
A Brief Introduction to Memory Safety,

Exploitation, and Countermeasures

Michael Schwarz

September 18, 2019

www.iaik.tugraz.at

Exploitation www.tugraz.at

• Who is interested in exploitation?

Criminals

BP

Vendors Governments

1 Michael Schwarz — www.iaik.tugraz.at

Exploitation www.tugraz.at

• Who is interested in exploitation?

Criminals

BP

Vendors Governments

1 Michael Schwarz — www.iaik.tugraz.at

Exploitation www.tugraz.at

• Who is interested in exploitation?

Criminals

BP

Vendors

Governments

1 Michael Schwarz — www.iaik.tugraz.at

Exploitation www.tugraz.at

• Who is interested in exploitation?

Criminals

BP

Vendors Governments

1 Michael Schwarz — www.iaik.tugraz.at

Zero-Days for Piracy www.tugraz.at

• Jailbreaks (e.g., getting root) on various devices:

• iOS (multiple exploits)

• Wii (buffer overflow in The Legend of Zelda: Twilight

Princess).

• PS2 (buffer overflow in the BIOS)

• PS3 (heap overflow)

• Xbox (buffer overflow in savegames)

2 Michael Schwarz — www.iaik.tugraz.at

Zero-Days for Piracy www.tugraz.at

• Jailbreaks (e.g., getting root) on various devices:

• iOS (multiple exploits)

• Wii (buffer overflow in The Legend of Zelda: Twilight

Princess).

• PS2 (buffer overflow in the BIOS)

• PS3 (heap overflow)

• Xbox (buffer overflow in savegames)

2 Michael Schwarz — www.iaik.tugraz.at

Zero-Days for Piracy www.tugraz.at

• Jailbreaks (e.g., getting root) on various devices:

• iOS (multiple exploits)

• Wii (buffer overflow in The Legend of Zelda: Twilight

Princess).

• PS2 (buffer overflow in the BIOS)

• PS3 (heap overflow)

• Xbox (buffer overflow in savegames)

2 Michael Schwarz — www.iaik.tugraz.at

Zero-Days for Piracy www.tugraz.at

• Jailbreaks (e.g., getting root) on various devices:

• iOS (multiple exploits)

• Wii (buffer overflow in The Legend of Zelda: Twilight

Princess).

• PS2 (buffer overflow in the BIOS)

• PS3 (heap overflow)

• Xbox (buffer overflow in savegames)

2 Michael Schwarz — www.iaik.tugraz.at

Zero-Days for Piracy www.tugraz.at

• Jailbreaks (e.g., getting root) on various devices:

• iOS (multiple exploits)

• Wii (buffer overflow in The Legend of Zelda: Twilight

Princess).

• PS2 (buffer overflow in the BIOS)

• PS3 (heap overflow)

• Xbox (buffer overflow in savegames)

2 Michael Schwarz — www.iaik.tugraz.at

Zero-Days for Piracy www.tugraz.at

• Jailbreaks (e.g., getting root) on various devices:

• iOS (multiple exploits)

• Wii (buffer overflow in The Legend of Zelda: Twilight

Princess).

• PS2 (buffer overflow in the BIOS)

• PS3 (heap overflow)

• Xbox (buffer overflow in savegames)

2 Michael Schwarz — www.iaik.tugraz.at

Bug Bounty Programs BP

www.tugraz.at

3 Michael Schwarz — www.iaik.tugraz.at

Zero-Days in Government www.tugraz.at

• Computer and network surveillance

• Sometimes use state-sponsored trojan horses (govware)

• Bundestrojaner (Germany)

• MiniPanzer and MegaPanzer (Switzerland)

• “Sicherheitspaket” (Austria)

• NSA Exploits (Shadow Broker Leak)

4 Michael Schwarz — www.iaik.tugraz.at

Zero-Days in Government www.tugraz.at

• Computer and network surveillance

• Sometimes use state-sponsored trojan horses (govware)

• Bundestrojaner (Germany)

• MiniPanzer and MegaPanzer (Switzerland)

• “Sicherheitspaket” (Austria)

• NSA Exploits (Shadow Broker Leak)

4 Michael Schwarz — www.iaik.tugraz.at

Zero-Days in Government www.tugraz.at

• Computer and network surveillance

• Sometimes use state-sponsored trojan horses (govware)

• Bundestrojaner (Germany)

• MiniPanzer and MegaPanzer (Switzerland)

• “Sicherheitspaket” (Austria)

• NSA Exploits (Shadow Broker Leak)

4 Michael Schwarz — www.iaik.tugraz.at

Zero-Days in Government www.tugraz.at

• Computer and network surveillance

• Sometimes use state-sponsored trojan horses (govware)

• Bundestrojaner (Germany)

• MiniPanzer and MegaPanzer (Switzerland)

• “Sicherheitspaket” (Austria)

• NSA Exploits (Shadow Broker Leak)

4 Michael Schwarz — www.iaik.tugraz.at

Zero-Days in Government www.tugraz.at

• Computer and network surveillance

• Sometimes use state-sponsored trojan horses (govware)

• Bundestrojaner (Germany)

• MiniPanzer and MegaPanzer (Switzerland)

• “Sicherheitspaket” (Austria)

• NSA Exploits (Shadow Broker Leak)

4 Michael Schwarz — www.iaik.tugraz.at

Zero-Days in Government www.tugraz.at

• Computer and network surveillance

• Sometimes use state-sponsored trojan horses (govware)

• Bundestrojaner (Germany)

• MiniPanzer and MegaPanzer (Switzerland)

• “Sicherheitspaket” (Austria)

• NSA Exploits (Shadow Broker Leak)

4 Michael Schwarz — www.iaik.tugraz.at

Memory Safety Violation www.tugraz.at

Two types of memory safety violation

Spatial violation: memory access is out of object’s bounds

• buffer overflow

• out-of-bounds reads

• null pointer dereference

Temporal violation: memory access refers to an invalid object

• use after free

• double free

• use of uninitialized memory

5 Michael Schwarz — www.iaik.tugraz.at

Memory Safety Violation www.tugraz.at

Two types of memory safety violation

Spatial violation: memory access is out of object’s bounds

• buffer overflow

• out-of-bounds reads

• null pointer dereference

Temporal violation: memory access refers to an invalid object

• use after free

• double free

• use of uninitialized memory

5 Michael Schwarz — www.iaik.tugraz.at

Memory Safety Violation www.tugraz.at

Two types of memory safety violation

Spatial violation: memory access is out of object’s bounds

• buffer overflow

• out-of-bounds reads

• null pointer dereference

Temporal violation: memory access refers to an invalid object

• use after free

• double free

• use of uninitialized memory

5 Michael Schwarz — www.iaik.tugraz.at

Motivation www.tugraz.at

The complexer the programs, the more bugs

2002 2004 2006 2008 2010 2012 2014 2016

0

200

400

600

800

2 2 3 21
91 95 128

188

342 351
423

366
420

749 717

Year

M
em

or
y

C
or

ru
p

ti
on

V
u

ln
er

ab
ili

ti
es

1

1Source: http://www.cvedetails.com/vulnerabilities-by-types.php

6 Michael Schwarz — www.iaik.tugraz.at

http://www.cvedetails.com/vulnerabilities-by-types.php

Red Team vs Blue Team www.tugraz.at

• There are two views on memory safety:
• Attackers try to violate memory safety

• Defenders try to ensure memory safety

• Attackers and defenders are often seen as teams in a “security war game”

• The Red Team tries to find security problems and mount attacks

• The Blue Team tries to protect software and defend against attacks

7 Michael Schwarz — www.iaik.tugraz.at

Red Team vs Blue Team www.tugraz.at

• There are two views on memory safety:
• Attackers try to violate memory safety

• Defenders try to ensure memory safety

• Attackers and defenders are often seen as teams in a “security war game”

• The Red Team tries to find security problems and mount attacks

• The Blue Team tries to protect software and defend against attacks

7 Michael Schwarz — www.iaik.tugraz.at

Red Team vs Blue Team www.tugraz.at

• There are two views on memory safety:
• Attackers try to violate memory safety

• Defenders try to ensure memory safety

• Attackers and defenders are often seen as teams in a “security war game”

• The Red Team tries to find security problems and mount attacks

• The Blue Team tries to protect software and defend against attacks

7 Michael Schwarz — www.iaik.tugraz.at

Red Team vs Blue Team www.tugraz.at

• There are two views on memory safety:
• Attackers try to violate memory safety

• Defenders try to ensure memory safety

• Attackers and defenders are often seen as teams in a “security war game”

• The Red Team tries to find security problems and mount attacks

• The Blue Team tries to protect software and defend against attacks

7 Michael Schwarz — www.iaik.tugraz.at

Red Team vs Blue Team www.tugraz.at

• The Red Team are not (only) criminals, their work is

essential for the Blue Team

• Blue Team develops defenses based on Red Team

attacks

• Red Team breaks them again

Ñ More secure software and better defenses

• Ultimate goal: memory safe programs

8 Michael Schwarz — www.iaik.tugraz.at

Red Team vs Blue Team www.tugraz.at

• The Red Team are not (only) criminals, their work is

essential for the Blue Team

• Blue Team develops defenses based on Red Team

attacks

• Red Team breaks them again

Ñ More secure software and better defenses

• Ultimate goal: memory safe programs

8 Michael Schwarz — www.iaik.tugraz.at

Red Team vs Blue Team www.tugraz.at

• The Red Team are not (only) criminals, their work is

essential for the Blue Team

• Blue Team develops defenses based on Red Team

attacks

• Red Team breaks them again

Ñ More secure software and better defenses

• Ultimate goal: memory safe programs

8 Michael Schwarz — www.iaik.tugraz.at

Red Team vs Blue Team www.tugraz.at

• The Red Team are not (only) criminals, their work is

essential for the Blue Team

• Blue Team develops defenses based on Red Team

attacks

• Red Team breaks them again

Ñ More secure software and better defenses

• Ultimate goal: memory safe programs

8 Michael Schwarz — www.iaik.tugraz.at

Red Team vs Blue Team www.tugraz.at

• The Red Team are not (only) criminals, their work is

essential for the Blue Team

• Blue Team develops defenses based on Red Team

attacks

• Red Team breaks them again

Ñ More secure software and better defenses

• Ultimate goal: memory safe programs

8 Michael Schwarz — www.iaik.tugraz.at

Red Team aka Attacks

Attacks

What is an Exploit? www.tugraz.at

• What is an exploit?

• “a software tool designed to take advantage of a flaw in a

computer system” (Oxford)

• “[...] cause unintended or unanticipated behavior to occur on

computer software” (Wikipedia)

• “If Achilless heel was his vulnerability in the Iliad, then Pariss

poison tipped arrow was the exploit. ” (Kaspersky)

Ñ Quite fuzzy

9 Michael Schwarz — www.iaik.tugraz.at

What is an Exploit? www.tugraz.at

• What is an exploit?

• “a software tool designed to take advantage of a flaw in a

computer system” (Oxford)

• “[...] cause unintended or unanticipated behavior to occur on

computer software” (Wikipedia)

• “If Achilless heel was his vulnerability in the Iliad, then Pariss

poison tipped arrow was the exploit. ” (Kaspersky)

Ñ Quite fuzzy

9 Michael Schwarz — www.iaik.tugraz.at

What is an Exploit? www.tugraz.at

• What is an exploit?

• “a software tool designed to take advantage of a flaw in a

computer system” (Oxford)

• “[...] cause unintended or unanticipated behavior to occur on

computer software” (Wikipedia)

• “If Achilless heel was his vulnerability in the Iliad, then Pariss

poison tipped arrow was the exploit. ” (Kaspersky)

Ñ Quite fuzzy

9 Michael Schwarz — www.iaik.tugraz.at

What is a “normal” program?2 www.tugraz.at

• Programs: machines solving a certain problem(?)

• Ideally, finite-state machines

• We don’t build such machines Ñ general-purpose hardware

emulating them

• Programs: emulators for finite-state machines

2Most of the following ideas are from Halvar Flake / Thomas Dullien

10 Michael Schwarz — www.iaik.tugraz.at

What is a “normal” program?2 www.tugraz.at

• Programs: machines solving a certain problem(?)

• Ideally, finite-state machines

• We don’t build such machines Ñ general-purpose hardware

emulating them

• Programs: emulators for finite-state machines

2Most of the following ideas are from Halvar Flake / Thomas Dullien

10 Michael Schwarz — www.iaik.tugraz.at

What is a “normal” program?2 www.tugraz.at

• Programs: machines solving a certain problem(?)

• Ideally, finite-state machines

• We don’t build such machines Ñ general-purpose hardware

emulating them

• Programs: emulators for finite-state machines

2Most of the following ideas are from Halvar Flake / Thomas Dullien

10 Michael Schwarz — www.iaik.tugraz.at

What is a “normal” program?2 www.tugraz.at

• Programs: machines solving a certain problem(?)

• Ideally, finite-state machines

• We don’t build such machines Ñ general-purpose hardware

emulating them

• Programs: emulators for finite-state machines

2Most of the following ideas are from Halvar Flake / Thomas Dullien

10 Michael Schwarz — www.iaik.tugraz.at

What is a “normal” program? www.tugraz.at

1

2

E:

E:

open

close

open

close

opened

closed

state

entry action

transition

transition condition

open
door

close
door

• Finite-state machines: states and transitions

• Input: changes state to different state

• Finite-state machine (FSM) solves your problem

• Many different ways to implement FSM

11 Michael Schwarz — www.iaik.tugraz.at

What is a “normal” program? www.tugraz.at

1

2

E:

E:

open

close

open

close

opened

closed

state

entry action

transition

transition condition

open
door

close
door

• Finite-state machines: states and transitions

• Input: changes state to different state

• Finite-state machine (FSM) solves your problem

• Many different ways to implement FSM

11 Michael Schwarz — www.iaik.tugraz.at

What is a “normal” program? www.tugraz.at

1

2

E:

E:

open

close

open

close

opened

closed

state

entry action

transition

transition condition

open
door

close
door

• Finite-state machines: states and transitions

• Input: changes state to different state

• Finite-state machine (FSM) solves your problem

• Many different ways to implement FSM

11 Michael Schwarz — www.iaik.tugraz.at

What is a “normal” program? www.tugraz.at

1

2

E:

E:

open

close

open

close

opened

closed

state

entry action

transition

transition condition

open
door

close
door

• Finite-state machines: states and transitions

• Input: changes state to different state

• Finite-state machine (FSM) solves your problem

• Many different ways to implement FSM

11 Michael Schwarz — www.iaik.tugraz.at

An Example: Simple Password Manager www.tugraz.at

Read PIN

correct?

Show password list

Error message

Yes

No

• Security properties for your FSM

• Security properties based on inputs and outputs

• e.g., It should be practically infeasible for an attacker to get the password list

(output) if he does not know the PIN (input)

12 Michael Schwarz — www.iaik.tugraz.at

An Example: Simple Password Manager www.tugraz.at

Read PIN

correct?

Show password list

Error message

Yes

No

• Security properties for your FSM

• Security properties based on inputs and outputs

• e.g., It should be practically infeasible for an attacker to get the password list

(output) if he does not know the PIN (input)

12 Michael Schwarz — www.iaik.tugraz.at

An Example: Simple Password Manager www.tugraz.at

Read PIN

correct?

Show password list

Error message

Yes

No

• Security properties for your FSM

• Security properties based on inputs and outputs

• e.g., It should be practically infeasible for an attacker to get the password list

(output) if he does not know the PIN (input)

12 Michael Schwarz — www.iaik.tugraz.at

Finite-state machine states vs CPU states www.tugraz.at

• We have to write an emulator for our FSM

• CPU has a lot more states than our FSM

• Every FSM state is represented by one or more CPU states

• For example, reading the PIN requires multiple CPU states

Ñ Keyboard interrups, reading keys, storing text in memory, ...

• Not every CPU state is represented in the FSM

13 Michael Schwarz — www.iaik.tugraz.at

Finite-state machine states vs CPU states www.tugraz.at

• We have to write an emulator for our FSM

• CPU has a lot more states than our FSM

• Every FSM state is represented by one or more CPU states

• For example, reading the PIN requires multiple CPU states

Ñ Keyboard interrups, reading keys, storing text in memory, ...

• Not every CPU state is represented in the FSM

13 Michael Schwarz — www.iaik.tugraz.at

Finite-state machine states vs CPU states www.tugraz.at

• We have to write an emulator for our FSM

• CPU has a lot more states than our FSM

• Every FSM state is represented by one or more CPU states

• For example, reading the PIN requires multiple CPU states

Ñ Keyboard interrups, reading keys, storing text in memory, ...

• Not every CPU state is represented in the FSM

13 Michael Schwarz — www.iaik.tugraz.at

Finite-state machine states vs CPU states www.tugraz.at

• We have to write an emulator for our FSM

• CPU has a lot more states than our FSM

• Every FSM state is represented by one or more CPU states

• For example, reading the PIN requires multiple CPU states

Ñ Keyboard interrups, reading keys, storing text in memory, ...

• Not every CPU state is represented in the FSM

13 Michael Schwarz — www.iaik.tugraz.at

Finite-state machine states vs CPU states www.tugraz.at

• We have to write an emulator for our FSM

• CPU has a lot more states than our FSM

• Every FSM state is represented by one or more CPU states

• For example, reading the PIN requires multiple CPU states

Ñ Keyboard interrups, reading keys, storing text in memory, ...

