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Scope www.tugraz.at

• everyday hardware: servers,

workstations, laptops,

smartphones. . .

• remote side-channel attacks
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Side channels www.tugraz.at

• safe software infrastructure → no bugs, e.g., Heartbleed

• does not mean safe execution

• information leaks because of the hardware it runs on

• no “bug” in the sense of a mistake → lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements
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Shared hardware www.tugraz.at
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Why targeting the cache? www.tugraz.at

• shared across cores

• fast

→ fast cross-core attacks!
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Timing differences www.tugraz.at

• caches improve performance

• SRAM is expensive → small caches

• different timings for memory accesses

• data is cached → cache hit → fast

• data is not cached → cache miss → slow
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Memory Hierarchy www.tugraz.at
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• L1 and L2 are private

• last-level cache:

• divided in slices

• shared across cores

• inclusive
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Inclusive property www.tugraz.at

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also evicted

from L1 and L2

• a core can evict lines in the private L1 of

another core
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Latency comparison www.tugraz.at

On current Intel CPUs:

• Registers: 0-1 cycle

• L1 cache: 4 cycles

• L2 cache: 12 cycles

• L3 cache: 26-31 cycles

• DRAM memory: >120 cycles
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Measuring timing leakage www.tugraz.at

How every timing attack works:

• learn timing of different corner cases

• later, we recognize these corner cases by timing only
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Steps www.tugraz.at

1. build two cases: cache hits and cache misses

2. time each case many times (get rid of noise)

3. we have a histogram!

4. find a threshold to distinguish the two cases
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Cache hits www.tugraz.at

Loop:

1. measure time

2. access variable (always cache hit)

3. measure time

4. update histogram with delta
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Cache misses www.tugraz.at

Loop:

1. measure time

2. access variable (always cache miss)

3. measure time

4. update histogram with delta

5. flush variable (clflush instruction)
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Time to code



Accurate timings www.tugraz.at

• very short timings

• rdtsc instruction: cycle-accurate timestamps

[...]

rdtsc

function()

rdtsc

[...]
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Accurate timings www.tugraz.at

• do you measure what you think you measure?

• out-of-order execution → what is really executed
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Accurate timings www.tugraz.at

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid

• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set

Architectures White Paper, December 2010.
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Timing differences www.tugraz.at
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Find threshold www.tugraz.at

• as high as possible

• most cache hits are below

• no cache miss below
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Hit vs. Miss? www.tugraz.at

• Hit → Data is fetched from buffers, L1, L2, or L3

• Miss → Data is fetched from DRAM
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From Histogram to Attack www.tugraz.at
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Type of attacks www.tugraz.at

• cache attacks → exploit timing differences of memory accesses

• attacker monitors which lines are accessed, not the content

• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes

• e.g., steals crypto keys, spies on keystrokes
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Flush+Reload www.tugraz.at
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Signatures (RSA) www.tugraz.at

M = Cd mod n
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Time to code



Side-channel attack on user input www.tugraz.at

• locate key-dependent memory accesses

• How to locate key-dependent memory accesses?
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Challenges www.tugraz.at

• It’s complicated:

• Large binaries and libraries (third-party code)

• Many libraries (gedit: 60MB)

• Closed-source / unknown binaries

• Self-compiled binaries

• Difficult to find all exploitable addresses
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Cache Template Attacks www.tugraz.at

Profiling Phase

• Preprocessing step to find exploitable addresses automatically

• w.r.t. “events” (keystrokes, encryptions, ...)

• called “Cache Template”

Exploitation Phase

• Monitor exploitable addresses
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Profiling Phase www.tugraz.at

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Cache is empty
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Profiling Phase www.tugraz.at

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0
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27 Michael Schwarz — Security Week Graz 2019



Profiling Phase www.tugraz.at

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Attacker flushes shared memory

Shared 0x0

Shared 0x0

Shared 0x0

flush
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Profiling Phase www.tugraz.at

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Repeat for higher accuracy

A
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Cache

Victim address space
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A

Shared 0x80
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What to profile? www.tugraz.at

