

Side-Channel Lab I

Michael Schwarz

Security Week Graz 2019

Michael Schwarz — Security Week Graz 2019

1

www.tugraz.at

 everyday hardware: servers, workstations, laptops, smartphones...

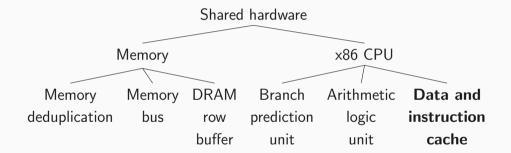
www.tugraz.at

 everyday hardware: servers, workstations, laptops, smartphones...

• remote side-channel attacks

• safe software infrastructure \rightarrow no bugs, e.g., Heartbleed

- **safe software** infrastructure \rightarrow no bugs, e.g., Heartbleed
- does not mean safe execution


Side channels

- safe software infrastructure \rightarrow no bugs, e.g., Heartbleed
- does not mean safe execution
- information leaks because of the hardware it runs on

- safe software infrastructure \rightarrow no bugs, e.g., Heartbleed
- does not mean safe execution
- information leaks because of the hardware it runs on
- no "bug" in the sense of a mistake \rightarrow lots of performance optimizations

- safe software infrastructure \rightarrow no bugs, e.g., Heartbleed
- does not mean safe execution
- information leaks because of the hardware it runs on
- no "bug" in the sense of a mistake \rightarrow lots of performance optimizations
- $\rightarrow\,$ crypto and sensitive info., e.g., keystrokes and mouse movements

Why targeting the cache?

• shared across cores

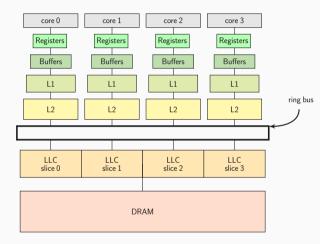
Why targeting the cache?

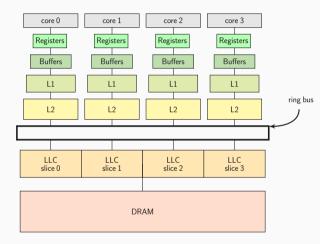
- shared across cores
- fast

Why targeting the cache?

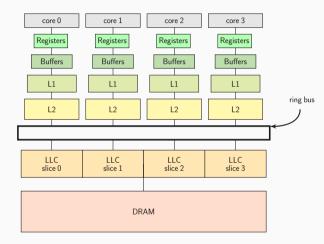
- shared across cores
- fast
- \rightarrow fast cross-core attacks!

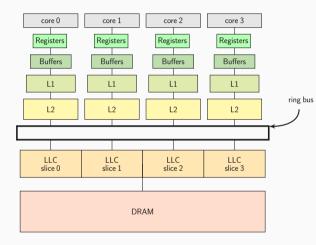
• caches improve performance


- caches improve performance
- SRAM is expensive \rightarrow small caches

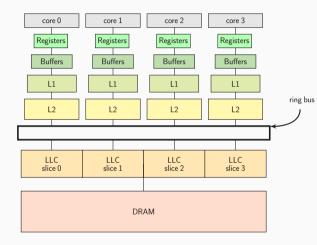

- caches improve performance
- SRAM is expensive \rightarrow small caches
- different timings for memory accesses

- caches improve performance
- SRAM is expensive \rightarrow small caches
- different timings for memory accesses
 - data is **cached** \rightarrow cache hit \rightarrow **fast**

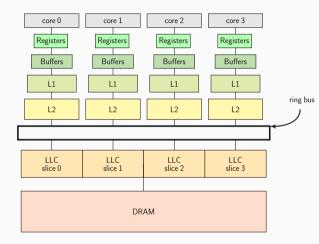

- caches improve performance
- SRAM is expensive \rightarrow small caches
- different timings for memory accesses
 - data is **cached** \rightarrow cache hit \rightarrow **fast**
 - data is **not cached** \rightarrow cache miss \rightarrow **slow**


www.tugraz.at

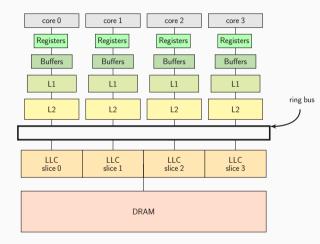
• L1 and L2 are private


Michael Schwarz — Security Week Graz 2019

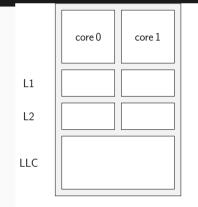
www.tugraz.at



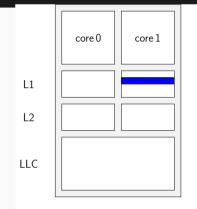
- L1 and L2 are private
- last-level cache:


Michael Schwarz — Security Week Graz 2019

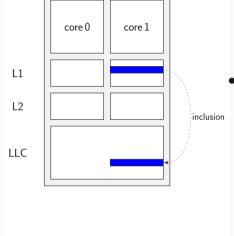
- L1 and L2 are private
- last-level cache:
 - divided in slices

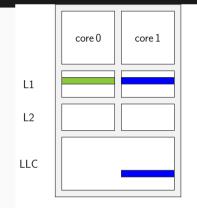


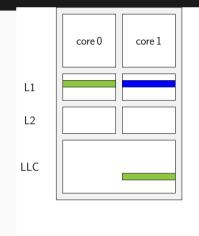
- L1 and L2 are private
- last-level cache:
 - divided in slices
 - shared across cores



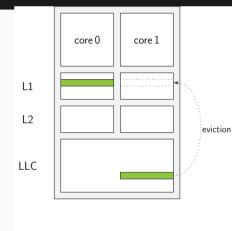
- L1 and L2 are private
- last-level cache:
 - divided in slices
 - shared across cores
 - inclusive







www.tugraz.at


Inclusive property

- inclusive LLC: superset of L1 and L2
- data evicted from the LLC is also evicted from L1 and L2

www.tugraz.at

Inclusive property

- inclusive LLC: superset of L1 and L2
- data evicted from the LLC is also evicted from L1 and L2
- a core can evict lines in the private L1 of another core

On current Intel CPUs:

• Registers: 0-1 cycle

On current Intel CPUs:

- Registers: 0-1 cycle
- L1 cache: 4 cycles

www.tugraz.at

On current Intel CPUs:

- Registers: 0-1 cycle
- L1 cache: 4 cycles
- L2 cache: 12 cycles

www.tugraz.at

On current Intel CPUs:

- Registers: 0-1 cycle
- L1 cache: 4 cycles
- L2 cache: 12 cycles
- L3 cache: 26-31 cycles

www.tugraz.at

On current Intel CPUs:

- Registers: 0-1 cycle
- L1 cache: 4 cycles
- L2 cache: 12 cycles
- L3 cache: 26-31 cycles
- DRAM memory: >120 cycles

How every timing attack works:

• learn timing of different corner cases

How every timing attack works:

- learn timing of different corner cases
- later, we recognize these corner cases by timing only

1. build two cases: cache hits and cache misses

- 1. build two cases: cache hits and cache misses
- 2. time each case many times (get rid of noise)

- 1. build two cases: cache hits and cache misses
- 2. time each case many times (get rid of noise)
- 3. we have a histogram!