• Not every CPU state is represented in the FSM

13 Michael Schwarz — www.iaik.tugraz.at

CPU states www.tugraz.at

3 cases for CPU states

• Sane state: A CPU state corresponding to an FSM state

• Transitory state: A CPU state during a transition, leading to a

sane state

• Weird state: A CPU state which does not correspond to an

FSM state

14 Michael Schwarz — www.iaik.tugraz.at

CPU states www.tugraz.at

3 cases for CPU states

• Sane state: A CPU state corresponding to an FSM state

• Transitory state: A CPU state during a transition, leading to a

sane state

• Weird state: A CPU state which does not correspond to an

FSM state

14 Michael Schwarz — www.iaik.tugraz.at

CPU states www.tugraz.at

3 cases for CPU states

• Sane state: A CPU state corresponding to an FSM state

• Transitory state: A CPU state during a transition, leading to a

sane state

• Weird state: A CPU state which does not correspond to an

FSM state

14 Michael Schwarz — www.iaik.tugraz.at

CPU states www.tugraz.at

3 cases for CPU states

• Sane state: A CPU state corresponding to an FSM state

• Transitory state: A CPU state during a transition, leading to a

sane state

• Weird state: A CPU state which does not correspond to an

FSM state

14 Michael Schwarz — www.iaik.tugraz.at

Example continued: A Simple Password Manager www.tugraz.at

int main() {

uint32_t pin, correct = 0;

while(1) {

pin = readPIN();

if(pin * 2654435761u == 324783883u)

correct = 1;

if(correct) {

showPasswords();

break;

} else printf("\nWrong PIN!\n");

}

return 0;

}

States
CPU State: Transitory

State: -

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

void showPasswords() {

FILE* stream;

char* l = NULL;

size_t len;

stream = fopen("passwords", "r");

if (stream == NULL) return;

while(getline(&l, &len, stream) != -1)

puts(l);

free(l);

fclose(stream);

}

15 Michael Schwarz — www.iaik.tugraz.at

Example continued: A Simple Password Manager www.tugraz.at

int main() {

uint32_t pin, correct = 0;

while(1) {

pin = readPIN();

if(pin * 2654435761u == 324783883u)

correct = 1;

if(correct) {

showPasswords();

break;

} else printf("\nWrong PIN!\n");

}

return 0;

}

States
CPU State: Transitory

State: -

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

void showPasswords() {

FILE* stream;

char* l = NULL;

size_t len;

stream = fopen("passwords", "r");

if (stream == NULL) return;

while(getline(&l, &len, stream) != -1)

puts(l);

free(l);

fclose(stream);

}

15 Michael Schwarz — www.iaik.tugraz.at

Example continued: A Simple Password Manager www.tugraz.at

int main() {

uint32_t pin, correct = 0;

while(1) {

pin = readPIN();

if(pin * 2654435761u == 324783883u)

correct = 1;

if(correct) {

showPasswords();

break;

} else printf("\nWrong PIN!\n");

}

return 0;

}

States
CPU State: Sane

State: Read PIN

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

void showPasswords() {

FILE* stream;

char* l = NULL;

size_t len;

stream = fopen("passwords", "r");

if (stream == NULL) return;

while(getline(&l, &len, stream) != -1)

puts(l);

free(l);

fclose(stream);

}

15 Michael Schwarz — www.iaik.tugraz.at

Example continued: A Simple Password Manager www.tugraz.at

int main() {

uint32_t pin, correct = 0;

while(1) {

pin = readPIN();

if(pin * 2654435761u == 324783883u)

correct = 1;

if(correct) {

showPasswords();

break;

} else printf("\nWrong PIN!\n");

}

return 0;

}

States
CPU State: Sane

State: Read PIN

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

void showPasswords() {

FILE* stream;

char* l = NULL;

size_t len;

stream = fopen("passwords", "r");

if (stream == NULL) return;

while(getline(&l, &len, stream) != -1)

puts(l);

free(l);

fclose(stream);

}

15 Michael Schwarz — www.iaik.tugraz.at

Example continued: A Simple Password Manager www.tugraz.at

int main() {

uint32_t pin, correct = 0;

while(1) {

pin = readPIN();

if(pin * 2654435761u == 324783883u)

correct = 1;

if(correct) {

showPasswords();

break;

} else printf("\nWrong PIN!\n");

}

return 0;

}

States
CPU State: Sane

State: Read PIN

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

void showPasswords() {

FILE* stream;

char* l = NULL;

size_t len;

stream = fopen("passwords", "r");

if (stream == NULL) return;

while(getline(&l, &len, stream) != -1)

puts(l);

free(l);

fclose(stream);

}

15 Michael Schwarz — www.iaik.tugraz.at

Example continued: A Simple Password Manager www.tugraz.at

int main() {

uint32_t pin, correct = 0;

while(1) {

pin = readPIN();

if(pin * 2654435761u == 324783883u)

correct = 1;

if(correct) {

showPasswords();

break;

} else printf("\nWrong PIN!\n");

}

return 0;

}

States
CPU State: Transitory

State: -

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

void showPasswords() {

FILE* stream;

char* l = NULL;

size_t len;

stream = fopen("passwords", "r");

if (stream == NULL) return;

while(getline(&l, &len, stream) != -1)

puts(l);

free(l);

fclose(stream);

}

15 Michael Schwarz — www.iaik.tugraz.at

Example continued: A Simple Password Manager www.tugraz.at

int main() {

uint32_t pin, correct = 0;

while(1) {

pin = readPIN();

if(pin * 2654435761u == 324783883u)

correct = 1;

if(correct) {

showPasswords();

break;

} else printf("\nWrong PIN!\n");

}

return 0;

}

States
CPU State: Sane

State: correct?

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

void showPasswords() {

FILE* stream;

char* l = NULL;

size_t len;

stream = fopen("passwords", "r");

if (stream == NULL) return;

while(getline(&l, &len, stream) != -1)

puts(l);

free(l);

fclose(stream);

}

15 Michael Schwarz — www.iaik.tugraz.at

Example continued: A Simple Password Manager www.tugraz.at

int main() {

uint32_t pin, correct = 0;

while(1) {

pin = readPIN();

if(pin * 2654435761u == 324783883u)

correct = 1;

if(correct) {

showPasswords();

break;

} else printf("\nWrong PIN!\n");

}

return 0;

}

States
CPU State: Sane

State: correct?

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

void showPasswords() {

FILE* stream;

char* l = NULL;

size_t len;

stream = fopen("passwords", "r");

if (stream == NULL) return;

while(getline(&l, &len, stream) != -1)

puts(l);

free(l);

fclose(stream);

}

15 Michael Schwarz — www.iaik.tugraz.at

Example continued: A Simple Password Manager www.tugraz.at

int main() {

uint32_t pin, correct = 0;

while(1) {

pin = readPIN();

if(pin * 2654435761u == 324783883u)

correct = 1;

if(correct) {

showPasswords();

break;

} else printf("\nWrong PIN!\n");

}

return 0;

}

States
CPU State: Sane

State: correct?

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

void showPasswords() {

FILE* stream;

char* l = NULL;

size_t len;

stream = fopen("passwords", "r");

if (stream == NULL) return;

while(getline(&l, &len, stream) != -1)

puts(l);

free(l);

fclose(stream);

}

15 Michael Schwarz — www.iaik.tugraz.at

Example continued: A Simple Password Manager www.tugraz.at

int main() {

uint32_t pin, correct = 0;

while(1) {

pin = readPIN();

if(pin * 2654435761u == 324783883u)

correct = 1;

if(correct) {

showPasswords();

break;

} else printf("\nWrong PIN!\n");

}

return 0;

}

States
CPU State: Transitory

State: -

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

void showPasswords() {

FILE* stream;

char* l = NULL;

size_t len;

stream = fopen("passwords", "r");

if (stream == NULL) return;

while(getline(&l, &len, stream) != -1)

puts(l);

free(l);

fclose(stream);

}

15 Michael Schwarz — www.iaik.tugraz.at

Example continued: A Simple Password Manager www.tugraz.at

int main() {

uint32_t pin, correct = 0;

while(1) {

pin = readPIN();

if(pin * 2654435761u == 324783883u)

correct = 1;

if(correct) {

showPasswords();

break;

} else printf("\nWrong PIN!\n");

}

return 0;

}

States
CPU State: Sane

State: Show Password List

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

void showPasswords() {

FILE* stream;

char* l = NULL;

size_t len;

stream = fopen("passwords", "r");

if (stream == NULL) return;

while(getline(&l, &len, stream) != -1)

puts(l);

free(l);

fclose(stream);

}

15 Michael Schwarz — www.iaik.tugraz.at

Example continued: A Simple Password Manager www.tugraz.at

int main() {

uint32_t pin, correct = 0;

while(1) {

pin = readPIN();

if(pin * 2654435761u == 324783883u)

correct = 1;

if(correct) {

showPasswords();

break;

} else printf("\nWrong PIN!\n");

}

return 0;

}

States
CPU State: Sane

State: Show Password List

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

void showPasswords() {

FILE* stream;

char* l = NULL;

size_t len;

stream = fopen("passwords", "r");

if (stream == NULL) return;

while(getline(&l, &len, stream) != -1)

puts(l);

free(l);

fclose(stream);

}

15 Michael Schwarz — www.iaik.tugraz.at

Example continued: A Simple Password Manager www.tugraz.at

int main() {

uint32_t pin, correct = 0;

while(1) {

pin = readPIN();

if(pin * 2654435761u == 324783883u)

correct = 1;

if(correct) {

showPasswords();

break;

} else printf("\nWrong PIN!\n");

}

return 0;

}

States
CPU State: Sane

State: Show Password List

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

void showPasswords() {

FILE* stream;

char* l = NULL;

size_t len;

stream = fopen("passwords", "r");

if (stream == NULL) return;

while(getline(&l, &len, stream) != -1)

puts(l);

free(l);

fclose(stream);

}

15 Michael Schwarz — www.iaik.tugraz.at

Example continued: A Simple Password Manager www.tugraz.at

int main() {

uint32_t pin, correct = 0;

while(1) {

pin = readPIN();

if(pin * 2654435761u == 324783883u)

correct = 1;

if(correct) {

showPasswords();

break;

} else printf("\nWrong PIN!\n");

}

return 0;

}

States
CPU State: Sane

State: Show Password List

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

void showPasswords() {

FILE* stream;

char* l = NULL;

size_t len;

stream = fopen("passwords", "r");

if (stream == NULL) return;

while(getline(&l, &len, stream) != -1)

puts(l);

free(l);

fclose(stream);

}

15 Michael Schwarz — www.iaik.tugraz.at

Example continued: A Simple Password Manager www.tugraz.at

int main() {

uint32_t pin, correct = 0;

while(1) {

pin = readPIN();

if(pin * 2654435761u == 324783883u)

correct = 1;

if(correct) {

showPasswords();

break;

} else printf("\nWrong PIN!\n");

}

return 0;

}

States
CPU State: Sane

State: Show Password List

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

void showPasswords() {

FILE* stream;

char* l = NULL;

size_t len;

stream = fopen("passwords", "r");

if (stream == NULL) return;

while(getline(&l, &len, stream) != -1)

puts(l);

free(l);

fclose(stream);

}

15 Michael Schwarz — www.iaik.tugraz.at

Example continued: A Simple Password Manager www.tugraz.at

int main() {

uint32_t pin, correct = 0;

while(1) {

pin = readPIN();

if(pin * 2654435761u == 324783883u)

correct = 1;

if(correct) {

showPasswords();

break;

} else printf("\nWrong PIN!\n");

}

return 0;

}

States
CPU State: Sane

State: Show Password List

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

void showPasswords() {

FILE* stream;

char* l = NULL;

size_t len;

stream = fopen("passwords", "r");

if (stream == NULL) return;

while(getline(&l, &len, stream) != -1)

puts(l);

free(l);

fclose(stream);

}

15 Michael Schwarz — www.iaik.tugraz.at

Example continued: A Simple Password Manager www.tugraz.at

int main() {

uint32_t pin, correct = 0;

while(1) {

pin = readPIN();

if(pin * 2654435761u == 324783883u)

correct = 1;

if(correct) {

showPasswords();

break;

} else printf("\nWrong PIN!\n");

}

return 0;

}

States
CPU State: Sane

State: Show Password List

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

void showPasswords() {

FILE* stream;

char* l = NULL;

size_t len;

stream = fopen("passwords", "r");

if (stream == NULL) return;

while(getline(&l, &len, stream) != -1)

puts(l);

free(l);

fclose(stream);

}

15 Michael Schwarz — www.iaik.tugraz.at

Example continued: A Simple Password Manager www.tugraz.at

int main() {

uint32_t pin, correct = 0;

while(1) {

pin = readPIN();

if(pin * 2654435761u == 324783883u)

correct = 1;

if(correct) {

showPasswords();

break;

} else printf("\nWrong PIN!\n");

}

return 0;

}

States
CPU State: Sane

State: Show Password List

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

void showPasswords() {

FILE* stream;

char* l = NULL;

size_t len;

stream = fopen("passwords", "r");

if (stream == NULL) return;

while(getline(&l, &len, stream) != -1)

puts(l);

free(l);

fclose(stream);

}

15 Michael Schwarz — www.iaik.tugraz.at

The Weird State www.tugraz.at

• CPU emulates the FSM

Ñ Should only be in sane or tranistory state

• How can the CPU enter the weird state?

• Programming mistakes

• Broken hardware (e.g., bit flips in memory)

• Hardware bugs (e.g., CPU bugs)

• ...

• Program does not know it is in weird state

16 Michael Schwarz — www.iaik.tugraz.at

The Weird State www.tugraz.at

• CPU emulates the FSM

Ñ Should only be in sane or tranistory state

• How can the CPU enter the weird state?

• Programming mistakes

• Broken hardware (e.g., bit flips in memory)

• Hardware bugs (e.g., CPU bugs)

• ...

• Program does not know it is in weird state

16 Michael Schwarz — www.iaik.tugraz.at

The Weird State www.tugraz.at

• CPU emulates the FSM

Ñ Should only be in sane or tranistory state

• How can the CPU enter the weird state?

• Programming mistakes

• Broken hardware (e.g., bit flips in memory)

• Hardware bugs (e.g., CPU bugs)

• ...

• Program does not know it is in weird state

16 Michael Schwarz — www.iaik.tugraz.at

The Weird State www.tugraz.at

• CPU emulates the FSM

Ñ Should only be in sane or tranistory state

• How can the CPU enter the weird state?

• Programming mistakes

• Broken hardware (e.g., bit flips in memory)

• Hardware bugs (e.g., CPU bugs)

• ...

• Program does not know it is in weird state

16 Michael Schwarz — www.iaik.tugraz.at

Running in the Weird State www.tugraz.at

• Program continues executing

• Transitions might still be applied Ñ on a weird state instead of

a sane state

• Usually transforms one weird state into another weird state

• Weird machine, with many weird states

• We can “program” the weird machine to do something different

than the original FSM

17 Michael Schwarz — www.iaik.tugraz.at

Running in the Weird State www.tugraz.at

• Program continues executing

• Transitions might still be applied Ñ on a weird state instead of

a sane state

• Usually transforms one weird state into another weird state

• Weird machine, with many weird states

• We can “program” the weird machine to do something different

than the original FSM

17 Michael Schwarz — www.iaik.tugraz.at

Running in the Weird State www.tugraz.at

• Program continues executing

• Transitions might still be applied Ñ on a weird state instead of

a sane state

• Usually transforms one weird state into another weird state

• Weird machine, with many weird states

• We can “program” the weird machine to do something different

than the original FSM

17 Michael Schwarz — www.iaik.tugraz.at

Running in the Weird State www.tugraz.at

• Program continues executing

• Transitions might still be applied Ñ on a weird state instead of

a sane state

• Usually transforms one weird state into another weird state

• Weird machine, with many weird states

• We can “program” the weird machine to do something different

than the original FSM

17 Michael Schwarz — www.iaik.tugraz.at

Running in the Weird State www.tugraz.at

• Program continues executing

• Transitions might still be applied Ñ on a weird state instead of

a sane state

• Usually transforms one weird state into another weird state

• Weird machine, with many weird states

• We can “program” the weird machine to do something different

than the original FSM

17 Michael Schwarz — www.iaik.tugraz.at

Programming the Weird Machine www.tugraz.at

• Write program using code Ñ translated into instructions executed by the CPU

• To program a device we have to generate instructions

18 Michael Schwarz — www.iaik.tugraz.at

Programming the Weird Machine www.tugraz.at

• Write program using code Ñ translated into instructions executed by the CPU

• To program a device we have to generate instructions

18 Michael Schwarz — www.iaik.tugraz.at

Programming the Weird Machine www.tugraz.at

• Write program using code Ñ translated into instructions executed by the CPU

• To program a device we have to generate instructions

18 Michael Schwarz — www.iaik.tugraz.at

Instructions as Program www.tugraz.at

• Get rid of the mindset that we require code for programming

• Applications accept input

• Does different things depending on input

Ñ Input programs the application

• Fine if input only leads from one sane state to another sane

state

19 Michael Schwarz — www.iaik.tugraz.at

Instructions as Program www.tugraz.at

• Get rid of the mindset that we require code for programming

• Applications accept input

• Does different things depending on input

Ñ Input programs the application

• Fine if input only leads from one sane state to another sane

state

19 Michael Schwarz — www.iaik.tugraz.at

Instructions as Program www.tugraz.at

• Get rid of the mindset that we require code for programming

• Applications accept input

• Does different things depending on input

Ñ Input programs the application

• Fine if input only leads from one sane state to another sane

state

19 Michael Schwarz — www.iaik.tugraz.at

Instructions as Program www.tugraz.at

• Get rid of the mindset that we require code for programming

• Applications accept input

• Does different things depending on input

Ñ Input programs the application

• Fine if input only leads from one sane state to another sane

state

19 Michael Schwarz — www.iaik.tugraz.at

Instructions as Program www.tugraz.at

• Get rid of the mindset that we require code for programming

• Applications accept input

• Does different things depending on input

Ñ Input programs the application

• Fine if input only leads from one sane state to another sane

state

19 Michael Schwarz — www.iaik.tugraz.at

Instructions as Program in Weird States www.tugraz.at

• If application is in weird state and programmed using input...

