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Abstract—Rowhammer, first considered a reliability issue,
turned out to be a significant threat to the security of systems.
Hence, several mitigation techniques have been proposed to
prevent the exploitation of the Rowhammer effect. Consequently,
attackers developed more sophisticated hammering and exploita-
tion techniques to circumvent mitigations. Still, the development
and testing of Rowhammer exploits can be a tedious process,
taking multiple hours to get the bit flip at the correct location.

In this paper, we propose Hammulator, an open-source rapid-
prototyping framework for Rowhammer exploits. We simulate
the Rowhammer effect using the gem5 simulator and DRAM-
sim3 model, with a parameterizable implementation that allows
researchers to simulate various types of systems. Hammulator
enables faster and more deterministic bit flips, facilitating the
development of Rowhammer proof-of-concept exploits and de-
fenses. We evaluate our simulator by reproducing 2 open-source
Rowhammer exploits. We also evaluate 2 previously proposed
mitigations, PARA and TRR, in our simulator. Additionally,
our micro- and macrobenchmarks show that our simulator has
a small average overhead in the range of 6.96 % to 10.21 %.
Our results show that Hammulator can be used to compare
Rowhammer exploits objectively by providing a consistent testing
environment. Hammulator and all experiments and evaluations
are open source, hoping to ease the research on Rowhammer.

I. INTRODUCTION

The Rowhammer effect was first shown by Kim et al.
[23] in 2014. While initially considered mainly a reliability
problem, it turned out to be a significant security problem.
Several works [18], [40], [13], [25], [17], [37] showed how
the bit flips caused by the Rowhammer effect can be exploited
to violate the confidentiality and integrity of data. Hence, a lot
of research has been conducted to find effective and efficient
techniques to prevent exploitation [23], [5], [3], [15], [1],
[21], [43], [44]. Still, even DDR4 and LPDDR4 are affected
by Rowhammer, allowing attackers to exploit systems [22].
Although mitigations have been implemented [13], more so-
phisticated hammering techniques successfully circumvented
these mitigations [17], [7], [13], [20], [25].

In addition to hammering techniques, also the Rowhammer
exploits evolved. The first exploits still relied on random
“blind” hammering [37]. Since then, very sophisticated ex-
ploits have been shown using various techniques, including the
templating and massaging of memory [17], [26], [34]. Even
though attackers can only flip single bits without knowing
the location of the bit flips a priori, these techniques led to
powerful end-to-end attacks. However, developing and testing
such exploits is a tedious process, as it can take multiple hours
to obtain the necessary bit flips in hardware [17].

In this paper, we propose Hammulator, a rapid-prototyping
framework for Rowhammer exploits. To faithfully emulate

Rowhammer bit flips, we simulate the Rowhammer effect
in the gem5 simulator [4] using the DRAMsim3 DRAM
simulator [28]. We implement a parameterizable Rowhammer
simulator to simulate various types of systems. These param-
eters include the minimum number of row activations and
the expected number of bit flips per row. Hammulator allows
researchers to quickly change the behavior from a system
with many deterministic bit flips to a real-world-like system.
Consequently, researchers can develop exploits in a setup that
resembles a natural system but still prototype the exploits
quicker by enabling faster and more deterministic bit flips.
Hence, in line with such prototyping frameworks for other
microarchitectural attacks [10], we hope to accelerate the de-
velopment process of Rowhammer proof-of-concept exploits.

To evaluate Hammulator, we successfully reproduce 2
open-source Rowhammer exploits [34], [37]. We demonstrate
that Hammulator supports Rowhammer exploits targeting page
tables [37], as well as user-space-only exploits [34]. These
exploits work out of the box with our framework, showing that
the simulated bit flips resemble real Rowhammer bit flips. To
evaluate the performance, we rely on the STREAM [30] bench-
mark and additional microbenchmarks [16]. We observe a
small performance overhead in the range of 6.96% to 10.21%.
Moreover, the benchmarks show that our modifications do not
introduce spurious bit flips on benign programs.