- 1. build two cases: cache hits and cache misses
- 2. time each case many times (get rid of noise)
- 3. we have a histogram!
- 4. find a threshold to distinguish the two cases

1. measure time

- 1. measure time
- 2. access variable (always cache **hit**)

- 1. measure time
- 2. access variable (always cache hit)
- 3. measure time

- 1. measure time
- 2. access variable (always cache hit)
- 3. measure time
- 4. update histogram with delta

1. measure time

- 1. measure time
- 2. access variable (always cache miss)

- 1. measure time
- 2. access variable (always cache miss)
- 3. measure time

- 1. measure time
- 2. access variable (always cache miss)
- 3. measure time
- 4. update histogram with delta

- 1. measure time
- 2. access variable (always cache miss)
- 3. measure time
- 4. update histogram with delta
- 5. flush variable (clflush instruction)

Time to code

Accurate timings

- very short timings
- rdtsc instruction: cycle-accurate timestamps

Accurate timings

- very short timings
- rdtsc instruction: cycle-accurate timestamps

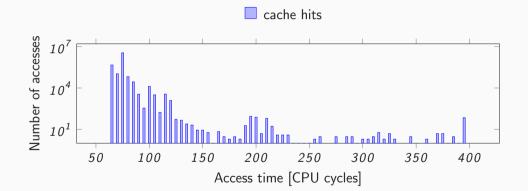
[...] rdtsc function() rdtsc [...]

- do you measure what you *think* you measure?
- **out-of-order** execution → what is really executed

Accurate timings

- do you measure what you *think* you measure?
- **out-of-order** execution \rightarrow what is really executed

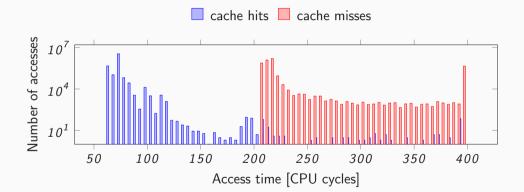
rdtsc	rdtsc	rdtsc
function()	[]	rdtsc
[]	rdtsc	function()
rdtsc	function()	[]


• use pseudo-serializing instruction rdtscp (recent CPUs)

- use pseudo-serializing instruction rdtscp (recent CPUs)
- and/or use serializing instructions like cpuid

- use pseudo-serializing instruction rdtscp (recent CPUs)
- and/or use serializing instructions like cpuid
- and/or use fences like mfence

- use pseudo-serializing instruction rdtscp (recent CPUs)
- and/or use serializing instructions like cpuid
- and/or use fences like mfence

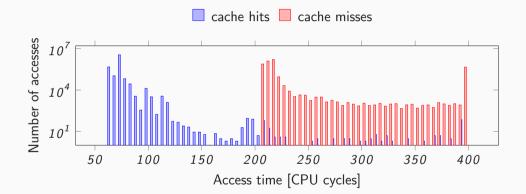

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures White Paper, December 2010.

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Michael Schwarz — Security Week Graz 2019

• as high as possible


- as high as possible
- most cache hits are below

- as high as possible
- most cache hits are below
- no cache miss below

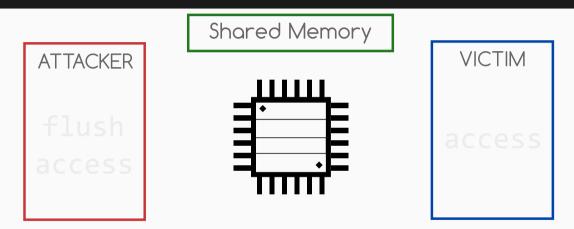
• Hit \rightarrow Data is fetched from buffers, L1, L2, or L3

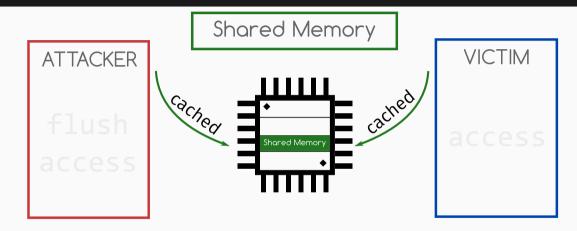
- Hit \rightarrow Data is fetched from buffers, L1, L2, or L3
- Miss \rightarrow Data is fetched from DRAM

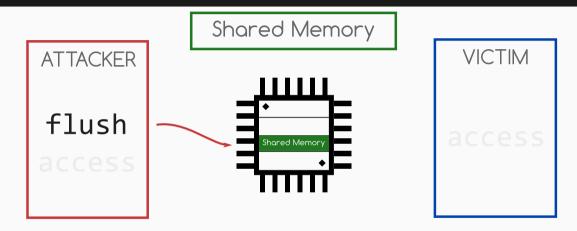
Michael Schwarz — Security Week Graz 2019

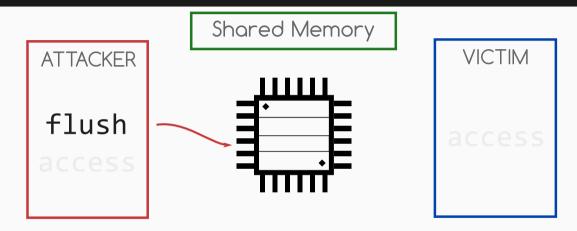
www.tugraz.at

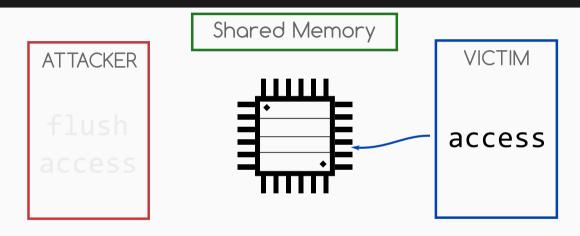
• cache attacks \rightarrow exploit timing differences of memory accesses

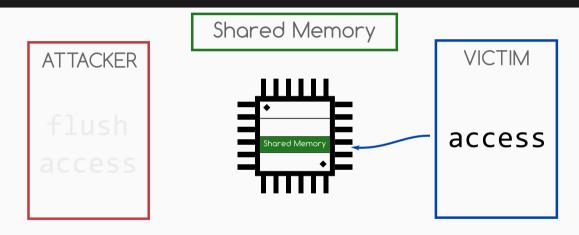

- cache attacks \rightarrow exploit timing differences of memory accesses
- attacker monitors which lines are accessed, not the content

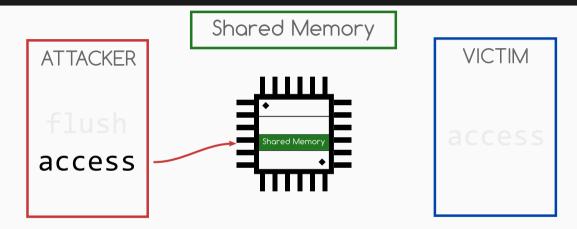

- cache attacks \rightarrow exploit timing differences of memory accesses
- attacker monitors which lines are accessed, not the content
- covert channel: two processes communicating with each other

