
Efficient and Generic Microarchitectural Hash-Function Recovery

Lukas Gerlach1, Simon Schwarz2, Nicolas Faroß3, Michael Schwarz1
1 CISPA Helmholtz Center for Information Security 2 Saarland University, Saarland Informatics Campus

3 Saarland University, Department of Mathematics

Abstract—Modern CPUs use a variety of undocumented mi-
croarchitectural hash functions to efficiently distribute data
within microarchitectural structures such as caches. A well-
known function is the cache slice function that distributes
cache lines to the slices of the last-level cache. Knowing these
functions considerally improves microarchitectural attacks,
such as Prime+Probe or Rowhammer. However, while several
such linear functions have been reverse-engineered, there is no
generic or automated approach for reverse-engineering non-
linear functions, which are common with modern CPUs.

In this paper, we introduce a novel generic approach for
automatically reverse-engineering a wide range of microarchi-
tectural hash functions. Our approach combines techniques
initially used for logic-gate minimization and from computer
algebra to infer the hash functions based on input-output pairs
observed via side channels. With our framework, we infer 3
previously unknown non-linear hash functions on both AMD
and Intel CPUs, including the new Alder Lake hybrid-CPU
architecture. We verify our approach by reproducing known
hash functions and evaluating side-channel attacks that rely on
these functions, resulting in success rates above 97.65 %. We
stress the need to design such functions with both performance
and security in mind and discuss alternative designs that can
be used in future CPUs.

1. Introduction

To ensure that new CPU generations outperform their
predecessors, CPU vendors continually improve the microar-
chitecture. A common method is to add more caches and
predictors to the microarchitecture. Both caches and predic-
tors rely on data structures that must be indexed efficiently.
Such indexing heavily relies on microarchitectural hash
functions. These hash functions are not cryptographically
secure but ensure that data is uniformly distributed within
these data structures. Typically, these hash functions use
virtual or physical addresses of data as input and they
output an index into a microarchitectural data structure.
These hash functions are designed to balance the load on
the data structure and to reduce collisions when linearly
accessing memory. A well-known example of such a hash
function is the cache-slice function [35], which distributes
data uniformly to the slices of the last-level cache.

These hash functions are not only relevant for the per-
formance of the CPU but also have a significant impact on

microarchitectural attacks. Microarchitectural attacks, such
as Prime+Probe [40], DRAMA [41], TLBleed [21], Col-
lide+Probe [33], or Spectre [29] require knowledge of the
hash function to choose addresses mapping to a specific part
of a microarchitectural element [17]. Without knowledge
of the hash function, attacks are often less effective [41],
[51]. In addition, the knowledge of these hash functions
enables performance improvements by compiling cache-
aware code [36] and allows for cache coloring [66], [53].
However, these functions are typically undocumented.

Previous work reverse-engineered various hash func-
tions, including those used for cache slices [52], [35], [27],
[34], [25], [26], [65], [36], [64], DRAM addressing [51],
[41], [63], [24], [59], AMD’s way predictor [33], and TLB
sets [21], [30]. The approaches for reversing the functions
have in common that they collect a large number of in-
puts and corresponding outputs and try to infer the hash
function from these pairs. For the data recording, various
side-channel measurements [41], [33], [22], [26], [59], [63]
or CPU interfaces [35], [24], [36] have been used. However,
as the general problem of inferring a compact function rep-
resentation from inputs and outputs has shown to be a hard
problem [11], [57], previous work mainly focused on linear
hash functions, i.e., functions that only consist of a single
layer of XORs. All previous non-linear microarchitectural
hash functions have been reverse-engineered by manually
discovering patterns or by assuming a specific structure of
the function [65], [36], [26].

This paper presents the first generic reversing approach
to infer microarchitectural hash functions from input-output
pairs. We handle both linear and non-linear functions with-
out relying on specific assumptions about the hash function.
To this end, we employ a function-minimization pipeline
that finds small representations for a large class of boolean
functions. We find compact representations for most of our
analyzed microarchitectural hash functions. This confirms
the assumption that microarchitectural hash functions are
usually of low depth and complexity, as deep functions
would needlessly increase the latency of the function.

Our function-minimization pipeline consists of 3 main
steps: First, linearity of input bits is checked. Using a
heuristic check allows to reduce the sample size of input-
output pairs significantly. Since many hash functions are
linear in at least some bits, this insight makes collection fea-
sible for larger address input sizes. Next, the sampled truth
table is converted to a disjunctive normal form (DNF). On

this formula, the classical ESPRESSO heuristic logic mini-
mizer [8] is used to pre-minimize the DNF. Compared to the
naı̈ve representation as a truth table, the pre-minimized DNF
representation is already significantly smaller in practice.
Still, a representation in DNF has exponential blowup for
functions that heavily use exclusive-or operations. Hence, in
the last step, we use a novel function minimization technique
based on Gröbner bases. Gröbner bases are an important tool
in computer algebra and can be used to simplify or solve
systems of polynomial equations. Thus, we encode our pre-
minimized DNF into such a system of equations, which can
be further minimized by computing a Gröbner basis. The
resulting Gröbner basis can be interpreted again as a boolean
function. This process can be continued recursively to yield
even more compact function representations.

Our approach is also the first automated approach to
infer non-linear hash functions, such as those used for
cache slices, without relying on specific structures [65] or
large look-up tables [36]. We demonstrate our approach
on multiple non-linear cache-slice functions for which no
hash function is known. Our functions also include the non-
linear cache-slice function of AMD Zen3(+) CPUs, which
we measure using a timing side channel. In total, we provide
10 hash functions inferred using our approach. To exper-
imentally verify the correctness, we implement a Prime+
Probe attack on OpenSSL T-tables on Intel CPUs using the
reverse-engineered cache-slice function. Our attacks achieve
success rates above 99.9%, demonstrating the correctness of
the slice function.

