Side-Channel Lab |

Michael Schwarz

Security Week Graz 2019

Ty

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

e everyday hardware: servers,
workstations, laptops,
smartphones. . .

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

e everyday hardware: servers,
workstations, laptops,
smartphones. . .

e remote side-channel attacks

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Side channels

e safe software infrastructure — no bugs, e.g., Heartbleed

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Side channels

e safe software infrastructure — no bugs, e.g., Heartbleed

e does not mean safe execution

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Side channels

e safe software infrastructure — no bugs, e.g., Heartbleed
e does not mean safe execution

e information leaks because of the hardware it runs on

Michael Schwarz — Security Week Graz 2019

Side channels www.tugraz.at

safe software infrastructure — no bugs, e.g., Heartbleed
does not mean safe execution
information leaks because of the hardware it runs on

no “bug” in the sense of a mistake — lots of performance optimizations

Michael Schwarz — Security Week Graz 2019

Side channels www.tugraz.at

safe software infrastructure — no bugs, e.g., Heartbleed
does not mean safe execution
information leaks because of the hardware it runs on

no “bug” in the sense of a mistake — lots of performance optimizations

crypto and sensitive info., e.g., keystrokes and mouse movements

Michael Schwarz — Security Week Graz 2019

Shared hardware www.tugraz.at

Shared hardware

/\

Memory x86 CPU

_— N] T

Memory Memory DRAM Branch Arithmetic Data and
deduplication bus row prediction logic instruction
buffer unit unit cache

n Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Why targeting the cache?

e shared across cores

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Why targeting the cache?

e shared across cores

e fast

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Why targeting the cache?

e shared across cores
e fast

— fast cross-core attacks!

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Timing differences

e caches improve performance

n Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Timing differences

e caches improve performance

e SRAM is expensive — small caches

n Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Timing differences

e caches improve performance
e SRAM is expensive — small caches

e different timings for memory accesses

n Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Timing differences

e caches improve performance
e SRAM is expensive — small caches

e different timings for memory accesses

e data is cached — cache hit — fast

n Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Timing differences

e caches improve performance
e SRAM is expensive — small caches

e different timings for memory accesses

e data is cached — cache hit — fast
e data is not cached — cache miss — slow

n Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Memory Hierarchy

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Memory Hierarchy

l core 0 l l core 1 l l core 2 l l core 3 l
[
l Registersl l Registersl l Registers l l Registersl
l Buffers l l Buffers l l Buffers l l Buffers l
[
[o [v J[u [u |
(e J[e J[e =] 5~
L2 L2 L2 L2
I I I I I I /
| | | |
LLC LLC LLC LLC
slice 0 slice 1 slice 2 slice 3
DRAM

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Memory Hierarchy

l core 0 l l core 1 l l core 2 l l core 3 l
[
l Registersl l Registersl l Registers l l Registersl
l Buffers l l Buffers l l Buffers l l Buffers l
[
[o [v J[u [u |
(e J[e J[e =] 5~
L2 L2 L2 L2
I I I I I I /
| | | |
LLC LLC LLC LLC
slice 0 slice 1 slice 2 slice 3
DRAM

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Memory Hierarchy

l corIeO l l core 1 l l core 2 l l corle3 l
l Registersl l Registersl l Registers l l Registersl
l Buffers l l Buffers l l Buffers l l Buffers l
[
L v JLuw J[w J[u | e L1 and L2 are private

‘ ring bus

LLC LLC LLC LLC
slice 0 slice 1 slice 2 slice 3

DRAM

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Memory Hierarchy

l corIeO l l core 1 l l core 2 l l core 3 l
l Registersl l Registersl l Registers l l Registersl
l Buffers l l Buffers l l Buffers l l Buffers l
[
| Lll | Lu J[u] Lll | _ e L1 and L2 are private
Iy : | E | : | E | | / o last-level cache:
| | | |
0 fee1 e shce’
DRAM

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Memory Hierarchy

l corIeO l l core 1 l l core 2 l l core 3 l
l Registersl l Registersl l Registers l l Registersl
l Buffers l l Buffers l l Buffers l l Buffers l
[
| Lll | Lu J[u] Lll | e L1 and L2 are private
ring bus
- = L - e last-level cache:
I | |
| ‘ ‘ ‘ ‘ | e divided in slices
LLC LLC LLC LLC
slice 0 slice 1 slice 2 slice 3
DRAM

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Memory Hierarchy

l core 0 l l core 1 l l core 2 l l core 3 l
[
l Registersl l Registersl l Registers l l Registersl
l Buffers l l Buffers l l Buffers l l Buffers l
[
| H | [u J[u]| H | e L1 and L2 are private
ring bus
’ L2 H L2 H L2 H L2 ‘ - e l|ast-level cache:
I I I I
| ‘ ‘ ‘ ‘ | e divided in slices
e e e e e shared across cores
slice 0 slice 1 slice 2 slice 3
DRAM

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Memory Hierarchy

l core 0 l l core 1 l l core 2 l l core 3 l
[
l Registersl l Registersl l Registers l l Registersl
l Buffers l l Buffers l l Buffers l l Buffers l
[
| H | [u J[u]| H | e L1 and L2 are private
ring bus
’ L2 H L2 H L2 H L2 ‘ - e l|ast-level cache:
I I I I
| ‘ ‘ ‘ ‘ | e divided in slices
LLC LLC LLC LiC e shared across cores
slice 0 slice 1 slice 2 slice 3 . |usive
® INnC
DRAM

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Inclusive property

core(corel

L1 e inclusive LLC: superset of L1 and L2

L2

LLC

n Michael Schwarz — Security Week Graz 2019

Inclusive pI’Operty www.tugraz.at

core0 corel
L1 e inclusive LLC: superset of L1 and L2
L2
LLC

n Michael Schwarz — Security Week Graz 2019

Inclusive property

www.tugraz.at

L1

L2

LLC

core(

corel

|

1

‘inclusion

e inclusive LLC: superset of L1 and L2

Michael Schwarz — Security Week Graz 2019

Inclusive pI’Operty www.tugraz.at

core0 corel
L1 e inclusive LLC: superset of L1 and L2
L2
LLC

|

n Michael Schwarz — Security Week Graz 2019

Inclusive pI’Operty www.tugraz.at

core 0 core 1
L1 H e inclusive LLC: superset of L1 and L2
L2 e data evicted from the LLC is also evicted
from L1 and L2
LLC