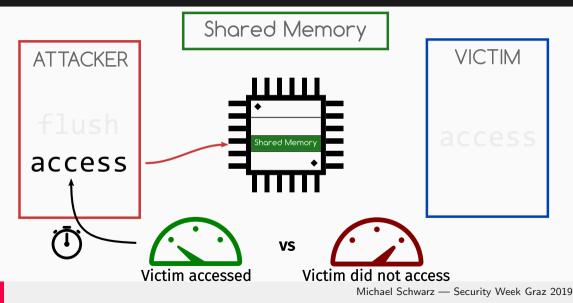

- cache attacks \rightarrow exploit timing differences of memory accesses
- attacker monitors which lines are accessed, not the content
- covert channel: two processes communicating with each other
 - not allowed to do so, e.g., across VMs


- cache attacks \rightarrow exploit timing differences of memory accesses
- attacker monitors which lines are accessed, not the content
- covert channel: two processes communicating with each other
 not allowed to do so, e.g., across VMs
- side-channel attack: one malicious process spies on benign processes

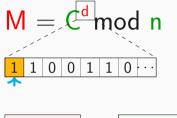

- cache attacks \rightarrow exploit timing differences of memory accesses
- attacker monitors which lines are accessed, not the content
- covert channel: two processes communicating with each other
 not allowed to do so, e.g., across VMs
- side-channel attack: one malicious process spies on benign processes
 - e.g., steals crypto keys, spies on keystrokes







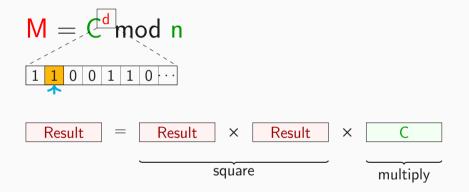
www.tugraz.at

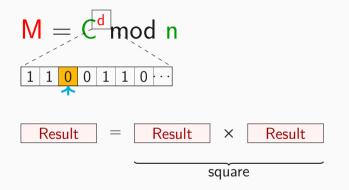

Signatures (RSA)

$M = C^d \mod n$

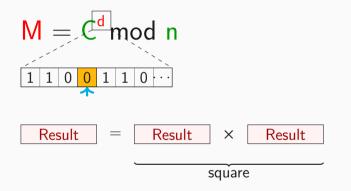
Michael Schwarz — Security Week Graz 2019

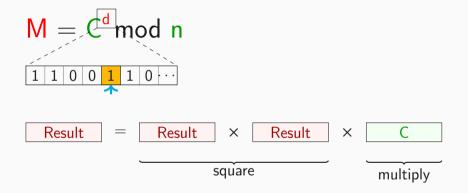
23



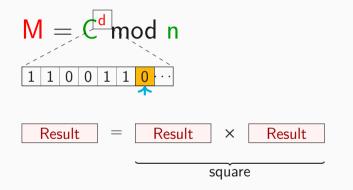

Michael Schwarz — Security Week Graz 2019

23









Time to code

• locate **key-dependent** memory accesses

- locate **key-dependent** memory accesses
- How to locate key-dependent memory accesses?

• It's complicated:

- It's complicated:
 - Large binaries and libraries (third-party code)

- It's complicated:
 - Large binaries and libraries (third-party code)
 - Many libraries (gedit: 60MB)

- It's complicated:
 - Large binaries and libraries (third-party code)
 - Many libraries (gedit: 60MB)
 - Closed-source / unknown binaries

- It's complicated:
 - Large binaries and libraries (third-party code)
 - Many libraries (gedit: 60MB)
 - Closed-source / unknown binaries
 - Self-compiled binaries

- It's complicated:
 - Large binaries and libraries (third-party code)
 - Many libraries (gedit: 60MB)
 - Closed-source / unknown binaries
 - Self-compiled binaries
- Difficult to find all exploitable addresses

• Preprocessing step to find exploitable addresses automatically

Exploitation Phase

- Preprocessing step to find exploitable addresses automatically
 - w.r.t. "events" (keystrokes, encryptions, ...)

Exploitation Phase

- Preprocessing step to find exploitable addresses automatically
 - w.r.t. "events" (keystrokes, encryptions, ...)
 - called "Cache Template"

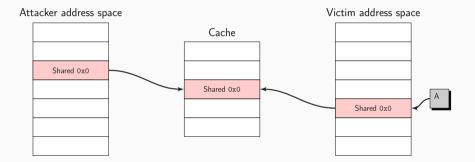
Exploitation Phase

- Preprocessing step to find exploitable addresses automatically
 - w.r.t. "events" (keystrokes, encryptions, ...)
 - called "Cache Template"

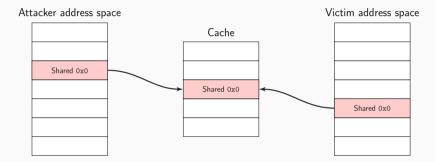
Exploitation Phase

• Monitor exploitable addresses

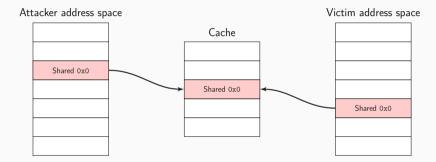
Attacker address space



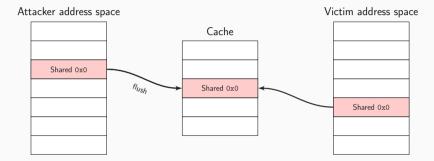
Victim address space



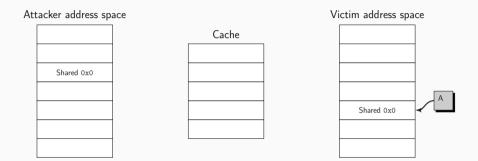
Cache is empty


Attacker triggers an event

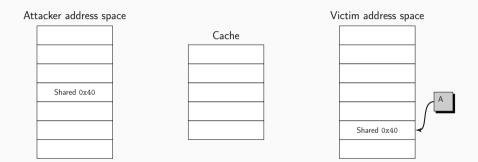
Profiling Phase

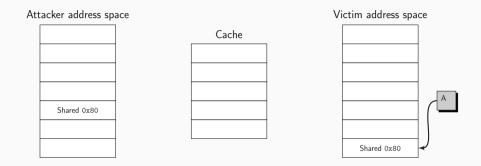

Attacker checks one address for cache hits ("Reload")

Profiling Phase



Update number of cache hits per event


Profiling Phase


Attacker flushes shared memory

Repeat for higher accuracy

Continue with next address

Continue with next address

Michael Schwarz — Security Week Graz 2019

```
www.tugraz.at 📕
```

```
$> ps -A | grep gedit
$> cat /proc/<pid>/maps
00400000-00489000 r-xp 00000000 fd:01 396356
/usr/bin/gedit
7f5a96991000-7f5a96a51000 r-xp 00000000 fd:01 399365
/usr/lib/x86_64-linux-gnu/libgdk-3.so.0.2200.30
...
```

memory range, access rights, offset, -, -, file name

```
$> cd practicals/02_cache_template_attacks/
$> make
$> # start the targeted program (e.g., gedit)
$> sleep 2; ./profiling /usr/lib/x86_64-linux-gnu/
libgdk-3.so.0.2200.30
```

