
Side-Channel Lab I

Michael Schwarz

Security Week Graz 2019

1 Michael Schwarz — Security Week Graz 2019

Scope www.tugraz.at

• everyday hardware: servers,

workstations, laptops,

smartphones. . .

• remote side-channel attacks

2 Michael Schwarz — Security Week Graz 2019

Scope www.tugraz.at

• everyday hardware: servers,

workstations, laptops,

smartphones. . .

• remote side-channel attacks

2 Michael Schwarz — Security Week Graz 2019

Scope www.tugraz.at

• everyday hardware: servers,

workstations, laptops,

smartphones. . .

• remote side-channel attacks

2 Michael Schwarz — Security Week Graz 2019

Scope www.tugraz.at

• everyday hardware: servers,

workstations, laptops,

smartphones. . .

• remote side-channel attacks

2 Michael Schwarz — Security Week Graz 2019

Scope www.tugraz.at

• everyday hardware: servers,

workstations, laptops,

smartphones. . .

• remote side-channel attacks

2 Michael Schwarz — Security Week Graz 2019

Side channels www.tugraz.at

• safe software infrastructure → no bugs, e.g., Heartbleed

• does not mean safe execution

• information leaks because of the hardware it runs on

• no “bug” in the sense of a mistake → lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements

3 Michael Schwarz — Security Week Graz 2019

Side channels www.tugraz.at

• safe software infrastructure → no bugs, e.g., Heartbleed

• does not mean safe execution

• information leaks because of the hardware it runs on

• no “bug” in the sense of a mistake → lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements

3 Michael Schwarz — Security Week Graz 2019

Side channels www.tugraz.at

• safe software infrastructure → no bugs, e.g., Heartbleed

• does not mean safe execution

• information leaks because of the hardware it runs on

• no “bug” in the sense of a mistake → lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements

3 Michael Schwarz — Security Week Graz 2019

Side channels www.tugraz.at

• safe software infrastructure → no bugs, e.g., Heartbleed

• does not mean safe execution

• information leaks because of the hardware it runs on

• no “bug” in the sense of a mistake → lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements

3 Michael Schwarz — Security Week Graz 2019

Side channels www.tugraz.at

• safe software infrastructure → no bugs, e.g., Heartbleed

• does not mean safe execution

• information leaks because of the hardware it runs on

• no “bug” in the sense of a mistake → lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements

3 Michael Schwarz — Security Week Graz 2019

Shared hardware www.tugraz.at

Shared hardware

x86 CPU

Data and

instruction

cache

Arithmetic

logic

unit

Branch

prediction

unit

Memory

DRAM

row

buffer

Memory

bus

Memory

deduplication

4 Michael Schwarz — Security Week Graz 2019

Why targeting the cache? www.tugraz.at

• shared across cores

• fast

→ fast cross-core attacks!

5 Michael Schwarz — Security Week Graz 2019

Why targeting the cache? www.tugraz.at

• shared across cores

• fast

→ fast cross-core attacks!

5 Michael Schwarz — Security Week Graz 2019

Why targeting the cache? www.tugraz.at

• shared across cores

• fast

→ fast cross-core attacks!

5 Michael Schwarz — Security Week Graz 2019

Timing differences www.tugraz.at

• caches improve performance

• SRAM is expensive → small caches

• different timings for memory accesses

• data is cached → cache hit → fast

• data is not cached → cache miss → slow

6 Michael Schwarz — Security Week Graz 2019

Timing differences www.tugraz.at

• caches improve performance

• SRAM is expensive → small caches

• different timings for memory accesses

• data is cached → cache hit → fast

• data is not cached → cache miss → slow

6 Michael Schwarz — Security Week Graz 2019

Timing differences www.tugraz.at

• caches improve performance

• SRAM is expensive → small caches

• different timings for memory accesses

• data is cached → cache hit → fast

• data is not cached → cache miss → slow

6 Michael Schwarz — Security Week Graz 2019

Timing differences www.tugraz.at

• caches improve performance

• SRAM is expensive → small caches

• different timings for memory accesses

• data is cached → cache hit → fast

• data is not cached → cache miss → slow

6 Michael Schwarz — Security Week Graz 2019

Timing differences www.tugraz.at

• caches improve performance

• SRAM is expensive → small caches

• different timings for memory accesses

• data is cached → cache hit → fast

• data is not cached → cache miss → slow

6 Michael Schwarz — Security Week Graz 2019

Memory Hierarchy www.tugraz.at

core 0

L2

Registers

Buffers

L1

core 1

L2

Registers

Buffers

L1

core 2

L2

Registers

Buffers

L1

core 3

L2

Registers

Buffers

L1

ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

DRAM

• L1 and L2 are private

• last-level cache:

• divided in slices

• shared across cores

• inclusive

7 Michael Schwarz — Security Week Graz 2019

Memory Hierarchy www.tugraz.at

core 0

L2

Registers

Buffers

L1

core 1

L2

Registers

Buffers

L1

core 2

L2

Registers

Buffers

L1

core 3

L2

Registers

Buffers

L1

ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

DRAM

• L1 and L2 are private

• last-level cache:

• divided in slices

• shared across cores

• inclusive

7 Michael Schwarz — Security Week Graz 2019

Memory Hierarchy www.tugraz.at

core 0

L2

Registers

Buffers

L1

core 1

L2

Registers

Buffers

L1

core 2

L2

Registers

Buffers

L1

core 3

L2

Registers

Buffers

L1

ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

DRAM

• L1 and L2 are private

• last-level cache:

• divided in slices

• shared across cores

• inclusive

7 Michael Schwarz — Security Week Graz 2019

Memory Hierarchy www.tugraz.at

core 0

L2

Registers

Buffers

L1

core 1

L2

Registers

Buffers

L1

core 2

L2

Registers

Buffers

L1

core 3

L2

Registers

Buffers

L1

ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

DRAM

• L1 and L2 are private

• last-level cache:

• divided in slices

• shared across cores

• inclusive

7 Michael Schwarz — Security Week Graz 2019

Memory Hierarchy www.tugraz.at

core 0

L2

Registers

Buffers

L1

core 1

L2

Registers

Buffers

L1

core 2

L2

Registers

Buffers

L1

core 3

L2

Registers

Buffers

L1

ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

DRAM

• L1 and L2 are private

• last-level cache:

• divided in slices

• shared across cores

• inclusive

7 Michael Schwarz — Security Week Graz 2019

Memory Hierarchy www.tugraz.at

core 0

L2

Registers

Buffers

L1

core 1

L2

Registers

Buffers

L1

core 2

L2

Registers

Buffers

L1

core 3

L2

Registers

Buffers

L1

ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

DRAM

• L1 and L2 are private

• last-level cache:

• divided in slices

• shared across cores

• inclusive

7 Michael Schwarz — Security Week Graz 2019

Memory Hierarchy www.tugraz.at

core 0

L2

Registers

Buffers

L1

core 1

L2

Registers

Buffers

L1

core 2

L2

Registers

Buffers

L1

core 3

L2

Registers

Buffers

L1

ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

DRAM

• L1 and L2 are private

• last-level cache:

• divided in slices

• shared across cores

• inclusive

7 Michael Schwarz — Security Week Graz 2019

Memory Hierarchy www.tugraz.at

core 0

L2

Registers

Buffers

L1

core 1

L2

Registers

Buffers

L1

core 2

L2

Registers

Buffers

L1

core 3

L2

Registers

Buffers

L1

ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

DRAM

• L1 and L2 are private

• last-level cache:

• divided in slices

• shared across cores

• inclusive

7 Michael Schwarz — Security Week Graz 2019

Inclusive property www.tugraz.at

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also evicted

from L1 and L2

• a core can evict lines in the private L1 of

another core

8 Michael Schwarz — Security Week Graz 2019

Inclusive property www.tugraz.at

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also evicted

from L1 and L2

• a core can evict lines in the private L1 of

another core

8 Michael Schwarz — Security Week Graz 2019

Inclusive property www.tugraz.at

L1

L2

LLC

core 0 core 1

inclusion

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also evicted

from L1 and L2

• a core can evict lines in the private L1 of

another core

8 Michael Schwarz — Security Week Graz 2019

Inclusive property www.tugraz.at

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also evicted

from L1 and L2

• a core can evict lines in the private L1 of

another core

8 Michael Schwarz — Security Week Graz 2019

Inclusive property www.tugraz.at

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also evicted

from L1 and L2

• a core can evict lines in the private L1 of

another core

8 Michael Schwarz — Security Week Graz 2019

Inclusive property www.tugraz.at

L1

L2

LLC

core 0 core 1

eviction

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also evicted

from L1 and L2

• a core can evict lines in the private L1 of

another core

8 Michael Schwarz — Security Week Graz 2019

Latency comparison www.tugraz.at

On current Intel CPUs:

• Registers: 0-1 cycle

• L1 cache: 4 cycles

• L2 cache: 12 cycles

• L3 cache: 26-31 cycles

• DRAM memory: >120 cycles

9 Michael Schwarz — Security Week Graz 2019

Latency comparison www.tugraz.at

On current Intel CPUs:

• Registers: 0-1 cycle

• L1 cache: 4 cycles

• L2 cache: 12 cycles

• L3 cache: 26-31 cycles

• DRAM memory: >120 cycles

9 Michael Schwarz — Security Week Graz 2019

Latency comparison www.tugraz.at

On current Intel CPUs:

• Registers: 0-1 cycle

• L1 cache: 4 cycles

• L2 cache: 12 cycles

• L3 cache: 26-31 cycles

• DRAM memory: >120 cycles

9 Michael Schwarz — Security Week Graz 2019

Latency comparison www.tugraz.at

On current Intel CPUs:

• Registers: 0-1 cycle

• L1 cache: 4 cycles

• L2 cache: 12 cycles

• L3 cache: 26-31 cycles

• DRAM memory: >120 cycles

9 Michael Schwarz — Security Week Graz 2019

Latency comparison www.tugraz.at

On current Intel CPUs:

• Registers: 0-1 cycle

• L1 cache: 4 cycles

• L2 cache: 12 cycles

• L3 cache: 26-31 cycles

• DRAM memory: >120 cycles

9 Michael Schwarz — Security Week Graz 2019

Measuring timing leakage www.tugraz.at

How every timing attack works:

• learn timing of different corner cases

• later, we recognize these corner cases by timing only

10 Michael Schwarz — Security Week Graz 2019

Measuring timing leakage www.tugraz.at

How every timing attack works:

• learn timing of different corner cases

• later, we recognize these corner cases by timing only

10 Michael Schwarz — Security Week Graz 2019

Steps www.tugraz.at

1. build two cases: cache hits and cache misses

2. time each case many times (get rid of noise)

3. we have a histogram!

4. find a threshold to distinguish the two cases

11 Michael Schwarz — Security Week Graz 2019

Steps www.tugraz.at

1. build two cases: cache hits and cache misses

2. time each case many times (get rid of noise)

3. we have a histogram!

4. find a threshold to distinguish the two cases

11 Michael Schwarz — Security Week Graz 2019

Steps www.tugraz.at

1. build two cases: cache hits and cache misses

2. time each case many times (get rid of noise)

3. we have a histogram!

4. find a threshold to distinguish the two cases

11 Michael Schwarz — Security Week Graz 2019

Steps www.tugraz.at

1. build two cases: cache hits and cache misses

2. time each case many times (get rid of noise)

3. we have a histogram!

4. find a threshold to distinguish the two cases

11 Michael Schwarz — Security Week Graz 2019

Cache hits www.tugraz.at

Loop:

1. measure time

2. access variable (always cache hit)

3. measure time

4. update histogram with delta

12 Michael Schwarz — Security Week Graz 2019

Cache hits www.tugraz.at

Loop:

1. measure time

2. access variable (always cache hit)

3. measure time

4. update histogram with delta

12 Michael Schwarz — Security Week Graz 2019

Cache hits www.tugraz.at

Loop:

1. measure time

2. access variable (always cache hit)

3. measure time

4. update histogram with delta

12 Michael Schwarz — Security Week Graz 2019

Cache hits www.tugraz.at

Loop:

1. measure time

2. access variable (always cache hit)

3. measure time

4. update histogram with delta

12 Michael Schwarz — Security Week Graz 2019

Cache misses www.tugraz.at

Loop:

1. measure time

2. access variable (always cache miss)

3. measure time

4. update histogram with delta

5. flush variable (clflush instruction)

13 Michael Schwarz — Security Week Graz 2019

Cache misses www.tugraz.at

Loop:

1. measure time

2. access variable (always cache miss)

3. measure time

4. update histogram with delta

5. flush variable (clflush instruction)

13 Michael Schwarz — Security Week Graz 2019

Cache misses www.tugraz.at

Loop:

1. measure time

2. access variable (always cache miss)

3. measure time

4. update histogram with delta

5. flush variable (clflush instruction)

13 Michael Schwarz — Security Week Graz 2019

Cache misses www.tugraz.at

Loop:

1. measure time

2. access variable (always cache miss)

3. measure time

4. update histogram with delta

5. flush variable (clflush instruction)

13 Michael Schwarz — Security Week Graz 2019

Cache misses www.tugraz.at

Loop:

1. measure time

2. access variable (always cache miss)

3. measure time

4. update histogram with delta

5. flush variable (clflush instruction)

13 Michael Schwarz — Security Week Graz 2019

Time to code

Accurate timings www.tugraz.at

• very short timings

• rdtsc instruction: cycle-accurate timestamps

[...]

rdtsc

function()

rdtsc

[...]

14 Michael Schwarz — Security Week Graz 2019

Accurate timings www.tugraz.at

• very short timings

• rdtsc instruction: cycle-accurate timestamps

[...]

rdtsc

function()

rdtsc

[...]

14 Michael Schwarz — Security Week Graz 2019

Accurate timings www.tugraz.at

• do you measure what you think you measure?

• out-of-order execution → what is really executed

rdtsc

function()

[...]

rdtsc

rdtsc

[...]

rdtsc

function()

rdtsc

rdtsc

function()

[...]