While the main focus of Hammulator is on rapid proto-
typing, it can also be used to compare Rowhammer exploits
objectively. Currently, such exploits are tested on vastly dif-
ferent setups. Thus, runtime values depend on the underlying
hardware, making them hard to compare. With Hammulator,
all exploits can be tested with the same setup, resulting in
comparable runtime and success numbers. Hence, Hammu-
lator could become a standard for comparing Rowhammer
exploits, avoiding flawed benchmarks and comparisons [41].
Moreover, Hammulator allows testing various Rowhammer
defenses, allowing for tests in a wide range of scenarios. To
show the capability of Hammulator to incorporate Rowhammer
defenses, we implement two different defense mechanisms,
PARA [23] and a TRR variant.

Contributions. The contributions of this paper are:

1) We present Hammulator1, a parameterizable Rowhammer
simulator.

2) We reproduce and evaluate 2 open-source Rowhammer
exploits and 2 defenses in Hammulator.

3) We show that Hammulator has a slight performance over-
head and does not suffer from spurious bit flips.

1Open source at https://github.com/cispa/hammulator.

https://github.com/cispa/hammulator


Outline. Section II provides background. Section III in-
troduces the simulation goals of Hammulator. Section IV
describes the architecture employed by Hammulator. Section V
discusses the performance optimizations employed in our
simulator. Section VI evaluates the performance and capability
of emulating open-source Rowhammer exploits and defenses.
Section VII-A introduces related work. We conclude in Sec-
tion VIII.

II. BACKGROUND

In this section, we introduce Rowhammer and the simula-
tion frameworks used to build Hammulator.

A. Rowhammer

Since first being studied in 2014 [23], the Rowhammer
problem received a significant amount of attention in both
academia and industry [37], [22], [25], [17], [13]. Rowhammer
sidesteps memory isolation by inducing disturbance errors in
adjacent memory cells in the DRAM. This effect is strength-
ened by the constant shrinking of chips, making them more
susceptible to disturbances [22], [32]. More specifically, the
Rowhammer problem is triggered when a DRAM row is
repeatedly hammered by opening and closing it within the
DRAM refresh interval. Multiple works have analyzed the
Rowhammer effect on a large scale [23], [22]. In addition,
new techniques such as one-location [23] and many-sided
hammering [13] and new effects such as half-double [25] have
been discovered that intensify the disturbances on the victim
DRAM, hindering defenses.

Attacks: In addition to various ways to trigger
Rowhammer-induced bit flips [13], [23], [25], their exploita-
tion has also been studied in depth [42], [37], [17]. The first
proof of concept showing that Rowhammer can be effectively
exploited showed that a user-space process with code execu-
tion can gain kernel-level privileges using Rowhammer [37].
Starting from this initial work, multiple other Rowhammer-
based exploits were shown to be practical [17], [25], [42],
[34]. Rowhammer has been shown on mobile devices [42],
in constrained environments such as browsers [18] and virtual
machines [34], and by hammering with other devices such as
GPUs or network cards [12], [40], [29].

Defenses: Multiple defenses against Rowhammer have
been proposed [23], [5], [3], [15], [1], [21], [43], [44]. While
initial defenses such as using ECC DRAM or doubling the
refresh rate have proven inefficient [7], [6], [33], other aca-
demic proposals emerged. Most defenses rely on selectively
refreshing DRAM rows on an indication of a Rowhammer
attack [13]. Despite the progress in Rowhammer defenses, it
remains an open research field with the emergence of novel
Rowhammer attacks [22], [20], [19], [9].

B. DRAMsim3

DRAMsim3 [28] is a cycle-accurate DRAM simulator that
supports most modern DRAM standards. DRAMsim3 can
work as a stand-alone tool or as a component of system
simulators such as gem5. Originally, DRAMsim3 was intended
for the performance and temperature simulation of DRAM
modules. DRAMsim3 is easily extensible and offers good
simulation performance [28], making it a good candidate for
simulating DRAM timings for Rowhammer attacks.
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Fig. 1: Outline of the Hammulator architecture. DRAMsim3
is used for cycle-accurate DRAM simulation and provides
callbacks to Hammulator. Hammulator modifies the flipped
rows in the host memory of gem5.