$> ps -A | grep gedit

$> cat /proc/<pid >/maps

00400000 -00489000 r-xp 00000000 fd:01 396356

/usr/bin/gedit

7f5a96991000 -7 f5a96a51000 r-xp 00000000 fd:01 399365

/usr/lib/x86_64 -linux -gnu/libgdk -3.so .0.2200.30

...

memory range, access rights, offset, –, –, file name

28 Michael Schwarz — Security Week Graz 2019



Profiling a single event www.tugraz.at

$> cd practicals /02 _cache_template_attacks/

$> make

$> # start the targeted program (e.g., gedit)

$> sleep 2; ./ profiling /usr/lib/x86_64 -linux -gnu/

libgdk -3.so .0.2200.30

... and hold down a key in the target program

save addresses with peaks!

29 Michael Schwarz — Security Week Graz 2019
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Exploitation phase www.tugraz.at

$> # ./spy <file > <offset >

$> ./spy /usr/lib/x86_64 -linux -gnu/libgdk -3.so .0.2200.30 336896

Monitoring offset 336896

Hit #0

Hit #1

Hit #2

...

30 Michael Schwarz — Security Week Graz 2019



Time to code



Cache Template Attack Demo



Profiling Phase: 1 Event, 1 Address www.tugraz.at
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Example: Cache Hit Ratio for (0x7c800, n): 200 / 200
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Profiling Phase: All Events, 1 Address www.tugraz.at
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Profiling Phase: All Events, 1 Address www.tugraz.at
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Example: Cache Hit Ratio for (0x7c800, u): 13 / 200
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Profiling Phase: All Events, 1 Address www.tugraz.at

A
d
d
r
e
ss

Key
g h i j k l m n o p q r s t u v w x y z

0x7c800

Distinguish n from other keys by monitoring 0x7c800
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Profiling Phase: All Events, All Addresses www.tugraz.at

A
d
d
r
e
ss

Key
g h i j k l m n o p q r s t u v w x y z

0x7c680
0x7c6c0
0x7c700
0x7c740
0x7c780
0x7c7c0
0x7c800
0x7c840
0x7c880
0x7c8c0
0x7c900
0x7c940
0x7c980
0x7c9c0
0x7ca00
0x7cb80
0x7cc40
0x7cc80
0x7ccc0
0x7cd00
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Covert channel www.tugraz.at

What is a covert channel?

• Two programs would like to communicate

but are not allowed to do so

• either because there is no communication channel...

• ...or the channels are monitored and programs are stopped on

communication attempts

• Use side channels and stay stealthy
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Covert channel www.tugraz.at
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State of the art www.tugraz.at

method raw capacity err. rate true capacity env.

F+F [Gru+16] 3968Kbps 0.840% 3690Kbps native

F+R [Gru+16] 2384Kbps 0.005% 2382Kbps native

E+R [Lip+16] 1141Kbps 1.100% 1041Kbps native

P+P [Mau+17] 601Kbps 0.000% 601Kbps native

P+P [Liu+15] 600Kbps 1.000% 552Kbps virt

P+P [Mau+17] 362Kbps 0.000% 362Kbps native

4 Michael Schwarz — Security Week Graz 2019



Sending Data (easy but inefficient) www.tugraz.at

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Sender Receiver

D (0x44)

...

D (0x44)

E (0x45)

F (0x46)

G (0x47)

H (0x48)

I (0x49)
...

D (0x44)
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Time to code



Operating Systems 101



Memory Isolation www.tugraz.at

Userspace Kernelspace

Applications
Operating
System Memory

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel
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Paging www.tugraz.at

• CPU support virtual address spaces to isolate processes

• Physical memory is organized in page frames

• Virtual memory pages are mapped to page frames

using page tables
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Address Translation on x86-64 www.tugraz.at

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)

48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
⋅⋅⋅

#PML4I
⋅⋅⋅

PML4E 511

PDPT

PDPTE 0

PDPTE 1
⋅⋅⋅

#PDPTI
⋅⋅⋅

PDPTE 511

Page Directory

PDE 0

PDE 1
⋅⋅⋅

PDE #PDI
⋅⋅⋅

PDE 511

Page Table

PTE 0

PTE 1
⋅⋅⋅

PTE #PTI
⋅⋅⋅

PTE 511

4 KiB Page

Byte 0

Byte 1
⋅⋅⋅

Offset
⋅⋅⋅

Byte 4095

8 Michael Schwarz — Security Week Graz 2019



Address Translation on x86-64 www.tugraz.at

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)