15 Michael Schwarz — Security Week Graz 2019

Accurate timings www.tugraz.at

• do you measure what you think you measure?

• out-of-order execution → what is really executed

rdtsc

function()

[...]

rdtsc

rdtsc

[...]

rdtsc

function()

rdtsc

rdtsc

function()

[...]

15 Michael Schwarz — Security Week Graz 2019

Accurate timings www.tugraz.at

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid

• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set

Architectures White Paper, December 2010.

16 Michael Schwarz — Security Week Graz 2019

Accurate timings www.tugraz.at

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid

• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set

Architectures White Paper, December 2010.

16 Michael Schwarz — Security Week Graz 2019

Accurate timings www.tugraz.at

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid

• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set

Architectures White Paper, December 2010.

16 Michael Schwarz — Security Week Graz 2019

Accurate timings www.tugraz.at

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid

• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set

Architectures White Paper, December 2010.

16 Michael Schwarz — Security Week Graz 2019

Timing differences www.tugraz.at

50 100 150 200 250 300 350 400

10
1

10
4

10
7

Access time [CPU cycles]

N
um

b
er

of
ac

ce
ss

es

cache hits

17 Michael Schwarz — Security Week Graz 2019

Timing differences www.tugraz.at

50 100 150 200 250 300 350 400

10
1

10
4

10
7

Access time [CPU cycles]

N
um

b
er

of
ac

ce
ss

es

cache hits cache misses

17 Michael Schwarz — Security Week Graz 2019

Find threshold www.tugraz.at

• as high as possible

• most cache hits are below

• no cache miss below

18 Michael Schwarz — Security Week Graz 2019

Find threshold www.tugraz.at

• as high as possible

• most cache hits are below

• no cache miss below

18 Michael Schwarz — Security Week Graz 2019

Find threshold www.tugraz.at

• as high as possible

• most cache hits are below

• no cache miss below

18 Michael Schwarz — Security Week Graz 2019

Hit vs. Miss? www.tugraz.at

• Hit → Data is fetched from buffers, L1, L2, or L3

• Miss → Data is fetched from DRAM

19 Michael Schwarz — Security Week Graz 2019

Hit vs. Miss? www.tugraz.at

• Hit → Data is fetched from buffers, L1, L2, or L3

• Miss → Data is fetched from DRAM

19 Michael Schwarz — Security Week Graz 2019

From Histogram to Attack www.tugraz.at

50 100 150 200 250 300 350 400

10
1

10
4

10
7

Access time [CPU cycles]

N
um

b
er

of
ac

ce
ss

es

cache hits cache misses

20 Michael Schwarz — Security Week Graz 2019

Type of attacks www.tugraz.at

• cache attacks → exploit timing differences of memory accesses

• attacker monitors which lines are accessed, not the content

• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes

• e.g., steals crypto keys, spies on keystrokes

21 Michael Schwarz — Security Week Graz 2019

Type of attacks www.tugraz.at

• cache attacks → exploit timing differences of memory accesses

• attacker monitors which lines are accessed, not the content

• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes

• e.g., steals crypto keys, spies on keystrokes

21 Michael Schwarz — Security Week Graz 2019

Type of attacks www.tugraz.at

• cache attacks → exploit timing differences of memory accesses

• attacker monitors which lines are accessed, not the content

• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes

• e.g., steals crypto keys, spies on keystrokes

21 Michael Schwarz — Security Week Graz 2019

Type of attacks www.tugraz.at

• cache attacks → exploit timing differences of memory accesses

• attacker monitors which lines are accessed, not the content

• covert channel: two processes communicating with each other
• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes

• e.g., steals crypto keys, spies on keystrokes

21 Michael Schwarz — Security Week Graz 2019

Type of attacks www.tugraz.at

• cache attacks → exploit timing differences of memory accesses

• attacker monitors which lines are accessed, not the content

• covert channel: two processes communicating with each other
• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes

• e.g., steals crypto keys, spies on keystrokes

21 Michael Schwarz — Security Week Graz 2019

Type of attacks www.tugraz.at

• cache attacks → exploit timing differences of memory accesses

• attacker monitors which lines are accessed, not the content

• covert channel: two processes communicating with each other
• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes

21 Michael Schwarz — Security Week Graz 2019

Flush+Reload www.tugraz.at

22 Michael Schwarz — Security Week Graz 2019

Flush+Reload www.tugraz.at

22 Michael Schwarz — Security Week Graz 2019

Flush+Reload www.tugraz.at

22 Michael Schwarz — Security Week Graz 2019

Flush+Reload www.tugraz.at

22 Michael Schwarz — Security Week Graz 2019

Flush+Reload www.tugraz.at

22 Michael Schwarz — Security Week Graz 2019

Flush+Reload www.tugraz.at

22 Michael Schwarz — Security Week Graz 2019

Flush+Reload www.tugraz.at

22 Michael Schwarz — Security Week Graz 2019

Flush+Reload www.tugraz.at

22 Michael Schwarz — Security Week Graz 2019

Signatures (RSA) www.tugraz.at

M = Cd mod n

23 Michael Schwarz — Security Week Graz 2019

Signatures (RSA) www.tugraz.at

M = Cd mod n

1 1 0 0 1 1 0 . . .

Result = C

23 Michael Schwarz — Security Week Graz 2019

Signatures (RSA) www.tugraz.at

M = Cd mod n

1 1 0 0 1 1 0 . . .

Result = Result × Result × C

square multiply

23 Michael Schwarz — Security Week Graz 2019

Signatures (RSA) www.tugraz.at

M = Cd mod n

1 1 0 0 1 1 0 . . .

Result = Result × Result

square

23 Michael Schwarz — Security Week Graz 2019

Signatures (RSA) www.tugraz.at

M = Cd mod n

1 1 0 0 1 1 0 . . .

Result = Result × Result

square

23 Michael Schwarz — Security Week Graz 2019

Signatures (RSA) www.tugraz.at

M = Cd mod n

1 1 0 0 1 1 0 . . .

Result = Result × Result × C

square multiply

23 Michael Schwarz — Security Week Graz 2019

Signatures (RSA) www.tugraz.at

M = Cd mod n

1 1 0 0 1 1 0 . . .

Result = Result × Result × C

square multiply

23 Michael Schwarz — Security Week Graz 2019

Signatures (RSA) www.tugraz.at

M = Cd mod n

1 1 0 0 1 1 0 . . .

Result = Result × Result

square

23 Michael Schwarz — Security Week Graz 2019

Time to code

Side-channel attack on user input www.tugraz.at

• locate key-dependent memory accesses

• How to locate key-dependent memory accesses?

24 Michael Schwarz — Security Week Graz 2019

Side-channel attack on user input www.tugraz.at

• locate key-dependent memory accesses

• How to locate key-dependent memory accesses?