C. gem5

The gem5 simulation framework provides utilities for
system- and processor-level simulation. This simulator is
widely used for the evaluation of microarchitecture de-
signs [14], [35]. In addition, hardware fixes for microarchitec-
tural vulnerabilities have been evaluated using gem5 [2], [45].
Two significant features used in this paper are CPU swapping
and checkpointing.

gem5 supports swapping between CPU models during
runtime, providing a tradeoff between accuracy and perfor-
mance. The most accurate is the TimingSimpleCPU model,
incorporating latencies and timings induced by the memory
hierarchy. The fastest is the KvmCPU CPU model, using the
Linux kernel KVM feature to run on bare hardware at nearly
native speed [36]. Using the model can speed up a simulation
by a factor of up to 19 000 [36]. The gem5 simulator also
supports taking so-called checkpoints of the simulation state.
These checkpoints store the simulation state so that execution
can be restored and resumed from a previous state.

III. SIMULATION GOALS

In this section, we introduce the overall architecture of
Hammulator. We use a combination of the gem5 simulator and
DRAMsim3 as a cycle-accurate DRAM model as outlined in
Figure 1. The overall target of Hammulator is to simulate the
Rowhammer effect so that fast prototyping and engineering
of Rowhammer exploits are possible. We define the following
goals for Hammulator:

G1 Faithful Emulation: Hammulator should simulate the
observable effects of Rowhammer as closely as practically
feasible. That is, the observable state should match that of
physical DRAM.

G2 Performance: The overhead should be small such that
running exploits is fast.

G3 Compatibility and Extensibility: Hammulator should
support arbitrary Rowhammer exploits with minimal
changes. Additionally, Hammulator should be extensible
for specific use cases and prototyping mitigations.
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To achieve the goals, we use the gem5 full-system emula-
tor [4] and DRAMsim3 [28], a cycle-accurate DRAM simu-
lator. In the following sections, we describe how Hammulator
achieves goals G1-G3.

IV. SIMULATOR ARCHITECTURE

In this section, we introduce the architecture of Hammu-
lator to achieve G1, i.e., faithful emulation. To match the
Rowhammer effects on physical DRAM, we rely on results
from several works [25], [23], [13], [20], [17], [22]. As a result,
the following behaviors are supported by Hammulator:

1) Determinism: The Rowhammer effects are mostly deter-
ministic [23], [22]. Hence, Hammulator always flips the
same bits in the same order.

2) Increased flips over time: As observed by Kim et al. [22],
the number of bit flips grows linearly with the number
of accesses per row in a refresh interval. Further, flips
occur only after a specific number of accesses. Hammulator
emulates these effects.

3) Flip mask: Some exploits require bit flips in specific bits
of a quadword [37], [17]. Hammulator supports a specific
pattern of flips, which we call flip mask.

4) Flips per quadword: Kim et al. [23], [22] report that most
DRAM modules produce in between 1 to 4 bit flips per
quadword. Therefore, Hammulator supports specifying a
distribution of bit flips in a quadword.

5) Blast radius: Since bit flips can occur at distance two and
further away from the aggressor row [23], [22], Hammu-
lator supports a blast radius.

Hammulator does not aim to simulate the physical effects
connected to Rowhammer but rather emulates the observable
Rowhammer effects of a vulnerable DRAM module. There-
fore, the design of Hammulator leverages this property to gain
performance whenever possible.

We design Hammulator based on the results of Kim et al.
[22] and use their terminology. They refer to the number
of accesses of an aggressor row as Hammer Count (HC).
Similarly, they call the minimum number of accesses to an
aggressor row so that flips occur, i.e., the threshold, HCfirst.
We design Hammulator so that it keeps track of HC for every
row. If HC exceeds HCfirst, i.e., the threshold, bit flips start
to occur.