n Michael Schwarz — Security Week Graz 2019

Inclusive pI’Operty www.tugraz.at

core(corel
L1 » e inclusive LLC: superset of L1 and L2
L2 : o ® data evicted from the LLC is also evicted
from L1 and L2
LLC o | e a core can evict lines in the private L1 of
another core

n Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Latency comparison

On current Intel CPUs:

e Registers: 0-1 cycle

n Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Latency comparison

On current Intel CPUs:

e Registers: 0-1 cycle

e L1 cache: 4 cycles

n Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Latency comparison

On current Intel CPUs:

e Registers: 0-1 cycle
e L1 cache: 4 cycles

e |2 cache: 12 cycles

n Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Latency comparison

On current Intel CPUs:

e Registers: 0-1 cycle

e L1 cache: 4 cycles

e |2 cache: 12 cycles

e L3 cache: 26-31 cycles

n Michael Schwarz — Security Week Graz 2019

Latency comparison

www.tugraz.at

On current Intel CPUs:

e Registers: 0-1 cycle

L1 cache: 4 cycles

L2 cache: 12 cycles
L3 cache: 26-31 cycles
e DRAM memory: >120 cycles

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Measuring timing leakage

How every timing attack works:

e learn timing of different corner cases

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Measuring timing leakage

How every timing attack works:

e learn timing of different corner cases

e later, we recognize these corner cases by timing only

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

1. build two cases: cache hits and cache misses

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

1. build two cases: cache hits and cache misses

2. time each case many times (get rid of noise)

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

1. build two cases: cache hits and cache misses
2. time each case many times (get rid of noise)

3. we have a histogram!

Michael Schwarz — Security Week Graz 2019

Steps www.tugraz.at

build two cases: cache hits and cache misses
time each case many times (get rid of noise)

we have a histogram!

> B =

find a threshold to distinguish the two cases

Michael Schwarz — Security Week Graz 2019

CaChe hits www.tugraz.at

Loop:

1. measure time

Michael Schwarz — Security Week Graz 2019

CaChe hits www.tugraz.at

Loop:

1. measure time

2. access variable (always cache hit)

Michael Schwarz — Security Week Graz 2019

CaChe hits www.tugraz.at

Loop:

1. measure time
2. access variable (always cache hit)

3. measure time

Michael Schwarz — Security Week Graz 2019

CaChe hits www.tugraz.at

1. measure time

2. access variable (always cache hit)
3. measure time
4

. update histogram with delta

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Cache misses

Loop:

1. measure time

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Cache misses

Loop:

1. measure time

2. access variable (always cache miss)

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Cache misses

Loop:

1. measure time
2. access variable (always cache miss)

3. measure time

Michael Schwarz — Security Week Graz 2019

Cache misses www.tugraz.at

1. measure time

2. access variable (always cache miss)
3. measure time
4

. update histogram with delta

Michael Schwarz — Security Week Graz 2019

Cache misses www.tugraz.at

Loop:

1. measure time

2. access variable (always cache miss)
3. measure time

4. update histogram with delta

5. flush variable (c1flush instruction)

Michael Schwarz — Security Week Graz 2019

Time to code

www.tugraz.at

Accurate timings

e very short timings

e rdtsc instruction: cycle-accurate timestamps

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Accurate timings

e very short timings

e rdtsc instruction: cycle-accurate timestamps

[...]
rdtsc
function()
rdtsc

[...]

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Accurate timings

e do you measure what you think you measure?

e out-of-order execution — what is really executed

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Accurate timings

e do you measure what you think you measure?

e out-of-order execution — what is really executed

rdtsc rdtsc rdtsc
function() [...] rdtsc
[...] rdtsc function()
rdtsc function() [...]

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Accurate timings

e use pseudo-serializing instruction rdtscp (recent CPUs)

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Accurate timings

e use pseudo-serializing instruction rdtscp (recent CPUs)

e and/or use serializing instructions like cpuid

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Accurate timings

e use pseudo-serializing instruction rdtscp (recent CPUs)
e and/or use serializing instructions like cpuid

e and/or use fences like mfence

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Accurate timings

e use pseudo-serializing instruction rdtscp (recent CPUs)
e and/or use serializing instructions like cpuid

e and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set
Architectures White Paper, December 2010.

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Timing differences

(%]

(]

(2]

(%2}

(O]

O

O

]

£ | |
5 10
A

(]

Q0

£

=]

=

[cache hits

10

10" | H H NHHHHHHH ﬂﬁnﬂnHHHﬂHHﬂﬂﬂ o0 100 golalls 0 o D1]

50 100 150 200 250 300 350 400
Access time [CPU cycles]

Michael Schwarz — Security Week Graz 2019

Find threshold www.tugraz.at

e as high as possible

Michael Schwarz — Security Week Graz 2019

Find threshold - tugrazat

e as high as possible

e most cache hits are below

Michael Schwarz — Security Week Graz 2019

Find threshold www.tugraz.at

e as high as possible
e most cache hits are below

e no cache miss below

Michael Schwarz — Security Week Graz 2019

Hit VS. MiSS? www.tugraz.at

e Hit — Data is fetched from buffers, L1, L2, or L3

Michael Schwarz — Security Week Graz 2019

Hit VS. MiSS? www.tugraz.at

e Hit — Data is fetched from buffers, L1, L2, or L3
e Miss — Data is fetched from DRAM

Michael Schwarz — Security Week Graz 2019

From Histogram to Attack

www.tugraz.at

Type of attacks

e cache attacks — exploit timing differences of memory accesses

Michael Schwarz — Security Week Graz 2019

Type Of attaCkS www.tugraz.at

e cache attacks — exploit timing differences of memory accesses

e attacker monitors which lines are accessed, not the content

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Type of attacks

e cache attacks — exploit timing differences of memory accesses
e attacker monitors which lines are accessed, not the content

e covert channel: two processes communicating with each other

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Type of attacks

e cache attacks — exploit timing differences of memory accesses
e attacker monitors which lines are accessed, not the content

e covert channel: two processes communicating with each other
e not allowed to do so, e.g., across VMs

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

of attacks

cache attacks — exploit timing differences of memory accesses

attacker monitors which lines are accessed, not the content

covert channel: two processes communicating with each other
e not allowed to do so, e.g., across VMs

side-channel attack: one malicious process spies on benign processes

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

of attacks

cache attacks — exploit timing differences of memory accesses

attacker monitors which lines are accessed, not the content

covert channel: two processes communicating with each other
e not allowed to do so, e.g., across VMs

side-channel attack: one malicious process spies on benign processes
e e.g., steals crypto keys, spies on keystrokes