... and hold down a key in the target program

www.tugraz.at

```
$> cd practicals/02_cache_template_attacks/
$> make
$> # start the targeted program (e.g., gedit)
$> sleep 2; ./profiling /usr/lib/x86_64-linux-gnu/
libgdk-3.so.0.2200.30
```

... and hold down a key in the target program save addresses with peaks!

www.tugraz.at

<pre>\$> # ./spy <file> <offset></offset></file></pre>	
<pre>\$> ./spy /usr/lib/x86_64-linux-gnu/libgdk-3.so.0.2200.30 3</pre>	336896
Monitoring offset 336896	
Hit #O	
Hit #1	
Hit #2	

Time to code

2	Terminal	- • >	Open 🗸	+	Untitled	Document 1	Save	=	- +	×
File Edit View Search Terminal Help										
% sleep 2; ./spy 300 7f05 8050 ∎	5140a4000-7f051417b000 /usr/lib/x86_64-linux-	r-xp 0x20000 08:02 26 gnu/gedit/libgedit.so	1							
[nrefetch]		<dir> 14 03 2017 21.44.96</dir>								
-										
File Edit View Search Terminal Help shark% ./spy []										
(/nome/daniei/ja:					Plain Text 👻	Tab Width: 2 👻	Ln 1, Col 1		11	NS

Cache Template Attack Demo

Profiling Phase: 1 Event, 1 Address

ADDRESS 00202020

Profiling Phase: 1 Event, 1 Address

Example: Cache Hit Ratio for (0x7c800, n): 200 / 200

Profiling Phase: All Events, 1 Address

Profiling Phase: All Events, 1 Address


Example: Cache Hit Ratio for (0x7c800, u): 13 / 200

Profiling Phase: All Events, 1 Address

Distinguish n from other keys by monitoring 0x7c800

Profiling Phase: All Events, All Addresses

Michael Schwarz — Security Week Graz 2019

D. Gruss, R. Spreitzer, and S. Mangard. Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches. In: USENIX Security Symposium. 2015.

Side-Channel Lab II

Michael Schwarz

Security Week Graz 2019

Michael Schwarz — Security Week Graz 2019

1

• Two programs would like to communicate

• Two programs would like to communicate but are not allowed to do so

- Two programs would like to communicate but are not allowed to do so
 - either because there is no communication channel...

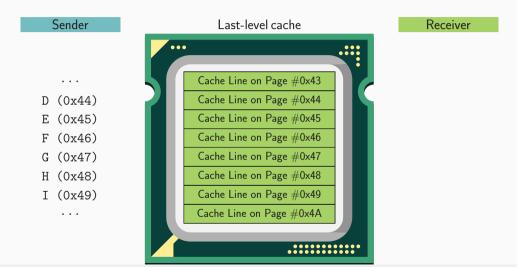
- Two programs would like to communicate but are not allowed to do so
 - either because there is no communication channel...
 - ...or the channels are monitored and programs are stopped on communication attempts

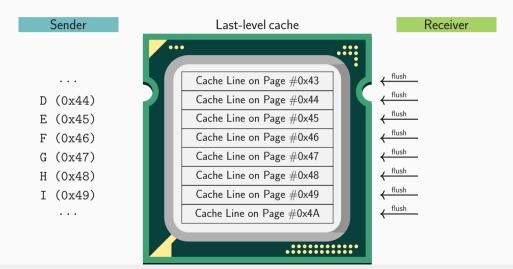
- Two programs would like to communicate but are not allowed to do so
 - either because there is no communication channel...
 - ...or the channels are monitored and programs are stopped on communication attempts
- Use side channels and stay stealthy

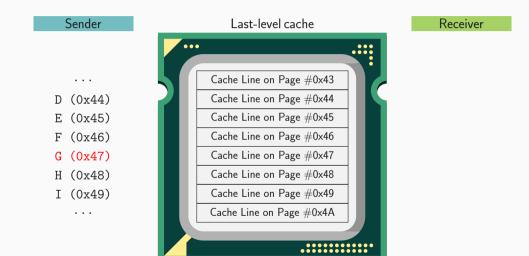
www.tugraz.at

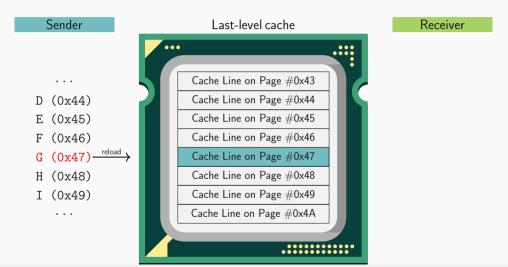
Covert channel

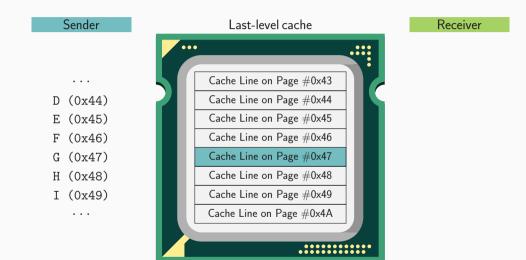
Michael Schwarz — Security Week Graz 2019