Further, Kim et al. [22] find that the log of the number of
bit flips in a row scales linearly with the log of HC. While
there are infinitely many functions that satisfy this property, we
choose to only model the simplest case where we have a direct
linear relationship. More complex functions can be modeled
by modifying one line in the source code of Hammulator. We
add two new parameters to Hammulator to model this linear
relation. We extend the terminology by HClast, the upper
threshold up until new flips may occur, and by FRlast, the bit
flip rate at that point, i.e., the maximum bit flip rate. Note that
the bit flip rate (FR) is the number of bit flips over the number
of bits in a row, as defined by Kim et al. [22]. Further, note that
in our model FRfirst = 0, since no flips occur at HCfirst.
The two new parameters HClast and FRlast together with the
previously known HCfirst parameter, allow modeling any of
the tested DRAM modules used by Kim et al. [22]. Deciding
if a flip should occur in a bit of a given victim row is done by

··
·
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3000.0addrrow

0.0

··
·

RNGflip(addrrow)

RNGmask(addrquad)0x0000200000010000
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Fig. 2: Overview of the seeded random-number generators
used to flip bits deterministically. The value in parentheses
specifies which seed is used. If a row exceeds HCfirst,
RNGflip generates a random number that is compared to
the flip probability calculated from HC, HCfirst, HClast,
and FRlast. If the row is decided to get flipped, a mask is
generated with RNGmask, but only if no mask is hard coded.

generating a random number in the range [0, 1]. If the random
number is bigger than the current bit-flip rate, calculated by
FRlast · HC−HCfirst

HClast−HCfirst
, a bit flip occurs, as illustrated in

Figure 2.

To support flip masks and specify how many flips should
occur in a quadword, we divide a victim row into quadwords
and decide per quadword if a flip should occur. Note that the
flip rate we calculated before must be multiplied by 64 since
we decide per full quadword (64 bit) instead of per bit. The
upper half of Figure 2 shows how Hammulator decides if a
flip should occur in a quadword. The current HC of a row
is compared against HCfirst. Once HC exceeds HCfirst, a
random number is generated for each quadword in the victim
row and compared to the flip probability of that row.

The last step is to generate a flip mask that determines
which of the quadwords present in the victim row should be
flipped. This flip mask is applied to the selected quadwords
by a xor operation. As outlined in Figure 2, another random
number generator (RNG) is used to infer the bit mask for each
quadword. Hammulator supports hard-coding this flip mask
such that no RNG is used to generate a flip mask.

Row Information: To implement Hammulator accord-
ing to goal G1, it requires access to the internal mapping of
the DRAM model to access read, write, and refresh events.
DRAMsim3 [28] provides callbacks only for writing and
reading. Thus, we extend these callbacks by a refresh callback.
Further, we add a function that translates a given row back to
a physical address to easily find adjacent rows given the index
of an aggressor row.

Hammer Count: As discussed before, we keep track of
HC per row. On a read callback, we determine if the read
originates from the row buffer or a row. In case the read was
served from a row, we increment HC for the adjacent, i.e., the
victim, rows. Once a refresh callback is issued, the number
of accesses, i.e., the hammer count, to the DRAM rows is
reset. Hammulator offers additional flexibility compared to the
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simulation by France et al. [11] by allowing refreshes on a per-
bank basis.

Blast Radius: To support the blast radius phe-
nomenon [23], [22], Hammulator supports incrementing HC
for adjacent rows of up to a distance of 5, in line with the work
by Kim et al. [22]. As Kim et al. report a varying correlation
between distance and the number of bit flips [22], we model the
blast radius of Hammulator to be fully configurable. For each
distance up to 5, we add a config-defined variable specifying
how much a row’s HC is incremented by distance. For a
simple DRAM module with no flips further away than the
adjacent row of an aggressor row, we set the increment to 1.0
for distance one and to 0.0 for distance two to 5.

Determinism: One of the main goals of Hammulator
is to be deterministic. Bit flips should always occur in the
same bits and the same order relative to HC. We reach this
goal by seeding the used RNGs with the address of the victim
row and quadword, as outlined in Figure 2. Seeding with the
address ensures that we always get the same random numbers,
independent of when and how the victim row is hammered.

Flip Mask Generation: The process of generating a flip
mask for a quadword is illustrated in Figure 2. The flip mask
generation is skipped if a hard-coded flip mask is specified.
Otherwise, a flip mask is generated in two steps. RNGmask

determines how many bits should get flipped, and a random
mask with the according hamming weight is generated. This
procedure allows precisely configuring the number of induced
bit flips.