Michael Schwarz — Security Week Graz 2019

FIUSh-l—REIOad www.tugraz.at

Shared Memory
ATTACKER VICTIM

Michael Schwarz — Security Week Graz 2019

FIUSh-l—REIOad www.tugraz.at

Shared Memory
ATTACKER VICTIM

Shared Memory

Michael Schwarz — Security Week Graz 2019

FIUSh-l—REIOad www.tugraz.at

Shared Memory
ATTACKER VICTIM

flush

Shared Memory

Michael Schwarz — Security Week Graz 2019

FIUSh-l—REIOad www.tugraz.at

Shared Memory
ATTACKER VICTIM

flush —~_

Michael Schwarz — Security Week Graz 2019

FIUSh-l—REIOad www.tugraz.at

Shared Memory
ATTACKER VICTIM

___— | dCCessS

Michael Schwarz — Security Week Graz 2019

FIUSh-l—REIOad www.tugraz.at

Shared Memory
ATTACKER VICTIM

Shared Memory / a C C e S S

Michael Schwarz — Security Week Graz 2019

FIUSh-l—REIOad www.tugraz.at

Shared Memory
ATTACKER VICTIM

Shared Memory

access

Michael Schwarz — Security Week Graz 2019

FIUSh-l—REIOad www.tugraz.at

Shared Memory
ATTACKER VICTIM

Shared Memory

access

Victim accessed Victim did not access
Michael Schwarz — Security Week Graz 2019

Signatures (RSA) www.tugraz.at

M = C'mod n

Michael Schwarz — Security Week Graz 2019

Signatures (RSA) www.tugraz.at
@nod n

\0\0\1\1\0\]

I\/I
1

[Result | = C |

Michael Schwarz — Security Week Graz 2019

Signatures (RSA) www.tugraz.at
@nod n

1\1\0\]

I\/I

| Result | = | Result | X | Result | X | C |

square multiply

Michael Schwarz — Security Week Graz 2019

Signatures (RSA) www.tugraz.at
@nod n

1\1\0\]

I\/I

] Result \Z] Result \ X] Result \

square

Michael Schwarz — Security Week Graz 2019

Signatures (RSA) www.tugraz.at
@nod n

\0\0\1\1\0\]

I\/I

] Result \Z] Result \ X] Result \

square

Michael Schwarz — Security Week Graz 2019

Signatures (RSA) www.tugraz.at
@nod n

\0\0\1\1\0\]

I\/I

| Result | = | Result | X | Result | X | C |

square multiply

Michael Schwarz — Security Week Graz 2019

Signatures (RSA) www.tugraz.at
@nod n

\0\0\1\1\0\]

I\/I

| Result | = | Result | X | Result | X | C |

square multiply

Michael Schwarz — Security Week Graz 2019

Signatures (RSA) www.tugraz.at
@nod n

\0\0\1\1\0%]

I\/I

] Result \Z] Result \ X] Result \

square

Michael Schwarz — Security Week Graz 2019

Time to code

www.tugraz.at

Side-channel attack on user input

e locate key-dependent memory accesses

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Side-channel attack on user input

e locate key-dependent memory accesses

e How to locate key-dependent memory accesses?

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Challenges

e It's complicated:

Michael Schwarz — Security Week Graz 2019

Cha"enges www.tugraz.at

e It's complicated:

e Large binaries and libraries (third-party code)

Michael Schwarz — Security Week Graz 2019

Cha"enges www.tugraz.at

e It's complicated:

e Large binaries and libraries (third-party code)
e Many libraries (gedit: 60MB)

Michael Schwarz — Security Week Graz 2019

Cha"enges www.tugraz.at

e It's complicated:

e Large binaries and libraries (third-party code)
e Many libraries (gedit: 60MB)
e Closed-source / unknown binaries

Michael Schwarz — Security Week Graz 2019

Cha"enges www.tugraz.at

e It's complicated:

e Large binaries and libraries (third-party code)
e Many libraries (gedit: 60MB)

e Closed-source / unknown binaries

e Self-compiled binaries

Michael Schwarz — Security Week Graz 2019

Cha"enges www.tugraz.at

e It's complicated:

e Large binaries and libraries (third-party code)
Many libraries (gedit: 60MB)
Closed-source / unknown binaries

Self-compiled binaries

e Difficult to find all exploitable addresses

Michael Schwarz — Security Week Graz 2019

Cache Template Attacks www.tugraz.at

Profiling Phase

e Preprocessing step to find exploitable addresses automatically

Exploitation Phase

Michael Schwarz — Security Week Graz 2019

Cache Template Attacks www.tugraz.at

Profiling Phase
e Preprocessing step to find exploitable addresses automatically

e w.r.t. "events’ (keystrokes, encryptions, ...)

Exploitation Phase

Michael Schwarz — Security Week Graz 2019

Cache Template Attacks www.tugraz.at

Profiling Phase

e Preprocessing step to find exploitable addresses automatically

e w.r.t. "events’ (keystrokes, encryptions, ...)
e called “Cache Template”

Exploitation Phase

Michael Schwarz — Security Week Graz 2019

Cache Template Attacks www.tugraz.at

Profiling Phase

e Preprocessing step to find exploitable addresses automatically

e w.r.t. "events’ (keystrokes, encryptions, ...)
e called “Cache Template”

Exploitation Phase

e Monitor exploitable addresses

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Profiling Phase

Attacker address space Victim address space

Cache

Shared 0x0

Shared 0x0

Cache is empty

Michael Schwarz — Security Week Graz 2019

Profiling Phase

www.tugraz.at

Attacker address space

Shared 0x0

Cache

Shared 0x0

Victim address space

Shared 0x0

Attacker triggers an event

Michael Schwarz — Security Week Graz 2019

Profiling Phase

www.tugraz.at

Attacker address space

Shared 0x0

Cache

Shared 0x0

Victim address space

Shared 0x0

Attacker checks one address for cache hits (“Reload”)