• ...the attacker is controlling your computer

• An abstract definition of exploitation

20 Michael Schwarz — www.iaik.tugraz.at

Instructions as Program in Weird States www.tugraz.at

• If application is in weird state and programmed using input...

• ...the attacker is controlling your computer

• An abstract definition of exploitation

20 Michael Schwarz — www.iaik.tugraz.at

Instructions as Program in Weird States www.tugraz.at

• If application is in weird state and programmed using input...

• ...the attacker is controlling your computer

• An abstract definition of exploitation

20 Michael Schwarz — www.iaik.tugraz.at

Exploitation www.tugraz.at

Exploitation: Process starting in a sane state of an FSM

1. Setup: choose the right sane state which “allows” to get to a

weird state

2. Instantiation: transition from sane state to weird state

3. Programming: program the weird machine

with the goal to break the security properties of the FSM

21 Michael Schwarz — www.iaik.tugraz.at

Exploitation www.tugraz.at

Exploitation: Process starting in a sane state of an FSM

1. Setup: choose the right sane state which “allows” to get to a

weird state

2. Instantiation: transition from sane state to weird state

3. Programming: program the weird machine

with the goal to break the security properties of the FSM

21 Michael Schwarz — www.iaik.tugraz.at

Exploitation www.tugraz.at

Exploitation: Process starting in a sane state of an FSM

1. Setup: choose the right sane state which “allows” to get to a

weird state

2. Instantiation: transition from sane state to weird state

3. Programming: program the weird machine

with the goal to break the security properties of the FSM

21 Michael Schwarz — www.iaik.tugraz.at

Exploitation www.tugraz.at

Exploitation: Process starting in a sane state of an FSM

1. Setup: choose the right sane state which “allows” to get to a

weird state

2. Instantiation: transition from sane state to weird state

3. Programming: program the weird machine

with the goal to break the security properties of the FSM

21 Michael Schwarz — www.iaik.tugraz.at

Back to the Example: A Simple Password Manager www.tugraz.at

• We want to enter a weird state

• Can we find a bug in the program?

• Can we abuse it to enter a weird state?

• First hint of a bug when compiling:

pwdman.c:(.text+0x2e): warning: the ‘gets’ function is dangerous

and should not be used.

Ñ Check the man page of gets

22 Michael Schwarz — www.iaik.tugraz.at

Back to the Example: A Simple Password Manager www.tugraz.at

• We want to enter a weird state

• Can we find a bug in the program?

• Can we abuse it to enter a weird state?

• First hint of a bug when compiling:

pwdman.c:(.text+0x2e): warning: the ‘gets’ function is dangerous

and should not be used.

Ñ Check the man page of gets

22 Michael Schwarz — www.iaik.tugraz.at

Back to the Example: A Simple Password Manager www.tugraz.at

• We want to enter a weird state

• Can we find a bug in the program?

• Can we abuse it to enter a weird state?

• First hint of a bug when compiling:

pwdman.c:(.text+0x2e): warning: the ‘gets’ function is dangerous

and should not be used.

Ñ Check the man page of gets

22 Michael Schwarz — www.iaik.tugraz.at

Back to the Example: A Simple Password Manager www.tugraz.at

• We want to enter a weird state

• Can we find a bug in the program?

• Can we abuse it to enter a weird state?

• First hint of a bug when compiling:

pwdman.c:(.text+0x2e): warning: the ‘gets’ function is dangerous

and should not be used.

Ñ Check the man page of gets

22 Michael Schwarz — www.iaik.tugraz.at

Back to the Example: A Simple Password Manager www.tugraz.at

• We want to enter a weird state

• Can we find a bug in the program?

• Can we abuse it to enter a weird state?

• First hint of a bug when compiling:

pwdman.c:(.text+0x2e): warning: the ‘gets’ function is dangerous

and should not be used.

Ñ Check the man page of gets

22 Michael Schwarz — www.iaik.tugraz.at

man gets
GETS(3) Linux Programmer's Manual GETS(3)

NAME
gets - get a string from standard input (DEPRECATED)

SYNOPSIS
#include <stdio.h>

char *gets(char *s);

DESCRIPTION
Never use this function.

gets() reads a line from stdin into the buffer pointed to by s until either a terminating newline or EOF, which it replaces with a null byte
('\0'). No check for buffer overrun is performed (see BUGS below).

RETURN VALUE
gets() returns s on success, and NULL on error or when end of file occurs while no characters have been read. However, given the lack of buffer
overrun checking, there can be no guarantees that the function will even return.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

┌──────────┬───────────────┬─────────┐
│Interface │ Attribute │ Value │
├──────────┼───────────────┼─────────┤
│gets() │ Thread safety │ MT-Safe │
└──────────┴───────────────┴─────────┘

CONFORMING TO
C89, C99, POSIX.1-2001.

LSB deprecates gets(). POSIX.1-2008 marks gets() obsolescent. ISO C11 removes the specification of gets() from the C language, and since version
2.16, glibc header files don't expose the function declaration if the _ISOC11_SOURCE feature test macro is defined.

BUGS
Never use gets(). Because it is impossible to tell without knowing the data in advance how many characters gets() will read, and because gets()
will continue to store characters past the end of the buffer, it is extremely dangerous to use. It has been used to break computer security. Use
fgets() instead.

For more information, see CWE-242 (aka "Use of Inherently Dangerous Function") at http://cwe.mitre.org/data/definitions/242.html

SEE ALSO
read(2), write(2), ferror(3), fgetc(3), fgets(3), fgetwc(3), fgetws(3), fopen(3), fread(3), fseek(3), getline

Where is the Bug? www.tugraz.at

• Code part where gets is used:

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

• The buffer array has space for 16 characters

• gets reads until EOF...

23 Michael Schwarz — www.iaik.tugraz.at

Where is the Bug? www.tugraz.at

• Code part where gets is used:

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

• The buffer array has space for 16 characters

• gets reads until EOF...

23 Michael Schwarz — www.iaik.tugraz.at

Where is the Bug? www.tugraz.at

• Code part where gets is used:

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

• The buffer array has space for 16 characters

• gets reads until EOF...

23 Michael Schwarz — www.iaik.tugraz.at

Trigger the Bug www.tugraz.at

% ./pwdman

Enter PIN:

1234

Wrong PIN!

Enter PIN:

0123456789012345678901234567890123456789

[1] 7106 segmentation fault (core dumped) ./pwdman

pwdman[7486]: segfault at 31303938 ip 0000000031303938

sp 00000000ffffcdc0 error 14 in

libc-2.23.so[f7de2000+1b0000]

24 Michael Schwarz — www.iaik.tugraz.at

Trigger the Bug www.tugraz.at

% ./pwdman

Enter PIN:

1234

Wrong PIN!

Enter PIN:

0123456789012345678901234567890123456789

[1] 7106 segmentation fault (core dumped) ./pwdman

pwdman[7486]: segfault at 31303938 ip 0000000031303938

sp 00000000ffffcdc0 error 14 in

libc-2.23.so[f7de2000+1b0000]

24 Michael Schwarz — www.iaik.tugraz.at

Trigger the Bug www.tugraz.at

% ./pwdman

Enter PIN:

1234

Wrong PIN!

Enter PIN:

0123456789012345678901234567890123456789

[1] 7106 segmentation fault (core dumped) ./pwdman

pwdman[7486]: segfault at 31303938 ip 0000000031303938

sp 00000000ffffcdc0 error 14 in

libc-2.23.so[f7de2000+1b0000]

24 Michael Schwarz — www.iaik.tugraz.at

We are in a Weird State! www.tugraz.at

• We crash the program

• Crashing Ñ not a state in our FSM

Ñ Weird state due to a programming mistake

• #1: Why did we get into this weird state?

• #2: What is this weird state?

• #3: How can we program our weird machine to do something

useful (instead of crashing)?

25 Michael Schwarz — www.iaik.tugraz.at

We are in a Weird State! www.tugraz.at

• We crash the program

• Crashing Ñ not a state in our FSM

Ñ Weird state due to a programming mistake

• #1: Why did we get into this weird state?

• #2: What is this weird state?

• #3: How can we program our weird machine to do something

useful (instead of crashing)?

25 Michael Schwarz — www.iaik.tugraz.at

We are in a Weird State! www.tugraz.at

• We crash the program

• Crashing Ñ not a state in our FSM

Ñ Weird state due to a programming mistake

• #1: Why did we get into this weird state?

• #2: What is this weird state?

• #3: How can we program our weird machine to do something

useful (instead of crashing)?

25 Michael Schwarz — www.iaik.tugraz.at

We are in a Weird State! www.tugraz.at

• We crash the program

• Crashing Ñ not a state in our FSM

Ñ Weird state due to a programming mistake

• #1: Why did we get into this weird state?

• #2: What is this weird state?

• #3: How can we program our weird machine to do something

useful (instead of crashing)?

25 Michael Schwarz — www.iaik.tugraz.at

We are in a Weird State! www.tugraz.at

• We crash the program

• Crashing Ñ not a state in our FSM

Ñ Weird state due to a programming mistake

• #1: Why did we get into this weird state?

• #2: What is this weird state?

• #3: How can we program our weird machine to do something

useful (instead of crashing)?

25 Michael Schwarz — www.iaik.tugraz.at

We are in a Weird State! www.tugraz.at

• We crash the program

• Crashing Ñ not a state in our FSM

Ñ Weird state due to a programming mistake

• #1: Why did we get into this weird state?

• #2: What is this weird state?

• #3: How can we program our weird machine to do something

useful (instead of crashing)?

25 Michael Schwarz — www.iaik.tugraz.at

#1: The Why www.tugraz.at

• gets reads from the user until EOF

• Everything read is stored in an array

• Arrays have a defined size

• What if we write more data into the array?

• We write into something else adjacent in memory

26 Michael Schwarz — www.iaik.tugraz.at

#1: The Why www.tugraz.at

• gets reads from the user until EOF

• Everything read is stored in an array

• Arrays have a defined size

• What if we write more data into the array?

• We write into something else adjacent in memory

26 Michael Schwarz — www.iaik.tugraz.at

#1: The Why www.tugraz.at

• gets reads from the user until EOF

• Everything read is stored in an array

• Arrays have a defined size

• What if we write more data into the array?

• We write into something else adjacent in memory

26 Michael Schwarz — www.iaik.tugraz.at

#1: The Why www.tugraz.at

• gets reads from the user until EOF

• Everything read is stored in an array

• Arrays have a defined size

• What if we write more data into the array?

• We write into something else adjacent in memory

26 Michael Schwarz — www.iaik.tugraz.at

#1: The Why www.tugraz.at

• gets reads from the user until EOF

• Everything read is stored in an array

• Arrays have a defined size

• What if we write more data into the array?

• We write into something else adjacent in memory

26 Michael Schwarz — www.iaik.tugraz.at

#1: The Why - Recap: Memory Layout www.tugraz.at

• What is next to the variable?

• It is a local variable, therefore it is on the stack

• Other local variables adjacent (none here)

• What else is on the stack?

27 Michael Schwarz — www.iaik.tugraz.at

#1: The Why - Recap: Memory Layout www.tugraz.at

• What is next to the variable?

• It is a local variable, therefore it is on the stack

• Other local variables adjacent (none here)

• What else is on the stack?

27 Michael Schwarz — www.iaik.tugraz.at

#1: The Why - Recap: Memory Layout www.tugraz.at

• What is next to the variable?

• It is a local variable, therefore it is on the stack

• Other local variables adjacent (none here)

• What else is on the stack?

27 Michael Schwarz — www.iaik.tugraz.at

#1: The Why - Recap: Memory Layout www.tugraz.at

• What is next to the variable?

• It is a local variable, therefore it is on the stack

• Other local variables adjacent (none here)

• What else is on the stack?

27 Michael Schwarz — www.iaik.tugraz.at

#1: The Why - Recap: Stack www.tugraz.at

0x7FF... saved return address
saved base pointer

local variables

+

last frame

0x000...

,

/

.

/

-

28 Michael Schwarz — www.iaik.tugraz.at

#1: The Why - Recap: Stack www.tugraz.at

0x7FF... saved return address
saved base pointer

local variables

+

last frame

saved return address

0x000...

,

/

.

/

-

current frame

28 Michael Schwarz — www.iaik.tugraz.at

#1: The Why - Recap: Stack www.tugraz.at

0x7FF... saved return address
saved base pointer

local variables

+

last frame

saved return address
saved base pointer

0x000...

,

/

.

/

-

current frame

28 Michael Schwarz — www.iaik.tugraz.at

#1: The Why - Recap: Stack www.tugraz.at

0x7FF... saved return address
saved base pointer

local variables

+

last frame

saved return address
saved base pointer

local variables
0x000... ...

,

/

.

/

-

current frame

28 Michael Schwarz — www.iaik.tugraz.at

#1: The Way - Overwriting the Stack www.tugraz.at

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(

buffer);

return atoi(buffer);

}

Ñ ...

,

/

/

/

/

.

/

/

/

/

-

29 Michael Schwarz — www.iaik.tugraz.at

#1: The Way - Overwriting the Stack www.tugraz.at

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(

buffer);

return atoi(buffer);

}

...

Ñ IP

,

/

/

/

/

.

/

/

/

/

-

29 Michael Schwarz — www.iaik.tugraz.at

#1: The Way - Overwriting the Stack www.tugraz.at

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(

buffer);

return atoi(buffer);

}

...

IP
Ñ BP

,

/

/

/

/

.

/

/

/

/

-

29 Michael Schwarz — www.iaik.tugraz.at

#1: The Way - Overwriting the Stack www.tugraz.at

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(

buffer);

return atoi(buffer);

}

...

IP
Ñ BP

,

/

/

/

/

.

/

/

/

/

-

buffer

29 Michael Schwarz — www.iaik.tugraz.at

#1: The Way - Overwriting the Stack www.tugraz.at

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(

buffer);

return atoi(buffer);

}

...

IP 0x31303938
Ñ BP 0x37363534

0x33323130
0x39383736
0x35343332
0x31303938
0x37363534
0x33323130

,

/

/

/

/

.

/

/

/

/

-

buffer

29 Michael Schwarz — www.iaik.tugraz.at

#1: The Way - Overwriting the Stack www.tugraz.at

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(

buffer);

return atoi(buffer);

}

...

Ñ IP 0x31303938
BP 0x37363534

0x33323130
0x39383736
0x35343332
0x31303938
0x37363534
0x33323130

,

/

/

/

/

.

/

/

/

/

-

buffer

Return, continue at 0x31303938

29 Michael Schwarz — www.iaik.tugraz.at

#2: The What www.tugraz.at

• We are somewhere (more specific: at address 0x31303938)

• CPU tries to execute code at this address

• Probably nothing mapped at this address Ñ pagefault

• Operating system kills application with a segmentation fault

• Weird state: CPU trying to execute code at an invalid address

30 Michael Schwarz — www.iaik.tugraz.at

#2: The What www.tugraz.at

• We are somewhere (more specific: at address 0x31303938)

• CPU tries to execute code at this address

• Probably nothing mapped at this address Ñ pagefault

• Operating system kills application with a segmentation fault

• Weird state: CPU trying to execute code at an invalid address

30 Michael Schwarz — www.iaik.tugraz.at

#2: The What www.tugraz.at

• We are somewhere (more specific: at address 0x31303938)

• CPU tries to execute code at this address

• Probably nothing mapped at this address Ñ pagefault

• Operating system kills application with a segmentation fault

• Weird state: CPU trying to execute code at an invalid address

30 Michael Schwarz — www.iaik.tugraz.at

#2: The What www.tugraz.at

• We are somewhere (more specific: at address 0x31303938)

• CPU tries to execute code at this address

• Probably nothing mapped at this address Ñ pagefault

• Operating system kills application with a segmentation fault

• Weird state: CPU trying to execute code at an invalid address

30 Michael Schwarz — www.iaik.tugraz.at

#2: The What www.tugraz.at

• We are somewhere (more specific: at address 0x31303938)

• CPU tries to execute code at this address

• Probably nothing mapped at this address Ñ pagefault

• Operating system kills application with a segmentation fault

• Weird state: CPU trying to execute code at an invalid address

30 Michael Schwarz — www.iaik.tugraz.at

#3: The How www.tugraz.at

• Bring the CPU in weird state by entering too many characters

• Control what the CPU executes by setting the instruction

pointer

• We want to either

• stay in a weird, but useful state, or

• go to a (useful) sane state again

• Let’s try to get to the sane state “Show Password List” first...

31 Michael Schwarz — www.iaik.tugraz.at

#3: The How www.tugraz.at

• Bring the CPU in weird state by entering too many characters

• Control what the CPU executes by setting the instruction

pointer

• We want to either

• stay in a weird, but useful state, or

• go to a (useful) sane state again

• Let’s try to get to the sane state “Show Password List” first...