We additionally demonstrate our approach by using it
on a wide range of previously reverse-engineered hash func-
tions. For all functions analyzed, we successfully infer an
equivalent and compact hash function. Our work is fully au-
tomated without requiring any adaptions or assumptions for
specific targets. Moreover, we show that 2 manually reverse-
engineered functions can be represented in an even simpler
form. In addition to being generic, our approach is also fast
enough to be used in practice. All hash functions are inferred
within a day, given the required input-output pairs. Hence,
for most hash functions, collecting these input-output pairs
is the limiting factor, not the recovery of the hash function.
Given the resulting small hash functions, we assume that
our result is close to the hardware implementation.

In addition to the solving approach, we present an open-
source framework for measuring the input-output pairs of
cache slices, AMD’s way predictor, and DRAM addressing.
With its modular design, it can be adapted easily for other
hash functions. The output of this framework can be used
directly by our solving approach to infer the underlying hash
function automatically. The framework handles linear and
non-linear functions without requiring knowledge about the
structure or properties of the function. With this framework,
we show the first reverse-engineering of the cache-slice
function on the new hybrid CPU architecture introduced
with Alder Lake. On this hybrid CPU architecture, one cache
slice is used by either 1 or 4 cores, increasing the complexity
of the hash function. Even CPUs with 16 cores, such as the

Intel Core i9-12900K, have a non-linear cache-slice function
that distributes addresses among 10 slices.

Based on the results, we discuss several use cases for
the reverse-engineered functions, including more effective
attacks and defenses. We propose secure and fast alternatives
to the currently used microarchitectural hash functions. Our
proposed hash functions keep the benefits of currently-used
functions but are more difficult to reverse-engineer, which
impairs future microarchitectural attacks.

To summarize, we make the following contributions:
1) We systematically analyze the currently used approaches

for inferring microarchitectural hash functions, showing
their limitations in measurement and solving approaches.

2) We design a framework to overcome these limitations
with novel measurement and solving techniques, sup-
porting linear and non-linear functions.1

3) We evaluate our framework by inferring new microar-
chitectural hash functions, among those the first ones on
Intel Alder Lake hybrid cores and AMD processors, and
finding new minimal forms for known functions.
Outline. Section 2 provides background. Section 3 dis-

cusses approaches and limitations of previous approaches.
Section 4 introduces our automated approach for recovering
hash functions. Section 5 introduces the measurement frame-
work. Section 6 evaluates our approach. Section 7 discusses
alternative hash functions. Section 8 discusses limitations
and future work. Section 9 concludes.

2. Background

In this section, we provide the necessary background
about hash functions, linear functions, logic minimization
and Gröbner bases.

2.1. Hash Functions

Hash functions are mathematical functions that take an
input and map it to a fixed-size output, generally referred
to as the hash value. In this paper, we focus on hash
functions with fixed input sizes. In contrast to cryptographic
hash functions, microarchitectural hash functions do not
provide any of the classical security guarantees. Instead,
they are mainly designed to load-balance by distributing
data efficiently, as in the LLC or DRAM. Formally, our
considered hash functions map an input {0, 1}b to a bucket
{0, . . . , n− 1}.

Notably, for load-balancing purposes, microarchitectural
hash functions usually have a low complexity. As the hash
functions are often evaluated (e.g., on every memory access),
low latency of the function is of great importance as it has
to keep up with the speed of modern CPUs. Hence, mi-
croarchitectural hash functions can usually be implemented
by a shallow circuit with few gates. Still, to ensure that
they balance the load, the function should have a uniform
output in {0, . . . , k} and, for small changes in the input,

1. Source code can be found at: https://github.com/CISPA/
Microarchitectural-Hash-Function-Recovery

https://github.com/CISPA/Microarchitectural-Hash-Function-Recovery
https://github.com/CISPA/Microarchitectural-Hash-Function-Recovery

the output should change. Such a function is represented
by a circuit in hardware. By analyzing every output bit of
the circuit independently, we can simplify our analysis to
functions h : {0, 1}b → {0, 1}.

2.2. Linear Functions

When analyzing hash functions h : {0, 1}b → {0, 1},
previous work [35], [27], [34], [25] focused mainly on linear
functions. A function h is linear, if it is an exclusive-or
combination of its inputs, i.e., for a1, . . . an ∈ {0, 1}, h
has the shape h(x1, . . . , xn) = (a1 ∧ x1) ⊕ · · · ⊕ (an ∧
xn). Such an equation can be trivially solved by solving
a system of linear equations for a1, . . . , an. In particular, n
measurements are sufficient to completely reconstruct linear
functions.

In contrast, non-linear boolean functions can contain
additional, arbitrary operators. Compared to linear functions,
the function must be evaluated on all 2n possible inputs
to determine it uniquely. Furthermore, finding a compact
representation is significantly more difficult.

2.3. Logic Minimization

Multiple methods exist to minimize a boolean function
specified by its output on all possible input combinations.
From the specification, one can easily build a disjunc-
tive normal form (DNF) of the corresponding formula by
building a disjunction over all values where the function
evaluates to true. However, in general, this representation is
exponentially big in the number of input bits.

Exactly finding a minimum equivalent formula is NP-
hard (it even is ΣP

2 -complete) [57]. Still, some approaches
exist for boolean function minimization, most notably the
work from Quine and McCluskey [45], [37], which op-
timally minimizes a function in DNF. This approach is
refined by the heuristic-driven ESPRESSO [8] for DNF min-
imization. While ESPRESSO does not guarantee minimal
functions, in practice, it provides near-to-optimal results.
This heuristic trade-off provides a reasonable runtime for
ESPRESSO. Therefore, ESPRESSO is widely used in logic
synthesis tools or to perform logic minimization before syn-
thesizing a design. However, ESPRESSO can only minimize
formulas to DNF. In practice, this leads to an exponen-
tial blowup for some functions, in particular for functions
that use the ⊕-operator. This motivates so-called multi-
level logic optimization, where output formulas can have
arbitrary shape. Prior work usually focused on minimizing
cost while synthesizing circuits in hardware. To this end,
techniques based on, e.g., if-then-else constructions [28] or
decomposition and factorization [7] are employed. A more
detailed overview is given by Brayton et al. [6]. Recent
approaches [55] make use of SAT-solvers for optimal multi-
level minimization. However, in practice, the runtime be-
comes infeasible for instances with more than 6–7 variables.
This motivates our heuristic function minimization approach
based on Gröbner bases.