24 Michael Schwarz — Security Week Graz 2019

Challenges www.tugraz.at

• It’s complicated:

• Large binaries and libraries (third-party code)

• Many libraries (gedit: 60MB)

• Closed-source / unknown binaries

• Self-compiled binaries

• Difficult to find all exploitable addresses

25 Michael Schwarz — Security Week Graz 2019

Challenges www.tugraz.at

• It’s complicated:

• Large binaries and libraries (third-party code)

• Many libraries (gedit: 60MB)

• Closed-source / unknown binaries

• Self-compiled binaries

• Difficult to find all exploitable addresses

25 Michael Schwarz — Security Week Graz 2019

Challenges www.tugraz.at

• It’s complicated:

• Large binaries and libraries (third-party code)

• Many libraries (gedit: 60MB)

• Closed-source / unknown binaries

• Self-compiled binaries

• Difficult to find all exploitable addresses

25 Michael Schwarz — Security Week Graz 2019

Challenges www.tugraz.at

• It’s complicated:

• Large binaries and libraries (third-party code)

• Many libraries (gedit: 60MB)

• Closed-source / unknown binaries

• Self-compiled binaries

• Difficult to find all exploitable addresses

25 Michael Schwarz — Security Week Graz 2019

Challenges www.tugraz.at

• It’s complicated:

• Large binaries and libraries (third-party code)

• Many libraries (gedit: 60MB)

• Closed-source / unknown binaries

• Self-compiled binaries

• Difficult to find all exploitable addresses

25 Michael Schwarz — Security Week Graz 2019

Challenges www.tugraz.at

• It’s complicated:

• Large binaries and libraries (third-party code)

• Many libraries (gedit: 60MB)

• Closed-source / unknown binaries

• Self-compiled binaries

• Difficult to find all exploitable addresses

25 Michael Schwarz — Security Week Graz 2019

Cache Template Attacks www.tugraz.at

Profiling Phase

• Preprocessing step to find exploitable addresses automatically

• w.r.t. “events” (keystrokes, encryptions, ...)

• called “Cache Template”

Exploitation Phase

• Monitor exploitable addresses

26 Michael Schwarz — Security Week Graz 2019

Cache Template Attacks www.tugraz.at

Profiling Phase

• Preprocessing step to find exploitable addresses automatically

• w.r.t. “events” (keystrokes, encryptions, ...)

• called “Cache Template”

Exploitation Phase

• Monitor exploitable addresses

26 Michael Schwarz — Security Week Graz 2019

Cache Template Attacks www.tugraz.at

Profiling Phase

• Preprocessing step to find exploitable addresses automatically

• w.r.t. “events” (keystrokes, encryptions, ...)

• called “Cache Template”

Exploitation Phase

• Monitor exploitable addresses

26 Michael Schwarz — Security Week Graz 2019

Cache Template Attacks www.tugraz.at

Profiling Phase

• Preprocessing step to find exploitable addresses automatically

• w.r.t. “events” (keystrokes, encryptions, ...)

• called “Cache Template”

Exploitation Phase

• Monitor exploitable addresses

26 Michael Schwarz — Security Week Graz 2019

Profiling Phase www.tugraz.at

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Cache is empty

27 Michael Schwarz — Security Week Graz 2019

Profiling Phase www.tugraz.at

Attacker address space

Cache

Victim address space

A

Shared 0x0

Shared 0x0

Attacker triggers an event

Shared 0x0

Shared 0x0

Shared 0x0

27 Michael Schwarz — Security Week Graz 2019

Profiling Phase www.tugraz.at

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Attacker checks one address for cache hits (“Reload”)

Shared 0x0

Shared 0x0

Shared 0x0

27 Michael Schwarz — Security Week Graz 2019

Profiling Phase www.tugraz.at

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Update number of cache hits per event

Shared 0x0

Shared 0x0

Shared 0x0

27 Michael Schwarz — Security Week Graz 2019

Profiling Phase www.tugraz.at

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Attacker flushes shared memory

Shared 0x0

Shared 0x0

Shared 0x0

flush

27 Michael Schwarz — Security Week Graz 2019

Profiling Phase www.tugraz.at

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Repeat for higher accuracy

A

27 Michael Schwarz — Security Week Graz 2019

Profiling Phase www.tugraz.at

Attacker address space

Cache

Victim address space

Continue with next address

A

Shared 0x40

Shared 0x40

27 Michael Schwarz — Security Week Graz 2019

Profiling Phase www.tugraz.at

Attacker address space

Cache

Victim address space

Continue with next address

A

Shared 0x80

Shared 0x80

27 Michael Schwarz — Security Week Graz 2019

What to profile? www.tugraz.at

$> ps -A | grep gedit

$> cat /proc/<pid >/maps

00400000 -00489000 r-xp 00000000 fd:01 396356

/usr/bin/gedit

7f5a96991000 -7 f5a96a51000 r-xp 00000000 fd:01 399365

/usr/lib/x86_64 -linux -gnu/libgdk -3.so .0.2200.30

...

memory range, access rights, offset, –, –, file name

28 Michael Schwarz — Security Week Graz 2019

Profiling a single event www.tugraz.at

$> cd practicals /02 _cache_template_attacks/

$> make

$> # start the targeted program (e.g., gedit)

$> sleep 2; ./ profiling /usr/lib/x86_64 -linux -gnu/

libgdk -3.so .0.2200.30

... and hold down a key in the target program

save addresses with peaks!

29 Michael Schwarz — Security Week Graz 2019

Profiling a single event www.tugraz.at

$> cd practicals /02 _cache_template_attacks/

$> make

$> # start the targeted program (e.g., gedit)

$> sleep 2; ./ profiling /usr/lib/x86_64 -linux -gnu/

libgdk -3.so .0.2200.30

... and hold down a key in the target program

save addresses with peaks!

29 Michael Schwarz — Security Week Graz 2019

Exploitation phase www.tugraz.at

$> # ./spy <file > <offset >

$> ./spy /usr/lib/x86_64 -linux -gnu/libgdk -3.so .0.2200.30 336896

Monitoring offset 336896

Hit #0

Hit #1

Hit #2

...

30 Michael Schwarz — Security Week Graz 2019

Time to code

Cache Template Attack Demo

Profiling Phase: 1 Event, 1 Address www.tugraz.at

A
d
d
r
e
ss

Key
n

0x7c800

32 Michael Schwarz — Security Week Graz 2019

Profiling Phase: 1 Event, 1 Address www.tugraz.at

A
d
d
r
e
ss

Key
n

0x7c800

Example: Cache Hit Ratio for (0x7c800, n): 200 / 200

32 Michael Schwarz — Security Week Graz 2019

Profiling Phase: All Events, 1 Address www.tugraz.at

A
d
d
r
e
ss

Key
g h i j k l m n o p q r s t u v w x y z

0x7c800

33 Michael Schwarz — Security Week Graz 2019

Profiling Phase: All Events, 1 Address www.tugraz.at

A
d
d
r
e
ss

Key
g h i j k l m n o p q r s t u v w x y z

0x7c800

Example: Cache Hit Ratio for (0x7c800, u): 13 / 200

33 Michael Schwarz — Security Week Graz 2019

Profiling Phase: All Events, 1 Address www.tugraz.at

A
d
d
r
e
ss

Key
g h i j k l m n o p q r s t u v w x y z

0x7c800

Distinguish n from other keys by monitoring 0x7c800

33 Michael Schwarz — Security Week Graz 2019

Profiling Phase: All Events, All Addresses www.tugraz.at

A
d
d
r
e
ss

Key
g h i j k l m n o p q r s t u v w x y z

0x7c680
0x7c6c0
0x7c700
0x7c740
0x7c780
0x7c7c0
0x7c800
0x7c840
0x7c880
0x7c8c0
0x7c900
0x7c940
0x7c980
0x7c9c0
0x7ca00
0x7cb80
0x7cc40
0x7cc80
0x7ccc0
0x7cd00

34 Michael Schwarz — Security Week Graz 2019

D. Gruss, R. Spreitzer, and S. Mangard. Cache Template Attacks:

Automating Attacks on Inclusive Last-Level Caches. In: USENIX Security

Symposium. 2015.