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Profiling Phase

Attacker address space Victim address space

Cache

Shared 0x0

Shared 0x0

Shared 0x0

Update number of cache hits per event

Michael Schwarz — Security Week Graz 2019

Profiling Phase

www.tugraz.at

Attacker address space

Shared 0x0

gy

Cache

Shared 0x0

Victim address space

Shared 0x0

Attacker flushes shared memory

Michael Schwarz — Security Week Graz 2019

Profiling Phase

www.tugraz.at

Attacker address space

Shared 0x0

Cache

Victim address space

Shared 0x0

Repeat for higher accuracy

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Profiling Phase

Attacker address space Victim address space

Cache

Shared 0x40

Shared 0x40

Continue with next address

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Profiling Phase

Attacker address space Victim address space

Cache

Shared 0x80

Shared 0x80

Continue with next address

Michael Schwarz — Security Week Graz 2019

What to profile? www.tugraz.at

$> ps -A | grep gedit

$> cat /proc/<pid>/maps

00400000-00489000 r-xp 00000000 fd:01 396356
/usr/bin/gedit

7£5296991000-7£f5296a51000 r-xp 00000000 fd:01 399365

/usr/1lib/x86_64-linux-gnu/libgdk-3.s0.0.2200.30

memory range, access rights, offset, —, —, file name

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Profiling a single event

cd practicals/02_cache_template_attacks/

make
start the targeted program (e.g., gedit)

sleep 2; ./profiling /usr/1lib/x86_64-1linux-gnu/

libgdk-3.s50.0.2200.30

. and hold down a key in the target program

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Profiling a single event

cd practicals/02_cache_template_attacks/

make
start the targeted program (e.g., gedit)

sleep 2; ./profiling /usr/1lib/x86_64-1linux-gnu/

libgdk-3.s50.0.2200.30

. and hold down a key in the target program

save addresses with peaks!

Michael Schwarz — Security Week Graz 2019

Exploitation phase www. tugraz.at

$> # ./spy <file> <offset>

$> ./spy /usr/1lib/x86_64-linux-gnu/libgdk-3.s50.0.2200.30 336896
Monitoring offset 336896

Hit #0

Hit #1

Hit #2

Michael Schwarz — Security Week Graz 2019

Time to code

=

File Edit View Search Terminal Help

% sleep 2; ./spy 300 7f85140a4000-71051417b060 r-xp 0x20000 08:02 26
8050 /usr/lib/x86_64-1inux-gnu/gedit/libgedit.so

B [nrafatchl
= Terminal
File Edit View Search Terminal Help

sharks ./spy []

NOmErudney |3

Terminal

<DNIR>14 03 2017 21-44-2A
- o x

Untitled Document 1

Plain Text =

Save = -

TabWidth:2 w Ln 1, Col1 - INS

Cache Template Attack Demo

Profiling Phase: 1 Event, 1 Address

www.tugraz.at

KEY

0x7c800]

B

ADDRESS

Michael Schwarz — Security Week Graz 2019

Profiling Phase: 1 Event, 1 Address www.tugraz.at

KEY

0x7c800 []

=

ADDRESS

Example: Cache Hit Ratio for (0x7¢800,n): 200 / 200

Michael Schwarz — Security Week Graz 2019

Profiling Phase: All Events, 1 Address U

KEY

gh i j kI mnopgrstuvwxyz
0x7c800 []

ADDRESS

Michael Schwarz — Security Week Graz 2019

Profiling Phase: All Events, 1 Address U

KEY

gh i jkI|I mnopgrstuvwxyz
0x7c800]

ADDRESS

Example: Cache Hit Ratio for (0x7¢800,u): 13 / 200

Michael Schwarz — Security Week Graz 2019

Profiling Phase: All Events, 1 Address U

KEY

gh i j kI mnopgrstuvwxyz
0x7c800 .

ADDRESS

Distinguish n from other keys by monitoring 0x7c800

Michael Schwarz — Security Week Graz 2019

Profiling Phase: All Events, All Addresses www.tugraz.at

q
0x7c680
0x7c6c0 =
0x7c700 EEEEEE [
0x7c740 |
0x7c780 |
0x7c7c0 .
0x7c800
0x7c840
0x7c880
0x7c8c0
0x7c900
0x7c940
0x7c980
0x7c9c0
0x7ca00
0x7cb80
0x7cc40
0x7cc80
0x7cccO
0x7cd00

ADDRESS
[}
EEEETE

Michael Schwarz — Security Week Graz 2019

D. Gruss, R. Spreitzer, and S. Mangard. Cache Template Attacks:
Automating Attacks on Inclusive Last-Level Caches. In: USENIX Security
Symposium. 2015.

Side-Channel Lab I

Michael Schwarz

Security Week Graz 2019

Ty

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Covert channel

What is a covert channel?

e Two programs would like to communicate

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Covert channel

What is a covert channel?

e Two programs would like to communicate but are not allowed to do so

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Covert channel

What is a covert channel?

e Two programs would like to communicate but are not allowed to do so

e either because there is no communication channel...

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Covert channel

What is a covert channel?

e Two programs would like to communicate but are not allowed to do so

e either because there is no communication channel...
e ...or the channels are monitored and programs are stopped on
communication attempts

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Covert channel

What is a covert channel?

e Two programs would like to communicate but are not allowed to do so

e either because there is no communication channel...
e ...or the channels are monitored and programs are stopped on
communication attempts

e Use side channels and stay stealthy

Michael Schwarz — Security Week Graz 2019

Covert channel www.tugraz.at

Michael Schwarz — Security Week Graz 2019

Covert channel www.tugraz.at

Michael Schwarz — Security Week Graz 2019

State of the art www.tugraz.at

method raw capacity err. rate true capacity env.

F+F [Gru+16] 3968Kbps 0.840% 3690Kbps native
F+R [Gru+16] 2384Kbps 0.005% 2382Kbps native
E+R [Lip+16] 1141Kbps 1.100% 1041Kbps native
P+P [Mau+17] 601Kbps 0.000% 601Kbps native
P+P [Liut15] 600Kbps 1.000% 552Kbps virt

P+P [Mau+17] 362Kbps 0.000% 362Kbps native

n Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient)

www.tugraz.at

H @& Q@ T Mg

Sender

(0x44)
(0x45)
(0x46)
(0x47)
(0x48)
(0x49)

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x43

Cache Line on Page #0x49

Cache Line on Page #0x4A

Receiver

Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient)

www.tugraz.at

H @& Q@ T Mg

Sender

(0x44)
(0x45)
(0x46)
(0x47)
(0x48)
(0x49)

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Receiver

Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient)

www.tugraz.at

H @&-m Q T Mg

Sender

(0x44)
(0x45)
(0x46)
(0x47)
(0x48)
(0x49)

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Receiver

Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient)

www.tugraz.at

H @&-m Q T Mg

Sender

(0x44)
(0x45)
(0x46)
(0x47)—2y
(0x48)
(0x49)