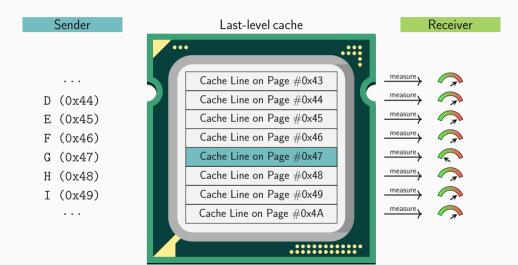

www.tugraz.at

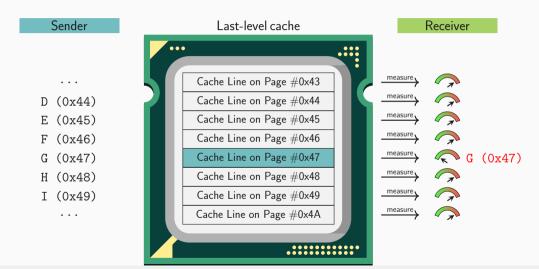

Covert channel

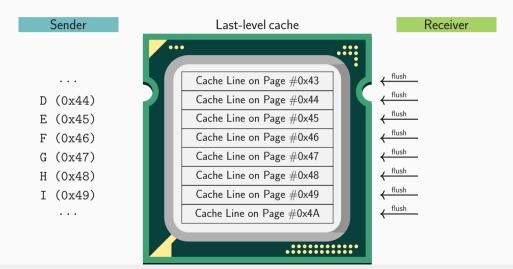


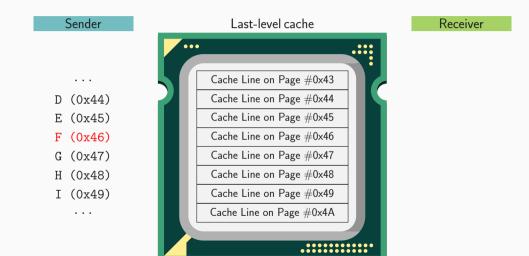


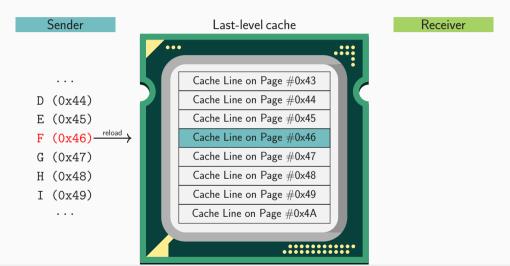

method	raw capacity	err. rate	true capacity	env.
F+F [Gru+16]	3968Kbps	0.840%	3690Kbps	native
$F{+}R$ [Gru+16]	2384Kbps	0.005%	2382Kbps	native
E+R [Lip+16]	1141Kbps	1.100%	1041Kbps	native
P+P [Mau+17]	601Kbps	0.000%	601Kbps	native
P+P [Liu+15]	600Kbps	1.000%	552Kbps	virt
P+P [Mau+17]	362Kbps	0.000%	362Kbps	native

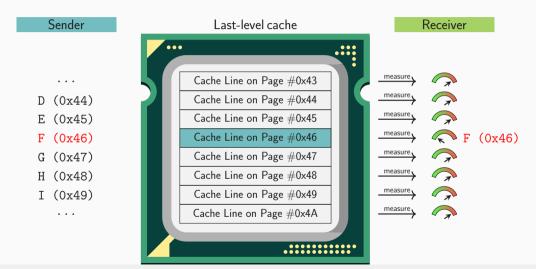




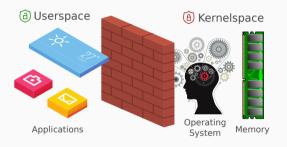







Sending Data (easy but inefficient)

Sending Data (easy but inefficient)


Sending Data (easy but inefficient)

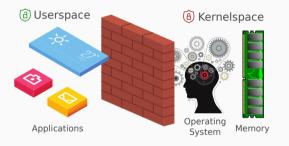
Time to code

Operating Systems 101



• Kernel is isolated from user space

Memory Isolation

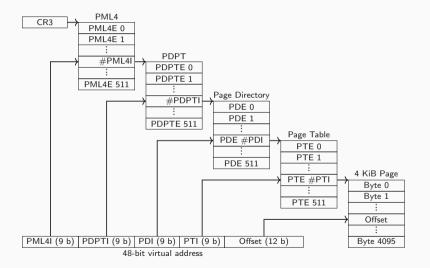


- Kernel is isolated from user space
- This isolation is a combination of hardware and software

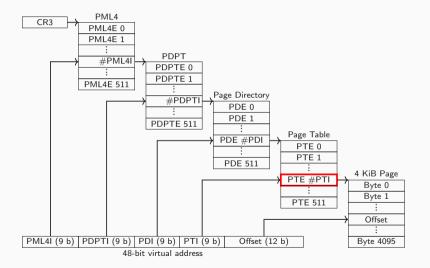
Memory Isolation

- Kernel is isolated from user space
- This isolation is a combination of hardware and software
- User applications cannot access anything from the kernel

• CPU support virtual address spaces to isolate processes

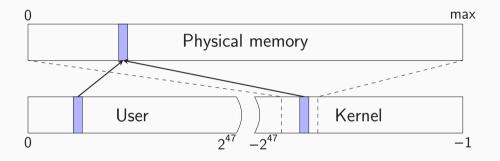


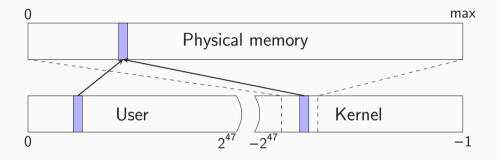
- CPU support virtual address spaces to isolate processes
- Physical memory is organized in page frames



- CPU support virtual address spaces to isolate processes
- Physical memory is organized in page frames
- Virtual memory pages are mapped to page frames using page tables

Address Translation on x86-64


Address Translation on x86-64


• User/Supervisor bit defines in which privilege level the page can be accessed

Direct-physical map

• Kernel is typically mapped into every address space

Direct-physical map

- Kernel is typically mapped into every address space
- Entire physical memory is mapped in the kernel

www.tugraz.at

Loading an address

• Instruction Set Architecture (ISA) is an abstract model of a computer (x86, ARMv8, SPARC, ...)

- Instruction Set Architecture (ISA) is an abstract model of a computer (x86, ARMv8, SPARC, ...)
- Serves as the interface between hardware and software

- Instruction Set Architecture (ISA) is an abstract model of a computer (x86, ARMv8, SPARC, ...)
- Serves as the interface between hardware and software
- Microarchitecture is an actual implementation of the ISA

- Instruction Set Architecture (ISA) is an abstract model of a computer (x86, ARMv8, SPARC, ...)
- Serves as the interface between hardware and software
- Microarchitecture is an actual implementation of the ISA

IF	ID	ΕX	MEM	WB				
	IF	ID	ΕX	MEM	WB			
		IF	ID	EX	МЕМ	WB		
			IF	ID	EX	MEM	WB	
				IF	ID	ΕX	MEM	WB

- Instructions are...
 - fetched (IF) from the L1 Instruction Cache

IF	ID	ΕX	MEM	WB				
	IF	ID	ΕX	MEM	WB			
		IF	ID	EX	MEM	WB		
			IF	ID	ΕX	МЕМ	WB	
				IF	ID	ΕX	MEM	WB

- Instructions are...
 - fetched (IF) from the L1 Instruction Cache
 - decoded (ID)

IF	ID	ΕX	MEM	WB				
	IF	ID	ΕX	MEM	WB			
		IF	ID	EX	MEM	WB		
			IF	ID	ΕX	МЕМ	WB	
				IF	ID	ΕX	MEM	WB

- Instructions are...
 - fetched (IF) from the L1 Instruction Cache
 - decoded (ID)
 - executed (EX) by execution units

IF	ID	ΕX	MEM	WB				
	IF	ID	ΕX	MEM	WB			
		IF	ID	EX	МЕМ	WB		
			IF	ID	EX	МЕМ	WB	
				IF	ID	ΕX	MEM	WB

- Instructions are...
 - fetched (IF) from the L1 Instruction Cache
 - decoded (ID)
 - executed (EX) by execution units
- Memory access is performed (MEM)

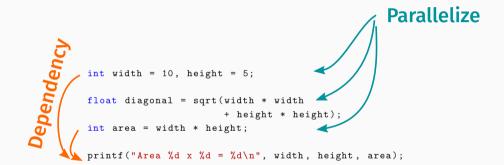
IF	ID	ΕX	MEM	WB				
	IF	ID	ΕX	MEM	WB			
		IF	ID	ΕX	мем	WB		
			IF	ID	EX	MEM	WB	
				IF	ID	ΕX	MEM	WB

