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safe software infrastructure — no bugs, e.g., Heartbleed
does not mean safe execution
information leaks because of the hardware it runs on

no “bug” in the sense of a mistake — lots of performance optimizations

crypto and sensitive info., e.g., keystrokes and mouse movements
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Shared hardware
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Memory x86 CPU
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Why targeting the cache?

e shared across cores
e fast

— fast cross-core attacks!
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Timing differences

e caches improve performance
e SRAM is expensive — small caches

e different timings for memory accesses

e data is cached — cache hit — fast
e data is not cached — cache miss — slow
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Memory Hierarchy
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Inclusive property
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core 0 core 1
L1 H e inclusive LLC: superset of L1 and L2
L2 e data evicted from the LLC is also evicted
from L1 and L2
LLC
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core( corel
L1 » e inclusive LLC: superset of L1 and L2
L2 : o ® data evicted from the LLC is also evicted
from L1 and L2
LLC o | e a core can evict lines in the private L1 of
another core
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Latency comparison

www.tugraz.at

On current Intel CPUs:

e Registers: 0-1 cycle

L1 cache: 4 cycles

L2 cache: 12 cycles
L3 cache: 26-31 cycles
e DRAM memory: >120 cycles
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Measuring timing leakage

How every timing attack works:

e learn timing of different corner cases

e later, we recognize these corner cases by timing only

Michael Schwarz — Security Week Graz 2019



www.tugraz.at

1. build two cases: cache hits and cache misses

Michael Schwarz — Security Week Graz 2019



www.tugraz.at

1. build two cases: cache hits and cache misses

2. time each case many times (get rid of noise)

Michael Schwarz — Security Week Graz 2019



www.tugraz.at

1. build two cases: cache hits and cache misses
2. time each case many times (get rid of noise)

3. we have a histogram!

Michael Schwarz — Security Week Graz 2019



Steps www.tugraz.at

build two cases: cache hits and cache misses
time each case many times (get rid of noise)

we have a histogram!

> B =

find a threshold to distinguish the two cases
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Loop:

1. measure time
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1. measure time

2. access variable (always cache miss)
3. measure time
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Loop:

1. measure time

2. access variable (always cache miss)
3. measure time

4. update histogram with delta

5. flush variable (c1flush instruction)
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Accurate timings

e very short timings

e rdtsc instruction: cycle-accurate timestamps
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Accurate timings

e very short timings

e rdtsc instruction: cycle-accurate timestamps

[...]
rdtsc
function()
rdtsc

[...]
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Accurate timings

e do you measure what you think you measure?

e out-of-order execution — what is really executed

Michael Schwarz — Security Week Graz 2019



www.tugraz.at

Accurate timings

e do you measure what you think you measure?

e out-of-order execution — what is really executed

rdtsc rdtsc rdtsc
function() [...] rdtsc
[...] rdtsc function()
rdtsc function() [...]
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Accurate timings

e use pseudo-serializing instruction rdtscp (recent CPUs)
e and/or use serializing instructions like cpuid

e and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set
Architectures White Paper, December 2010.

Michael Schwarz — Security Week Graz 2019



www.tugraz.at

Timing differences
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e as high as possible

e most cache hits are below
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Find threshold www.tugraz.at

e as high as possible
e most cache hits are below

e no cache miss below
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e Hit — Data is fetched from buffers, L1, L2, or L3
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Hit VS. MiSS? www.tugraz.at

e Hit — Data is fetched from buffers, L1, L2, or L3
e Miss — Data is fetched from DRAM
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Type of attacks

e cache attacks — exploit timing differences of memory accesses
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of attacks

cache attacks — exploit timing differences of memory accesses

attacker monitors which lines are accessed, not the content

covert channel: two processes communicating with each other
e not allowed to do so, e.g., across VMs

side-channel attack: one malicious process spies on benign processes
e e.g., steals crypto keys, spies on keystrokes
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Shared Memory
ATTACKER VICTIM
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Shared Memory
ATTACKER VICTIM

flush

Shared Memory
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Shared Memory
ATTACKER VICTIM

flush —~_
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Shared Memory
ATTACKER VICTIM
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Shared Memory
ATTACKER VICTIM