V. PERFORMANCE OPTIMIZATIONS

In this section, we discuss the implementation details of
Hammulator, that ensure that it is practically usable. Although
the Hammulator architecture discussed in Section IV is func-
tional and achieves G1, the performance overhead is imprac-
tical. The main reason is that full-system emulation with the
TimingSimpleCPU model runs nowhere near the speed of a
native CPU [36]. Therefore, we propose to use checkpointing
and CPU swapping as performance optimizations to enable
fast prototyping. Checkpointing makes it possible to restore a
saved state to speed up the initial setup of a test run, while
CPU swapping increases emulation performance by switching
to a faster CPU for parts without hammering. With further
minor optimizations, we achieve G2, i.e., the overhead of
Hammulator is small enough to run full-system exploits [37].

Checkpointing: Some exploits, such as the page-table
exploit by Google Project Zero [37], require full-system emu-
lation since they use kernel APIs or attack other processes.
Therefore, frictionless full-system emulation is required for
Hammulator to be effective in developing exploits. Since the
bootup of a full-blown GNU/Linux system can take multiple
seconds, even when the KVM-based CPU is used, we use
the checkpointing feature of gem5 to bring up a testing
environment for exploits quickly. Using checkpointing, even if
Hammulator crashes because, e.g., a page-table entry is flipped
to an inconsistent state, the system can be up and running again
within seconds. This can be used further to debug exploits by
taking checkpoints while running the exploit. Once the exploit
crashes, Hammulator can be started again with a previous
checkpoint.

CPU Swapping: The gem5 simulator supports swap-
ping out the CPU during the simulation. Since running on the
KVM-based CPU [36] is faster by a large margin2, we use
this feature to speed up the simulation. It is sufficient to swap
to the TimingSimpleCPU model only for the parts where
hammering is done. This especially speeds up the enumeration
and mapping of large chunks of memory. Figure 1 illustrates
the CPU-swapping process. The CPU is only swapped for the
function that performs the hammering. To benefit from this
optimization, the exploit code must only use the Hammulator-
provided function swap_cpu.

VI. EVALUATION

In this section, we evaluate 2 attacks (Section VI-A)
and 2 defenses (Section VI-B) in Hammulator, demonstrating
G3. Additionally, we measure the performance overhead of
Hammulator (Section VI-C).

A. Attacks

We evaluate two different attack types using Hammulator.
First, we show that a page-table-based exploit [37], requiring
full emulation of the Linux operating system, is possible.
Second, we show two exploits on RSA [34] that can be
mounted without full-system emulation. These vastly different
targets nicely illustrate the flexibility of Hammulator.

1) Page-Table Exploit: To show that exploits, depending
on full-system emulation, work, we test the page-table-based
exploit by Seaborn et al. [37]. Since the exploit needs to fill the
entire physical memory with page tables, the exploit maps a
large chunk of memory, e.g., around 3GB for 4GB of physical
memory. This increases the runtime of the exploit and can be
optimized in the development stage by booting the operating
system with less physical memory, e.g., 200MB. Further, CPU
swapping can be used to enable the TimingSimpleCPU
model only in the hammering parts of the exploit.

We reproduce the exploit in Hammulator, i.e., we gain
access to our page table. To evaluate the reliability of the page-
table exploit in Hammulator, we run the code 10 times in a
checkpointed GNU/Linux environment with 200MB physical
RAM. The exploit succeeded in 4 of the 10 tries, i.e., has
a reliability of 40%. In all other cases, the exploit can be
restarted. On successful runs, the exploit takes around 1min.
Note that this includes searching for vulnerable rows. In
contrast, Jattke et al. [20] reported that finding exploitable bit
flips can take up to 1 h on real machines. In addition, some
modules might just not induce bit flips. Hammulator can be
used on any machine and can produce bit flips in under 1 s.