Side-Channel Lab II

Michael Schwarz

Security Week Graz 2019

1 Michael Schwarz — Security Week Graz 2019

Covert channel www.tugraz.at

What is a covert channel?

• Two programs would like to communicate

but are not allowed to do so

• either because there is no communication channel...

• ...or the channels are monitored and programs are stopped on

communication attempts

• Use side channels and stay stealthy

2 Michael Schwarz — Security Week Graz 2019

Covert channel www.tugraz.at

What is a covert channel?

• Two programs would like to communicate but are not allowed to do so

• either because there is no communication channel...

• ...or the channels are monitored and programs are stopped on

communication attempts

• Use side channels and stay stealthy

2 Michael Schwarz — Security Week Graz 2019

Covert channel www.tugraz.at

What is a covert channel?

• Two programs would like to communicate but are not allowed to do so

• either because there is no communication channel...

• ...or the channels are monitored and programs are stopped on

communication attempts

• Use side channels and stay stealthy

2 Michael Schwarz — Security Week Graz 2019

Covert channel www.tugraz.at

What is a covert channel?

• Two programs would like to communicate but are not allowed to do so

• either because there is no communication channel...

• ...or the channels are monitored and programs are stopped on

communication attempts

• Use side channels and stay stealthy

2 Michael Schwarz — Security Week Graz 2019

Covert channel www.tugraz.at

What is a covert channel?

• Two programs would like to communicate but are not allowed to do so

• either because there is no communication channel...

• ...or the channels are monitored and programs are stopped on

communication attempts

• Use side channels and stay stealthy

2 Michael Schwarz — Security Week Graz 2019

Covert channel www.tugraz.at

3 Michael Schwarz — Security Week Graz 2019

Covert channel www.tugraz.at

3 Michael Schwarz — Security Week Graz 2019

State of the art www.tugraz.at

method raw capacity err. rate true capacity env.

F+F [Gru+16] 3968Kbps 0.840% 3690Kbps native

F+R [Gru+16] 2384Kbps 0.005% 2382Kbps native

E+R [Lip+16] 1141Kbps 1.100% 1041Kbps native

P+P [Mau+17] 601Kbps 0.000% 601Kbps native

P+P [Liu+15] 600Kbps 1.000% 552Kbps virt

P+P [Mau+17] 362Kbps 0.000% 362Kbps native

4 Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient) www.tugraz.at

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Sender Receiver

D (0x44)

...

D (0x44)

E (0x45)

F (0x46)

G (0x47)

H (0x48)

I (0x49)
...

D (0x44)

5 Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient) www.tugraz.at

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Sender Receiver

D (0x44)

...

D (0x44)

E (0x45)

F (0x46)

G (0x47)

H (0x48)

I (0x49)
...

flush

flush

flush

flush

flush

flush

flush

flush

D (0x44)

5 Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient) www.tugraz.at

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Sender Receiver

D (0x44)

...

D (0x44)

E (0x45)

F (0x46)

G (0x47)

H (0x48)

I (0x49)
...

D (0x44)

5 Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient) www.tugraz.at

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Sender Receiver

D (0x44)

...

D (0x44)

E (0x45)

F (0x46)

G (0x47)

H (0x48)

I (0x49)
...

reload

D (0x44)

5 Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient) www.tugraz.at

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Sender Receiver

D (0x44)

...

D (0x44)

E (0x45)

F (0x46)

G (0x47)

H (0x48)

I (0x49)
...

D (0x44)

5 Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient) www.tugraz.at

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Sender Receiver

D (0x44)

...

D (0x44)

E (0x45)

F (0x46)

G (0x47)

H (0x48)

I (0x49)
...

measure

measure

measure

measure

measure

measure

measure

measure

D (0x44)

5 Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient) www.tugraz.at

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Sender Receiver

D (0x44)

...

D (0x44)

E (0x45)

F (0x46)

G (0x47)

H (0x48)

I (0x49)
...

measure

measure

measure

measure

measure

measure

measure

measure

D (0x44)

G (0x47)

5 Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient) www.tugraz.at

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Sender Receiver

D (0x44)

...

D (0x44)

E (0x45)

F (0x46)

G (0x47)

H (0x48)

I (0x49)
...

flush

flush

flush

flush

flush

flush

flush

flush

D (0x44)

5 Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient) www.tugraz.at

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Sender Receiver

D (0x44)

...

D (0x44)

E (0x45)

F (0x46)

G (0x47)

H (0x48)

I (0x49)
...

D (0x44)

5 Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient) www.tugraz.at

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Sender Receiver

D (0x44)

...

D (0x44)

E (0x45)

F (0x46)

G (0x47)

H (0x48)

I (0x49)
...

reload

D (0x44)

5 Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient) www.tugraz.at

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Sender Receiver

D (0x44)

...

D (0x44)

E (0x45)

F (0x46)

G (0x47)

H (0x48)

I (0x49)
...

measure

measure

measure

measure

measure

measure

measure

measure

D (0x44)

F (0x46)

5 Michael Schwarz — Security Week Graz 2019

Time to code

Operating Systems 101

Memory Isolation www.tugraz.at

Userspace Kernelspace

Applications
Operating
System Memory

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel

6 Michael Schwarz — Security Week Graz 2019

Memory Isolation www.tugraz.at

Userspace Kernelspace

Applications
Operating
System Memory

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel

6 Michael Schwarz — Security Week Graz 2019

Memory Isolation www.tugraz.at

Userspace Kernelspace

Applications
Operating
System Memory

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel

6 Michael Schwarz — Security Week Graz 2019

Paging www.tugraz.at

• CPU support virtual address spaces to isolate processes

• Physical memory is organized in page frames

• Virtual memory pages are mapped to page frames

using page tables

7 Michael Schwarz — Security Week Graz 2019

Paging www.tugraz.at

• CPU support virtual address spaces to isolate processes

• Physical memory is organized in page frames

• Virtual memory pages are mapped to page frames

using page tables

7 Michael Schwarz — Security Week Graz 2019

Paging www.tugraz.at

• CPU support virtual address spaces to isolate processes

• Physical memory is organized in page frames

• Virtual memory pages are mapped to page frames

using page tables

7 Michael Schwarz — Security Week Graz 2019

Address Translation on x86-64 www.tugraz.at

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)