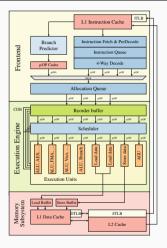
- Instructions are...
 - fetched (IF) from the L1 Instruction Cache
 - decoded (ID)
 - executed (EX) by execution units
- Memory access is performed (MEM)
- Architectural register file is updated (WB)

0000

• Instructions are executed in-order

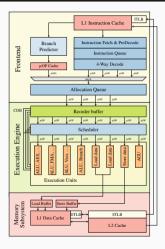
0000

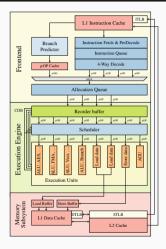

- Instructions are executed in-order
- Pipeline stalls when stages are not ready


0000

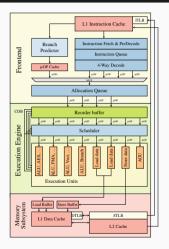
- Instructions are executed in-order
- Pipeline stalls when stages are not ready
- If data is not cached, we need to wait

Out-of-order Execution

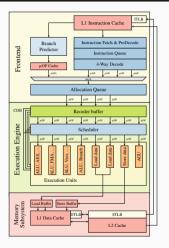



Instructions are

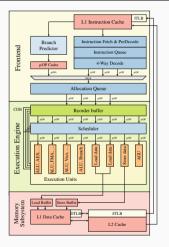
• fetched and decoded in the front-end


Instructions are

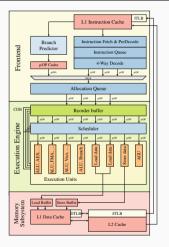
- fetched and decoded in the front-end
- dispatched to the backend


Instructions are

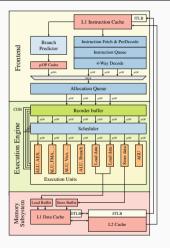
- fetched and decoded in the front-end
- dispatched to the backend
- processed by individual execution units


Instructions

• are executed out-of-order


Instructions

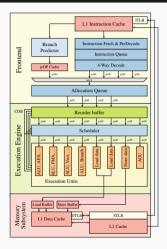
- are executed out-of-order
- wait until their dependencies are ready


Instructions

- are executed out-of-order
- wait until their dependencies are ready
 - Later instructions might execute prior earlier instructions

Instructions

- are executed out-of-order
- wait until their dependencies are ready
 - Later instructions might execute prior earlier instructions
- retire in-order

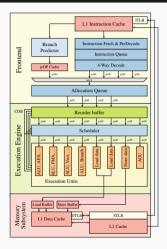


Instructions

- are executed out-of-order
- wait until their dependencies are ready
 - Later instructions might execute prior earlier instructions
- retire in-order
 - State becomes architecturally visible

www.tugraz.at 📕

Out-of-Order Execution



Instructions

- are executed out-of-order
- wait until their dependencies are ready
 - Later instructions might execute prior earlier instructions
- retire in-order
 - State becomes architecturally visible
- Exceptions are checked during retirement

www.tugraz.at 🗖

Out-of-Order Execution

Instructions

- are executed out-of-order
- wait until their dependencies are ready
 - Later instructions might execute prior earlier instructions
- retire in-order
 - State becomes architecturally visible
- Exceptions are checked during retirement
 - Flush pipeline and recover state

The state does not become architecturally visible but ...

The state does not become architecturally visible

but . . .

Michael Schwarz — Security Week Graz 2019


```
• New code
```

```
char data = 'S'; // a "secret" value
// ...
*(volatile char*) 0;
array[data * 4096] = 0;
```

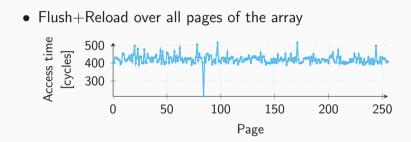


```
• New code
```

```
char data = 'S'; // a "secret" value
// ...
*(volatile char*) 0;
array[data * 4096] = 0;
```

• Luckily we know how to catch a segfault

• New code


```
char data = 'S'; // a "secret" value
// ...
*(volatile char*) 0;
array[data * 4096] = 0;
```

- Luckily we know how to catch a segfault
- Then check whether any part of array is cached

Checking the array

Time to code

• Add another layer of indirection to test

• Add another layer of indirection to test

Which address?

• Check /proc/kallsyms

Which address?

• Check /proc/kallsyms

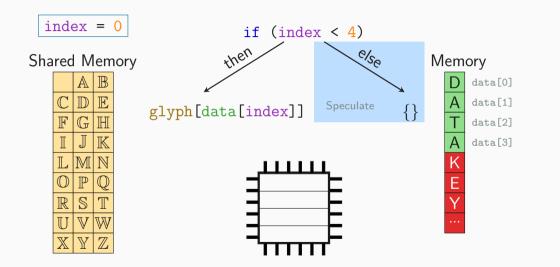
sudo cat /proc/kallsyms | grep banner

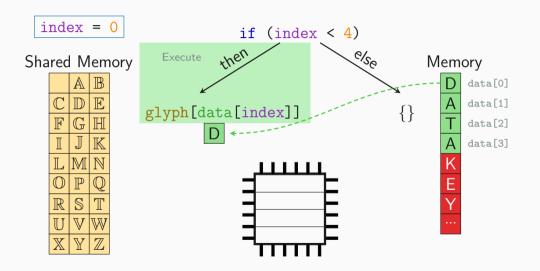
• or check /proc/pid/pagemap and print address

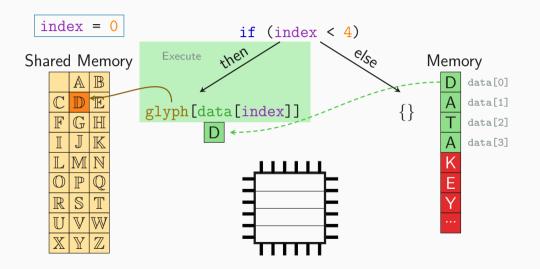
```
printf("target: %p\n",
    libsc_get_physical_address(ctx, vaddr));
```

Which address?