31 Michael Schwarz — www.iaik.tugraz.at

#3: The How www.tugraz.at

• Bring the CPU in weird state by entering too many characters

• Control what the CPU executes by setting the instruction

pointer

• We want to either

• stay in a weird, but useful state, or

• go to a (useful) sane state again

• Let’s try to get to the sane state “Show Password List” first...

31 Michael Schwarz — www.iaik.tugraz.at

#3: The How www.tugraz.at

• Bring the CPU in weird state by entering too many characters

• Control what the CPU executes by setting the instruction

pointer

• We want to either

• stay in a weird, but useful state, or

• go to a (useful) sane state again

• Let’s try to get to the sane state “Show Password List” first...

31 Michael Schwarz — www.iaik.tugraz.at

#3: The How - Go to an useful sane state www.tugraz.at

• We can let the CPU execute code at an arbitrary location

• The showPasswords function is at some location

% readelf -s pwdman | grep showPasswords

64: 08048604 121 FUNC GLOBAL DEFAULT 14 showPasswords

• PIN should look like this: ăpaddingą\x04\x86\x04\x08
• padding fills the buffer (plus saved base pointer), address overwrites the saved

instruction pointer

32 Michael Schwarz — www.iaik.tugraz.at

#3: The How - Go to an useful sane state www.tugraz.at

• We can let the CPU execute code at an arbitrary location

• The showPasswords function is at some location

% readelf -s pwdman | grep showPasswords

64: 08048604 121 FUNC GLOBAL DEFAULT 14 showPasswords

• PIN should look like this: ăpaddingą\x04\x86\x04\x08
• padding fills the buffer (plus saved base pointer), address overwrites the saved

instruction pointer

32 Michael Schwarz — www.iaik.tugraz.at

#3: The How - Go to an useful sane state www.tugraz.at

• We can let the CPU execute code at an arbitrary location

• The showPasswords function is at some location

% readelf -s pwdman | grep showPasswords

64: 08048604 121 FUNC GLOBAL DEFAULT 14 showPasswords

• PIN should look like this: ăpaddingą\x04\x86\x04\x08
• padding fills the buffer (plus saved base pointer), address overwrites the saved

instruction pointer

32 Michael Schwarz — www.iaik.tugraz.at

#3: The How - Break the Security Properties www.tugraz.at

echo "AAAAAAAAAAAAAAAAAAAAAAAAAAAA\x04\x86\x04\x08" | ./pwdman

Enter PIN:

root:toor

user:password1234

[1] 17074 segmentation fault (core dumped) ./pwdman

33 Michael Schwarz — www.iaik.tugraz.at

#3: The How - Break the Security Properties www.tugraz.at

echo "AAAAAAAAAAAAAAAAAAAAAAAAAAAA\x04\x86\x04\x08" | ./pwdman

Enter PIN:

root:toor

user:password1234

[1] 17074 segmentation fault (core dumped) ./pwdman

33 Michael Schwarz — www.iaik.tugraz.at

Summary www.tugraz.at

• We broke the security properties of the FSM

• Setup: We started in the sane state “Read PIN”

• Instantiation: Too many characters led to a weird state

• Programming: We “programmed” the weird state using the

input to move to the sane state “Show Password List”

• We have successfully developed an exploit

34 Michael Schwarz — www.iaik.tugraz.at

Summary www.tugraz.at

• We broke the security properties of the FSM

• Setup: We started in the sane state “Read PIN”

• Instantiation: Too many characters led to a weird state

• Programming: We “programmed” the weird state using the

input to move to the sane state “Show Password List”

• We have successfully developed an exploit

34 Michael Schwarz — www.iaik.tugraz.at

Summary www.tugraz.at

• We broke the security properties of the FSM

• Setup: We started in the sane state “Read PIN”

• Instantiation: Too many characters led to a weird state

• Programming: We “programmed” the weird state using the

input to move to the sane state “Show Password List”

• We have successfully developed an exploit

34 Michael Schwarz — www.iaik.tugraz.at

Summary www.tugraz.at

• We broke the security properties of the FSM

• Setup: We started in the sane state “Read PIN”

• Instantiation: Too many characters led to a weird state

• Programming: We “programmed” the weird state using the

input to move to the sane state “Show Password List”

• We have successfully developed an exploit

34 Michael Schwarz — www.iaik.tugraz.at

Summary www.tugraz.at

• We broke the security properties of the FSM

• Setup: We started in the sane state “Read PIN”

• Instantiation: Too many characters led to a weird state

• Programming: We “programmed” the weird state using the

input to move to the sane state “Show Password List”

• We have successfully developed an exploit

34 Michael Schwarz — www.iaik.tugraz.at

Can we do more? www.tugraz.at

• Spatial memory safety violation to overwrite data

Ñ Weird state

• Do we have to overwrite the saved instruction pointer?

• Other memory safety violations?

• Write in a more powerful “weird machine language”?

35 Michael Schwarz — www.iaik.tugraz.at

Can we do more? www.tugraz.at

• Spatial memory safety violation to overwrite data

Ñ Weird state

• Do we have to overwrite the saved instruction pointer?

• Other memory safety violations?

• Write in a more powerful “weird machine language”?

35 Michael Schwarz — www.iaik.tugraz.at

Can we do more? www.tugraz.at

• Spatial memory safety violation to overwrite data

Ñ Weird state

• Do we have to overwrite the saved instruction pointer?

• Other memory safety violations?

• Write in a more powerful “weird machine language”?

35 Michael Schwarz — www.iaik.tugraz.at

Can we do more? www.tugraz.at

• Spatial memory safety violation to overwrite data

Ñ Weird state

• Do we have to overwrite the saved instruction pointer?

• Other memory safety violations?

• Write in a more powerful “weird machine language”?

35 Michael Schwarz — www.iaik.tugraz.at

Can we do more? www.tugraz.at

• Spatial memory safety violation to overwrite data

Ñ Weird state

• Do we have to overwrite the saved instruction pointer?

• Other memory safety violations?

• Write in a more powerful “weird machine language”?

35 Michael Schwarz — www.iaik.tugraz.at

Do we have to overwrite the Instruction Pointer? www.tugraz.at

• No Ñ just one “trick” to get into weird state

• Controlling the control flow Ñ weird state

• More ways to change instruction pointer

Ñ function pointers, vtables, ...

• Controlling the instruction pointer is not a requirement

• Control-flow hijacking is a “category of tricks”

36 Michael Schwarz — www.iaik.tugraz.at

Do we have to overwrite the Instruction Pointer? www.tugraz.at

• No Ñ just one “trick” to get into weird state

• Controlling the control flow Ñ weird state

• More ways to change instruction pointer

Ñ function pointers, vtables, ...

• Controlling the instruction pointer is not a requirement

• Control-flow hijacking is a “category of tricks”

36 Michael Schwarz — www.iaik.tugraz.at

Do we have to overwrite the Instruction Pointer? www.tugraz.at

• No Ñ just one “trick” to get into weird state

• Controlling the control flow Ñ weird state

• More ways to change instruction pointer

Ñ function pointers, vtables, ...

• Controlling the instruction pointer is not a requirement

• Control-flow hijacking is a “category of tricks”

36 Michael Schwarz — www.iaik.tugraz.at

Do we have to overwrite the Instruction Pointer? www.tugraz.at

• No Ñ just one “trick” to get into weird state

• Controlling the control flow Ñ weird state

• More ways to change instruction pointer

Ñ function pointers, vtables, ...

• Controlling the instruction pointer is not a requirement

• Control-flow hijacking is a “category of tricks”

36 Michael Schwarz — www.iaik.tugraz.at

Do we have to overwrite the Instruction Pointer? www.tugraz.at

• No Ñ just one “trick” to get into weird state

• Controlling the control flow Ñ weird state

• More ways to change instruction pointer

Ñ function pointers, vtables, ...

• Controlling the instruction pointer is not a requirement

• Control-flow hijacking is a “category of tricks”

36 Michael Schwarz — www.iaik.tugraz.at

So, there is an alternative? www.tugraz.at

• Got rid of the mindset that we require code to program

• Input as a way of programming a device

• Modify data used in an FSM state (transition)

• Changing data to something not intended in the original FSM

Ñ weird state

• Assume gets bug is fixed, e.g., replaced by fgets

37 Michael Schwarz — www.iaik.tugraz.at

So, there is an alternative? www.tugraz.at

• Got rid of the mindset that we require code to program

• Input as a way of programming a device

• Modify data used in an FSM state (transition)

• Changing data to something not intended in the original FSM

Ñ weird state

• Assume gets bug is fixed, e.g., replaced by fgets

37 Michael Schwarz — www.iaik.tugraz.at

So, there is an alternative? www.tugraz.at

• Got rid of the mindset that we require code to program

• Input as a way of programming a device

• Modify data used in an FSM state (transition)

• Changing data to something not intended in the original FSM

Ñ weird state

• Assume gets bug is fixed, e.g., replaced by fgets

37 Michael Schwarz — www.iaik.tugraz.at

So, there is an alternative? www.tugraz.at

• Got rid of the mindset that we require code to program

• Input as a way of programming a device

• Modify data used in an FSM state (transition)

• Changing data to something not intended in the original FSM

Ñ weird state

• Assume gets bug is fixed, e.g., replaced by fgets

37 Michael Schwarz — www.iaik.tugraz.at

So, there is an alternative? www.tugraz.at

• Got rid of the mindset that we require code to program

• Input as a way of programming a device

• Modify data used in an FSM state (transition)

• Changing data to something not intended in the original FSM

Ñ weird state

• Assume gets bug is fixed, e.g., replaced by fgets

37 Michael Schwarz — www.iaik.tugraz.at

The fixed Code www.tugraz.at

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

fgets(buffer, 16, stdin);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

38 Michael Schwarz — www.iaik.tugraz.at

An Example (still continued): Simple Password Manager www.tugraz.at

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

fgets(buffer, 16, stdin);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

Read PIN

Show PIN

correct?

Show password list

Error message

Yes

No

• We ignored the “debug mode” before...

• One additional state in the FSM Ñ echos the input

• Security property stays the same

• It should be practically infeasible for an attacker to get the password list (output)

if he does not know the PIN (input)

39 Michael Schwarz — www.iaik.tugraz.at

An Example (still continued): Simple Password Manager www.tugraz.at

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

fgets(buffer, 16, stdin);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

Read PIN

Show PIN

correct?

Show password list

Error message

Yes

No

• We ignored the “debug mode” before...

• One additional state in the FSM Ñ echos the input

• Security property stays the same

• It should be practically infeasible for an attacker to get the password list (output)

if he does not know the PIN (input)

39 Michael Schwarz — www.iaik.tugraz.at

An Example (still continued): Simple Password Manager www.tugraz.at

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

fgets(buffer, 16, stdin);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

Read PIN

Show PIN

correct?

Show password list

Error message

Yes

No

• We ignored the “debug mode” before...

• One additional state in the FSM Ñ echos the input

• Security property stays the same

• It should be practically infeasible for an attacker to get the password list (output)

if he does not know the PIN (input)

39 Michael Schwarz — www.iaik.tugraz.at

An Example (still continued): Simple Password Manager www.tugraz.at

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

fgets(buffer, 16, stdin);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

Read PIN

Show PIN

correct?

Show password list

Error message

Yes

No

• We ignored the “debug mode” before...

• One additional state in the FSM Ñ echos the input

• Security property stays the same

• It should be practically infeasible for an attacker to get the password list (output)

if he does not know the PIN (input)

39 Michael Schwarz — www.iaik.tugraz.at

Another Compiler Warning with -Wformat-security www.tugraz.at

• Compile with all warnings enabled (-Wextra)

• Still a warning

pwdman1.c:9:32: warning: format not a string literal and

no format arguments [-Wformat-security]

if(getenv("DEBUG")) printf(buffer);

ˆ

• What does the man page of printf say?

man 3 printf

Code such as printf(foo); often indicates a bug, since foo may contain a %

character. If foo comes from untrusted user input, it may contain %n, causing the

printf() call to write to memory and creating a security hole.

40 Michael Schwarz — www.iaik.tugraz.at

Another Compiler Warning with -Wformat-security www.tugraz.at

• Compile with all warnings enabled (-Wextra)

• Still a warning

pwdman1.c:9:32: warning: format not a string literal and

no format arguments [-Wformat-security]

if(getenv("DEBUG")) printf(buffer);

ˆ

• What does the man page of printf say?

man 3 printf

Code such as printf(foo); often indicates a bug, since foo may contain a %

character. If foo comes from untrusted user input, it may contain %n, causing the

printf() call to write to memory and creating a security hole.

40 Michael Schwarz — www.iaik.tugraz.at

Another Compiler Warning with -Wformat-security www.tugraz.at

• Compile with all warnings enabled (-Wextra)

• Still a warning

pwdman1.c:9:32: warning: format not a string literal and

no format arguments [-Wformat-security]

if(getenv("DEBUG")) printf(buffer);

ˆ

• What does the man page of printf say?

man 3 printf

Code such as printf(foo); often indicates a bug, since foo may contain a %

character. If foo comes from untrusted user input, it may contain %n, causing the

printf() call to write to memory and creating a security hole.

40 Michael Schwarz — www.iaik.tugraz.at

Another Compiler Warning with -Wformat-security www.tugraz.at

• Compile with all warnings enabled (-Wextra)

• Still a warning

pwdman1.c:9:32: warning: format not a string literal and

no format arguments [-Wformat-security]

if(getenv("DEBUG")) printf(buffer);

ˆ

• What does the man page of printf say?

man 3 printf

Code such as printf(foo); often indicates a bug, since foo may contain a %

character. If foo comes from untrusted user input, it may contain %n, causing the

printf() call to write to memory and creating a security hole.

40 Michael Schwarz — www.iaik.tugraz.at

Wait, what? www.tugraz.at

• printf can create a security hole?

• Why can printf write to memory?

• It is supposed to print text to the standard output...

41 Michael Schwarz — www.iaik.tugraz.at

Wait, what? www.tugraz.at

• printf can create a security hole?

• Why can printf write to memory?

• It is supposed to print text to the standard output...

41 Michael Schwarz — www.iaik.tugraz.at

Wait, what? www.tugraz.at

• printf can create a security hole?

• Why can printf write to memory?

• It is supposed to print text to the standard output...

41 Michael Schwarz — www.iaik.tugraz.at

Re-cap: Format Strings www.tugraz.at

• We remember how to use printf:
printf("%d = 0x%x\n", 20, 20);

• Format string parameters (%d, %s, ...) convert function

parameters to strings

• What if the number of format string parameters does not

match the number of arguments?

• The function does not know

• Fetched form registers (first) and stack (afterwards)

42 Michael Schwarz — www.iaik.tugraz.at

Re-cap: Format Strings www.tugraz.at

• We remember how to use printf:
printf("%d = 0x%x\n", 20, 20);

• Format string parameters (%d, %s, ...) convert function

parameters to strings

• What if the number of format string parameters does not

match the number of arguments?

• The function does not know

• Fetched form registers (first) and stack (afterwards)

42 Michael Schwarz — www.iaik.tugraz.at

Re-cap: Format Strings www.tugraz.at

• We remember how to use printf:
printf("%d = 0x%x\n", 20, 20);

• Format string parameters (%d, %s, ...) convert function

parameters to strings

• What if the number of format string parameters does not

match the number of arguments?

• The function does not know

• Fetched form registers (first) and stack (afterwards)

42 Michael Schwarz — www.iaik.tugraz.at

Re-cap: Format Strings www.tugraz.at

• We remember how to use printf:
printf("%d = 0x%x\n", 20, 20);

• Format string parameters (%d, %s, ...) convert function

parameters to strings

• What if the number of format string parameters does not

match the number of arguments?

• The function does not know

• Fetched form registers (first) and stack (afterwards)

42 Michael Schwarz — www.iaik.tugraz.at

Re-cap: Format Strings www.tugraz.at

• We remember how to use printf:
printf("%d = 0x%x\n", 20, 20);

• Format string parameters (%d, %s, ...) convert function

parameters to strings

• What if the number of format string parameters does not

match the number of arguments?

• The function does not know

• Fetched form registers (first) and stack (afterwards)

42 Michael Schwarz — www.iaik.tugraz.at

Re-cap: Format Strings www.tugraz.at

• printf(user input); Ñ user input is format string

• No parameters to the function

• Input does not contain a format string parameter Ñ fine

• Format string parameter in the input Ñ output a register value

or stack value

43 Michael Schwarz — www.iaik.tugraz.at

Re-cap: Format Strings www.tugraz.at

• printf(user input); Ñ user input is format string

• No parameters to the function

• Input does not contain a format string parameter Ñ fine

• Format string parameter in the input Ñ output a register value

or stack value

43 Michael Schwarz — www.iaik.tugraz.at

Re-cap: Format Strings www.tugraz.at

• printf(user input); Ñ user input is format string

• No parameters to the function

• Input does not contain a format string parameter Ñ fine

• Format string parameter in the input Ñ output a register value

or stack value

43 Michael Schwarz — www.iaik.tugraz.at

Re-cap: Format Strings www.tugraz.at

• printf(user input); Ñ user input is format string

• No parameters to the function

• Input does not contain a format string parameter Ñ fine

• Format string parameter in the input Ñ output a register value

or stack value

43 Michael Schwarz — www.iaik.tugraz.at

Trigger the Bug www.tugraz.at

% DEBUG=1 ./pwdman1

Enter PIN:

%x %x %x %x

10 f76b55a0 f76f5858 25207825

Wrong PIN!