2.4. Gröbner Bases

The computation of Gröbner bases is a powerful tech-
nique used in computer algebra and has found widespread
application in commutative algebra and algebraic geometry.
Mathematically, the theory of Gröbner bases generalizes
polynomial division for systems of equations with multiple
variables. A Gröbner base then yields a reduced representa-
tion of the system of equations with respect to polynomial
division. For a more precise mathematical description of
Gröbner bases and the underlying algorithms, we refer to
related work [10], [3], [13].

In the context of logic minimization, Gröbner bases have
not been used previsously. However, there has been some
progress in SAT-solving, where Gröbner bases were used to
simplify sets of input clauses in a pre-processing step [12],
[38]. These approaches use a similar encoding technique,
but are not designed for logic minimization.

3. Microarchitectural Hash Functions

In this section, we provide a systematic overview of
known microarchitectural elements using a hash function
and the corresponding measurement and solving approaches.
This overview, also summarized in Table 1, motivates the
need for a generic automated approach and also defines the
requirements for a measurement framework and a solving
approach.

3.1. Cache Slices

Since the Sandy Bridge microarchitecture, Intel CPUs
divide the last-level cache into cache slices. Until the Sky-
lake microarchitecture, each physical CPU core had one
cache slice. Since Skylake, each logical CPU core has one
cache slice [9], i.e., , hyperthreads share one slice. However,
with the introduction of hybrid E- and P-cores on Alder
Lake, the slice count per core has changed again. While
every P-core has one slice, 4 E-cores share one slice. AMD
also uses cache slices since the Zen microarchitecture [1]. To
map a physical address to a cache slice, a microarchitectural
hash function is used. The primary purpose of this function
is to balance the pressure on the cache slices.

In the following, we provide an overview of current
approaches to collect measurement data and infer the cache
slice function. For AMD, there is no information about the
slice function, hence we do not include these CPUs in the
overview. However, we show the first reverse-engineering of
this function in Section 5.3.2. We note that so far, generic
approaches only exist for linear functions on Intel CPUs.
Intel CPUs split into E- and P-cores, and CPUs with a non-
power-of-two slice count use non-linear functions. Hence,
previous approaches for CPUs where the number of cores
is a power of two no longer work on these new CPU designs.

Takeaway In modern hybrid CPU architectures (e.g., Intel
Alder Lake), the number of slices is no longer a multiple
of the number of CPU cores.

TABLE 1: Types and properties of microarchitectural hash functions.

Function Linear Mapping (input → output) Vendor Previous Work

Cache slice some Physical address → cache slice Intel, AMD [52], [35], [27], [34], [25]
[26], [65], [36], [64]

DRAM mapping all Physical address → DRAM bank Intel, AMD, ARM [51], [41], [63], [24], [59], [23]
Way predictor all Virtual address → µtag AMD [33]
TLB Sets all Virtual address → TLB set Intel [21], [30]

Measurement Two different measurement methods have
been established to measure the cache-slice function. In both
cases, the output of the cache-slice function can only be
observed indirectly. First, performance counters can be used
to count the number of accesses for every cache slice [35],
[36]. By accessing the address of interest many times, the
slice with the highest number of accesses is likely the
correct slice. As a cache flush needs to acess the cache
slice to check whether a writeback needs to be performed,
a flush instruction can be used for cache acess, eliminating
the need for eviction-set generation. As the performance
counters for cache slices are subject to change for different
microarchitectures, we provide a list of relevant model-
specific registers (MSRs), including configuration values for
microarchitectures from Sandy Bridge to Alder Lake in
Section A. Second, a timing side channel can be used [22]
to detect whether an address maps to the slice of the current
CPU. Another indirect timing side-channel is possible via
eviction sets [25], [26], [27]. By verifying if an eviction
set still works after replacing one address with a different
address from the same cache set, an attacker can infer if the
address maps to the same cache slice.

Solving Solving the function has been automated in the case
of linear slice functions [35], [27]. To solve a linear function,
an attacker performs an optimized brute-force search by
using the commutative and associative properties of the xor
operation. A more efficient approach used by Irazoqui et al.
[27] is to interpret the function as a polynomial over F2

and solve it to retrieve the function. Finding a minimal form
for a non-linear function, in contrast, is a hard problem. All
current approaches rely on manual reverse-engineering after
a sufficient number of measurements have been dumped.
Inci et al. [26] work with assumptions on the depth and
degree of the polynomial used for the non-linear function
based on the distribution of addresses among the slices. They
generate such functions until they find an equivalent function
resulting in the same distribution. Yarom et al. [65] and
McCalpin [36] look for patterns in the slice number over a
contiguous memory region, and identify index permutations
to transform an arbitrary start pattern into a target pattern.
However, McCalpin’s approach [36] only works due to the
specific structure of the currently-used function and still
requires a look-up table for the start pattern. In Section 4,
we solve linear and non-linear functions with our approach,
without relying on specific structures, distributions, or look-
up tables. We can even further simplify the manually-
inferred functions of McCalpin [36].

Takeaway Current measurement and solving approaches
are limited to Intel CPUs and do not work if there is more
than one slice per core.