2) RSA Attacks: We evaluate two attacks on RSA encryp-
tion. First, we evaluate an attack from Razavi et al. [34], which
is based on bit flips in the public modulus N . By inducing a
bit flip in the modulus N = p ∗ q, it is reasonably likely that
the corrupted N ′ decomposes into a product of smaller primes
instead of the two big prime numbers p and q. This leads to
an attack where N ′ can be directly factored, compromising
the RSA encryption. Similarly to Razavi et al. [34], we first

2On our machine, booting up GNU/Linux with the KVM-based CPU takes
under 10 s, while booting up with the TimingSimpleCPU model takes over
30min, i.e., a speed up by a factor of at least 180. Sandberg et al. report even
higher overhead when using a more detailed CPU model [36].
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find small factors using Pollard’s rho algorithm (and Brent’s
extension) [31]. Bigger factors are then found using Lenstra’s
Elliptic Curve Factorization Method (ECM) [27]. In our case
study, we flip 8 bits of the modulus and try to factor it
afterward. Our results show that for a key size of 512 bits, the
RSA modulus can be factored in minutes to hours depending
on the position of the bit flips. The attack is dominated by the
time to factor the resulting altered modulus, as simulating the
required bit flips takes only seconds.

In addition, we present a second attack on RSA using
a Rowhammer-induced bit flip in the encryption exponent
e = 65537. We target a bit that leads to e′ = 1 or e′ = e− 1.
For e′ = 1, RSA is trivially broken as the encryption pte

′
= ct

turns into the identity operation, directly yielding the plaintext.
For e′ = e − 1, we need a second encryption of the same
plaintext without the flip. We compute the modular inverse of
pte

′
= pte−1 and compute pte · (pte′)−1 = pte · pt(−e+1) = pt

yielding the plaintext again. While the bit flips for this attack
need to be more targeted than the ones for the previously
described attack [34] on the RSA modulus, we observe that
given the proper simulator parameters, the attack works after,
on average, 150 tries or 2min in real-time. A benefit of
this attack is that it reduces the complexity of exploitation
on a successful flip to a minimum, as no time intensive-
computations are required.

B. Defenses

We evaluate the capability of Hammulator to model de-
fenses by implementing 2 Rowhammer defenses. We im-
plement the probabilistic PARA (Probabilistic Adjacent Row
Activation) [23] and a version of TRR (Target Row Refresh)
that is a widely deployed mitigation against Rowhammer [13].
For both defenses, we evaluate whether we still observe bit
flips when hammering the memory.

1) PARA: PARA randomly refreshes adjacent DRAM rows
on activation, reducing the chance of bit flips introduced
by Rowhammer. By adding a probabilistic element to the
memory access patterns, PARA helps to increase the system’s
robustness against Rowhammer attacks. Still, as it is stateless,
it minimizes the impact on system performance. We implement
PARA in the read callbacks of Hammulator. On each access,
we generate a random number for each adjacent row up to
distance 5, and compare it to config-defined probability p. If
a row is chosen for a refresh, we reset the hammer count HC
for that row. We observe no bit flips after adding PARA to
Hammulator when using a refresh probability of 0.001, in line
with Kim et al. [23].

2) TRR: We implement a Panopticon-like [3] countermea-
sure that refreshes DRAM rows next to frequently-accessed
ones. The goal is to mitigate Rowhammer by refreshing the
rows with the highest risk of bit flips early, avoiding flips.
Similar to the PARA implementation, we extend the read
callback. On each access, we compare HC for each of the
adjacent rows, again up to a distance of 5, to a config-defined
threshold. This threshold should be picked below HCfirst to
ensure no flips occur while using the mitigation. We verify
that Hammulator produces no flips when using a threshold of
8000, while HCfirst = 10000.

These experiments illustrate the capability of our frame-
work to not only evaluate and prototype attacks but also in-
clude countermeasures, allowing us to evaluate attacks specif-
ically targeting countermeasures.