48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
⋅⋅⋅

#PML4I
⋅⋅⋅

PML4E 511

PDPT

PDPTE 0

PDPTE 1
⋅⋅⋅

#PDPTI
⋅⋅⋅

PDPTE 511

Page Directory

PDE 0

PDE 1
⋅⋅⋅

PDE #PDI
⋅⋅⋅

PDE 511

Page Table

PTE 0

PTE 1
⋅⋅⋅

PTE #PTI
⋅⋅⋅

PTE 511

4 KiB Page

Byte 0

Byte 1
⋅⋅⋅

Offset
⋅⋅⋅

Byte 4095

8 Michael Schwarz — Security Week Graz 2019



Page Table Entry www.tugraz.at

P RW US WT UC R D S G Ignored

Physical Page Number
Ignored X

• User/Supervisor bit defines in which privilege level the page can be accessed

9 Michael Schwarz — Security Week Graz 2019



Direct-physical map www.tugraz.at

Physical memory

0 max

User

0 2
47

Kernel

−2
47 −1

• Kernel is typically mapped into every address space

• Entire physical memory is mapped in the kernel
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Loading an address www.tugraz.at
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Loading an address www.tugraz.at
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Architecture and Microarchitecture www.tugraz.at

• Instruction Set Architecture (ISA) is an abstract model of a

computer (x86, ARMv8, SPARC, . . . )

• Serves as the interface between hardware and software

• Microarchitecture is an actual implementation of the ISA
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In-Order Execution www.tugraz.at

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

• Instructions are...

• fetched (IF) from the L1 Instruction

Cache

• decoded (ID)

• executed (EX) by execution units

• Memory access is performed (MEM)

• Architectural register file is updated (WB)
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In-Order Execution www.tugraz.at

• Instructions are executed in-order

• Pipeline stalls when stages are not ready

• If data is not cached, we need to wait
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Out-of-order Execution www.tugraz.at

int width = 10, height = 5;

float diagonal = sqrt(width * width

+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width , height , area);
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Out-of-Order Execution www.tugraz.at
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µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions are

• fetched and decoded in the front-end

• dispatched to the backend

• processed by individual execution units
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• are executed out-of-order

• wait until their dependencies are ready
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• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state
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Getting started... www.tugraz.at

• New code

char data = ’S’; // a "secret" value

// ...

*( volatile char*) 0;

array[data * 4096] = 0;

• Luckily we know how to catch a segfault

• Then check whether any part of array is cached
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Checking the array www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400
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Page

A
cc
es
s
ti
m
e

[c
yc
le
s]

19 Michael Schwarz — Security Week Graz 2019



Time to code



Meltdown www.tugraz.at

• Add another layer of indirection to test

char data = *(char*) 0xffffffff81a000e0;

array[data * 4096] = 0;

20 Michael Schwarz — Security Week Graz 2019



Meltdown www.tugraz.at

• Add another layer of indirection to test

char data = *(char*) 0xffffffff81a000e0;

array[data * 4096] = 0;

20 Michael Schwarz — Security Week Graz 2019



Which address? www.tugraz.at

• Check /proc/kallsyms

sudo cat /proc/kallsyms | grep banner

• or check /proc/pid/pagemap and print address

printf("target: %p\n",

libsc_get_physical_address(ctx , vaddr));

• or start at a random address and iterate

21 Michael Schwarz — Security Week Graz 2019
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Time to code



Spectre-PHT (aka Spectre Variant 1) www.tugraz.at
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index = 0index = 0 if (index < 4)

glyph[data[index]] {}

then else
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Spectre Root Cause www.tugraz.at

• Many predictors in modern CPUs

• Branch taken/not taken (PHT)

• Call/Jump destination (BTB)

• Function return destination (RSB)

• Load matches previous store (STL)

• Most are even shared among processes
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Time to code



Side-Channel Lab II
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