Shared Memory
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Shared Memory
ATTACKER VICTIM

Shared Memory

access

Victim accessed Victim did not access
Michael Schwarz — Security Week Graz 2019




Signatures (RSA) www.tugraz.at

M = C'mod n

Michael Schwarz — Security Week Graz 2019



Signatures (RSA) www.tugraz.at
@nod n

\0\0\1\1\0\ ]

I\/I
1

[ Result | = C |

Michael Schwarz — Security Week Graz 2019



Signatures (RSA) www.tugraz.at
@nod n

1\1\0\ ]

I\/I

| Result | = | Result | X | Result | X | C |

square multiply

Michael Schwarz — Security Week Graz 2019



Signatures (RSA) www.tugraz.at
@nod n

1\1\0\ ]

I\/I

] Result \Z] Result \ X ] Result \

square

Michael Schwarz — Security Week Graz 2019



Signatures (RSA) www.tugraz.at
@nod n

\0\0\1\1\0\ ]

I\/I

] Result \Z] Result \ X ] Result \

square

Michael Schwarz — Security Week Graz 2019



Signatures (RSA) www.tugraz.at
@nod n

\0\0\1\1\0\ ]

I\/I

| Result | = | Result | X | Result | X | C |

square multiply

Michael Schwarz — Security Week Graz 2019



Signatures (RSA) www.tugraz.at
@nod n

\0\0\1\1\0\ ]

I\/I

| Result | = | Result | X | Result | X | C |

square multiply

Michael Schwarz — Security Week Graz 2019



Signatures (RSA) www.tugraz.at
@nod n

\0\0\1\1\0% ]

I\/I

] Result \Z] Result \ X ] Result \

square

Michael Schwarz — Security Week Graz 2019



Time to code
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Side-channel attack on user input

e locate key-dependent memory accesses
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Side-channel attack on user input

e locate key-dependent memory accesses

e How to locate key-dependent memory accesses?
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e It's complicated:
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Cha"enges www.tugraz.at

e It's complicated:

e Large binaries and libraries (third-party code)
Many libraries (gedit: 60MB)
Closed-source / unknown binaries

Self-compiled binaries

e Difficult to find all exploitable addresses
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Profiling Phase

e Preprocessing step to find exploitable addresses automatically

Exploitation Phase
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e Preprocessing step to find exploitable addresses automatically

e w.r.t. "events’ (keystrokes, encryptions, ...)
e called “Cache Template”
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Cache Template Attacks www.tugraz.at

Profiling Phase

e Preprocessing step to find exploitable addresses automatically

e w.r.t. "events’ (keystrokes, encryptions, ...)
e called “Cache Template”

Exploitation Phase

e Monitor exploitable addresses
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Profiling Phase

Attacker address space Victim address space

Cache

Shared 0x0

Shared 0x0

Cache is empty
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Profiling Phase

www.tugraz.at

Attacker address space

Shared 0x0

Cache

Shared 0x0

Victim address space

Shared 0x0

Attacker triggers an event
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Profiling Phase

www.tugraz.at

Attacker address space

Shared 0x0

Cache

Shared 0x0

Victim address space

Shared 0x0

Attacker checks one address for cache hits (“Reload”)
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Profiling Phase

Attacker address space Victim address space

Cache

Shared 0x0

Shared 0x0

Shared 0x0

Update number of cache hits per event
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Profiling Phase
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Attacker address space

Shared 0x0

gy

Cache

Shared 0x0

Victim address space

Shared 0x0

Attacker flushes shared memory
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Profiling Phase
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Attacker address space

Shared 0x0

Cache

Victim address space

Shared 0x0

Repeat for higher accuracy
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Profiling Phase