3.2. DRAM Addressing

DRAM addressing functions have been a part of mi-
croarchitectural attacks in the past, both for side-channel
attacks [41], [60] and Rowhammer attacks [51], [4], [47],
[18], [20]. These functions map a physical memory address
to a DRAM bank. Current approaches assume that the
function is linear. However, we expect non-linear variants,
as announced DDR5 modules support non-power-of-two
memory sizes [54].
Measurement There are 3 approaches for obtaining mea-
surement data for the DRAM addressing function. All 3
approaches have in common that they only observe indirect
information, i.e., the output of the addressing function for
a given input, not the function itself. Pessl et al. [41] first
employed hardware measurements using an oscilloscope to
obtain a ground truth for labeling the addressing functions.
They additionally proposed a timing side channel to measure
in software, which was also used by Xiao et al. [63] and
Wang et al. [59]. Helm et al. [24] relied on DRAM perfor-
mance counters available on Intel Xeon CPUs to determine
the DRAM bank of an address.
Solving Solving the currently-used DRAM functions is
comparatively simple, as they are all linear. Still, multiple
approaches have been proposed. Pessl et al. [41] use a
generic brute-force method to infer the DRAM functions.
Additional graph-based methods [63] have been used too
to infer the DRAM addressing function. While the graph-
based methods provide a significant speed-up, they assume
that every address bit is used in at most 2 output bits of
the function. Wang et al. [59] rely on domain knowledge
and the assumption that the function only consists of XORs
to improve the performance of the brute-force search for
functions.
Takeaway Current DRAM reversing approaches only
work if the involved functions remain simple XORs of
address bits.

3.3. Cache Way Predictor µtag

On AMD CPUs, the cache-way predictor reduces the
cache power consumption by predicting in which cache

way an address is located [33]. Each virtual address is
tagged with a µtag before entering the cache. This tag can
then be used to predict the cache way an address maps to
before the address is translated and the physical address
becomes available. Lipp et al. [33] reverse-engineer the
microarchitectural hash function used to compute the µtag
and leverage their results to perform different cache attacks.
Measurement Two virtual addresses mapping to the same
µtag cause a delay in the way predictor, which can be
observed via timing measurements. To reverse-engineer the
µtag, a complete truth table for the bits relevant to the
function is needed. For the analyzed CPU generations, i.e.,
Bulldozer to Zen 2, the µtag hash function produces an 8-bit
output. The measurements for the truth table can be obtained
by either randomly measuring until sufficient measurements
are taken or by systematically constructing a minimal set of
measurements covering all input combinations for the µtag
hash function. We describe the approach to systematically
measure any microarchitectural hash function in Figure 2.
Solving Lipp et al. [33] assume that the µtag hash function
is a linear function consisting only of XORs of the address
bits. As they can recover the hash function by solving a
system of equations over F2, this assumption is verified.
However, there is no necessity that the µtag hash function
is linear. To reduce the number of hash collisions, the hash
output can be increased to any size. If the output size is not
a power of two, this hash function becomes a non-linear
function.

Takeaway Current way-predictor reversing approaches
only work because AMD currently uses a power of two
for the size of the µtag.

3.4. TLB Set

The mapping between virtual addresses and the TLB is
controlled via a microarchitectural hash function. Gras et al.
[21] reverse-engineered this mapping between virtual ad-
dresses and TLB entries for Sandy Bridge and Coffee Lake
processors for the first and second TLB levels. Koschel et al.
[30] provided a function for the second-level TLB on Sky-
lake processors.
Measurement Measuring the TLB mapping function can be
done by means of timing measurement or performance coun-
ters tracking TLB misses [21], [30]. Similar to the previ-
ously described functions, performing timing measurements
requires minimal assumptions but adds noise. Measurements
using the performance counters are generally more stable
but require an architecture that exposes the performance
counters relevant for tracking the TLB state.
Solving In the case of a linearly-mapped TLB, inferring the
mapping function is trivial. Addresses directly map to TLB
entries and wrap around when the maximum capacity of the
TLB is reached. For more complex but linear functions [21],
[30], it is possible to brute force the function or solve a
system of equations over F2.

4. Generic Hash-function Recovery

In this section, we describe our generic approach to infer
an underlying boolean formula of a microarchitectural hash
function. Figure 1 provides an overview of our approach.
While the way input-output pairs are obtained differs by
application, we describe a generic method applicable to
all microarchitectural hash functions and illustrate it in
Figure 2.

Formally, we are given a black-box function h :
{0, 1}b → {0, . . . , n}. A key idea for the analysis of these
functions is to analyze the function with regard to the binary
representation of the output. Hence, instead of analyzing
h, we reconstruct the functions hi : {0, 1}b → {0, 1} in-
dependently, where hi denotes the i-th bit in the binary
representation of the output of h. For a given bit i, the
specification

{
(x, hi(x)) | x ∈ {0, 1}b

}
is the truth table of

the function hi.
In the following, we restrict our view to simple boolean

functions h : {0, 1}b → {0, 1}. After all input-output pairs
are obtained, each input bit of the function is heuristically
checked for linearity (cf. Section 4.1). Linear bits can be
eliminated in the preprocessing, which significantly im-
proves runtime in almost all cases. In the next step, we build
and minimize a disjunctive normal form of the formula,
detailed in Section 4.2. Afterward, our novel minimization
technique with Gröbner bases further simplifies the formula
(Section 4.3). This minimization pipeline is then called re-
cursively on subterms until no smaller overall representation
is found (Section 4.4).

4.1. Linearity Check

The first step in our pipeline aims to pre-simplify func-
tions even before explicitly collecting all input-output pairs.
To this end, we consider two cases: (a) the i-th bit of the
input does not influence the output of h at all (it is irrelevant
for the output), or (b) the i-th bit always flips the output.

Formally, this is captured by the following definition:
We call a boolean function h linear in bit i if for all values
of x1, . . . , xi−1 and xi+1, . . . , xb, either

h(. . . , xi−1, 0, xi+1, . . .) = h(. . . , xi−1, 1, xi+1, . . .)

or h(. . . , xi−1, 0, xi+1, . . .) ̸= h(. . . , xi−1, 1, xi+1, . . .)

Note that in such a case, the function h can always be
expressed as h(x) = h′(x) ⊕ (ai ∧ xi), where the value
of h′ is independent of xi. In particular, in case (a) it holds
ai = 0, whereas in case (b) ai = 1. Hence, in such a case, it
is sufficient to find a representation for h′(x). Note that this
effectively halves the space needed to represent the truth
table. Thus, eliminating linear bits during the preprocessing
can significantly impact the runtime of the method.