48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
⋅⋅⋅

#PML4I
⋅⋅⋅

PML4E 511

PDPT

PDPTE 0

PDPTE 1
⋅⋅⋅

#PDPTI
⋅⋅⋅

PDPTE 511

Page Directory

PDE 0

PDE 1
⋅⋅⋅

PDE #PDI
⋅⋅⋅

PDE 511

Page Table

PTE 0

PTE 1
⋅⋅⋅

PTE #PTI
⋅⋅⋅

PTE 511

4 KiB Page

Byte 0

Byte 1
⋅⋅⋅

Offset
⋅⋅⋅

Byte 4095

8 Michael Schwarz — Security Week Graz 2019

Address Translation on x86-64 www.tugraz.at

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)

48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
⋅⋅⋅

#PML4I
⋅⋅⋅

PML4E 511

PDPT

PDPTE 0

PDPTE 1
⋅⋅⋅

#PDPTI
⋅⋅⋅

PDPTE 511

Page Directory

PDE 0

PDE 1
⋅⋅⋅

PDE #PDI
⋅⋅⋅

PDE 511

Page Table

PTE 0

PTE 1
⋅⋅⋅

PTE #PTI
⋅⋅⋅

PTE 511

4 KiB Page

Byte 0

Byte 1
⋅⋅⋅

Offset
⋅⋅⋅

Byte 4095

8 Michael Schwarz — Security Week Graz 2019

Page Table Entry www.tugraz.at

P RW US WT UC R D S G Ignored

Physical Page Number
Ignored X

• User/Supervisor bit defines in which privilege level the page can be accessed

9 Michael Schwarz — Security Week Graz 2019

Direct-physical map www.tugraz.at

Physical memory

0 max

User

0 2
47

Kernel

−2
47 −1

• Kernel is typically mapped into every address space

• Entire physical memory is mapped in the kernel

10 Michael Schwarz — Security Week Graz 2019

Direct-physical map www.tugraz.at

Physical memory

0 max

User

0 2
47

Kernel

−2
47 −1

• Kernel is typically mapped into every address space

• Entire physical memory is mapped in the kernel

10 Michael Schwarz — Security Week Graz 2019

Loading an address www.tugraz.at

11 Michael Schwarz — Security Week Graz 2019

Loading an address www.tugraz.at

11 Michael Schwarz — Security Week Graz 2019

Loading an address www.tugraz.at

11 Michael Schwarz — Security Week Graz 2019

Loading an address www.tugraz.at

11 Michael Schwarz — Security Week Graz 2019

Loading an address www.tugraz.at

11 Michael Schwarz — Security Week Graz 2019

Loading an address www.tugraz.at

11 Michael Schwarz — Security Week Graz 2019

Architecture and Microarchitecture www.tugraz.at

• Instruction Set Architecture (ISA) is an abstract model of a

computer (x86, ARMv8, SPARC, . . .)

• Serves as the interface between hardware and software

• Microarchitecture is an actual implementation of the ISA

12 Michael Schwarz — Security Week Graz 2019

Architecture and Microarchitecture www.tugraz.at

• Instruction Set Architecture (ISA) is an abstract model of a

computer (x86, ARMv8, SPARC, . . .)

• Serves as the interface between hardware and software

• Microarchitecture is an actual implementation of the ISA

12 Michael Schwarz — Security Week Graz 2019

Architecture and Microarchitecture www.tugraz.at

• Instruction Set Architecture (ISA) is an abstract model of a

computer (x86, ARMv8, SPARC, . . .)

• Serves as the interface between hardware and software

• Microarchitecture is an actual implementation of the ISA

12 Michael Schwarz — Security Week Graz 2019

Architecture and Microarchitecture www.tugraz.at

• Instruction Set Architecture (ISA) is an abstract model of a

computer (x86, ARMv8, SPARC, . . .)

• Serves as the interface between hardware and software

• Microarchitecture is an actual implementation of the ISA

12 Michael Schwarz — Security Week Graz 2019

In-Order Execution www.tugraz.at

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

• Instructions are...

• fetched (IF) from the L1 Instruction

Cache

• decoded (ID)

• executed (EX) by execution units

• Memory access is performed (MEM)

• Architectural register file is updated (WB)

13 Michael Schwarz — Security Week Graz 2019

In-Order Execution www.tugraz.at

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

• Instructions are...

• fetched (IF) from the L1 Instruction

Cache

• decoded (ID)

• executed (EX) by execution units

• Memory access is performed (MEM)

• Architectural register file is updated (WB)

13 Michael Schwarz — Security Week Graz 2019

In-Order Execution www.tugraz.at

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

• Instructions are...

• fetched (IF) from the L1 Instruction

Cache

• decoded (ID)

• executed (EX) by execution units

• Memory access is performed (MEM)

• Architectural register file is updated (WB)

13 Michael Schwarz — Security Week Graz 2019

In-Order Execution www.tugraz.at

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

• Instructions are...

• fetched (IF) from the L1 Instruction

Cache

• decoded (ID)

• executed (EX) by execution units

• Memory access is performed (MEM)

• Architectural register file is updated (WB)

13 Michael Schwarz — Security Week Graz 2019

In-Order Execution www.tugraz.at

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

• Instructions are...

• fetched (IF) from the L1 Instruction

Cache

• decoded (ID)

• executed (EX) by execution units

• Memory access is performed (MEM)

• Architectural register file is updated (WB)

13 Michael Schwarz — Security Week Graz 2019

In-Order Execution www.tugraz.at

• Instructions are executed in-order

• Pipeline stalls when stages are not ready

• If data is not cached, we need to wait

14 Michael Schwarz — Security Week Graz 2019

In-Order Execution www.tugraz.at

• Instructions are executed in-order

• Pipeline stalls when stages are not ready

• If data is not cached, we need to wait

14 Michael Schwarz — Security Week Graz 2019

In-Order Execution www.tugraz.at

• Instructions are executed in-order

• Pipeline stalls when stages are not ready

• If data is not cached, we need to wait

14 Michael Schwarz — Security Week Graz 2019

Out-of-order Execution www.tugraz.at

int width = 10, height = 5;

float diagonal = sqrt(width * width

+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width , height , area);

15 Michael Schwarz — Security Week Graz 2019

Out-of-order Execution www.tugraz.at

int width = 10, height = 5;

float diagonal = sqrt(width * width

+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width , height , area);