Attacker address space Victim address space

Cache

Shared 0x40

Shared 0x40

Continue with next address
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Profiling Phase

Attacker address space Victim address space

Cache

Shared 0x80

Shared 0x80

Continue with next address
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What to profile? www.tugraz.at

$> ps -A | grep gedit

$> cat /proc/<pid>/maps

00400000-00489000 r-xp 00000000 fd:01 396356
/usr/bin/gedit

7£5296991000-7£f5296a51000 r-xp 00000000 fd:01 399365

/usr/1lib/x86_64-linux-gnu/libgdk-3.s0.0.2200.30

memory range, access rights, offset, —, —, file name
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Profiling a single event

cd practicals/02_cache_template_attacks/

make
# start the targeted program (e.g., gedit)

sleep 2; ./profiling /usr/1lib/x86_64-1linux-gnu/

libgdk-3.s50.0.2200.30

. and hold down a key in the target program
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Profiling a single event

cd practicals/02_cache_template_attacks/

make
# start the targeted program (e.g., gedit)

sleep 2; ./profiling /usr/1lib/x86_64-1linux-gnu/

libgdk-3.s50.0.2200.30

. and hold down a key in the target program

save addresses with peaks!
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Exploitation phase www. tugraz.at

$> # ./spy <file> <offset>

$> ./spy /usr/1lib/x86_64-linux-gnu/libgdk-3.s50.0.2200.30 336896
Monitoring offset 336896

Hit #0

Hit #1

Hit #2
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=

File Edit View Search Terminal Help

% sleep 2; ./spy 300 7f85140a4000-71051417b060 r-xp 0x20000 08:02 26
8050 /usr/lib/x86_64-1inux-gnu/gedit/libgedit.so

B [nrafatchl
= Terminal
File Edit View Search Terminal Help

sharks ./spy []

NOmErudney |3

Terminal

<DNIR>14 03 2017 21-44-2A
- o x

Untitled Document 1

Plain Text =

Save = -

TabWidth:2 w Ln 1, Col1 - INS

Cache Template Attack Demo



Profiling Phase: 1 Event, 1 Address

www.tugraz.at

KEY

0x7c800 ]

B

ADDRESS
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Profiling Phase: 1 Event, 1 Address www.tugraz.at

KEY

0x7c800 [ ]

=

ADDRESS

Example: Cache Hit Ratio for (0x7¢800,n): 200 / 200
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Profiling Phase: All Events, 1 Address U

KEY

gh i j kI mnopgrstuvwxyz
0x7c800 [ ]

ADDRESS
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Profiling Phase: All Events, 1 Address U

KEY

gh i jkI|I mnopgrstuvwxyz
0x7c800 ]

ADDRESS

Example: Cache Hit Ratio for (0x7¢800,u): 13 / 200
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Profiling Phase: All Events, 1 Address U

KEY

gh i j kI mnopgrstuvwxyz
0x7c800 .

ADDRESS

Distinguish n from other keys by monitoring 0x7c800
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Profiling Phase: All Events, All Addresses www.tugraz.at

q
0x7c680
0x7c6c0 =
0x7c700 EEEEEE [
0x7c740 |
0x7c780 |
0x7c7c0 .
0x7c800
0x7c840
0x7c880
0x7c8c0
0x7c900
0x7c940
0x7c980
0x7c9c0
0x7ca00
0x7cb80
0x7cc40
0x7cc80
0x7cccO
0x7cd00

ADDRESS
[}
EEEETE
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D. Gruss, R. Spreitzer, and S. Mangard. Cache Template Attacks:
Automating Attacks on Inclusive Last-Level Caches. In: USENIX Security
Symposium. 2015.
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Covert channel

What is a covert channel?

e Two programs would like to communicate
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Covert channel

What is a covert channel?

e Two programs would like to communicate but are not allowed to do so

e either because there is no communication channel...
e ...or the channels are monitored and programs are stopped on
communication attempts

e Use side channels and stay stealthy
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method raw capacity err. rate true capacity env.