Explicitly collecting the values for a truth table for
a specific function quickly becomes infeasible, as the re-
quired memory grows exponentially in the number of input
bits. Hence, we incorporate a heuristic check for linear-
ity already before the collection of input-output pairs. To

Truth Table
x1 x2 h(x1, x2)
0 0 0
0 1 1
1 0 1
1 1 0

Minimal DNF
h(x1, x2) =
(¬x1 ∧ x2)
∨(x1 ∧ ¬x2)

Polynomial Equations{
(1− x1) · x2= 0,
x1 · (1− x2)= 0

} Gröbner Basis{
x1 + x2= 0

} Final Formula

h(x1, x2) = x1 ⊕ x2

Section 4.2 Section 4.3.2 Section 4.3.3 Section 4.3.4

Figure 1: Overview of the function recovery pipeline. First, a truth table is transformed into a DNF. Afterward, the DNF is
interpreted as a system of polynomial equations, for which a Gröbner basis is computed. Finally, a smaller boolean formula
is recovered from the Gröbner basis.

check the i-th bit for linearity, we perform the following
method: We sample i0 = h(a1, . . . , ai−1, 0, xi+1, . . .) and
i1 = h(a1, . . . , ai−1, 1, xi+1, . . .) for 100 random vectors
(a1, . . . , ai−1, ai+1, . . . , an). If i0 = i1 for all random
vectors, or i0 ̸= i1 for all random vectors, we conclude that
bit i is linear. This check is implemented in our framework
(cf. Section 5.2).

This approach is only a heuristic approximation for
linearity. However, the load-balancing property of hash func-
tions makes it highly unlikely that a bit is incorrectly labeled
as linear. If bit i is relevant, we expect it by the load-
balancing property to influence the output for a significant
share of inputs.

If the i-th bit fulfills the heuristic linearity check, it can
be ignored for measurement. Only in the last step, the final
hash function h(x) = h′(x) ⊕ (ai ∧ xi) is constructed. All
steps in between focus on reconstructing h′(x). In particular,
note that for a linear function that only consists of exclusive-
or operations, this step already reconstructs the complete
formula.

4.2. DNF Minimization

After preprocessing and collecting input-output pairs, a
truth table T = {(x, h(x)) | x ∈ {0, 1}b} is obtained. We
transform this truth table to a disjunctive normal form (DNF)
over the variables x1, . . . xn in the canonical way: First, we
define a primitive def(v1, . . . , vb),which is true if and only
if the input is (v1, . . . , vb):

def(v1, . . . , vb) =
∧

i∈{1,...,b}

{
xi if vi = 1

¬xi if vi = 0

Next, we define our overall formula as a disjunction over
all inputs that are true in T :

h(x) =
∨

((v1,...,vb),1)∈T

def(v1, . . . , vb)

Note that, by definition, the function h(x) fulfills our
truth table directly: For every output that is specified as
true, exactly one disjunct evaluates to true, making the
overall formula true. In general, the resulting DNF has a
size exponential in b. In comparison, we expect the microar-
chitectural hash function to be implemented by a circuit of

low complexity. Hence, the formula should have a compact
form. In the following, we present additional steps to min-
imize the formula, bringing it closer to the actual hardware
implementation. In the first step, the constructed DNF is
minimized with the ESPRESSO [8] algorithm. Afterward,
we make use of Gröbner bases to find a more compact
representation. Minimizing the DNF with ESPRESSO is
not strictly required for the second step. However, the
ESPRESSO algorithm is quite efficient and can significantly
reduce the size of the formula that is passed to the Gröbner
basis computation. This improves the combined runtime of
both steps.

Still, note that a disjunctive normal form can be far from
the optimal representation of a formula. In particular, even
linear formulas can only be represented with exponential
overhead in DNF. For example, the most compact DNF
representation of the formula f(x1, . . . , xn) = x1⊕· · ·⊕xn

in DNF is already exponentially larger in n than f . As
our evaluated microarchitectural hash functions make heavy
use of linear operations, further processing of the DNF is
necessary.

4.3. Gröbner Minimization

After obtaining a minimal DNF, the second step in our
minimization pipeline is based on Gröbner bases. Notably,
Gröbner basis computations can be used to find a simpler
representation of a system of polynomial equations. To take
advantage of this property, we implement the following
process: First, we encode our (minimized) DNF as a system
of polynomial equations. Next, we simplify the resulting
system of polynomial equations by computing a Gröbner
basis. This process yields another system of polynomial
equations, which is then again converted to a boolean for-
mula. To further reduce the size of terms, we apply this
process recursively to smaller subterms. During this process,
we treat the implementation of the Gröbner algorithm mostly
as a black box.

4.3.1. Encoding a Boolean Formula. First, the input DNF
must be encoded as a system of polynomial equations. For
this encoding, we first construct an underlying mathematical
ring that can express boolean functions. We than show,
a method for encoding a DNF as a system of polyno-
mial equations in this ring. Consider the polynomial ring
R = F2[x1, . . . , xn]. Within this ring, all boolean functions

TABLE 2: Encoding of boolean operations in F2

Boolean operation Equivalent in F2

¬x (1− x)
x ∧ y x · y
x⊕ y x+ y
x ∨ y 1− (1− x) · (1− y)

in the n variables x1, . . . , xn can be expressed [42]. The
conversion is an extension of the mapping described in
Table 2, allowing a straightforward translation of formulas
to polynomials in F2[x1, . . . , xn].

Additional care must be taken to encode the idem-
potency law of boolean operations. In particular, for our
purpose, the functions hn(x) = xn and h′

n(x) = xn ·xn are
equal. However, this is not directly entailed by the definition
of the polynomial ring. However, we can work over the ring
R′ = R/(x2

1 − x1, . . . , x
2
n − xn) instead. By definition, in

R′, the terms hi and h′
i are equal for all i. In particular, this

allows to simply replace any term x2
n by the term xn during

calculations, which significantly simplifies the computations
of the Gröbner basis.

In our implementation, we use the SageMath [16] com-
puter algebra system to perform these computations.