Enter PIN:

• Weird state - printing values from memory is not in our FSM

• How can we “program” this weird state?

44 Michael Schwarz — www.iaik.tugraz.at

Trigger the Bug www.tugraz.at

% DEBUG=1 ./pwdman1

Enter PIN:

%x %x %x %x

10 f76b55a0 f76f5858 25207825

Wrong PIN!

Enter PIN:

• Weird state - printing values from memory is not in our FSM

• How can we “program” this weird state?

44 Michael Schwarz — www.iaik.tugraz.at

Trigger the Bug www.tugraz.at

% DEBUG=1 ./pwdman1

Enter PIN:

%x %x %x %x

10 f76b55a0 f76f5858 25207825

Wrong PIN!

Enter PIN:

• Weird state - printing values from memory is not in our FSM

• How can we “program” this weird state?

44 Michael Schwarz — www.iaik.tugraz.at

Trigger the Bug www.tugraz.at

% DEBUG=1 ./pwdman1

Enter PIN:

%x %x %x %x

10 f76b55a0 f76f5858 25207825

Wrong PIN!

Enter PIN:

• Weird state - printing values from memory is not in our FSM

• How can we “program” this weird state?

44 Michael Schwarz — www.iaik.tugraz.at

Format Strings - Data Manipulation www.tugraz.at

• A little-known format string parameter: %n

man 3 printf

n The number of characters written so far is stored into the

integer pointed to by the corresponding argument. That

argument shall be an int *, or variant whose size matches the

(optionally) supplied integer length modifier.

• Example:

int count;

printf("Some string %n\n", &count);

printf("Wrote %d charachters\n", count);

Prints Wrote 12 characters

45 Michael Schwarz — www.iaik.tugraz.at

Format Strings - Data Manipulation www.tugraz.at

• A little-known format string parameter: %n

man 3 printf

n The number of characters written so far is stored into the

integer pointed to by the corresponding argument. That

argument shall be an int *, or variant whose size matches the

(optionally) supplied integer length modifier.

• Example:

int count;

printf("Some string %n\n", &count);

printf("Wrote %d charachters\n", count);

Prints Wrote 12 characters

45 Michael Schwarz — www.iaik.tugraz.at

Format Strings - Data Manipulation www.tugraz.at

• A little-known format string parameter: %n

man 3 printf

n The number of characters written so far is stored into the

integer pointed to by the corresponding argument. That

argument shall be an int *, or variant whose size matches the

(optionally) supplied integer length modifier.

• Example:

int count;

printf("Some string %n\n", &count);

printf("Wrote %d charachters\n", count);

Prints Wrote 12 characters

45 Michael Schwarz — www.iaik.tugraz.at

Format Strings - Data Manipulation www.tugraz.at

• A little-known format string parameter: %n

man 3 printf

n The number of characters written so far is stored into the

integer pointed to by the corresponding argument. That

argument shall be an int *, or variant whose size matches the

(optionally) supplied integer length modifier.

• Example:

int count;

printf("Some string %n\n", &count);

printf("Wrote %d charachters\n", count);

Prints Wrote 12 characters

45 Michael Schwarz — www.iaik.tugraz.at

Format Strings - Data Manipulation www.tugraz.at

• If there is an address on the stack, we can write to it

• Format string is on the stack Ñ we can put any value onto

the stack

• Can be the address to write to

46 Michael Schwarz — www.iaik.tugraz.at

Format Strings - Data Manipulation www.tugraz.at

• If there is an address on the stack, we can write to it

• Format string is on the stack Ñ we can put any value onto

the stack

• Can be the address to write to

46 Michael Schwarz — www.iaik.tugraz.at

Format Strings - Data Manipulation www.tugraz.at

• If there is an address on the stack, we can write to it

• Format string is on the stack Ñ we can put any value onto

the stack

• Can be the address to write to

46 Michael Schwarz — www.iaik.tugraz.at

Playing around... www.tugraz.at

% echo "\x01\x02\x03\x04%x %x %x %x" | \

DEBUG=1 ./pwdman1

Enter PIN:

10 f7f945a0 f7fd4858 4030201

Wrong PIN!

Enter PIN:

% echo "\xb8\xcd\xff\xff%x %x %x %x" | \

DEBUG=1 ./pwdman1

Enter PIN:

? ? ? ? 10 f7f945a0 f7fd4858 ffffcdb8

Wrong PIN!

Enter PIN:

47 Michael Schwarz — www.iaik.tugraz.at

Playing around... www.tugraz.at

% echo "\x01\x02\x03\x04%x %x %x %x" | \

DEBUG=1 ./pwdman1

Enter PIN:

10 f7f945a0 f7fd4858 4030201

Wrong PIN!

Enter PIN:

% echo "\xb8\xcd\xff\xff%x %x %x %x" | \

DEBUG=1 ./pwdman1

Enter PIN:

? ? ? ? 10 f7f945a0 f7fd4858 ffffcdb8

Wrong PIN!

Enter PIN:

47 Michael Schwarz — www.iaik.tugraz.at

Playing around... www.tugraz.at

% echo "\x01\x02\x03\x04%x %x %x %x" | \

DEBUG=1 ./pwdman1

Enter PIN:

10 f7f945a0 f7fd4858 4030201

Wrong PIN!

Enter PIN:

% echo "\xb8\xcd\xff\xff%x %x %x %x" | \

DEBUG=1 ./pwdman1

Enter PIN:

? ? ? ? 10 f7f945a0 f7fd4858 ffffcdb8

Wrong PIN!

Enter PIN:

47 Michael Schwarz — www.iaik.tugraz.at

Playing around... www.tugraz.at

% echo "\x01\x02\x03\x04%x %x %x %x" | \

DEBUG=1 ./pwdman1

Enter PIN:

10 f7f945a0 f7fd4858 4030201

Wrong PIN!

Enter PIN:

% echo "\xb8\xcd\xff\xff%x %x %x %x" | \

DEBUG=1 ./pwdman1

Enter PIN:

? ? ? ? 10 f7f945a0 f7fd4858 ffffcdb8

Wrong PIN!

Enter PIN:

47 Michael Schwarz — www.iaik.tugraz.at

Programming the Weird State www.tugraz.at

% echo "\xb8\xcd\xff\xff%x %x %x %n" | \

DEBUG=1 ./pwdman1

Enter PIN:

? ? ? ? 10 f7f945a0 f7fd4858 root:toor

user:password1234

• With %n, we overwrote the correct variable at address

0xffffcdb8

• Programmed the weird machine using the input...

• ...to transition to sane state “Show Password List”

48 Michael Schwarz — www.iaik.tugraz.at

Programming the Weird State www.tugraz.at

% echo "\xb8\xcd\xff\xff%x %x %x %n" | \

DEBUG=1 ./pwdman1

Enter PIN:

? ? ? ? 10 f7f945a0 f7fd4858 root:toor

user:password1234

• With %n, we overwrote the correct variable at address

0xffffcdb8

• Programmed the weird machine using the input...

• ...to transition to sane state “Show Password List”

48 Michael Schwarz — www.iaik.tugraz.at

Programming the Weird State www.tugraz.at

% echo "\xb8\xcd\xff\xff%x %x %x %n" | \

DEBUG=1 ./pwdman1

Enter PIN:

? ? ? ? 10 f7f945a0 f7fd4858 root:toor

user:password1234

• With %n, we overwrote the correct variable at address

0xffffcdb8

• Programmed the weird machine using the input...

• ...to transition to sane state “Show Password List”

48 Michael Schwarz — www.iaik.tugraz.at

Programming the Weird State www.tugraz.at

% echo "\xb8\xcd\xff\xff%x %x %x %n" | \

DEBUG=1 ./pwdman1

Enter PIN:

? ? ? ? 10 f7f945a0 f7fd4858 root:toor

user:password1234

• With %n, we overwrote the correct variable at address

0xffffcdb8

• Programmed the weird machine using the input...

• ...to transition to sane state “Show Password List”

48 Michael Schwarz — www.iaik.tugraz.at

Programming the Weird State www.tugraz.at

% echo "\xb8\xcd\xff\xff%x %x %x %n" | \

DEBUG=1 ./pwdman1

Enter PIN:

? ? ? ? 10 f7f945a0 f7fd4858 root:toor

user:password1234

• With %n, we overwrote the correct variable at address

0xffffcdb8

• Programmed the weird machine using the input...

• ...to transition to sane state “Show Password List”

48 Michael Schwarz — www.iaik.tugraz.at

More Memory Safety Violations www.tugraz.at

• There are many different memory safety violations

• All of them can get us into a weird state

• We have only seen 2 of them, but there are a lot more

• Memory safety violations are a “bag of tricks” from which we

can take one to get into a weird state

49 Michael Schwarz — www.iaik.tugraz.at

More Memory Safety Violations www.tugraz.at

• There are many different memory safety violations

• All of them can get us into a weird state

• We have only seen 2 of them, but there are a lot more

• Memory safety violations are a “bag of tricks” from which we

can take one to get into a weird state

49 Michael Schwarz — www.iaik.tugraz.at

More Memory Safety Violations www.tugraz.at

• There are many different memory safety violations

• All of them can get us into a weird state

• We have only seen 2 of them, but there are a lot more

• Memory safety violations are a “bag of tricks” from which we

can take one to get into a weird state

49 Michael Schwarz — www.iaik.tugraz.at

More Memory Safety Violations www.tugraz.at

• There are many different memory safety violations

• All of them can get us into a weird state

• We have only seen 2 of them, but there are a lot more

• Memory safety violations are a “bag of tricks” from which we

can take one to get into a weird state

49 Michael Schwarz — www.iaik.tugraz.at

More Powerful “Weird Programs” www.tugraz.at

• Our “weird machine programs” were quite simple

Ñ Jumped to a sane state of the FSM

• Instead

• Inject own code and jump to that

• Jump into the middle of a sane state

• ...

50 Michael Schwarz — www.iaik.tugraz.at

More Powerful “Weird Programs” www.tugraz.at

• Our “weird machine programs” were quite simple

Ñ Jumped to a sane state of the FSM

• Instead

• Inject own code and jump to that

• Jump into the middle of a sane state

• ...

50 Michael Schwarz — www.iaik.tugraz.at

More Powerful “Weird Programs” www.tugraz.at

• Our “weird machine programs” were quite simple

Ñ Jumped to a sane state of the FSM

• Instead

• Inject own code and jump to that

• Jump into the middle of a sane state

• ...

50 Michael Schwarz — www.iaik.tugraz.at

More Powerful “Weird Programs” www.tugraz.at

• Our “weird machine programs” were quite simple

Ñ Jumped to a sane state of the FSM

• Instead

• Inject own code and jump to that

• Jump into the middle of a sane state

• ...

50 Michael Schwarz — www.iaik.tugraz.at

More Powerful “Weird Programs” www.tugraz.at

• Our “weird machine programs” were quite simple

Ñ Jumped to a sane state of the FSM

• Instead

• Inject own code and jump to that

• Jump into the middle of a sane state

• ...

50 Michael Schwarz — www.iaik.tugraz.at

More Powerful “Weird Programs” www.tugraz.at

• Our “weird machine programs” were quite simple

Ñ Jumped to a sane state of the FSM

• Instead

• Inject own code and jump to that

• Jump into the middle of a sane state

• ...

50 Michael Schwarz — www.iaik.tugraz.at

“Programming Languages” for the Weird Machine www.tugraz.at

For three decades

• people came up with tricks to get into weird states,

• and “programming languages” to program weird machines

1985-1989 1990-1994 1995-1999 2000-2004 2005-2009 2010-2014 2015-now

Morris Worm
(1988)

Stack Buffer
Overflow
(1996)

Return-to-libc
(1997)

Ret2libc
chaining
(2001)

Borrowed Code
Chunks
(2005)

Return-oriented-
programming

(2007)

Blind ROP
(2014)

Rowhammer
(2015)

51 Michael Schwarz — www.iaik.tugraz.at

That sounds interesting, I want to learn more! www.tugraz.at

• There are many techniques and cool tricks

• Did not look at them Ñ more important to understand concept

• Theory might be boring but helps understanding the techniques

• Participate in CTF and try it yourself

52 Michael Schwarz — www.iaik.tugraz.at

That sounds interesting, I want to learn more! www.tugraz.at

• There are many techniques and cool tricks

• Did not look at them Ñ more important to understand concept

• Theory might be boring but helps understanding the techniques

• Participate in CTF and try it yourself

52 Michael Schwarz — www.iaik.tugraz.at

That sounds interesting, I want to learn more! www.tugraz.at

• There are many techniques and cool tricks

• Did not look at them Ñ more important to understand concept

• Theory might be boring but helps understanding the techniques

• Participate in CTF and try it yourself

52 Michael Schwarz — www.iaik.tugraz.at

That sounds interesting, I want to learn more! www.tugraz.at

• There are many techniques and cool tricks

• Did not look at them Ñ more important to understand concept

• Theory might be boring but helps understanding the techniques

• Participate in CTF and try it yourself

52 Michael Schwarz — www.iaik.tugraz.at

Fix all the things www.tugraz.at

• We got rid of gets

• We got rid of the format-string vulnerability

• We could not find any other bugs

• The FSM emulator (= our code) looks secure

53 Michael Schwarz — www.iaik.tugraz.at

Fix all the things www.tugraz.at

• We got rid of gets

• We got rid of the format-string vulnerability

• We could not find any other bugs

• The FSM emulator (= our code) looks secure

53 Michael Schwarz — www.iaik.tugraz.at

Fix all the things www.tugraz.at

• We got rid of gets

• We got rid of the format-string vulnerability

• We could not find any other bugs

• The FSM emulator (= our code) looks secure

53 Michael Schwarz — www.iaik.tugraz.at

Fix all the things www.tugraz.at

• We got rid of gets

• We got rid of the format-string vulnerability

• We could not find any other bugs

• The FSM emulator (= our code) looks secure

53 Michael Schwarz — www.iaik.tugraz.at

Non-exploitable Code? www.tugraz.at

• Can we show that our code is now not exploitable?

• Not really Ñ check all weird states whether they are exploitable

• How to know which weird states are reachable?

• Depends on the attacker model Ñ what can an attacker do?

• Hard to think of attacker models not yet discovered

54 Michael Schwarz — www.iaik.tugraz.at

Non-exploitable Code? www.tugraz.at

• Can we show that our code is now not exploitable?

• Not really Ñ check all weird states whether they are exploitable

• How to know which weird states are reachable?

• Depends on the attacker model Ñ what can an attacker do?

• Hard to think of attacker models not yet discovered

54 Michael Schwarz — www.iaik.tugraz.at

Non-exploitable Code? www.tugraz.at

• Can we show that our code is now not exploitable?

• Not really Ñ check all weird states whether they are exploitable

• How to know which weird states are reachable?

• Depends on the attacker model Ñ what can an attacker do?

• Hard to think of attacker models not yet discovered

54 Michael Schwarz — www.iaik.tugraz.at

Non-exploitable Code? www.tugraz.at

• Can we show that our code is now not exploitable?

• Not really Ñ check all weird states whether they are exploitable

• How to know which weird states are reachable?

• Depends on the attacker model Ñ what can an attacker do?

• Hard to think of attacker models not yet discovered

54 Michael Schwarz — www.iaik.tugraz.at

Non-exploitable Code? www.tugraz.at

• Can we show that our code is now not exploitable?

• Not really Ñ check all weird states whether they are exploitable

• How to know which weird states are reachable?

• Depends on the attacker model Ñ what can an attacker do?