F+F [Gru+16] 3968Kbps  0.840% 3690Kbps native
F+R [Gru+16] 2384Kbps 0.005% 2382Kbps native
E+R [Lip+16] 1141Kbps  1.100% 1041Kbps native
P+P [Mau+17] 601Kbps  0.000% 601Kbps native
P+P [Liut15] 600Kbps  1.000% 552Kbps virt

P+P [Mau+17] 362Kbps  0.000% 362Kbps native
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Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x43
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Cache Line on Page #0x4A

Receiver
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Memory Isolation

@ Userspace

e/

Applications

Kernelspace

e Kernel is isolated from user space

Operating

System Memory
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Memory Isolation
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@ Userspace

Operating

Applications System Memory

Kernelspace

e Kernel is isolated from user space

e This isolation is a combination of
hardware and software

e User applications cannot access
anything from the kernel
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e CPU support virtual address spaces to isolate processes

e Physical memory is organized in page frames
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e CPU support virtual address spaces to isolate processes

e Physical memory is organized in page frames

e Virtual memory pages are mapped to page frames
using page tables
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Address Translation on x86-64 Www.tugraz.at

PML4
CR3 PML4E 0
PML4E 1
: PDPT
3 PML4I
1 #: PDPTE 0
PML4E 511 PDP;TE L
R ZPDPTI Page Directory
: PDE 0
PDPTE 511 PD:E L
\PDE #PDI Page Table
. PTE 0
PDE 511 PT;E L
- 4 KiB Page
AN
s PTE :#PTI Byte 0
- Byte 1
PTE 511 -

Offset

PML4I (9 b) [PDPTI (9 b) [PDI (9 b) [PTI (9b) | Offset (12b) | Byte 4095

48-bit virtual address
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PML4
CR3 PML4E 0
PML4E 1
: PDPT
3 PML4I
1 #: PDPTE 0
PML4E 511 PDP;TE L
R ZPDPTI Page Directory
: PDE 0
PDPTE 511 PD:E L
\PDE #PDI Page Table
. PTE 0
PDE 511 PT;E L
- 4 KiB Page
PTE :#PTI Byte 0
- Byte 1
PTE 511 -
Offset
PML4I (9 b) [PDPTI (9 b) [PDI (9 b) [PTI (9b) | Offset (12b) | Byte 4095

48-bit virtual address
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Page Table Entry www.tugraz.at

P [RWIUSIWTIUC| R|D|S |G Ignored

D ~

O
P

NToe |\|| hea
ageC MDE

u,
L
v

Ignored X

e User/Supervisor bit defines in which privilege level the page can be accessed
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Direct-physical map www.tugraz.at

0 max

Physical memory

User || Kernel

e Kernel is typically mapped into every address space
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Direct-physical map www.tugraz.at

0 max

Physical memory

User || Kernel

e Kernel is typically mapped into every address space

e Entire physical memory is mapped in the kernel
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Architecture and Microarchitecture

e Instruction Set Architecture (ISA) is an abstract model of a
computer (x86, ARMv8, SPARC, ...)

e Serves as the interface between hardware and software

e Microarchitecture is an actual implementation of the ISA

AMDIOU

AMD I ~—I
@ Y Z}N ( lnsuie ( llde
nihion < J Core 17 Xeon™
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In-Order Execution
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e [nstructions are...

e fetched (IF) from the L1 Instruction
Cache

IF | ID | EX MEM WB
IF | ID | EX MEM WB
IF | ID | EX MEM WB
IF | ID | EX MEM WB
IF | ID | EX MEM WB
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In-Order Execution
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MEM

WB

EX

MEM

WB

EX

MEM

WB

EX

MEM

WB

EX

MEM

WB

e [nstructions are...