4.3.2. Interpretation as System of Linear Equations.
Next, we construct a system of polynomial equations H
over F2, which satisfies the following two properties P1
and P2. If h(x1, . . . , xn) = 0, then (x1, . . . , xn) fulfills all
equations in H (P1). If h(x1, . . . , xn) = 1, then at least
one equation in H is not fulfilled by (x1, . . . , xn) (P2).
This is achieved by translating each disjunct of the DNF
to a polynomial pi ∈ F2[x1, . . . , xn], using the translation
described in Section 4.3.1. Then, for all disjuncts, we add
pi = 0 to our set of equations.

Note that if h(x1, . . . , xn) = 0 for a formula in DNF,
then all disjuncts must evaluate to 0, i.e., all equations
are fulfilled. Contrary, if h(x1, . . . , xn) = 1, at least one
polynomial equation is not fulfilled. For example, consider
the following function h in DNF:

h(x) = (x1 ∧ ¬x2 ∧ x3) ∨ (x2 ∧ ¬x3) ∨ (¬x1).

Its corresponding system of equations is given by

H =

 x1 · (1− x2) · x3 = 0,
x2 · (1− x3) = 0,
1− x1 = 0

 .

4.3.3. Gröbner Bases. We use the property that a Gröbner
basis usually is a more compact representation of a system
of polynomial equations. To this end, we compute a Gröbner
basis for the established system of polynomial equations H .
Importantly, this transformation preserves the properties of
our encoded function:

Theorem 1. Over F2, a Gröbner basis transformation pre-
serves the properties P1 and P2.

A proof of this theorem can be found in Section E.

Our overall goal is to reduce the size of the formula.
To this end, we expect our Gröbner basis to reduce the
size of the system of polynomial equations. However, a
Gröbner basis is always reduced with respect to a notion
of polynomial divisibility. Note that this property does not
necessarily align perfectly with the overall size of the system
of equations. Still, a Gröbner basis is usually of small size.
On all observed functions, the Gröbner base yields a sig-
nificant reduction in terms of size. For example, a Gröbner
basis of the previously established system of equations H
is given by

Gröbner(H) =

{
1− x1 = 0,
x2 + x3 = 0

}
.

This output is more compact than the original H . In our
implementation, we use the Groebner algorithm from the
SINGULAR [15] computer algebra system in combination
with the SageMath [16] computer algebra system.

4.3.4. Formula Reconstruction. In the last step, we recon-
struct a boolean formula from the resulting Gröbner basis.
This conversion from polynomials to boolean expressions
is achieved by again using the correspondence from Table
2. Let φ denote this mapping. Then we build the following
disjunction over all polynomials in our Gröbner basis:

h′(x1, . . . , xn) =
∨

p∈Gröbner(H)

φ(p).

Note that if h(x1, . . . , xn) = 0, then (x1, . . . , xn) ful-
fills all equations in H by P1. Hence, by Theorem 1,
all equations in Gröbner(H) are fulfilled as well. Thus,
φ(p)(x1, . . . , xn) = 0 for all equations p ∈ Gröbner(H),
which implies h′(x1, . . . , xn) = 0. Similarly, it follows
from P2 and Theorem 1 that if h(x1, . . . , xn) = 1, then
h′(x1, . . . , xn) = 1. Overall, this entails h(x1, . . . , xn) =
h′(x1, . . . , xn). Hence, the recovered formula is equivalent
to our original formula. In the above example, the resulting
formula is

h′(x1, x2, x3) = (¬x1) ∨ (x2 ⊕ x3).

Overall, the conversion of the Gröbner basis results in a for-
mula of the following structure: The outermost connective is
always a logical disjunction (∨) over all polynomials in the
Gröbner basis. Next, a polynomial is always a sum (⊕) of
monomials. A monomial itself is a product (∧) of variables.
Hence, our resulting formula is always of the following
shape:

∨
p ∈ Gröbner(H)

⊕
monomial m in p

∧
variable x in m

x.

4.4. Recursive Solutions

The previous minimization pipeline creates an already
simplified version of the formula. However, the overall
structure is limited by the shape of the formula, as described

Direct
Oracle?

Construct direct oracle
(Section 5.2.2)

Determine input bits
(Section 5.2.1)

Dump truth table
(Section 5.2.3)

Linear?

Done

no

yes

yesno

Figure 2: Overview of our unified measurement framework.
First, an oracle, direct or indirect, is set up. Next, a linearity
check is performed. If the function is non-linear, its truth
table form is dumped. For linear functions, no further actions
are needed.

above. To overcome this limitation, a proper subterm of the
resulting formula can be further minimized by recursively
applying the whole minimization pipeline. This starts with
building a truth table for the formula induced by the subterm
and ends with a reconstructed formula. If this formula is
strictly smaller, the subterm can be replaced by it. This
approach allows building even smaller formulas with more
complex structures.

Choosing subterms for further simplification is imple-
mented heuristically. Currently, the decision is influenced by
the size and complexity of the respective subterm. Finding
an optimal method here is subject to further work.

4.5. Runtime & Limits

The runtime of a non-recursive formula minimization is
dominated on a case-by-case basis by either the ESPRESSO
solver for DNF minimization or the computation of the
Gröbner basis, depending on the structure of the minimized
DNF. If ESPRESSO simplifies the formula significantly, the
Gröbner basis can be computed fast, whereas for formulas
with a complex minimized DNF, the Gröbner basis com-
putation takes longer. For most evaluated functions, these
steps take comparable time. Section 6.1 provides detailed
measurements.

In general, this approach can reverse-engineer functions
with up to 18–19 bits reliably within a few minutes. For
more bits, a feasible runtime can only be achieved if the
generating function is comparatively simple, as is the case
for many microarchitectural hash functions. Still, runtime
and memory grow at least exponentially in the number of
input bits.

5. A Unified Measurement Framework

In this section, we propose a generic framework that
allows gathering measurements to infer microarchitectural
hash functions. As discussed in Section 3, inferring mi-
croarchitectural hash functions requires measurements. We
present a two-step measurement strategy to infer microarchi-
tectural hash functions reliably. Our framework is the only
framework that correctly measures the cache slice if there
are multiple slices per core, as is the case since the Intel

Skylake microarchitecture. Moreover, it is the first frame-
work that measures cache slices on AMD CPUs. Figure 2
shows an overview of our measurement framework.