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Receiver

Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient)

www.tugraz.at

H @& Q@ T Mg

Sender

(0x44)
(0x45)
(0x46)
(0x47)
(0x48)
(0x49)

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Receiver

Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient)

www.tugraz.at

H @& Q@ T Mg

Sender

(0x44)
(0x45)
(0x46)
(0x47)
(0x48)
(0x49)

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Receiver
measure ﬂ
) b4
measure} @
measure} @
measure} ﬂﬂ
measure} @
measure} @
measure f‘
) b4
measure ﬁ
E— x

Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient)

www.tugraz.at

H @& Q@ T Mg

Sender

(0x44)
(0x45)
(0x46)
(0x47)
(0x48)
(0x49)

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Receiver
measurey Ry
measurey PR
measurey PR
messirey R
meurey N G (0x47)

Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient)

www.tugraz.at

H @& Q@ T Mg

Sender

(0x44)
(0x45)
(0x46)
(0x47)
(0x48)
(0x49)

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Receiver

Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient)

www.tugraz.at

H =-m Q@ T [g

Sender

(0x44)
(0x45)
(0x46)
(0x47)
(0x48)
(0x49)

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Receiver

Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient)

www.tugraz.at

H =-m Q@ T [g

Sender

(0x44)
(0x45)
(0X46) reload }
(0x47)
(0x48)
(0x49)

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Receiver

Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient)

www.tugraz.at

H =-m Q@ T [g

Sender

(0x44)
(0x45)
(0x46)
(0x47)
(0x48)
(0x49)

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Receiver
measurey Ry
measurey PR
measurey PR
Teuey N F(0x46)

Michael Schwarz — Security Week Graz 2019

Time to code

Operating Systems 101

www.tugraz.at

Memory Isolation

@ Userspace

e/

Applications

Kernelspace

e Kernel is isolated from user space

Operating

System Memory

n Michael Schwarz — Security Week Graz 2019

Memory Isolation

www.tugraz.at

@ Userspace

e/

Applications

Kernelspace

Operating

System Memory

e Kernel is isolated from user space

e This isolation is a combination of
hardware and software

Michael Schwarz — Security Week Graz 2019

Memory Isolation

www.tugraz.at

@ Userspace

Operating

Applications System Memory

Kernelspace

e Kernel is isolated from user space

e This isolation is a combination of
hardware and software

e User applications cannot access
anything from the kernel

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

e CPU support virtual address spaces to isolate processes

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

e CPU support virtual address spaces to isolate processes

e Physical memory is organized in page frames

Michael Schwarz — Security Week Graz 2019

Paging www.tugraz.at

e CPU support virtual address spaces to isolate processes

e Physical memory is organized in page frames

e Virtual memory pages are mapped to page frames
using page tables

Michael Schwarz — Security Week Graz 2019

Address Translation on x86-64 Www.tugraz.at

PML4
CR3 PML4E 0
PML4E 1
: PDPT
3 PML4I
1 #: PDPTE 0
PML4E 511 PDP;TE L
R ZPDPTI Page Directory
: PDE 0
PDPTE 511 PD:E L
\PDE #PDI Page Table
. PTE 0
PDE 511 PT;E L
- 4 KiB Page
AN
s PTE :#PTI Byte 0
- Byte 1
PTE 511 -

Offset

PML4I (9 b) [PDPTI (9 b) [PDI (9 b) [PTI (9b) | Offset (12b) | Byte 4095

48-bit virtual address

n Michael Schwarz — Security Week Graz 2019

Address Translation on x86-64 Www.tugraz.at

PML4
CR3 PML4E 0
PML4E 1
: PDPT
3 PML4I
1 #: PDPTE 0
PML4E 511 PDP;TE L
R ZPDPTI Page Directory
: PDE 0
PDPTE 511 PD:E L
\PDE #PDI Page Table
. PTE 0
PDE 511 PT;E L
- 4 KiB Page
PTE :#PTI Byte 0
- Byte 1
PTE 511 -
Offset
PML4I (9 b) [PDPTI (9 b) [PDI (9 b) [PTI (9b) | Offset (12b) | Byte 4095

48-bit virtual address

n Michael Schwarz — Security Week Graz 2019

Page Table Entry www.tugraz.at

P [RWIUSIWTIUC| R|D|S |G Ignored

D ~

O
P

NToe |\|| hea
ageC MDE

u,
L
v

Ignored X

e User/Supervisor bit defines in which privilege level the page can be accessed

n Michael Schwarz — Security Week Graz 2019

Direct-physical map www.tugraz.at

0 max

Physical memory

User || Kernel

e Kernel is typically mapped into every address space

Michael Schwarz — Security Week Graz 2019

Direct-physical map www.tugraz.at

0 max

Physical memory

User || Kernel

e Kernel is typically mapped into every address space

e Entire physical memory is mapped in the kernel

Michael Schwarz — Security Week Graz 2019

Loading an address www.tugraz.at

Michael Schwarz — Security Week Graz 2019

Loading an address www.tugraz.at

R0

v

Michael Schwarz — Security Week Graz 2019

Loading an address www.tugraz.at

R0

v

Q (@

Michael Schwarz — Security Week Graz 2019

Loading an address www.tugraz.at

R0

v

Michael Schwarz — Security Week Graz 2019

Loading an address www.tugraz.at

R0

v

@

Michael Schwarz — Security Week Graz 2019

Loading an address www.tugraz.at

R0

v

@

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Architecture and Microarchitecture

e Instruction Set Architecture (ISA) is an abstract model of a
computer (x86, ARMv8, SPARC, ...)