e fetched (IF) from the L1 Instruction
Cache
e decoded (ID)
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In-Order Execution
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e Instructions are...
e fetched (IF) from the L1 Instruction
Cache
e decoded (ID)
e executed (EX) by execution units

IF | ID | EX MEM WB
IF | ID | EX MEM WB
IF | ID | EX MEM WB
IF | ID | EX MEM WB
IF | ID | EX MEM WB
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In-Order Execution
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MEM

WB

EX

MEM

WB

EX

MEM

WB

EX

MEM

WB

EX

MEM

WB

e [nstructions are...

e fetched (IF) from the L1 Instruction
Cache

e decoded (ID)

e executed (EX) by execution units

e Memory access is performed (MEM)
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In-Order Execution
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e Instructions are...
e fetched (IF) from the L1 Instruction
Cache
e decoded (ID)
e executed (EX) by execution units

IF | ID | EX MEM WB
IF | ID | EX MEM WB
IF | ID | EX MEM WB
IF | ID | EX MEM WB
IF | ID | EX MEM WB

e Memory access is performed (MEM)

e Architectural register file is updated (WB)
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e Instructions are executed in-order
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In-Order Execution

e Instructions are executed in-order
e Pipeline stalls when stages are not ready

e If data is not cached, we need to wait
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Out-of-order Execution

int width = 10, height = 5;
float diagonal = sqrt(width * width
+ height * height);

int area = width * height;

printf ("Area %d x %d = %d\n", width, height, area);
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Out-of-order Execution

Parallelize
S

int width = 10, height = 5;

+ height * height);
int area = width * height;

O
o~
Q
©
Q)c float diagonal = sqrt(width * width
Q
)]
Q

<printf("Area %d x %d = %d\n", width, height, area);
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Out-of-Order Execution

L1 Instruction Cache [k

Branch Instruction Fetch & PreDecode
2 Predictor
5 Instruction Queue
=
g P Cache 4-Way Decode
= Tor o Lo ]

¥
Allocation Queue

EREREE Instructions are

Reorder buffer ‘

o o e e e fetched and decoded in the front-end

i Scheduler ‘

=118

Execution Engine
I
LU, FMA,

Execution Units

L1 Data Cache

STLB +

Memory

L2 Cache —
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Out-of-Order Execution

L1 Instruction Cache [k
Branch Instruction Feich & PreDecode
2 Predictor
5 Instruction Queue
-]
u% OP Cache 4-Way Decode
e, luu l,w l.m l
2
Allocation Queue
3 3 3 k3
coB % Reorder buffer ‘
o =L Lo o Lo Jor e ]
£l i Scheduler
= M7=
g e [0
§ :
B gl |2 3
7 <}
g% |E N
55 |3
% 5
& 2
Execution Units
.
£ [DTLB STLB T
g LI Data Cache  [— |
= L2 Cache —

www.tugraz.at

Instructions are
e fetched and decoded in the front-end
e dispatched to the backend
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Out-of-Order Execution

L1 Instruction Cache [k

Branch Instruction Fetch & PreDecode
2 Predictor
5 Instruction Queue
=
= WOP Cache 4-Way Decode
= T Loor [oor [

¥
‘ Allocation Queue ‘

EREREE Instructions are

con j Reorder buffer 0

e e e e fetched and decoded in the front-end
2T .

s . e dispatched to the backend

ERIIHE g E

&k B & e processed by individual execution units

prid STLE t
Li Data Cache  [— |

L2 Cache —

Memory
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Out-of-Order Execution

o
Instructions

Branch Instruction Fetch & PreDecode
Predictor

Instruction Queue

Frontend

e are executed out-of-order

4-Way Decode

HOP Cache

o8 % Reorder buffer ‘
O [ i i
i Scheduler ‘

Store data <
AGU

2
5
=

Execution Engine
I

LU, FMA,

Lo vt e

Execution Units

prid STLE H
Li Data Cache  [— |

L2 Cache —

Memory
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Out-of-Order Execution