15 Michael Schwarz — Security Week Graz 2019

Out-of-Order Execution www.tugraz.at

E
xe

cu
tio

n
E

ng
in

e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions are

• fetched and decoded in the front-end

• dispatched to the backend

• processed by individual execution units

16 Michael Schwarz — Security Week Graz 2019

Out-of-Order Execution www.tugraz.at

E
xe

cu
tio

n
E

ng
in

e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions are

• fetched and decoded in the front-end

• dispatched to the backend

• processed by individual execution units

16 Michael Schwarz — Security Week Graz 2019

Out-of-Order Execution www.tugraz.at

E
xe

cu
tio

n
E

ng
in

e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions are

• fetched and decoded in the front-end

• dispatched to the backend

• processed by individual execution units

16 Michael Schwarz — Security Week Graz 2019

Out-of-Order Execution www.tugraz.at

E
xe

cu
tio

n
E

ng
in

e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier

instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state

17 Michael Schwarz — Security Week Graz 2019

Out-of-Order Execution www.tugraz.at

E
xe

cu
tio

n
E

ng
in

e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier

instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state

17 Michael Schwarz — Security Week Graz 2019

Out-of-Order Execution www.tugraz.at

E
xe

cu
tio

n
E

ng
in

e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier

instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state

17 Michael Schwarz — Security Week Graz 2019

Out-of-Order Execution www.tugraz.at

E
xe

cu
tio

n
E

ng
in

e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier

instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state

17 Michael Schwarz — Security Week Graz 2019

Out-of-Order Execution www.tugraz.at

E
xe

cu
tio

n
E

ng
in

e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier

instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state

17 Michael Schwarz — Security Week Graz 2019

Out-of-Order Execution www.tugraz.at

E
xe

cu
tio

n
E

ng
in

e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier

instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state

17 Michael Schwarz — Security Week Graz 2019

Out-of-Order Execution www.tugraz.at

E
xe

cu
tio

n
E

ng
in

e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier

instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state

17 Michael Schwarz — Security Week Graz 2019

The state does not become architecturally visible

but . . .

The state does not become architecturally visible

but . . .

Getting started... www.tugraz.at

• New code

char data = ’S’; // a "secret" value

// ...

(volatile char) 0;

array[data * 4096] = 0;

• Luckily we know how to catch a segfault

• Then check whether any part of array is cached

18 Michael Schwarz — Security Week Graz 2019

Getting started... www.tugraz.at

• New code

char data = ’S’; // a "secret" value

// ...

(volatile char) 0;

array[data * 4096] = 0;

• Luckily we know how to catch a segfault

• Then check whether any part of array is cached

18 Michael Schwarz — Security Week Graz 2019

Getting started... www.tugraz.at

• New code

char data = ’S’; // a "secret" value

// ...

(volatile char) 0;

array[data * 4096] = 0;

• Luckily we know how to catch a segfault

• Then check whether any part of array is cached

18 Michael Schwarz — Security Week Graz 2019

Getting started... www.tugraz.at

• New code

char data = ’S’; // a "secret" value

// ...

(volatile char) 0;

array[data * 4096] = 0;

• Luckily we know how to catch a segfault

• Then check whether any part of array is cached

18 Michael Schwarz — Security Week Graz 2019

Checking the array www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc
es
s
ti
m
e

[c
yc
le
s]

19 Michael Schwarz — Security Week Graz 2019

Time to code

Meltdown www.tugraz.at

• Add another layer of indirection to test

char data = *(char*) 0xffffffff81a000e0;

array[data * 4096] = 0;

20 Michael Schwarz — Security Week Graz 2019

Meltdown www.tugraz.at

• Add another layer of indirection to test

char data = *(char*) 0xffffffff81a000e0;

array[data * 4096] = 0;

20 Michael Schwarz — Security Week Graz 2019

Which address? www.tugraz.at

• Check /proc/kallsyms

sudo cat /proc/kallsyms | grep banner

• or check /proc/pid/pagemap and print address

printf("target: %p\n",

libsc_get_physical_address(ctx , vaddr));

• or start at a random address and iterate

21 Michael Schwarz — Security Week Graz 2019

Which address? www.tugraz.at

• Check /proc/kallsyms

sudo cat /proc/kallsyms | grep banner

• or check /proc/pid/pagemap and print address

printf("target: %p\n",

libsc_get_physical_address(ctx , vaddr));

• or start at a random address and iterate

21 Michael Schwarz — Security Week Graz 2019

Which address? www.tugraz.at

• Check /proc/kallsyms

sudo cat /proc/kallsyms | grep banner

• or check /proc/pid/pagemap and print address

printf("target: %p\n",

libsc_get_physical_address(ctx , vaddr));

• or start at a random address and iterate

21 Michael Schwarz — Security Week Graz 2019

Time to code

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D
A
T
A
K
E
Y
⋯

data[0]

data[1]

data[2]

data[3]

Shared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 0index = 0 if (index < 4)

glyph[data[index]] {}

then else

22 Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D
A
T
A
K
E
Y
⋯

data[0]

data[1]

data[2]

data[3]

Speculate

Shared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 0 if (index < 4)

glyph[data[index]] {}

then else

22 Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D
A
T
A
K
E
Y
⋯

data[0]

data[1]

data[2]

data[3]

ExecuteShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

D

index = 0 if (index < 4)

glyph[data[index]] {}

then else

22 Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D
A
T
A
K
E
Y
⋯

data[0]

data[1]

data[2]

data[3]

ExecuteShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

D

D

index = 0 if (index < 4)

glyph[data[index]] {}

then else

22 Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D
A
T
A
K
E
Y
⋯

data[0]

data[1]

data[2]

data[3]

ExecuteShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

D

D

index = 0 if (index < 4)

glyph[data[index]] {}

then else

D

22 Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D
A
T
A
K
E
Y
⋯

data[0]

data[1]

data[2]

data[3]

Shared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 1index = 1 if (index < 4)

glyph[data[index]] {}

then else

D

22 Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D
A
T
A
K
E
Y
⋯

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 1 if (index < 4)

glyph[data[index]] {}

then else

D

22 Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D
A
T
A
K
E
Y
⋯

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

A

index = 1 if (index < 4)

glyph[data[index]] {}

then else

D

22 Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D
A
T
A
K
E
Y
⋯

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

A

A

index = 1 if (index < 4)

glyph[data[index]] {}

then else

D

22 Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D
A
T
A
K
E
Y
⋯

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

A

A

index = 1 if (index < 4)

glyph[data[index]] {}

then else

A

22 Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D
A
T
A
K
E
Y
⋯

data[0]

data[1]

data[2]

data[3]

ExecuteShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 1 if (index < 4)

glyph[data[index]] {}

then else

A

22 Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D
A
T
A
K
E
Y
⋯

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 2index = 2 if (index < 4)

glyph[data[index]] {}

then else

A

22 Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D
A
T
A
K
E
Y
⋯

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

T

index = 2 if (index < 4)

glyph[data[index]] {}

then else

A

22 Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D
A
T
A
K
E
Y
⋯

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

T

T

index = 2 if (index < 4)

glyph[data[index]] {}

then else

A

22 Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D
A
T
A
K
E
Y
⋯

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

T

T

index = 2 if (index < 4)

glyph[data[index]] {}

then else

T

22 Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D
A
T
A
K
E
Y
⋯

data[0]

data[1]

data[2]

data[3]

ExecuteShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 2 if (index < 4)

glyph[data[index]] {}

then else

T

22 Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D
A
T
A
K
E
Y
⋯

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 3index = 3 if (index < 4)

glyph[data[index]] {}

then else

T

22 Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D
A
T
A
K
E
Y
⋯

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

A

index = 3 if (index < 4)

glyph[data[index]] {}

then else

T

22 Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D
A
T
A
K
E
Y
⋯

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

A

A

index = 3 if (index < 4)

glyph[data[index]] {}

then else

T

22 Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D
A
T
A
K
E
Y
⋯

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

A

A

index = 3 if (index < 4)

glyph[data[index]] {}

then else

A

22 Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D
A
T
A
K
E
Y
⋯

data[0]

data[1]

data[2]

data[3]

SpeculateExecuteShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 3 if (index < 4)

glyph[data[index]] {}

then else

A

22 Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D
A
T
A
K
E
Y
⋯

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 4index = 4 if (index < 4)

glyph[data[index]] {}

then else

A

22 Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D
A
T
A
K
E
Y
⋯

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

K

index = 4 if (index < 4)

glyph[data[index]] {}

then else

A

22 Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D
A
T
A
K
E
Y
⋯

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

K K

index = 4 if (index < 4)

glyph[data[index]] {}

then else

A

22 Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D
A
T
A
K
E
Y
⋯

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

K K

index = 4 if (index < 4)

glyph[data[index]] {}

then else

K

22 Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D
A
T
A
K
E
Y
⋯

data[0]

data[1]

data[2]

data[3]

Execute

Shared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 4 if (index < 4)

glyph[data[index]] {}

then else

K

22 Michael Schwarz — Security Week Graz 2019

Spectre Root Cause www.tugraz.at

operation #n

time

23 Michael Schwarz — Security Week Graz 2019

Spectre Root Cause www.tugraz.at

operation #n

prediction

time

23 Michael Schwarz — Security Week Graz 2019

Spectre Root Cause www.tugraz.at

operation #n

prediction

operation #n+2p
re

d
ic

t

C
F

/
D

F

time

23 Michael Schwarz — Security Week Graz 2019

Spectre Root Cause www.tugraz.at

operation #n

prediction

operation #n+2p
re

d
ic

t

C
F

/
D

F

possibly

architectural transient execution

time

23 Michael Schwarz — Security Week Graz 2019

Spectre Root Cause www.tugraz.at

operation #n

re
ti

re

prediction

operation #n+2p
re

d
ic

t

C
F

/
D

F

possibly

architectural transient execution

time

23 Michael Schwarz — Security Week Graz 2019

Spectre Root Cause www.tugraz.at

operation #n

re
ti

re

prediction

re
ti

re

operation #n+2p
re

d
ic

t

C
F

/
D

F

possibly

architectural transient execution

flush pipeline
on wrong
prediction

time

23 Michael Schwarz — Security Week Graz 2019

Spectre Root Cause www.tugraz.at

operation #n

re
ti

re

prediction

re
ti

re

operation #n+2

re
ti

re

p
re

d
ic

t

C
F

/
D

F

possibly

architectural transient execution

flush pipeline
on wrong
prediction

time

23 Michael Schwarz — Security Week Graz 2019

Spectre Root Cause www.tugraz.at

• Many predictors in modern CPUs

• Branch taken/not taken (PHT)

• Call/Jump destination (BTB)

• Function return destination (RSB)

• Load matches previous store (STL)

• Most are even shared among processes

24 Michael Schwarz — Security Week Graz 2019

Spectre Root Cause www.tugraz.at

• Many predictors in modern CPUs

• Branch taken/not taken (PHT)

• Call/Jump destination (BTB)

• Function return destination (RSB)

• Load matches previous store (STL)

• Most are even shared among processes

24 Michael Schwarz — Security Week Graz 2019

Spectre Root Cause www.tugraz.at

• Many predictors in modern CPUs

• Branch taken/not taken (PHT)

• Call/Jump destination (BTB)

• Function return destination (RSB)

• Load matches previous store (STL)

• Most are even shared among processes

24 Michael Schwarz — Security Week Graz 2019

Spectre Root Cause www.tugraz.at

• Many predictors in modern CPUs

• Branch taken/not taken (PHT)

• Call/Jump destination (BTB)

• Function return destination (RSB)

• Load matches previous store (STL)

• Most are even shared among processes

24 Michael Schwarz — Security Week Graz 2019

Spectre Root Cause www.tugraz.at

• Many predictors in modern CPUs

• Branch taken/not taken (PHT)

• Call/Jump destination (BTB)

• Function return destination (RSB)

• Load matches previous store (STL)

• Most are even shared among processes

24 Michael Schwarz — Security Week Graz 2019

Spectre Root Cause www.tugraz.at

• Many predictors in modern CPUs

• Branch taken/not taken (PHT)

• Call/Jump destination (BTB)

• Function return destination (RSB)

• Load matches previous store (STL)

• Most are even shared among processes

24 Michael Schwarz — Security Week Graz 2019

Spectre Mistraining www.tugraz.at

same address space/

in place

Victim

Victim

branch

25 Michael Schwarz — Security Week Graz 2019

Spectre Mistraining www.tugraz.at

same address space/

in place

same address space/

out of place

Victim

Victim

branch

Congruent

branch

A
d

d
re

ss

co
ll

is
io

n

25 Michael Schwarz — Security Week Graz 2019

Spectre Mistraining www.tugraz.at

same address space/

in place

same address space/

out of place

Victim

Victim

branch

Congruent

branch

A
d

d
re

ss

co
ll

is
io

n

Shared Branch Prediction State

25 Michael Schwarz — Security Week Graz 2019

Spectre Mistraining www.tugraz.at

same address space/

in place

same address space/

out of place

Victim

Victim

branch

Congruent

branch

A
d

d
re

ss

co
ll

is
io

n

Attacker

Shared Branch Prediction State

25 Michael Schwarz — Security Week Graz 2019

Spectre Mistraining www.tugraz.at

same address space/

in place

same address space/

out of place

Victim

Victim

branch

Congruent

branch

A
d

d
re

ss

co
ll

is
io

n

cross address space/

in place

Attacker

Shadow

branch

Shared Branch Prediction State

25 Michael Schwarz — Security Week Graz 2019

Spectre Mistraining www.tugraz.at

same address space/

in place

same address space/

out of place

Victim

Victim

branch

Congruent

branch

A
d

d
re

ss

co
ll

is
io

n

cross address space/

in place

cross address space/

out of place

Attacker

Shadow

branch

Congruent

branch

A
d

d
re

ss

co
ll

is
io

n

Shared Branch Prediction State

25 Michael Schwarz — Security Week Graz 2019

Time to code

Side-Channel Lab II

Michael Schwarz

Security Week Graz 2019

26 Michael Schwarz — Security Week Graz 2019

D. Gruss, C. Maurice, K. Wagner, and S. Mangard. Flush+Flush: A Fast

and Stealthy Cache Attack. In: DIMVA. 2016.

M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard.

ARMageddon: Cache Attacks on Mobile Devices. In: USENIX Security

Symposium. 2016.

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-Level Cache

Side-Channel Attacks are Practical. In: S&P. 2015.

C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss,

C. Alberto Boano, S. Mangard, and K. Römer. Hello from the Other Side:

SSH over Robust Cache Covert Channels in the Cloud. In: NDSS. 2017.