C. Performance

To evaluate the performance overhead of Hammulator, we
use the STREAM [30] benchmark and additional microbench-
marks [16]. We evaluate the baseline gem5 simulator v22.1.0.0
in combination with the DRAMsim3 framework 1.0.0 against
our modified version. For our benchmarks, we use an Intel i9-
12900K processor with 128GB of DRAM. For the STREAM
benchmark, the execution time in Hammulator is 70.64min.
The baseline, measured in gem5, is 66.04min, leading to an
overhead of 6.96%. For the microbenchmarks, the execution
time is 270.47 s. The baseline, again in gem5, is 245.41 s,
resulting in an overhead of 10.21%. Overall, the overhead
of Hammulator is small, especially when considering the
additional speedup that can be gained by using checkpointing
and CPU swapping.

VII. DISCUSSION

In this section we discuss related work and the limitations
of Hammulator.

A. Related Work

While multiple simulators for Rowhammer exist, we distin-
guish our work from related works. Most closely related to our
work is the work of France et al. [11] that introduces a gem5-
based Rowhammer simulator based on Ramulator. Unlike
this previous work, we focus on directly evaluating open-
source exploits and evaluating the performance overhead of
Hammulator, showing that it can be used in practice. We also
use the more recent and advanced DRAMsim3 [28] simulator
and provide advanced features such as CPU swapping and
checkpointing to enable rapid prototyping. In addition, we
model blast radius and provide a stochastic model triggering
bit flips.

Tatar et al. [39] introduced Hammertime [38], a tool to
profile and test the susceptibility of a system to the Row-
hammer effect. Hammertime provides utilities to check the
feasibility of a specific Rowhammer exploit on the profiled
system. The key difference between our work and Hammertime
is that Hammertime statically analyzes whether a system is
vulnerable. While more efficient, this static analysis loses
the timing information present when performing full-system
emulation. Additionally, Hammertime does not allow easy
testing of Rowhammer mitigations.

Mitigations for Rowhammer attacks have been simulated
using gem5 and the Ramulator [24] DRAM simulator [44]. The
evaluation focussed on the performance overhead introduced
when running the SPEC [8] benchmark suite under different
mitigations. However, this work focuses only on the simulation
of defenses and can, without adaptions, not be used to evaluate
new Rowhammer attacks.
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B. Limitations

While we try to model several important effects of Row-
hammer, we do not claim to emulate the effect in a physically
correct way. However, Hammulator provides a great frame-
work for testing the initial feasibility of an exploit and can be
used in future work to study mitigations in more detail. In the
following we discuss the main deviations from real DRAM.

Determinism: Kim et al. [23] report that, while Row-
hammer is mostly deterministic, some cells only flip in rare
cases. For exploitation, unreliable bit flips are of little impor-
tance since an attacker would use cells that induce bit flips
deterministically to increase the reliability of their exploit. As a
result and in favor of easing rapid prototyping in our simulator,
we choose to not model this behavior and treat Rowhammer bit
flips as fully deterministic. Note that the simulator can easily
be extended to support these random infrequent bit flips by
overlaying the deterministic flips with random bit flips.

Data Dependence: Previous work has shown that Row-
hammer bit flips are data dependent [23], [22]. We decide
to not model this data dependence to simplify the simulator
and increase performance. However, future work could extend
Hammulator to model data dependence to increase faithfulness.

Blast Radius: We support the simulation of a simple
blast radius, independent of the hammering pattern. However,
Half-Double [25] has shown that accesses to immediate neigh-
bor rows of the victim row are necessary to induce bit flips.
While Hammulator does not stay true to this effect in all
configurations, the framework can be configured to enforce
this behavior by carefully aligning the flip threshold HCfirst

and the increment steps per distance.

VIII. CONCLUSION

In this paper, we proposed Hammulator, an open-source
rapid-prototyping framework for Rowhammer exploits. We
simulated the Rowhammer effect using the gem5 simulator and
DRAMsim3 model, with a parameterizable implementation
that allows researchers to simulate various types of systems.
Hammulator enables faster and more deterministic bit flips,
facilitating the development of Rowhammer proof-of-concept
exploits. We evaluated our framework by reproducing 2 open-
source Rowhammer exploits, showing that they work with
Hammulator. Additionally, benchmarks demonstrate a small
performance overhead in the range of 6.96% to 10.21%.
Our results show that Hammulator can be used to compare
Rowhammer exploits objectively, as it provides a consistent
testing environment.
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