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Architecture and Microarchitecture

e Instruction Set Architecture (ISA) is an abstract model of a
computer (x86, ARMv8, SPARC, ...)

e Serves as the interface between hardware and software

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Architecture and Microarchitecture

e Instruction Set Architecture (ISA) is an abstract model of a
computer (x86, ARMv8, SPARC, ...)

e Serves as the interface between hardware and software

e Microarchitecture is an actual implementation of the ISA

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Architecture and Microarchitecture

e Instruction Set Architecture (ISA) is an abstract model of a
computer (x86, ARMv8, SPARC, ...)

e Serves as the interface between hardware and software

e Microarchitecture is an actual implementation of the ISA

AMDIOU

AMD I ~—I
@ Y Z}N (lnsuie (llde
nihion < J Core 17 Xeon™

Michael Schwarz — Security Week Graz 2019

In-Order Execution

www.tugraz.at

e [nstructions are...

e fetched (IF) from the L1 Instruction
Cache

IF | ID | EX MEM WB
IF | ID | EX MEM WB
IF | ID | EX MEM WB
IF | ID | EX MEM WB
IF | ID | EX MEM WB

Michael Schwarz — Security Week Graz 2019

In-Order Execution

www.tugraz.at

MEM

WB

EX

MEM

WB

EX

MEM

WB

EX

MEM

WB

EX

MEM

WB

e [nstructions are...

e fetched (IF) from the L1 Instruction
Cache
e decoded (ID)

Michael Schwarz — Security Week Graz 2019

In-Order Execution

www.tugraz.at

e Instructions are...
e fetched (IF) from the L1 Instruction
Cache
e decoded (ID)
e executed (EX) by execution units

IF | ID | EX MEM WB
IF | ID | EX MEM WB
IF | ID | EX MEM WB
IF | ID | EX MEM WB
IF | ID | EX MEM WB

Michael Schwarz — Security Week Graz 2019

In-Order Execution

www.tugraz.at

MEM

WB

EX

MEM

WB

EX

MEM

WB

EX

MEM

WB

EX

MEM

WB

e [nstructions are...

e fetched (IF) from the L1 Instruction
Cache

e decoded (ID)

e executed (EX) by execution units

e Memory access is performed (MEM)

Michael Schwarz — Security Week Graz 2019

In-Order Execution

www.tugraz.at

e Instructions are...
e fetched (IF) from the L1 Instruction
Cache
e decoded (ID)
e executed (EX) by execution units

IF | ID | EX MEM WB
IF | ID | EX MEM WB
IF | ID | EX MEM WB
IF | ID | EX MEM WB
IF | ID | EX MEM WB

e Memory access is performed (MEM)

e Architectural register file is updated (WB)

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

In-Order Execution

e Instructions are executed in-order

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

In-Order Execution

e Instructions are executed in-order

e Pipeline stalls when stages are not ready

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

In-Order Execution

e Instructions are executed in-order
e Pipeline stalls when stages are not ready

e If data is not cached, we need to wait

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Out-of-order Execution

int width = 10, height = 5;
float diagonal = sqrt(width * width
+ height * height);

int area = width * height;

printf ("Area %d x %d = %d\n", width, height, area);

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Out-of-order Execution

Parallelize
S

int width = 10, height = 5;

+ height * height);
int area = width * height;

O
o~
Q
©
Q)c float diagonal = sqrt(width * width
Q
)]
Q

<printf("Area %d x %d = %d\n", width, height, area);

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Out-of-Order Execution

L1 Instruction Cache [k

Branch Instruction Fetch & PreDecode
2 Predictor
5 Instruction Queue
=
g P Cache 4-Way Decode
= Tor o Lo]

¥
Allocation Queue

EREREE Instructions are

Reorder buffer ‘

o o e e e fetched and decoded in the front-end

i Scheduler ‘

=118

Execution Engine
I
LU, FMA,

Execution Units

L1 Data Cache

STLB +

Memory

L2 Cache —

Michael Schwarz — Security Week Graz 2019

Out-of-Order Execution

L1 Instruction Cache [k
Branch Instruction Feich & PreDecode
2 Predictor
5 Instruction Queue
-]
u% OP Cache 4-Way Decode
e, luu l,w l.m l
2
Allocation Queue
3 3 3 k3
coB % Reorder buffer ‘
o =L Lo o Lo Jor e]
£l i Scheduler
= M7=
g e [0
§ :
B gl |2 3
7 <}
g% |E N
55 |3
% 5
& 2
Execution Units
.
£ [DTLB STLB T
g LI Data Cache [— |
= L2 Cache —

www.tugraz.at

Instructions are
e fetched and decoded in the front-end
e dispatched to the backend

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Out-of-Order Execution

L1 Instruction Cache [k

Branch Instruction Fetch & PreDecode
2 Predictor
5 Instruction Queue
=
= WOP Cache 4-Way Decode
= T Loor [oor [

¥
‘ Allocation Queue ‘

EREREE Instructions are

con j Reorder buffer 0

e e e e fetched and decoded in the front-end
2T .

s . e dispatched to the backend

ERIIHE g E

&k B & e processed by individual execution units

prid STLE t
Li Data Cache [— |

L2 Cache —

Memory

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Out-of-Order Execution

o
Instructions

Branch Instruction Fetch & PreDecode
Predictor

Instruction Queue

Frontend

e are executed out-of-order

4-Way Decode

HOP Cache

o8 % Reorder buffer ‘
O [i i
i Scheduler ‘

Store data <
AGU

2
5
=

Execution Engine
I

LU, FMA,

Lo vt e

Execution Units

prid STLE H
Li Data Cache [— |

L2 Cache —

Memory

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Out-of-Order Execution

o
Instructions

Branch Instruction Fetch & PreDecode

Predictor
Instruction Queue

o — e are executed out-of-order

s

\ Allcaion Quee | e wait until their dependencies are ready

Frontend

=118

Reorder buffer

i Scheduler ‘

Execution Engine
I
LU, FMA,

Execution Units

L1 Data Cache

STLB +

Memory

L2 Cache —

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Out-of-Order Execution

o
Instructions

Branch Instruction Fetch & PreDecode

Predictor
Instruction Queue

o — e are executed out-of-order

s

\ Allcaion Quee | e wait until their dependencies are ready

Frontend

=118

Reorder buffer

i Scheduler ‘

= instructions

e Later instructions might execute prior earlier

Execution Engine
I
LU, FMA,

Execution Units

L1 Data Cache

STLB +

Memory

L2 Cache —

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Out-of-Order Execution

o
Instructions

; [| =
; e lw"‘ti”{"jf - e are executed out-of-order

\ \\Q\\ | e wait until their dependencies are ready
- lRldbl" i — e Later instructions might execute prior earlier
;} A A— instructions
“ e retire in-order
a5E B E

Execution Units

L1 Data Cache

STLB +

Memory

L2 Cache —

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Out-of-Order Execution

o
Instructions

; [| =
; e lw"‘ti”{"jf - e are executed out-of-order

\ \\Q\\ | e wait until their dependencies are ready
- lRldbl" i — e Later instructions might execute prior earlier
;} A A— instructions
“ e retire in-order
a5E B E

e State becomes architecturally visible

Execution Units

L1 Data Cache

STLB +

Memory

L2 Cache —

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Out-of-Order Execution

==y

[el evwr— Instructions
5 Predictor Instruction Queue
; Lﬁ'ﬁfi."{“fﬁ . e are executed out-of-order

\ \\Q\\ \ e wait until their dependencies are ready
- lRldbl" i — e Later instructions might execute prior earlier
;:a A | instructions
~ 7 e retire in-order
il et | e State becomes architecturally visible
: | e Exceptions are checked during retirement
= e L2 Cache —

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Out-of-Order Execution

L

Instructions
2 Predictor
5 Instruction Queue
;o — e are executed out-of-order

\ e | e wait until their dependencies are ready

T — e Later instructions might execute prior earlier
S | instructions
- e retire in-order
Z58E

B | e State becomes architecturally visible
LT —— e Exceptions are checked during retirement
g Li Data Cache [— | o ||))

e Flush pipeline and recover state

Michael Schwarz — Security Week Graz 2019

The state does not become
but ...