• Hard to think of attacker models not yet discovered

54 Michael Schwarz — www.iaik.tugraz.at

Blue Team aka Defenses

Defenses

We want to defend against attacks www.tugraz.at

• Defense in CS is surprisingly hard

• In “classical war games”, there is the 3:1 rule

Ñ An attacker needs 3 times as many soldiers as the defender

• Not a law (there are many exceptions) but rule of thumb

55 Michael Schwarz — www.iaik.tugraz.at

We want to defend against attacks www.tugraz.at

• Defense in CS is surprisingly hard

• In “classical war games”, there is the 3:1 rule

Ñ An attacker needs 3 times as many soldiers as the defender

• Not a law (there are many exceptions) but rule of thumb

55 Michael Schwarz — www.iaik.tugraz.at

We want to defend against attacks www.tugraz.at

• Defense in CS is surprisingly hard

• In “classical war games”, there is the 3:1 rule

Ñ An attacker needs 3 times as many soldiers as the defender

• Not a law (there are many exceptions) but rule of thumb

55 Michael Schwarz — www.iaik.tugraz.at

We want to defend against attacks www.tugraz.at

• Defense in CS is surprisingly hard

• In “classical war games”, there is the 3:1 rule

Ñ An attacker needs 3 times as many soldiers as the defender

• Not a law (there are many exceptions) but rule of thumb

55 Michael Schwarz — www.iaik.tugraz.at

The defender has a disadvantage www.tugraz.at

• In CS, the defender has a disadvantage

• Attacker: find one vulnerability

• Defender: protect against all possible attacks

• If the defender misses one vulnerability, the attacker wins

• “The best defense is a good offense” does not work

56 Michael Schwarz — www.iaik.tugraz.at

The defender has a disadvantage www.tugraz.at

• In CS, the defender has a disadvantage

• Attacker: find one vulnerability

• Defender: protect against all possible attacks

• If the defender misses one vulnerability, the attacker wins

• “The best defense is a good offense” does not work

56 Michael Schwarz — www.iaik.tugraz.at

The defender has a disadvantage www.tugraz.at

• In CS, the defender has a disadvantage

• Attacker: find one vulnerability

• Defender: protect against all possible attacks

• If the defender misses one vulnerability, the attacker wins

• “The best defense is a good offense” does not work

56 Michael Schwarz — www.iaik.tugraz.at

The defender has a disadvantage www.tugraz.at

• In CS, the defender has a disadvantage

• Attacker: find one vulnerability

• Defender: protect against all possible attacks

• If the defender misses one vulnerability, the attacker wins

• “The best defense is a good offense” does not work

56 Michael Schwarz — www.iaik.tugraz.at

The defender has a disadvantage www.tugraz.at

• In CS, the defender has a disadvantage

• Attacker: find one vulnerability

• Defender: protect against all possible attacks

• If the defender misses one vulnerability, the attacker wins

• “The best defense is a good offense” does not work

56 Michael Schwarz — www.iaik.tugraz.at

What do we do in CS? www.tugraz.at

• Mainly two strategies

• Strategy #1: Red Team finds all bugs Ñ Blue Team fixes them

• Strategy #2: Find generic mechanisms Ñ Red Team cannot

exploit the program

57 Michael Schwarz — www.iaik.tugraz.at

What do we do in CS? www.tugraz.at

• Mainly two strategies

• Strategy #1: Red Team finds all bugs Ñ Blue Team fixes them

• Strategy #2: Find generic mechanisms Ñ Red Team cannot

exploit the program

57 Michael Schwarz — www.iaik.tugraz.at

What do we do in CS? www.tugraz.at

• Mainly two strategies

• Strategy #1: Red Team finds all bugs Ñ Blue Team fixes them

• Strategy #2: Find generic mechanisms Ñ Red Team cannot

exploit the program

57 Michael Schwarz — www.iaik.tugraz.at

Strategy #1: Exploit. Fix. Feel Safe. Repeat www.tugraz.at

• Often, Strategy #1 is used Ñ seems simple (and cheap)

• If a bug is discovered, fix it, done

• “It took an attacker/researcher more than n months to find a

bug, so the cost of finding the next bug is ě n months”

58 Michael Schwarz — www.iaik.tugraz.at

Strategy #1: Exploit. Fix. Feel Safe. Repeat www.tugraz.at

• Often, Strategy #1 is used Ñ seems simple (and cheap)

• If a bug is discovered, fix it, done

• “It took an attacker/researcher more than n months to find a

bug, so the cost of finding the next bug is ě n months”

58 Michael Schwarz — www.iaik.tugraz.at

Strategy #1: Exploit. Fix. Feel Safe. Repeat www.tugraz.at

• Often, Strategy #1 is used Ñ seems simple (and cheap)

• If a bug is discovered, fix it, done

• “It took an attacker/researcher more than n months to find a

bug, so the cost of finding the next bug is ě n months”

58 Michael Schwarz — www.iaik.tugraz.at

Strategy #1: Exploit. Fix. Feel Safe. Repeat www.tugraz.at

• Often, Strategy #1 is used Ñ seems simple (and cheap)

• If a bug is discovered, fix it, done

• “It took an attacker/researcher more than n months to find a

bug, so the cost of finding the next bug is ě n months”

58 Michael Schwarz — www.iaik.tugraz.at

Re-cap: Weird machines www.tugraz.at

• We defined exploitation as a three-step procedure

1. Setup: choose sane state which “allows” getting to a weird state

2. Instantiation: transition from sane state to weird state

3. Programming: program the weird machine

• The fix prevents one weird machine (or its “program”)

• Similar bugs Ñ similar weird machines

59 Michael Schwarz — www.iaik.tugraz.at

Re-cap: Weird machines www.tugraz.at

• We defined exploitation as a three-step procedure

1. Setup: choose sane state which “allows” getting to a weird state

2. Instantiation: transition from sane state to weird state

3. Programming: program the weird machine

• The fix prevents one weird machine (or its “program”)

• Similar bugs Ñ similar weird machines

59 Michael Schwarz — www.iaik.tugraz.at

Re-cap: Weird machines www.tugraz.at

• We defined exploitation as a three-step procedure

1. Setup: choose sane state which “allows” getting to a weird state

2. Instantiation: transition from sane state to weird state

3. Programming: program the weird machine

• The fix prevents one weird machine (or its “program”)

• Similar bugs Ñ similar weird machines

59 Michael Schwarz — www.iaik.tugraz.at

Re-cap: Weird machines www.tugraz.at

• We defined exploitation as a three-step procedure

1. Setup: choose sane state which “allows” getting to a weird state

2. Instantiation: transition from sane state to weird state

3. Programming: program the weird machine

• The fix prevents one weird machine (or its “program”)

• Similar bugs Ñ similar weird machines

59 Michael Schwarz — www.iaik.tugraz.at

Re-cap: Weird machines www.tugraz.at

• We defined exploitation as a three-step procedure

1. Setup: choose sane state which “allows” getting to a weird state

2. Instantiation: transition from sane state to weird state

3. Programming: program the weird machine

• The fix prevents one weird machine (or its “program”)

• Similar bugs Ñ similar weird machines

59 Michael Schwarz — www.iaik.tugraz.at

Strategy #1: Exploit. Fix. Feel Safe. Repeat www.tugraz.at

• If an attacker found one bug, there might be other similar bugs

• A lot easier to find and exploit similar bugs

• True until there are no similar bugs anymore

60 Michael Schwarz — www.iaik.tugraz.at

Strategy #1: Exploit. Fix. Feel Safe. Repeat www.tugraz.at

• If an attacker found one bug, there might be other similar bugs

• A lot easier to find and exploit similar bugs

• True until there are no similar bugs anymore

60 Michael Schwarz — www.iaik.tugraz.at

Strategy #1: Exploit. Fix. Feel Safe. Repeat www.tugraz.at

• If an attacker found one bug, there might be other similar bugs

• A lot easier to find and exploit similar bugs

• True until there are no similar bugs anymore

60 Michael Schwarz — www.iaik.tugraz.at

Strategy #1: Exploit. Fix. Feel Safe. Repeat www.tugraz.at

61 Michael Schwarz — www.iaik.tugraz.at

Strategy #1: Exploit. Fix. Feel Safe. Repeat www.tugraz.at

61 Michael Schwarz — www.iaik.tugraz.at

Strategy #1: Exploit. Fix. Feel Safe. Repeat www.tugraz.at

61 Michael Schwarz — www.iaik.tugraz.at

Strategy #1: Exploit. Fix. Feel Safe. Repeat www.tugraz.at

61 Michael Schwarz — www.iaik.tugraz.at

Strategy #2: The Academic Way www.tugraz.at

• Better: defense killing whole class of bugs, e.g. buffer overflows

• Can be extremely hard Ñ not easy to find bug-free programs

• We already win if we prevent exploitation

• And we have a solid definition of exploitation

62 Michael Schwarz — www.iaik.tugraz.at

Strategy #2: The Academic Way www.tugraz.at

• Better: defense killing whole class of bugs, e.g. buffer overflows

• Can be extremely hard Ñ not easy to find bug-free programs

• We already win if we prevent exploitation

• And we have a solid definition of exploitation

62 Michael Schwarz — www.iaik.tugraz.at

Strategy #2: The Academic Way www.tugraz.at

• Better: defense killing whole class of bugs, e.g. buffer overflows

• Can be extremely hard Ñ not easy to find bug-free programs

• We already win if we prevent exploitation

• And we have a solid definition of exploitation

62 Michael Schwarz — www.iaik.tugraz.at

Strategy #2: The Academic Way www.tugraz.at

• Better: defense killing whole class of bugs, e.g. buffer overflows

• Can be extremely hard Ñ not easy to find bug-free programs

• We already win if we prevent exploitation

• And we have a solid definition of exploitation

62 Michael Schwarz — www.iaik.tugraz.at

Strategy #2: The Academic Way www.tugraz.at

• Prevent one step of exploitation

• Cannot prevent Setup step Ñ every transition is sane and the

state is defined

• Try to prevent Instantiation and Programming step

• Start with Instantiation step

• We again use the Simple Password Manager as an example

63 Michael Schwarz — www.iaik.tugraz.at

Strategy #2: The Academic Way www.tugraz.at

• Prevent one step of exploitation

• Cannot prevent Setup step Ñ every transition is sane and the

state is defined

• Try to prevent Instantiation and Programming step

• Start with Instantiation step

• We again use the Simple Password Manager as an example

63 Michael Schwarz — www.iaik.tugraz.at

Strategy #2: The Academic Way www.tugraz.at

• Prevent one step of exploitation

• Cannot prevent Setup step Ñ every transition is sane and the

state is defined

• Try to prevent Instantiation and Programming step

• Start with Instantiation step

• We again use the Simple Password Manager as an example

63 Michael Schwarz — www.iaik.tugraz.at

Strategy #2: The Academic Way www.tugraz.at

• Prevent one step of exploitation

• Cannot prevent Setup step Ñ every transition is sane and the

state is defined

• Try to prevent Instantiation and Programming step

• Start with Instantiation step

• We again use the Simple Password Manager as an example

63 Michael Schwarz — www.iaik.tugraz.at

Strategy #2: The Academic Way www.tugraz.at

• Prevent one step of exploitation

• Cannot prevent Setup step Ñ every transition is sane and the

state is defined

• Try to prevent Instantiation and Programming step

• Start with Instantiation step

• We again use the Simple Password Manager as an example

63 Michael Schwarz — www.iaik.tugraz.at

An Example www.tugraz.at

Read PIN

Show PIN

correct?

Show password list

Error message

Yes

No

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG"))

printf(buffer);

return atoi(buffer);

}

64 Michael Schwarz — www.iaik.tugraz.at

An Example www.tugraz.at

• We assume that the Red Team did not find the bugs (yet)

• We don’t know about the gets and printf bug

• The problem the Blue Team has when defending:

• The Blue Team has to roughly know about possible attacks

• Protecting against a (yet) unknown attack is often not possible

or comes with great costs (e.g. performance overhead)

• Assume we know about stack-buffer overflows

65 Michael Schwarz — www.iaik.tugraz.at

An Example www.tugraz.at

• We assume that the Red Team did not find the bugs (yet)

• We don’t know about the gets and printf bug

• The problem the Blue Team has when defending:

• The Blue Team has to roughly know about possible attacks

• Protecting against a (yet) unknown attack is often not possible

or comes with great costs (e.g. performance overhead)

• Assume we know about stack-buffer overflows

65 Michael Schwarz — www.iaik.tugraz.at

An Example www.tugraz.at

• We assume that the Red Team did not find the bugs (yet)

• We don’t know about the gets and printf bug

• The problem the Blue Team has when defending:

• The Blue Team has to roughly know about possible attacks

• Protecting against a (yet) unknown attack is often not possible

or comes with great costs (e.g. performance overhead)

• Assume we know about stack-buffer overflows

65 Michael Schwarz — www.iaik.tugraz.at

An Example www.tugraz.at

• We assume that the Red Team did not find the bugs (yet)

• We don’t know about the gets and printf bug

• The problem the Blue Team has when defending:

• The Blue Team has to roughly know about possible attacks

• Protecting against a (yet) unknown attack is often not possible

or comes with great costs (e.g. performance overhead)

• Assume we know about stack-buffer overflows

65 Michael Schwarz — www.iaik.tugraz.at

An Example www.tugraz.at

• We assume that the Red Team did not find the bugs (yet)

• We don’t know about the gets and printf bug

• The problem the Blue Team has when defending:

• The Blue Team has to roughly know about possible attacks

• Protecting against a (yet) unknown attack is often not possible

or comes with great costs (e.g. performance overhead)

• Assume we know about stack-buffer overflows

65 Michael Schwarz — www.iaik.tugraz.at

An Example www.tugraz.at

• Want to prevent Instantiation step

• Attacker should not get into weird state using a buffer overflow

• Program should rather die than being attacker controlled

• Remember: Stack overflow Ñ overwrite the saved return

address

• Cannot make it readonly (write permissions have page-level

granularity)

66 Michael Schwarz — www.iaik.tugraz.at

An Example www.tugraz.at

• Want to prevent Instantiation step

• Attacker should not get into weird state using a buffer overflow

• Program should rather die than being attacker controlled

• Remember: Stack overflow Ñ overwrite the saved return

address

• Cannot make it readonly (write permissions have page-level

granularity)

66 Michael Schwarz — www.iaik.tugraz.at

An Example www.tugraz.at

• Want to prevent Instantiation step

• Attacker should not get into weird state using a buffer overflow

• Program should rather die than being attacker controlled

• Remember: Stack overflow Ñ overwrite the saved return

address

• Cannot make it readonly (write permissions have page-level

granularity)

66 Michael Schwarz — www.iaik.tugraz.at

An Example www.tugraz.at

• Want to prevent Instantiation step

• Attacker should not get into weird state using a buffer overflow

• Program should rather die than being attacker controlled

• Remember: Stack overflow Ñ overwrite the saved return

address

• Cannot make it readonly (write permissions have page-level

granularity)

66 Michael Schwarz — www.iaik.tugraz.at

An Example www.tugraz.at

• Simple idea: put a known (random) value between the buffer

and the saved return address

• We call this value canary (yes, like the yellow bird)

• Canary is overwritten first

• On return, check whether the canary has the correct value

• If not Ñ buffer overflow, kill program

67 Michael Schwarz — www.iaik.tugraz.at

An Example www.tugraz.at

• Simple idea: put a known (random) value between the buffer

and the saved return address

• We call this value canary (yes, like the yellow bird)

• Canary is overwritten first

• On return, check whether the canary has the correct value

• If not Ñ buffer overflow, kill program

67 Michael Schwarz — www.iaik.tugraz.at

An Example www.tugraz.at

• Simple idea: put a known (random) value between the buffer

and the saved return address

• We call this value canary (yes, like the yellow bird)

• Canary is overwritten first

• On return, check whether the canary has the correct value

• If not Ñ buffer overflow, kill program

67 Michael Schwarz — www.iaik.tugraz.at

An Example www.tugraz.at

• Simple idea: put a known (random) value between the buffer

and the saved return address

• We call this value canary (yes, like the yellow bird)

• Canary is overwritten first

• On return, check whether the canary has the correct value

• If not Ñ buffer overflow, kill program

67 Michael Schwarz — www.iaik.tugraz.at

An Example www.tugraz.at

• Simple idea: put a known (random) value between the buffer

and the saved return address

• We call this value canary (yes, like the yellow bird)

• Canary is overwritten first

• On return, check whether the canary has the correct value

• If not Ñ buffer overflow, kill program

67 Michael Schwarz — www.iaik.tugraz.at

Overwriting the Stack (Canary) www.tugraz.at

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

Ñ ...

u
,

/

/

/

/

.

/

/

/

/

-

68 Michael Schwarz — www.iaik.tugraz.at

Overwriting the Stack (Canary) www.tugraz.at

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

...

Ñ IP

u
,

/

/

/

/

.

/

/

/

/

-

68 Michael Schwarz — www.iaik.tugraz.at

Overwriting the Stack (Canary) www.tugraz.at

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

...

IP
BP

Ñ 0x01002236 u Canary
,

/

/

/

/

.

/

/

/

/

-

68 Michael Schwarz — www.iaik.tugraz.at

Overwriting the Stack (Canary) www.tugraz.at

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

...

IP
BP

Ñ 0x01002236 u Canary
,

/

/

/

/

.

/

/

/

/

-

buffer

68 Michael Schwarz — www.iaik.tugraz.at

Overwriting the Stack (Canary) www.tugraz.at

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

...

IP 0x35343332
BP 0x31303938

Ñ 0x01002236 0x37363534 u Canary
0x33323130
0x39383736
0x35343332
0x31303938
0x37363534
0x33323130

,

/

/

/

/

.

/

/

/

/

-

buffer

68 Michael Schwarz — www.iaik.tugraz.at

Overwriting the Stack (Canary) www.tugraz.at

uint32_t readPIN() {

char buffer[16];

printf("Enter PIN:\n");

gets(buffer);

if(getenv("DEBUG")) printf(buffer);

return atoi(buffer);

}

...

Ñ IP 0x35343332
BP 0x31303938

0x01002236 0x37363534 u Canary
0x33323130
0x39383736
0x35343332
0x31303938
0x37363534
0x33323130

,

/

/

/

/

.