o
Instructions

Branch Instruction Fetch & PreDecode

Predictor
Instruction Queue

o — e are executed out-of-order

s

\ Allcaion Quee | e wait until their dependencies are ready

Frontend

=118

Reorder buffer

i Scheduler ‘

Execution Engine
I
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Memory

L2 Cache —
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o
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Instruction Queue

o — e are executed out-of-order

s

\ Allcaion Quee | e wait until their dependencies are ready

Frontend

=118

Reorder buffer

i Scheduler ‘

= instructions

e Later instructions might execute prior earlier

Execution Engine
I
LU, FMA,

Execution Units
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Memory
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Out-of-Order Execution

o
Instructions

; [ | =
; e lw"‘ti”{"jf - e are executed out-of-order

\ \\Q\\ | e wait until their dependencies are ready
- lRldbl" i — e Later instructions might execute prior earlier
;} A A— instructions
“ e retire in-order
a5E B E

Execution Units

L1 Data Cache

STLB +

Memory

L2 Cache —
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Out-of-Order Execution

o
Instructions

; [ | =
; e lw"‘ti”{"jf - e are executed out-of-order

\ \\Q\\ | e wait until their dependencies are ready
- lRldbl" i — e Later instructions might execute prior earlier
;} A A— instructions
“ e retire in-order
a5E B E

e State becomes architecturally visible

Execution Units
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Out-of-Order Execution

==y

[ el evwr— Instructions
5 Predictor Instruction Queue
; Lﬁ'ﬁfi."{“fﬁ . e are executed out-of-order

\ \\Q\\ \ e wait until their dependencies are ready
- lRldbl" i — e Later instructions might execute prior earlier
;:a A | instructions
~ 7 e retire in-order
il et | e State becomes architecturally visible
: | e Exceptions are checked during retirement
= e L2 Cache —
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Out-of-Order Execution

L

Instructions
2 Predictor
5 Instruction Queue
;o — e are executed out-of-order

\ e | e wait until their dependencies are ready

T — e Later instructions might execute prior earlier
S | instructions
- e retire in-order
Z58E

B | e State becomes architecturally visible
LT —— e Exceptions are checked during retirement
g Li Data Cache  [— | o || ) )

e Flush pipeline and recover state
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Getting started...
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e New code
(o
(o,
char data = ’S’; // a "secret" walue
//

*(volatile charx*) O0;
array [data * 4096] = 0;
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New code
char data = ’S’; // a "secret" walue
//

*(volatile charx*) O0;
array [data * 4096] = 0;

Luckily we know how to catch a segfault
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Getting started...

e New code

char data = ’S’; // a "secret" walue

/7
*(volatile charx*) O0;
array [data * 4096] = 0;

e Luckily we know how to catch a segfault

e Then check whether any part of array is cached
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R0

e Flush+Reload over all pages of the array
500

400 -
300 J{

0 50 100 150 200 250
Page

Access time
[cycles]
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e Add another layer of indirection to test

char data = *(charx*x) Oxffffffff81a000e0;
array [data * 4096] = 0;
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e Add another layer of indirection to test

char data = *(charx*x) Oxffffffff81a000e0;
array [data * 4096] = 0;
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e Check /proc/kallsyms

sudo cat /proc/kallsyms | grep banner
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WhiCh addl’ESS? www.tugraz.at

e Check /proc/kallsyms

sudo cat /proc/kallsyms | grep banner

e or check /proc/pid/pagemap and print address

printf ("target: %p\n",
libsc_get_physical_address (ctx, vaddr));

Michael Schwarz — Security Week Graz 2019



WhiCh addl’ESS? www.tugraz.at

e Check /proc/kallsyms

sudo cat /proc/kallsyms grep banner

e or check /proc/pid/pagemap and print address

printf ("target: %p\n",
libsc_get_physical_address (ctx, vaddr));

e or start at a random address and iterate
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if (index <
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