5.1. High-level Overview

The framework supports oracles to add functionality for
measuring a specific microarchitectural hash function. The
framework supports two types of oracles, direct and indirect
oracles. For direct oracles, the framework provides an input,
e.g., an address, and the oracle returns the result of the
hash function. Direct oracles can be used if the output is
available, e.g., when using performance counters for cache
slices [35], [36] or DRAM banks [24]. For indirect oracles,
the framework provides two inputs, e.g., two addresses, and
the oracle returns whether they result in the same hash.
Indirect oracles can typically be constructed using timing
side channels [41], [22], [21], [33]. We implement a direct
oracle for cache slices using performance counters, indirect
oracles for cache slices and DRAM banks using timing side
channels, and an indirect oracle for the cache way µtag using
performance counters.

5.2. Measurement

The measurement is a two-step process. First, the frame-
work determines which bits are used by the microarchi-
tectural hash function. Determining the bits that influence
the output value significantly reduces the measurement and
subsequently also the recovery time. Second, the framework
iterates over all possible values of the relevant input bits and
collects direct or indirect information regarding the output
of the microarchitectural hash function.

5.2.1. Input Bits Determination. The first step of the
measurement process is to perform the heuristic linearity
check, as described in Section 4.1. The linearity check also
determines which input bits influence the output of the
hash function. This can be done by repeatedly picking a
random input and mutating it on a single bit. In the case
of physical or virtual addresses, this is done by flipping
a single bit. We experimentally verify that 100 tries are
sufficient to determine whether a bit is used as input for the
microarchitectural hash functions considered in this paper.
In case 100 tries are not sufficient, the number of tries can
easily be increased.

5.2.2. Data Collection. The second step is to collect the
output of the microarchitectural hash function. As the solver
works using a truth table as input (cf. Section 4), the frame-
work collects measurements for all possible assignments of
the used input bits. The data collection depends on the oracle
type.
Direct Oracle For a direct oracle, the framework can collect
the output of the hash function directly, e.g., when using
performance counters for measuring the cache slice of an
address [35]. The framework simply collects the output of

Core 0 Core 1 Core 2 Core 3
210

215

220 218±1.0

212±0.9

219±0.9
222±1.0

Fl
us

h
tim

e
[c

yc
le

s]

Figure 3: Time of flushing a cache line from different cores
on Intel Core i7-8565U.

the hash function for every assignment of the relevant input
bits.
Indirect Oracle For an indirect oracle, the framework
performs multiple measurements to determine the number
of output classes of the hash function. We leverage a generic
algorithm to transform the indirect oracle into a direct
oracle. We repeatedly measure different addresses until we
find a witness for each output class. A new measurement
can be compared with each witness by an indirect oracle.
Therefore, we obtain a direct oracle with slightly higher
complexity.

5.2.3. Noise Elimination. When noise is present, it needs
to be accounted for by the measurement strategy. A practical
and efficient strategy is to measure each input value multiple
times and build a histogram over the measurements. If the
most frequent bucket in the histogram reaches a predefined
confidence threshold, we select this most frequently mea-
sured value. Our measurement framework uses this approach
to quantify the noise present for each measurement and
allows to add custom functionality to reduce the noise
further when needed.

5.3. Measurement Oracles

This section introduces the proof-of-concept oracles we
implement for evaluating the framework.

5.3.1. Cache Slices on Intel CPUs. Current measurement
approaches for cache slices use performance counters or a
timing side channel to measure the cache slice of an address
(cf. Section 3.1). However, none of these approaches handles
multiple slices per core, as has been the case since the Intel
Skylake microarchitecture. Performance counters only count
all slice accesses per core, and the timing does not differ
for slices on the same core. Hence, to correctly infer a
slice function that also considers multiple slices per core,
we introduce a two-step measurement technique. First, our
technique infers the CPU core associated with the slice.
Second, it looks at the addresses mapping to one core in
isolation, inferring a distinguishing function for mapping
addresses on one core to the actual cache slice. These results
are combined to the full cache-slice function.
Address to Core Mapping If available, we rely on perfor-
mance counters [35], [36] for determining the core of the
slice to which an address maps. In Table 4 (Section A), we
provide the performance-counter configurations for microar-
chitectures we tested and on which they are available. For

C0 C1 C2 C3 C4 C5 C6 C7

740
760
780
800

753±1.1
731±1.0

748±0.9751±1.1
764±0.8

774±0.7
797±0.9803±1.6

Fl
us

h+
R

el
oa

d
tim

e
[c

yc
le

s]

Figure 4: Time of a Flush+Reload cache conflict from
different cores on AMD Ryzen 9 5900HX.

systems where the performance counters are unavailable,
we use a timing side channel based on the observation of
Gruss et al. [22]. The timing of the clflush instruction
depends on the distance of the slice to the CPU core. Hence,
for an address, we measure the time it takes to flush it from
all CPU cores. For this, we pin the measurement application
to a core and measure the time it takes to access and flush
the address. By repeating this measurement for every core,
we see the lowest timing if the measurement application runs
on the core connected to the slice of the address. Figure 3
shows example timings for an address mapping to slice 1.
The execution time increases the further away the core is
from the slice of the address. Based on this direct oracle,
we infer the function using the approach from Section 4.
Address to Slice Mapping In the second step, the mea-
surement has to infer the actual slice of the core. We do
not observe any timing difference for different slices on the
same core. Hence, we use a contention-based approach to
distinguish different slices on one core. For every cache set
for which we have an address, we build a minimal eviction
set using a timing side channel [58]. In this eviction set, all
addresses map to the same cache slice, of which we know
the respective CPU core. For every other address mapping
to a slice on this core, we measure the time to access this
address in addition to the addresses in the eviction set. If the
address maps to the same slice, it conflicts with the eviction
set, leading to cache misses. Otherwise, there is no conflict,
resulting in only cache hits. We use this timing difference to
split the addresses into two groups, each group mapping to a
different slice. Note that this general approach is not limited
to two slices per core. For more slices, one eviction set per
set and slice can be created, and an address has to be tested
against all these eviction sets. Based on this classification,
we can again use the recovery approach from Section 4 to
infer a microarchitectural hash function. Both functions can
then be combined into one hash function, as the outputs are
independent.