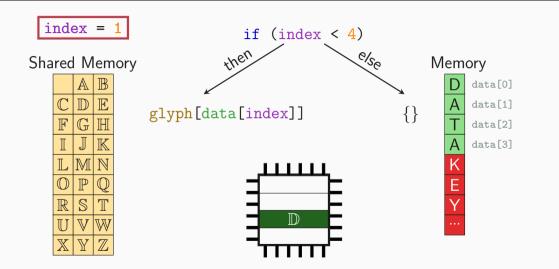
• Check /proc/kallsyms

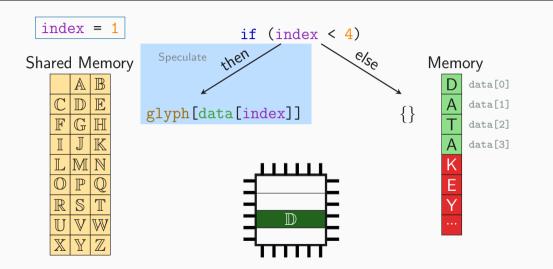

sudo cat /proc/kallsyms | grep banner

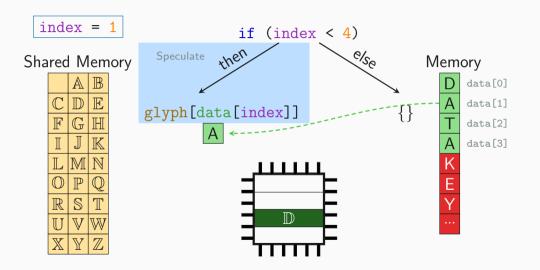

• or check /proc/pid/pagemap and print address

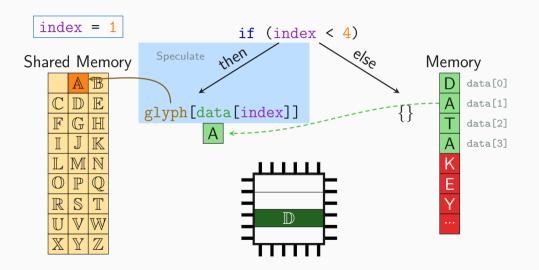

• or start at a random address and iterate

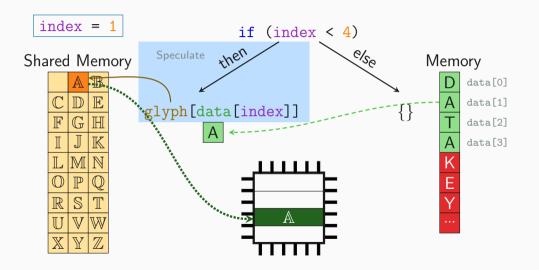
Time to code

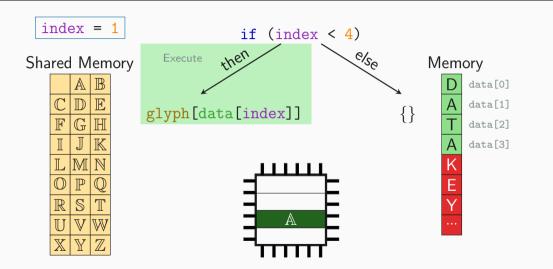


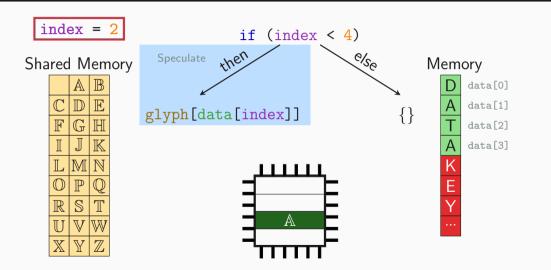


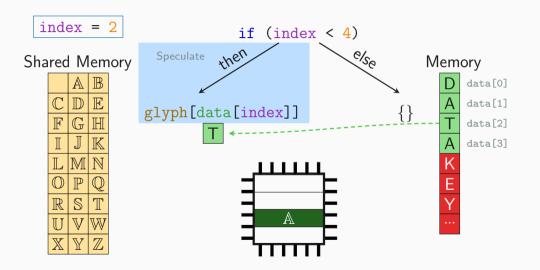


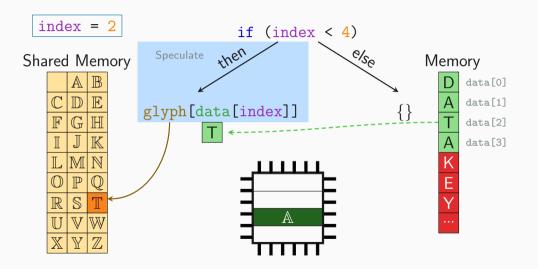


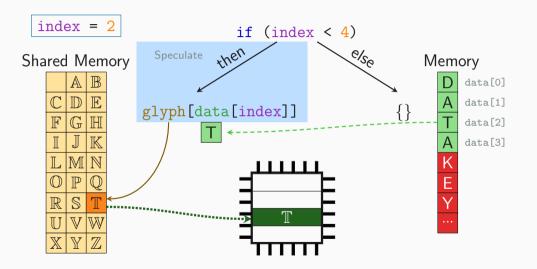


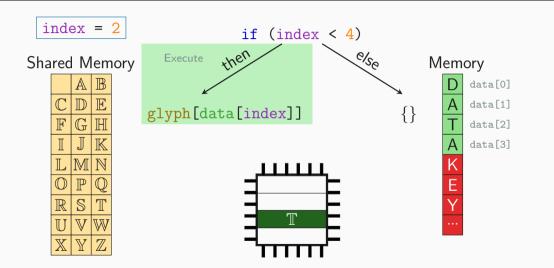


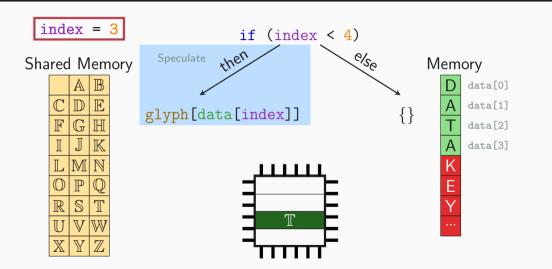




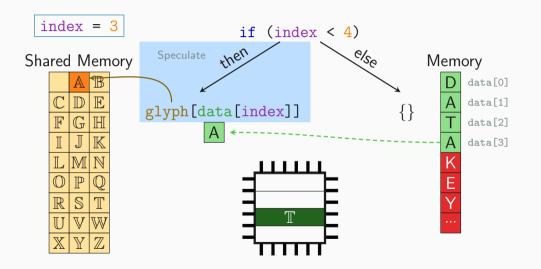


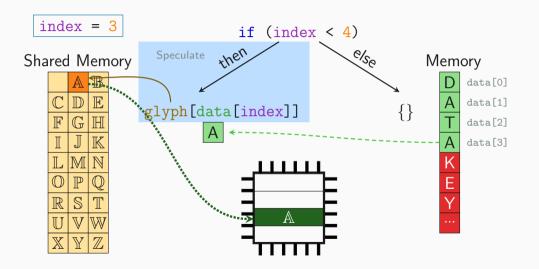


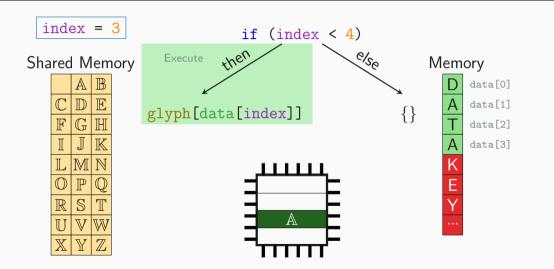


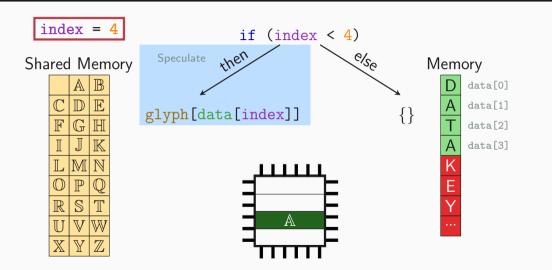


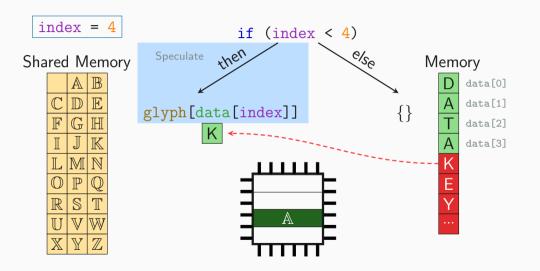


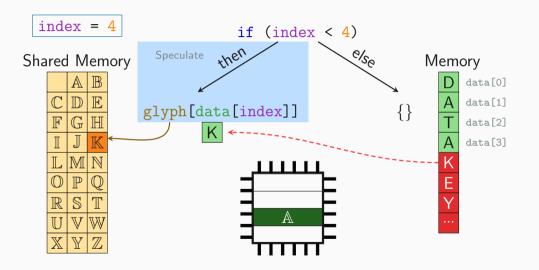


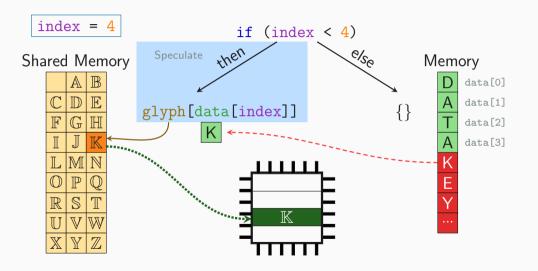


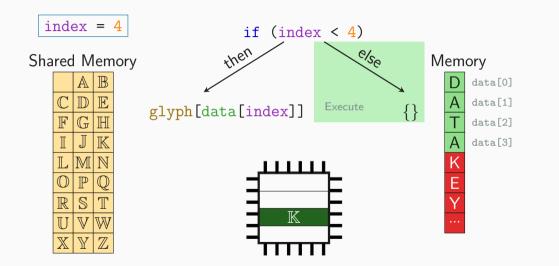


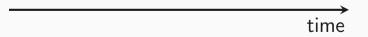




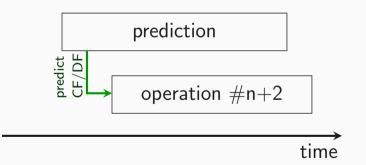




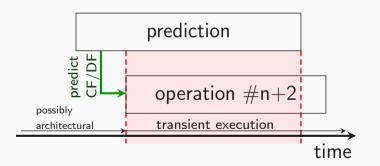


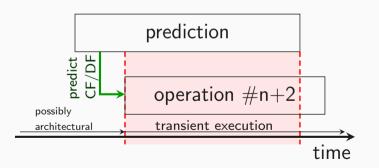


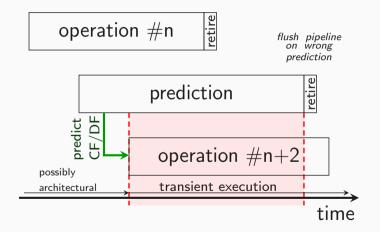
operation #n

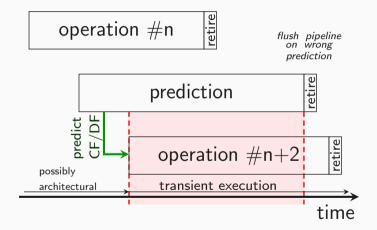


operation
$$\#n$$


prediction



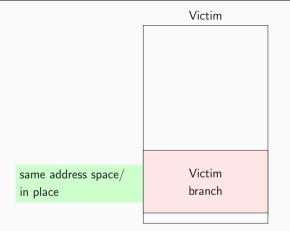


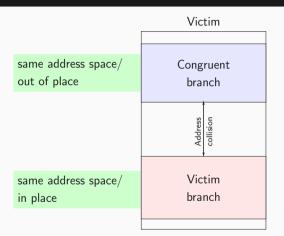


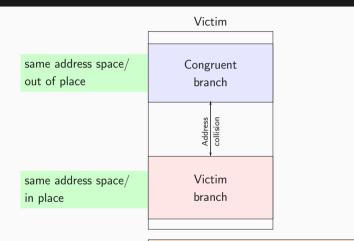
• Many predictors in modern CPUs

- Many predictors in modern CPUs
 - Branch taken/not taken (PHT)

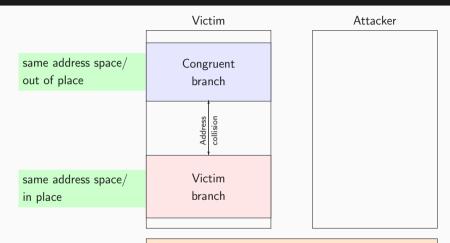
- Many predictors in modern CPUs
 - Branch taken/not taken (PHT)
 - Call/Jump destination (BTB)


- Many predictors in modern CPUs
 - Branch taken/not taken (PHT)
 - Call/Jump destination (BTB)
 - Function return destination (RSB)


- Many predictors in modern CPUs
 - Branch taken/not taken (PHT)
 - Call/Jump destination (BTB)
 - Function return destination (RSB)
 - Load matches previous store (STL)

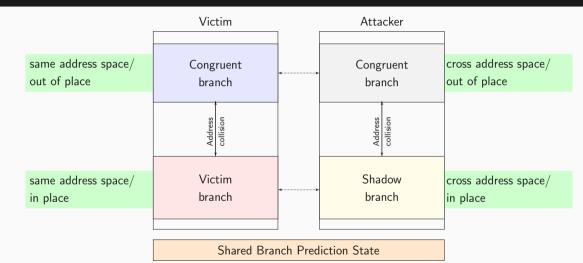

- Many predictors in modern CPUs
 - Branch taken/not taken (PHT)
 - Call/Jump destination (BTB)
 - Function return destination (RSB)
 - Load matches previous store (STL)
- Most are even shared among processes

www.tugraz.at



Shared Branch Prediction State


Michael Schwarz — Security Week Graz 2019


25

Shared Branch Prediction State

Time to code

Side-Channel Lab II

Michael Schwarz

Security Week Graz 2019

Michael Schwarz — Security Week Graz 2019

26

D. Gruss, C. Maurice, K. Wagner, and S. Mangard. Flush+Flush: A Fast and Stealthy Cache Attack. In: DIMVA. 2016.

- M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. ARMageddon: Cache Attacks on Mobile Devices. In: USENIX Security Symposium. 2016.
- F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-Level Cache Side-Channel Attacks are Practical. In: S&P. 2015.

C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss,C. Alberto Boano, S. Mangard, and K. Römer. Hello from the Other Side:SSH over Robust Cache Covert Channels in the Cloud. In: NDSS. 2017.