data allow to build new timers

• Microarchitectural attacks in the browser are possible at the moment

• Efficient countermeasures can be implemented in browsers

• More microarchitectural attacks in JavaScript will appear

60 Michael Schwarz, Daniel Gruss, Moritz Lipp — www.iaik.tugraz.at

	Attacks in JavaScript
	New timer
	Attack Requirements
	Defenses
	Implementation
	Evaluation