The state does not become
but ...

www.tugraz.at

Getting started...

Michael Schwarz — Security Week Graz 2019

Gettil’lg Started e www.tugraz.at

e New code
(o
(o,
char data = ’S’; // a "secret" walue
//

(volatile charx) O0;
array [data * 4096] = 0;

Michael Schwarz — Security Week Graz 2019

Getting started...

www.tugraz.at

New code
char data = ’S’; // a "secret" walue
//

(volatile charx) O0;
array [data * 4096] = 0;

Luckily we know how to catch a segfault

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Getting started...

e New code

char data = ’S’; // a "secret" walue

/7
(volatile charx) O0;
array [data * 4096] = 0;

e Luckily we know how to catch a segfault

e Then check whether any part of array is cached

Michael Schwarz — Security Week Graz 2019

CheCking the array www.tugraz.at

R0

e Flush+Reload over all pages of the array
500

400 -
300 J{

0 50 100 150 200 250
Page

Access time
[cycles]

Michael Schwarz — Security Week Graz 2019

Time to code

Meltdown www.tugraz.at

e Add another layer of indirection to test

char data = *(charx*x) Oxffffffff81a000e0;
array [data * 4096] = 0;

Michael Schwarz — Security Week Graz 2019

Meltdown www.tugraz.at

e Add another layer of indirection to test

char data = *(charx*x) Oxffffffff81a000e0;
array [data * 4096] = 0;

Michael Schwarz — Security Week Graz 2019

WhiCh addl’ESS? www.tugraz.at

e Check /proc/kallsyms

sudo cat /proc/kallsyms | grep banner

Michael Schwarz — Security Week Graz 2019

WhiCh addl’ESS? www.tugraz.at

e Check /proc/kallsyms

sudo cat /proc/kallsyms | grep banner

e or check /proc/pid/pagemap and print address

printf ("target: %p\n",
libsc_get_physical_address (ctx, vaddr));

Michael Schwarz — Security Week Graz 2019

WhiCh addl’ESS? www.tugraz.at

e Check /proc/kallsyms

sudo cat /proc/kallsyms grep banner

e or check /proc/pid/pagemap and print address

printf ("target: %p\n",
libsc_get_physical_address (ctx, vaddr));

e or start at a random address and iterate

Michael Schwarz — Security Week Graz 2019

Time to code

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory }y &\

A|B

C|DE

FIGIH glyph[datal[index]]
IlJ|K

L M| N LILLLl
OlP|Q - =
U|VIW

X|Y|Z LR

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory \(\60 %‘e
AB
(C]D)]E Speculate
1 p
FIGIH glyph[datal[index]]
IJ|K
LL M| N LiLiLll
o|rPlQ - e
U|V|W
X|Y|Z I11iti

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory EXGCUWY @(9@

A|B

C|DE

FIGIH glyph[datal[index]]
IlJ|K

L M| N LILLLl
OlP|Q - =
U|VIW

X|Y|Z LR

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Exec“e)y &\
B

A

%EH glyph[datal[index]]
IlJ|K

L M| N LIiLll
OlP|Q - e
R|S|T — o
U|VIW - -
X|Y|Z LR

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory EX@CW}Y @(9@
B

A
% g IHI. .‘.&glyph [datal[index]]
IJ]K h
L M| N LIiLll
OlP|Q - e
R|S|T — o
U V W OO

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory }y &\

A|B

%g% glyph[datal[index]]
IlJ|K

L M| N LIiLll
OlP|Q - e
R|S|T — o
U|VIW

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'at)e/ @(9@

A|B

%(ﬂélﬁ glyph[datal[index]]
IlJ|K

L M| N LIiLll
OlP|Q - e
R|S|T — o
U|VIW

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'atf/ @(9@

A|B

CDIE glyph[datal[index]]
F|GH

IlJ|K

L MIN TRREN
orQ - =
R|S|T — o
UV W

X|\Y|Z

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'at)e/ @(9@

A

CDIE glyph[data[lndex]]
F|GH

IlJ|K

L MIN TRREN
orQ - =
R|S|T — o
UV W

X|\Y|Z

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'at)e/ @(9@

A
iy E glyph [data[index]]
F|G|H
IlJ|K
LIMIN LLpLll
o|rPlQ - =
R|S|T e, - o
U V W L
X|Y|Z

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory EX@CW}Y @(9@

A|B

%(ﬂélﬁ glyph[data[index]]
IlJ|K

L M| N LIiLll
OlP|Q - e
R|S|T — o
U|VIW

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'at)e/ @(9@

A|B

%(ﬂélﬁ glyph[datal[index]]
IlJ|K

L M| N LIiLll
OlP|Q - e
R|S|T — o
U|VIW

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'atf/ @(9@

A|B

CDIE glyph[datal[index]]
F|GH

IlJ|K

L MIN TRREN
orQ - =
R|S|T — o
UV W

X|\Y|Z

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory pec“'at)e/ &\

A|B

CDIE glyph[datal[index]]
F|GH

IlJ|K

L MIN TRREN
orQ - =
R|S|T — o
UV W

X|\Y|Z

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory pec“'at)e/ &\

A|B
C|D|E
F |G H
IJ|K
L M|N
Oo|P|Q
R|S|T
U VW
X|Y|Z

glyph[datal[index]]