/

/

/

/

-

buffer

Before return, check

canary Ñ 0x01002236 ‰

0x37363534 Ñ exit

68 Michael Schwarz — www.iaik.tugraz.at

Trigger the Bug with Stack Canary www.tugraz.at

• Stack canaries are default in gcc

• However, only buffers larger than 8 bytes are protected

• We can use -fstack-protector-all to protect all buffers

% gcc pwdman.c -fstack-protector-all -o pwdman

% ./pwdman

Enter PIN:

012345678901234567890123456789

*** stack smashing detected ***: ./pwdman terminated

[1] 7569 abort (core dumped) ./pwdman

69 Michael Schwarz — www.iaik.tugraz.at

Trigger the Bug with Stack Canary www.tugraz.at

• Stack canaries are default in gcc

• However, only buffers larger than 8 bytes are protected

• We can use -fstack-protector-all to protect all buffers

% gcc pwdman.c -fstack-protector-all -o pwdman

% ./pwdman

Enter PIN:

012345678901234567890123456789

*** stack smashing detected ***: ./pwdman terminated

[1] 7569 abort (core dumped) ./pwdman

69 Michael Schwarz — www.iaik.tugraz.at

Trigger the Bug with Stack Canary www.tugraz.at

• Stack canaries are default in gcc

• However, only buffers larger than 8 bytes are protected

• We can use -fstack-protector-all to protect all buffers

% gcc pwdman.c -fstack-protector-all -o pwdman

% ./pwdman

Enter PIN:

012345678901234567890123456789

*** stack smashing detected ***: ./pwdman terminated

[1] 7569 abort (core dumped) ./pwdman

69 Michael Schwarz — www.iaik.tugraz.at

Trigger the Bug with Stack Canary www.tugraz.at

• Stack canaries are default in gcc

• However, only buffers larger than 8 bytes are protected

• We can use -fstack-protector-all to protect all buffers

% gcc pwdman.c -fstack-protector-all -o pwdman

% ./pwdman

Enter PIN:

012345678901234567890123456789

*** stack smashing detected ***: ./pwdman terminated

[1] 7569 abort (core dumped) ./pwdman

69 Michael Schwarz — www.iaik.tugraz.at

Trigger the Bug with Stack Canary www.tugraz.at

• Stack canaries are default in gcc

• However, only buffers larger than 8 bytes are protected

• We can use -fstack-protector-all to protect all buffers

% gcc pwdman.c -fstack-protector-all -o pwdman

% ./pwdman

Enter PIN:

012345678901234567890123456789

*** stack smashing detected ***: ./pwdman terminated

[1] 7569 abort (core dumped) ./pwdman

69 Michael Schwarz — www.iaik.tugraz.at

We fixed a class of bugs www.tugraz.at

• We fixed the class of stack-overflow bugs

• The canary protects every stack buffer from being used to get

into a “weird state”

70 Michael Schwarz — www.iaik.tugraz.at

We fixed a class of bugs www.tugraz.at

• We fixed the class of stack-overflow bugs

• The canary protects every stack buffer from being used to get

into a “weird state”

70 Michael Schwarz — www.iaik.tugraz.at

We fixed a class of bugs www.tugraz.at

• We fixed the class of stack-overflow bugs

• The canary protects every stack buffer from being used to get

into a “weird state”

70 Michael Schwarz — www.iaik.tugraz.at

We fixed a class of bugs www.tugraz.at

• Simple stack-buffer overflow cannot get into an exploitable

weird state

• Leak canary using a different trick (e.g., printf bug, or

out-of-bounds read)

Ñ Only prevented a part of a class of bugs

• Still other ways to get into a weird state

• We want something more generic, even if less powerful

71 Michael Schwarz — www.iaik.tugraz.at

We fixed a class of bugs www.tugraz.at

• Simple stack-buffer overflow cannot get into an exploitable

weird state

• Leak canary using a different trick (e.g., printf bug, or

out-of-bounds read)

Ñ Only prevented a part of a class of bugs

• Still other ways to get into a weird state

• We want something more generic, even if less powerful

71 Michael Schwarz — www.iaik.tugraz.at

We fixed a class of bugs www.tugraz.at

• Simple stack-buffer overflow cannot get into an exploitable

weird state

• Leak canary using a different trick (e.g., printf bug, or

out-of-bounds read)

Ñ Only prevented a part of a class of bugs

• Still other ways to get into a weird state

• We want something more generic, even if less powerful

71 Michael Schwarz — www.iaik.tugraz.at

We fixed a class of bugs www.tugraz.at

• Simple stack-buffer overflow cannot get into an exploitable

weird state

• Leak canary using a different trick (e.g., printf bug, or

out-of-bounds read)

Ñ Only prevented a part of a class of bugs

• Still other ways to get into a weird state

• We want something more generic, even if less powerful

71 Michael Schwarz — www.iaik.tugraz.at

We fixed a class of bugs www.tugraz.at

• Simple stack-buffer overflow cannot get into an exploitable

weird state

• Leak canary using a different trick (e.g., printf bug, or

out-of-bounds read)

Ñ Only prevented a part of a class of bugs

• Still other ways to get into a weird state

• We want something more generic, even if less powerful

71 Michael Schwarz — www.iaik.tugraz.at

It’s all about randomness www.tugraz.at

• Randomness is often used in security Ñ probabilistic approach

• Assumption: attacker can jump to any memory location

• What if all memory locations are unpredictable?

• Attacker cannot reliably jump to a specific location anymore

72 Michael Schwarz — www.iaik.tugraz.at

It’s all about randomness www.tugraz.at

• Randomness is often used in security Ñ probabilistic approach

• Assumption: attacker can jump to any memory location

• What if all memory locations are unpredictable?

• Attacker cannot reliably jump to a specific location anymore

72 Michael Schwarz — www.iaik.tugraz.at

It’s all about randomness www.tugraz.at

• Randomness is often used in security Ñ probabilistic approach

• Assumption: attacker can jump to any memory location

• What if all memory locations are unpredictable?

• Attacker cannot reliably jump to a specific location anymore

72 Michael Schwarz — www.iaik.tugraz.at

It’s all about randomness www.tugraz.at

• Randomness is often used in security Ñ probabilistic approach

• Assumption: attacker can jump to any memory location

• What if all memory locations are unpredictable?

• Attacker cannot reliably jump to a specific location anymore

72 Michael Schwarz — www.iaik.tugraz.at

Address Space Layout Randomization (ASLR) www.tugraz.at

• Address Space Layout Randomization (ASLR) randomizes the

position of program parts

co
d
e

d
a
ta

b
ss

h
ea
p

sh
ar
ed

m
em

or
y

sh
ar
ed

li
b
ra
ri
es

st
a
ck

0 247

• Attacker cannot predict the location of a sane or injected state

• Powerful on 64-bit systems Ñ huge address space (128 TB)

73 Michael Schwarz — www.iaik.tugraz.at

Address Space Layout Randomization (ASLR) www.tugraz.at

• Address Space Layout Randomization (ASLR) randomizes the

position of program parts

co
d
e

d
a
ta

b
ss

h
ea
p

sh
ar
ed

m
em

or
y

sh
ar
ed

li
b
ra
ri
es

st
a
ck

0 247

• Attacker cannot predict the location of a sane or injected state

• Powerful on 64-bit systems Ñ huge address space (128 TB)

73 Michael Schwarz — www.iaik.tugraz.at

Address Space Layout Randomization (ASLR) www.tugraz.at

• Address Space Layout Randomization (ASLR) randomizes the

position of program parts

co
d
e

d
a
ta

b
ss

h
ea
p

sh
ar
ed

m
em

or
y

sh
ar
ed

li
b
ra
ri
es

st
a
ck

0 247

• Attacker cannot predict the location of a sane or injected state

• Powerful on 64-bit systems Ñ huge address space (128 TB)

73 Michael Schwarz — www.iaik.tugraz.at

Address Space Layout Randomization (ASLR) www.tugraz.at

• Address Space Layout Randomization (ASLR) randomizes the

position of program parts

co
d
e

d
a
ta

b
ss

h
ea
p

sh
ar
ed

m
em

or
y

sh
ar
ed

li
b
ra
ri
es

st
a
ck

0 247

• Attacker cannot predict the location of a sane or injected state

• Powerful on 64-bit systems Ñ huge address space (128 TB)

73 Michael Schwarz — www.iaik.tugraz.at

Address Space Layout Randomization (ASLR) www.tugraz.at

• Address Space Layout Randomization (ASLR) randomizes the

position of program parts

co
d
e

d
a
ta

b
ss

h
ea
p

sh
ar
ed

m
em

or
y

sh
ar
ed

li
b
ra
ri
es

st
a
ck

0 247

• Attacker cannot predict the location of a sane or injected state

• Powerful on 64-bit systems Ñ huge address space (128 TB)

73 Michael Schwarz — www.iaik.tugraz.at

ASLR and its benefits www.tugraz.at

• ASLR is only a probabilistic countermeasure relying on two
assumptions

• No leak of addresses Ñ breaks ASLR immediately

• Randomization range is large enough Ñ brute force breaks ASLR

• On 64-bit systems, ASLR makes exploitation really hard

• Advantage of ASLR: it costs nearly nothing Ñ widespread use

74 Michael Schwarz — www.iaik.tugraz.at

ASLR and its benefits www.tugraz.at

• ASLR is only a probabilistic countermeasure relying on two
assumptions

• No leak of addresses Ñ breaks ASLR immediately

• Randomization range is large enough Ñ brute force breaks ASLR

• On 64-bit systems, ASLR makes exploitation really hard

• Advantage of ASLR: it costs nearly nothing Ñ widespread use

74 Michael Schwarz — www.iaik.tugraz.at

ASLR and its benefits www.tugraz.at

• ASLR is only a probabilistic countermeasure relying on two
assumptions

• No leak of addresses Ñ breaks ASLR immediately

• Randomization range is large enough Ñ brute force breaks ASLR

• On 64-bit systems, ASLR makes exploitation really hard

• Advantage of ASLR: it costs nearly nothing Ñ widespread use

74 Michael Schwarz — www.iaik.tugraz.at

ASLR and its benefits www.tugraz.at

• ASLR is only a probabilistic countermeasure relying on two
assumptions

• No leak of addresses Ñ breaks ASLR immediately

• Randomization range is large enough Ñ brute force breaks ASLR

• On 64-bit systems, ASLR makes exploitation really hard

• Advantage of ASLR: it costs nearly nothing Ñ widespread use

74 Michael Schwarz — www.iaik.tugraz.at

ASLR and its benefits www.tugraz.at

• ASLR is only a probabilistic countermeasure relying on two
assumptions

• No leak of addresses Ñ breaks ASLR immediately

• Randomization range is large enough Ñ brute force breaks ASLR

• On 64-bit systems, ASLR makes exploitation really hard

• Advantage of ASLR: it costs nearly nothing Ñ widespread use

74 Michael Schwarz — www.iaik.tugraz.at

Preventing the Programming step www.tugraz.at

• Assumption: attacker still found a way to get into a weird state

• Last ressort to prevent exploitation Ñ make the Programming

step infeasible

• Attacker uses the input stream to program the weird machine

• We could filter the input stream – but this is not always possible

75 Michael Schwarz — www.iaik.tugraz.at

Preventing the Programming step www.tugraz.at

• Assumption: attacker still found a way to get into a weird state

• Last ressort to prevent exploitation Ñ make the Programming

step infeasible

• Attacker uses the input stream to program the weird machine

• We could filter the input stream – but this is not always possible

75 Michael Schwarz — www.iaik.tugraz.at

Preventing the Programming step www.tugraz.at

• Assumption: attacker still found a way to get into a weird state

• Last ressort to prevent exploitation Ñ make the Programming

step infeasible

• Attacker uses the input stream to program the weird machine

• We could filter the input stream – but this is not always possible

75 Michael Schwarz — www.iaik.tugraz.at

Preventing the Programming step www.tugraz.at

• Assumption: attacker still found a way to get into a weird state

• Last ressort to prevent exploitation Ñ make the Programming

step infeasible

• Attacker uses the input stream to program the weird machine

• We could filter the input stream – but this is not always possible

75 Michael Schwarz — www.iaik.tugraz.at

Self awareness www.tugraz.at

• Idea: make the FSM aware of itself!

• The FSM should know which states and transitions are allowed

Ñ Prevent all transitions which are not in the original FSM

• Every state has to check whether

• target of an indirect jump is correct according to the FSM

• saved return address points to a previous state

• Forces the program to stay inside the FSM

76 Michael Schwarz — www.iaik.tugraz.at

Self awareness www.tugraz.at

• Idea: make the FSM aware of itself!

• The FSM should know which states and transitions are allowed

Ñ Prevent all transitions which are not in the original FSM

• Every state has to check whether

• target of an indirect jump is correct according to the FSM

• saved return address points to a previous state

• Forces the program to stay inside the FSM

76 Michael Schwarz — www.iaik.tugraz.at

Self awareness www.tugraz.at

• Idea: make the FSM aware of itself!

• The FSM should know which states and transitions are allowed

Ñ Prevent all transitions which are not in the original FSM

• Every state has to check whether

• target of an indirect jump is correct according to the FSM

• saved return address points to a previous state

• Forces the program to stay inside the FSM

76 Michael Schwarz — www.iaik.tugraz.at

Self awareness www.tugraz.at

• Idea: make the FSM aware of itself!

• The FSM should know which states and transitions are allowed

Ñ Prevent all transitions which are not in the original FSM

• Every state has to check whether

• target of an indirect jump is correct according to the FSM

• saved return address points to a previous state

• Forces the program to stay inside the FSM

76 Michael Schwarz — www.iaik.tugraz.at

Self awareness www.tugraz.at

• Idea: make the FSM aware of itself!

• The FSM should know which states and transitions are allowed

Ñ Prevent all transitions which are not in the original FSM

• Every state has to check whether

• target of an indirect jump is correct according to the FSM

• saved return address points to a previous state

• Forces the program to stay inside the FSM

76 Michael Schwarz — www.iaik.tugraz.at

Self awareness www.tugraz.at

• Idea: make the FSM aware of itself!

• The FSM should know which states and transitions are allowed

Ñ Prevent all transitions which are not in the original FSM

• Every state has to check whether

• target of an indirect jump is correct according to the FSM

• saved return address points to a previous state

• Forces the program to stay inside the FSM

76 Michael Schwarz — www.iaik.tugraz.at

Self awareness www.tugraz.at

• Idea: make the FSM aware of itself!

• The FSM should know which states and transitions are allowed

Ñ Prevent all transitions which are not in the original FSM

• Every state has to check whether

• target of an indirect jump is correct according to the FSM

• saved return address points to a previous state

• Forces the program to stay inside the FSM

76 Michael Schwarz — www.iaik.tugraz.at

Allowed and Disallowed transitions www.tugraz.at

Read PIN

Show PIN

correct?

Show password list

Error message

33

3

Yes 3 3

No 3

3

3

7

7

7

7

3

77 Michael Schwarz — www.iaik.tugraz.at

Control-flow integrity www.tugraz.at

• Control-flow integrity sounds simple Ñ difficult to implement

• Control-flow graph must be correctly constructed

• Function pointers cannot be protected if destination set is large

• Some functions (e.g., library functions) have many call locations

and therefore return locations

• Still, usable implementations in clang and from Microsoft

• Exploitation is still possible Ñ integrity checks are often

coarse-grained

78 Michael Schwarz — www.iaik.tugraz.at

Control-flow integrity www.tugraz.at

• Control-flow integrity sounds simple Ñ difficult to implement

• Control-flow graph must be correctly constructed

• Function pointers cannot be protected if destination set is large

• Some functions (e.g., library functions) have many call locations

and therefore return locations

• Still, usable implementations in clang and from Microsoft

• Exploitation is still possible Ñ integrity checks are often

coarse-grained

78 Michael Schwarz — www.iaik.tugraz.at

Control-flow integrity www.tugraz.at

• Control-flow integrity sounds simple Ñ difficult to implement

• Control-flow graph must be correctly constructed

• Function pointers cannot be protected if destination set is large

• Some functions (e.g., library functions) have many call locations

and therefore return locations

• Still, usable implementations in clang and from Microsoft

• Exploitation is still possible Ñ integrity checks are often

coarse-grained

78 Michael Schwarz — www.iaik.tugraz.at

Control-flow integrity www.tugraz.at

• Control-flow integrity sounds simple Ñ difficult to implement

• Control-flow graph must be correctly constructed

• Function pointers cannot be protected if destination set is large

• Some functions (e.g., library functions) have many call locations

and therefore return locations

• Still, usable implementations in clang and from Microsoft

• Exploitation is still possible Ñ integrity checks are often

coarse-grained

78 Michael Schwarz — www.iaik.tugraz.at

Control-flow integrity www.tugraz.at

• Control-flow integrity sounds simple Ñ difficult to implement

• Control-flow graph must be correctly constructed

• Function pointers cannot be protected if destination set is large

• Some functions (e.g., library functions) have many call locations

and therefore return locations

• Still, usable implementations in clang and from Microsoft

• Exploitation is still possible Ñ integrity checks are often

coarse-grained

78 Michael Schwarz — www.iaik.tugraz.at

Control-flow integrity www.tugraz.at

• Control-flow integrity sounds simple Ñ difficult to implement

• Control-flow graph must be correctly constructed

• Function pointers cannot be protected if destination set is large

• Some functions (e.g., library functions) have many call locations

and therefore return locations

• Still, usable implementations in clang and from Microsoft

• Exploitation is still possible Ñ integrity checks are often

coarse-grained

78 Michael Schwarz — www.iaik.tugraz.at

Is that all we can do? www.tugraz.at

• We discussed techniques to prevent the Instantiation step

• Canary

• ASLR

• And control-flow integrity to prevent Programming step

• They provide good protection but can be circumvented

• Why use the countermeasures if they can be circumvented?

79 Michael Schwarz — www.iaik.tugraz.at

Is that all we can do? www.tugraz.at

• We discussed techniques to prevent the Instantiation step

• Canary

• ASLR

• And control-flow integrity to prevent Programming step

• They provide good protection but can be circumvented

• Why use the countermeasures if they can be circumvented?

79 Michael Schwarz — www.iaik.tugraz.at

Is that all we can do? www.tugraz.at

• We discussed techniques to prevent the Instantiation step

• Canary

• ASLR

• And control-flow integrity to prevent Programming step

• They provide good protection but can be circumvented

• Why use the countermeasures if they can be circumvented?

79 Michael Schwarz — www.iaik.tugraz.at

Is that all we can do? www.tugraz.at

• We discussed techniques to prevent the Instantiation step

• Canary

• ASLR

• And control-flow integrity to prevent Programming step

• They provide good protection but can be circumvented

• Why use the countermeasures if they can be circumvented?

79 Michael Schwarz — www.iaik.tugraz.at

Is that all we can do? www.tugraz.at

• We discussed techniques to prevent the Instantiation step

• Canary

• ASLR

• And control-flow integrity to prevent Programming step

• They provide good protection but can be circumvented

• Why use the countermeasures if they can be circumvented?

79 Michael Schwarz — www.iaik.tugraz.at

Costs and Raising the Bar www.tugraz.at

• Often arguments such as

• “We have to increase the costs/raise the bar for an attacker”

• “Many layers of security make it a lot harder for an attacker”

• That is partly true, however...

• ...in most cases there is a trade-off

• Increased cost for the attacker usually comes with increased

cost for the user as well

Ñ slower programs, increased memory consumption, ...

80 Michael Schwarz — www.iaik.tugraz.at

Costs and Raising the Bar www.tugraz.at

• Often arguments such as

• “We have to increase the costs/raise the bar for an attacker”

• “Many layers of security make it a lot harder for an attacker”

• That is partly true, however...

• ...in most cases there is a trade-off

• Increased cost for the attacker usually comes with increased

cost for the user as well

Ñ slower programs, increased memory consumption, ...

80 Michael Schwarz — www.iaik.tugraz.at

Costs and Raising the Bar www.tugraz.at

• Often arguments such as

• “We have to increase the costs/raise the bar for an attacker”

• “Many layers of security make it a lot harder for an attacker”

• That is partly true, however...

• ...in most cases there is a trade-off

• Increased cost for the attacker usually comes with increased

cost for the user as well

Ñ slower programs, increased memory consumption, ...

80 Michael Schwarz — www.iaik.tugraz.at

Costs and Raising the Bar www.tugraz.at

• Often arguments such as

• “We have to increase the costs/raise the bar for an attacker”

• “Many layers of security make it a lot harder for an attacker”

• That is partly true, however...

• ...in most cases there is a trade-off

• Increased cost for the attacker usually comes with increased

cost for the user as well

Ñ slower programs, increased memory consumption, ...

80 Michael Schwarz — www.iaik.tugraz.at

Costs and Raising the Bar www.tugraz.at

• Often arguments such as

• “We have to increase the costs/raise the bar for an attacker”

• “Many layers of security make it a lot harder for an attacker”

• That is partly true, however...

• ...in most cases there is a trade-off

• Increased cost for the attacker usually comes with increased

cost for the user as well

Ñ slower programs, increased memory consumption, ...

80 Michael Schwarz — www.iaik.tugraz.at

Costs and Raising the Bar www.tugraz.at

• Often arguments such as

• “We have to increase the costs/raise the bar for an attacker”

• “Many layers of security make it a lot harder for an attacker”

• That is partly true, however...

• ...in most cases there is a trade-off

• Increased cost for the attacker usually comes with increased

cost for the user as well

Ñ slower programs, increased memory consumption, ...

80 Michael Schwarz — www.iaik.tugraz.at

Costs and Raising the Bar www.tugraz.at

• User has to pay the costs all the time

• Attacker only has to pay them once

• A defender has to decide whether such a trade-off is worth for

individual cases

81 Michael Schwarz — www.iaik.tugraz.at

Costs and Raising the Bar www.tugraz.at

• User has to pay the costs all the time

• Attacker only has to pay them once

• A defender has to decide whether such a trade-off is worth for

individual cases

81 Michael Schwarz — www.iaik.tugraz.at

Costs and Raising the Bar www.tugraz.at

• User has to pay the costs all the time

• Attacker only has to pay them once

• A defender has to decide whether such a trade-off is worth for

individual cases

81 Michael Schwarz — www.iaik.tugraz.at

Costs and Raising the Bar www.tugraz.at

• Presented countermeasures provide a good trade-off between

cost and security

• This is one reason why they are widely used

• Future hardware might implement some countermeasures to

reduce the costs

• What else can we do in the meantime?

82 Michael Schwarz — www.iaik.tugraz.at

Costs and Raising the Bar www.tugraz.at

• Presented countermeasures provide a good trade-off between

cost and security

• This is one reason why they are widely used

• Future hardware might implement some countermeasures to

reduce the costs

• What else can we do in the meantime?

82 Michael Schwarz — www.iaik.tugraz.at

Costs and Raising the Bar www.tugraz.at

• Presented countermeasures provide a good trade-off between

cost and security

• This is one reason why they are widely used

• Future hardware might implement some countermeasures to

reduce the costs

• What else can we do in the meantime?

82 Michael Schwarz — www.iaik.tugraz.at

Costs and Raising the Bar www.tugraz.at

• Presented countermeasures provide a good trade-off between

cost and security

• This is one reason why they are widely used

• Future hardware might implement some countermeasures to

reduce the costs

• What else can we do in the meantime?

82 Michael Schwarz — www.iaik.tugraz.at

Limit the damage www.tugraz.at

• Might not prevent attack from a sophisticated attacker

Ñ Restrict the attacker after the exploit

• Protect our system, even if application is controlled by the

attacker

83 Michael Schwarz — www.iaik.tugraz.at

Limit the damage www.tugraz.at

• Might not prevent attack from a sophisticated attacker

Ñ Restrict the attacker after the exploit

• Protect our system, even if application is controlled by the

attacker

83 Michael Schwarz — www.iaik.tugraz.at

Limit the damage www.tugraz.at

• Might not prevent attack from a sophisticated attacker

Ñ Restrict the attacker after the exploit

• Protect our system, even if application is controlled by the

attacker

83 Michael Schwarz — www.iaik.tugraz.at

Sandboxing www.tugraz.at

84 Michael Schwarz — www.iaik.tugraz.at

Sandboxing - Demo www.tugraz.at

• Simple sandboxing with Docker can be as easy as running one command

% docker run --rm --read-only=true -i --cap-drop=all \

--net=none -v $PWD:/app -t ubuntu /app/pwdman

Enter PIN:

? ? ? ? ? ? ? ?

ls

app bin boot dev etc home lib lib64 media mnt

opt proc root run sbin srv sys tmp usr var

echo "test" > /tmp/test

sh: 4: cannot create /tmp/test: Read-only file system

networkctl

IDX LINK TYPE OPERATIONAL SETUP

1 lo loopback n/a n/a

1 links listed.

85 Michael Schwarz — www.iaik.tugraz.at

Sandboxing - Demo www.tugraz.at

• Simple sandboxing with Docker can be as easy as running one command

% docker run --rm --read-only=true -i --cap-drop=all \

--net=none -v $PWD:/app -t ubuntu /app/pwdman

Enter PIN: ? ? ? ? ? ? ? ?

ls

app bin boot dev etc home lib lib64 media mnt

opt proc root run sbin srv sys tmp usr var

echo "test" > /tmp/test

sh: 4: cannot create /tmp/test: Read-only file system

networkctl

IDX LINK TYPE OPERATIONAL SETUP

1 lo loopback n/a n/a

1 links listed.

85 Michael Schwarz — www.iaik.tugraz.at

Sandboxing - Demo www.tugraz.at

• Simple sandboxing with Docker can be as easy as running one command

% docker run --rm --read-only=true -i --cap-drop=all \

--net=none -v $PWD:/app -t ubuntu /app/pwdman

Enter PIN: ? ? ? ? ? ? ? ?

ls

app bin boot dev etc home lib lib64 media mnt

opt proc root run sbin srv sys tmp usr var

echo "test" > /tmp/test

sh: 4: cannot create /tmp/test: Read-only file system

networkctl

IDX LINK TYPE OPERATIONAL SETUP

1 lo loopback n/a n/a

1 links listed.85 Michael Schwarz — www.iaik.tugraz.at

Sandboxing - Demo www.tugraz.at

• An attacker cannot do much anymore

• The file system is readonly, no files can be changed/created

• No files of the host computer are visible, except the program and

the password list

• There is no network connection to easily exfiltrate data

• Even if our program is owned by an attacker, the attacker can

at least not harm the rest of the system

86 Michael Schwarz — www.iaik.tugraz.at

Sandboxing - Demo www.tugraz.at

• An attacker cannot do much anymore

• The file system is readonly, no files can be changed/created

• No files of the host computer are visible, except the program and

the password list

• There is no network connection to easily exfiltrate data

• Even if our program is owned by an attacker, the attacker can

at least not harm the rest of the system

86 Michael Schwarz — www.iaik.tugraz.at

Sandboxing - Demo www.tugraz.at

• An attacker cannot do much anymore

• The file system is readonly, no files can be changed/created

• No files of the host computer are visible, except the program and

the password list

• There is no network connection to easily exfiltrate data

• Even if our program is owned by an attacker, the attacker can

at least not harm the rest of the system

86 Michael Schwarz — www.iaik.tugraz.at

Expect the worst www.tugraz.at

• Always expect the worst case that could happen!

• In this case: attacker found exploitable bug, circumvented all

countermeasures, got a shell in the sandbox and was able to

read the password file

• Ñ No problem if file is encrypted, and key is derived from PIN

• (Assuming the crypto is good, and you used it correctly)

87 Michael Schwarz — www.iaik.tugraz.at

Expect the worst www.tugraz.at

• Always expect the worst case that could happen!

• In this case: attacker found exploitable bug, circumvented all

countermeasures, got a shell in the sandbox and was able to

read the password file

• Ñ No problem if file is encrypted, and key is derived from PIN

• (Assuming the crypto is good, and you used it correctly)

87 Michael Schwarz — www.iaik.tugraz.at

Expect the worst www.tugraz.at

• Always expect the worst case that could happen!

• In this case: attacker found exploitable bug, circumvented all

countermeasures, got a shell in the sandbox and was able to

read the password file

• Ñ No problem if file is encrypted, and key is derived from PIN

• (Assuming the crypto is good, and you used it correctly)

87 Michael Schwarz — www.iaik.tugraz.at

Expect the worst www.tugraz.at

• Always expect the worst case that could happen!

• In this case: attacker found exploitable bug, circumvented all

countermeasures, got a shell in the sandbox and was able to

read the password file

• Ñ No problem if file is encrypted, and key is derived from PIN

• (Assuming the crypto is good, and you used it correctly)

87 Michael Schwarz — www.iaik.tugraz.at

Why use a Sandbox then? www.tugraz.at

• If we encrypt the data, do we even benefit from a sandbox?

• Attacker cannot read the password file anyway

88 Michael Schwarz — www.iaik.tugraz.at

Why use a Sandbox then? www.tugraz.at

• If we encrypt the data, do we even benefit from a sandbox?

• Attacker cannot read the password file anyway

88 Michael Schwarz — www.iaik.tugraz.at

Why use a Sandbox then? www.tugraz.at

• If we encrypt the data, do we even benefit from a sandbox?

• Attacker cannot read the password file anyway

88 Michael Schwarz — www.iaik.tugraz.at

Always use a Sandbox! www.tugraz.at

• Without sandbox, attacker can create/modify files

• Attacker could install a keylogger or other malicious software

• Or replace the password manager with a manipulated one

leaking the PIN

• Best crypto does not help if system is compromised

89 Michael Schwarz — www.iaik.tugraz.at

Always use a Sandbox! www.tugraz.at

• Without sandbox, attacker can create/modify files

• Attacker could install a keylogger or other malicious software

• Or replace the password manager with a manipulated one

leaking the PIN

• Best crypto does not help if system is compromised

89 Michael Schwarz — www.iaik.tugraz.at

Always use a Sandbox! www.tugraz.at

• Without sandbox, attacker can create/modify files

• Attacker could install a keylogger or other malicious software

• Or replace the password manager with a manipulated one

leaking the PIN

• Best crypto does not help if system is compromised

89 Michael Schwarz — www.iaik.tugraz.at

Always use a Sandbox! www.tugraz.at

• Without sandbox, attacker can create/modify files

• Attacker could install a keylogger or other malicious software

• Or replace the password manager with a manipulated one

leaking the PIN

• Best crypto does not help if system is compromised

89 Michael Schwarz — www.iaik.tugraz.at

Best practice www.tugraz.at

• Never assume perfect countermeasures or bug-free code

• Encrypt your data in case it leaks (it will at some point)

• Minimize privileges (e.g., a server should not run as root)

• Log everything – in case of an attack, you have a chance to find

(and sue) the attacker

• Compiler can help to harden your application, e.g., using

compile flags such as -D FORTIFY SOURCE=2

90 Michael Schwarz — www.iaik.tugraz.at

Best practice www.tugraz.at

• Never assume perfect countermeasures or bug-free code

• Encrypt your data in case it leaks (it will at some point)

• Minimize privileges (e.g., a server should not run as root)

• Log everything – in case of an attack, you have a chance to find

(and sue) the attacker

• Compiler can help to harden your application, e.g., using

compile flags such as -D FORTIFY SOURCE=2

90 Michael Schwarz — www.iaik.tugraz.at

Best practice www.tugraz.at

• Never assume perfect countermeasures or bug-free code

• Encrypt your data in case it leaks (it will at some point)

• Minimize privileges (e.g., a server should not run as root)

• Log everything – in case of an attack, you have a chance to find

(and sue) the attacker

• Compiler can help to harden your application, e.g., using

compile flags such as -D FORTIFY SOURCE=2

90 Michael Schwarz — www.iaik.tugraz.at

Best practice www.tugraz.at

• Never assume perfect countermeasures or bug-free code

• Encrypt your data in case it leaks (it will at some point)

• Minimize privileges (e.g., a server should not run as root)

• Log everything – in case of an attack, you have a chance to find

(and sue) the attacker

• Compiler can help to harden your application, e.g., using

compile flags such as -D FORTIFY SOURCE=2

90 Michael Schwarz — www.iaik.tugraz.at

Best practice www.tugraz.at

• Never assume perfect countermeasures or bug-free code

• Encrypt your data in case it leaks (it will at some point)

• Minimize privileges (e.g., a server should not run as root)

• Log everything – in case of an attack, you have a chance to find

(and sue) the attacker

• Compiler can help to harden your application, e.g., using

compile flags such as -D FORTIFY SOURCE=2

90 Michael Schwarz — www.iaik.tugraz.at

Take Aways www.tugraz.at

• Never ignore compiler warnings

• Don’t disable default counteremeasures (e.g., stack canaries)

• Enable countermeasures that are cheap, e.g., ASLR

• Consider stronger countermeasures, such as CFI

• Always consider sandboxing your application

91 Michael Schwarz — www.iaik.tugraz.at

Take Aways www.tugraz.at

• Never ignore compiler warnings

• Don’t disable default counteremeasures (e.g., stack canaries)

• Enable countermeasures that are cheap, e.g., ASLR

• Consider stronger countermeasures, such as CFI

• Always consider sandboxing your application

91 Michael Schwarz — www.iaik.tugraz.at

Take Aways www.tugraz.at

• Never ignore compiler warnings

• Don’t disable default counteremeasures (e.g., stack canaries)

• Enable countermeasures that are cheap, e.g., ASLR

• Consider stronger countermeasures, such as CFI

• Always consider sandboxing your application

91 Michael Schwarz — www.iaik.tugraz.at

Take Aways www.tugraz.at

• Never ignore compiler warnings

• Don’t disable default counteremeasures (e.g., stack canaries)

• Enable countermeasures that are cheap, e.g., ASLR

• Consider stronger countermeasures, such as CFI

• Always consider sandboxing your application

91 Michael Schwarz — www.iaik.tugraz.at

Take Aways www.tugraz.at

• Never ignore compiler warnings

• Don’t disable default counteremeasures (e.g., stack canaries)

• Enable countermeasures that are cheap, e.g., ASLR

• Consider stronger countermeasures, such as CFI

• Always consider sandboxing your application

91 Michael Schwarz — www.iaik.tugraz.at

Summary www.tugraz.at

• Defending software is hard, but not impossible

• Defenses are important to raise the cost for an attacker

• Security is a cat-and-mouse game full of repetitions

• The best countermeasure: don’t have bugs in your code

• Realistic view: impossible to have bug free code, but try to

reduce the number of bugs

92 Michael Schwarz — www.iaik.tugraz.at

Summary www.tugraz.at

• Defending software is hard, but not impossible

• Defenses are important to raise the cost for an attacker

• Security is a cat-and-mouse game full of repetitions

• The best countermeasure: don’t have bugs in your code

• Realistic view: impossible to have bug free code, but try to

reduce the number of bugs

92 Michael Schwarz — www.iaik.tugraz.at

Summary www.tugraz.at

• Defending software is hard, but not impossible

• Defenses are important to raise the cost for an attacker

• Security is a cat-and-mouse game full of repetitions

• The best countermeasure: don’t have bugs in your code

• Realistic view: impossible to have bug free code, but try to

reduce the number of bugs

92 Michael Schwarz — www.iaik.tugraz.at

Summary www.tugraz.at

• Defending software is hard, but not impossible

• Defenses are important to raise the cost for an attacker

• Security is a cat-and-mouse game full of repetitions

• The best countermeasure: don’t have bugs in your code

• Realistic view: impossible to have bug free code, but try to

reduce the number of bugs

92 Michael Schwarz — www.iaik.tugraz.at

Summary www.tugraz.at

• Defending software is hard, but not impossible

• Defenses are important to raise the cost for an attacker

• Security is a cat-and-mouse game full of repetitions

• The best countermeasure: don’t have bugs in your code

• Realistic view: impossible to have bug free code, but try to

reduce the number of bugs

92 Michael Schwarz — www.iaik.tugraz.at

Any Questions?

	Attacks
	Defenses