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory EX@CW}Y @(9@

A|B

%(ﬂélﬁ glyph[data[index]]
IlJ|K

L M| N LIiLll
OlP|Q - e
R|S|T — o
U|VIW

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'at)e/ @(9@

A|B

%(ﬂélﬁ glyph[datal[index]]
IlJ|K

L M| N LIiLll
OlP|Q - e
R|S|T — o
U|VIW

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'atf/ @(9@

A|B

CDIE glyph[datal[index]]
F|GH

IlJ|K

L MIN TRREN
orQ - =
R|S|T — o
UV W

X|\Y|Z

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'at)e/ @(9@

A

CDIE glyph[data[lndex]]
F|GH

IlJ|K

L MIN TRREN
orQ - =
R|S|T — o
UV W

X|\Y|Z

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'at)e/ @(9@

A
iy E glyph [data[index]]
F|G|H
IlJ|K
LIMIN LLpLll
o|rPlQ - =
R|S|T e, - o
U V W L
X|Y|Z

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory EX@CW}Y @(9@

A|B

%(ﬂélﬁ glyph[data[index]]
IlJ|K

L M| N LIiLll
OlP|Q - e
R|S|T — o
U|VIW

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'at)e/ @(9@

A|B

%(ﬂélﬁ glyph[datal[index]]
IlJ|K

L M| N LIiLll
OlP|Q - e
R|S|T — o
U|VIW

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'at)e/

A|B

CDIE glyph[datal[index]]
F|GH

17K R -
L MIN TRREN
orQ -
R|IS|T -

UV W

X|\Y|Z

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'at)e/

A|B

CDIE glyph[datal[index]]
F|GH

17K R -
L MIN TRREN
orQ -
R|IS|T -

UV W

X|\Y|Z

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'at)e/

glyph[datal[index]]

[p—

MEEIEEEEE
R EEGEIE
NEEIEREC EEE

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory \(\60 %‘e

A|B

% (]g]E:i glyph[data[index]] Brecute

IlJ|K

L M| N LILLLl

orQ - -

RIS|T — .

UV W

Michael Schwarz — Security Week Graz 2019

Spectre ROOt Cause www.tugraz.at

operation #n

>

time

Michael Schwarz — Security Week Graz 2019

Spectre ROOt Cause www.tugraz.at

operation #n

prediction

>

time

Michael Schwarz — Security Week Graz 2019

Spectre ROOt Cause www.tugraz.at

operation #n

prediction

predict
CF/DF

> operation #n-+2

>

time

Michael Schwarz — Security Week Graz 2019

Spectre ROOt Cause www.tugraz.at

operation #n

prediction

predict
CF/DF

> operation #n+2

possibly
architectural 1 transient execution

>

time

Michael Schwarz — Security Week Graz 2019

Spectre ROOt Cause www.tugraz.at

operation #n |5
prediction

predict
CF/DF

> operation #n+2

possibly
architectural 1 transient execution

>

time

Michael Schwarz — Security Week Graz 2019

Spectre ROOt Cause www.tugraz.at

: g
operation #n |3 Gicly el
= on wrong
prediction
. g
prediction 3
T

predict
CF/DF

> operation #n+2

possibly
architectural 1 transient execution

>

time

Michael Schwarz — Security Week Graz 2019

Spectre ROOt Cause www.tugraz.at

>

. Y
Operatlon #n "q'} flush pipeline
= on wrong
prediction
.o v
prediction &=
B & i 1
_E Q 1 1
o : ! o
o Ob—{ operation #n+2: |z
possibly : i
architectural ! transient execution !
]

time

Michael Schwarz — Security Week Graz 2019

Spectre ROOt Cause www.tugraz.at

A e Many predictors in modern CPUs

Michael Schwarz — Security Week Graz 2019

Spectre ROOt Cause www.tugraz.at

A e Many predictors in modern CPUs

4 b e Branch taken/not taken (PHT)

Vv

Michael Schwarz — Security Week Graz 2019

Spectre ROOt Cause www.tugraz.at

A e Many predictors in modern CPUs
e Branch taken/not taken (PHT)
4 @ b e Call/Jump destination (BTB)

Vv

Michael Schwarz — Security Week Graz 2019

Spectre ROOt Cause www.tugraz.at

A e Many predictors in modern CPUs

e Branch taken/not taken (PHT)
4 @ b e Call/Jump destination (BTB)

e Function return destination (RSB)

Michael Schwarz — Security Week Graz 2019

Spectre ROOt Cause www.tugraz.at

A e Many predictors in modern CPUs

e Branch taken/not taken (PHT)
4 b Call/Jump destination (BTB)
Function return destination (RSB)
Load matches previous store (STL)

<G

Michael Schwarz — Security Week Graz 2019

Spectre ROOt Cause www.tugraz.at

A e Many predictors in modern CPUs

e Branch taken/not taken (PHT)
4 b Call/Jump destination (BTB)
Function return destination (RSB)
V Load matches previous store (STL)

e Most are even shared among processes

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Spectre Mistraining

Victim
same address space/ Victim
in place branch

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Spectre Mistraining

Victim
same address space/ Congruent
out of place branch

§|s

iz

23
same address space/ Victim
in place branch

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Spectre Mistraining

Victim
same address space/ Congruent
out of place branch

§|s

iz

23
same address space/ Victim
in place branch

‘ Shared Branch Prediction State

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Spectre Mistraining

Victim Attacker

same address space/ Congruent
out of place branch

§|s

e

23
same address space/ Victim
in place branch

‘ Shared Branch Prediction State

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Spectre Mistraining

Victim Attacker

same address space/ Congruent
out of place branch

§|8

5|2

23
same address space/ Victim Shadow cross address space/
in place branch branch in place

‘ Shared Branch Prediction State

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Spectre Mistraining

Victim Attacker

same address space/ Congruent Congruent cross address space/
out of place branch branch out of place

g5 gl5

e 5|2

23 38
same address space/ Victim Shadow cross address space/
in place branch branch in place

Shared Branch Prediction State

Michael Schwarz — Security Week Graz 2019

Time to code

Side-Channel Lab I

Michael Schwarz

Security Week Graz 2019

Ty

Michael Schwarz — Security Week Graz 2019

D. Gruss, C. Maurice, K. Wagner, and S. Mangard. Flush+Flush: A Fast
and Stealthy Cache Attack. In: DIMVA. 2016.

M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard.

ARMageddon: Cache Attacks on Mobile Devices. In: USENIX Security
Symposium. 2016.

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-Level Cache
Side-Channel Attacks are Practical. In: S&P. 2015.

C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss,
C. Alberto Boano, S. Mangard, and K. Rémer. Hello from the Other Side:
SSH over Robust Cache Covert Channels in the Cloud. In: NDSS. 2017.