5.3.2. Cache Slices on AMD CPUs. For AMD CPUs, we
demonstrate a novel technique to infer the cache slices, as
there are no known approaches for detecting which slice an
address maps to. In contrast to Intel CPUs, we are unaware
of performance counters for slices on AMD. Moreover,
the flush-based timing approach [22] that works on Intel
CPUs does not provide conclusive results on AMD. Our
approach relies on the timing differences of an L3 cache
conflict, similar to the one exploited on Intel CPUs for the
ZombieLoad attack [50]. Instead of measuring the time it

takes to flush a cache line, as we do for Intel CPUs, we
measure how long simultaneously-executing flush and load
instructions to the same cache line take. Figure 4 shows
these timings when accessing the same address from all 8
CPU cores (C0 to C7). In line with the timing side channel
on Intel CPUs, the lowest timing can be observed if the
address maps to the slice of the current core. Additionally,
we observe a performance penalty if the address is in the
slice of a different core complex (CCX). These timings are
shown in red (crosshatched). We also verify this property
using the CCX ID provided by the CPU via cpuid leaf
0x8000001e (bit 2 of EBX for 8-core CPUs). Hence, we
can determine both the CCX and the slice within a CCX. As
these functions are independent, we can solve both functions
independently and combine them into the full hash function
(cf. Section 6.2.1).

5.3.3. DRAM Addressing. To measure the DRAM-
addressing function on a wide range of systems, our im-
plementation relies on the timing side channel introduced
by Pessl et al. [41]. However, in contrast to their approach,
we introduce an optimized approach that relies on the sur-
gical selection of physical addresses. Instead of randomly
mapping memory and obtaining the physical addresses as
done in previous work [41], we map the entire physical
memory to a contiguous virtual memory region aligned to
a multiple of the physical memory size. As a result, every
physical address can be addressed by simply or-ing it with
the start address of the virtual memory range. With this
virtual memory range, we can directly choose accessible
addresses that only differ in a specific bit. An additional
optimization over previous work is marking this memory
range as uncachable to ensure that every memory access
goes directly to the DRAM. As we only have to read from
memory, we do not have to pay attention to whether the
accessed address is used by some other process or the
operating system. However, as accessing memory-mapped
devices could have unwanted side effects, such as system
crashes, we exclude ranges that are not marked as system
memory in /proc/iomem. The oracle itself is an indirect
oracle, as it only returns whether two addresses map to the
same bank (and different row), based on the execution time
of reading from both addresses alternatingly.

5.3.4. Way Predictor. For the cache-way predictor, we
use the approach described by Lipp et al. [33]. As virtual
memory can be freely mapped, we can determine which ad-
dress bits are relevant for the µtag computation by mapping
addresses flipped in exactly one bit.

6. Evaluation

In this section, we evaluate our approach on different
microarchitectural hash functions and demonstrate the cor-
rectness by means of case studies. Using our measurement
framework (cf. Section 5) and the generic hash recovery
(cf. Section 4), we also demonstrate results for previously
unknown microarchitectural hash functions, such as the

10 12 14 16 18 20 22
10−3

100

103

Number of bits

So
lv

in
g

tim
e

[s
ec

on
ds

]

Espresso Groebner

Figure 5: The number of input bits in relation to the time
to solve for the ESPRESSO and Gröbner step on the data
on an Intel Xeon E-2176M Coffe Lake processor.

cache-slice function for the hybrid CPU architecture used
in Intel Alder Lake CPUs, the cache-slice function of AMD
Zen 3 CPUs, and the cache-way-predictor function for Zen
3(+).

6.1. Performance Evaluation

We evaluate the performance of our measurement frame-
work and the solving approach regarding execution time.
The execution time of the measurement framework is shown
in Table 3 and depends on whether the function is linear
or not. For the combination of linear functions and direct
oracles, the framework does not need to dump the truth
table. This can be seen for linear cache-slice functions,
which are dumped within 1min. For indirect oracles, the
entire truth table needs to be dumped, which can be done in
around 1 h for DRAM addressing functions and the AMD
way predictor. For non-linear functions, the measurement
time depends on the number of input bits. Additionally, the
timing side channel for determining slices on AMD requires
many measurements to obtain noise-free results, leading to a
measurement of 23 h. Generally, as the measurement scales
exponentially in the number of input bits, measurements for
non-linear functions take up to several days.

The time for the logic-solving step depends on the
time taken by the ESPRESSO logic minimizer step and
the further minimization using Gröbner basis. The overall
time taken for the logic-solving step is shown in Figure 5.
Overall, the logic solving scales exponentially in both the
Gröbner and ESPRESSO step. As stated in Section 4.5,
these results indicate that ESPRESSO returns complex min-
imized DNF for the analyzed functions increasing the run-
time in the Groebner step. Importantly, we also observe
cache-slice functions such as the one for the Intel Core
i9-12900K, where the Gröbner step is by a factor of 6
faster than the ESPRESSO step, indicating that the relation
between the two runtimes strongly depends on the form of
the analyzed function.

6.2. Hash Functions

To evaluate our approach, we apply it to 10 microarchi-
tectural hash functions. These functions include 6 cache-
slice functions, 2 cache-way predictor functions, and 2
DRAM-addressing functions. Out of these functions, 5 func-
tions are linear, and 5 functions are non-linear. With this

TABLE 3: Measurement times for different hash functions.

CPU Function Relevant bits Time

Intel i7-11800H Cache slice 14 55 s
Intel Core i9-12900K Cache slice 23 5 d
Intel Xeon E-2176M Cache slice 22 23 h
AMD Ryzen 9 5900HX Cache slice 3 23 h
AMD Ryzen 9 5900HX Way predictor 16 55min
AMD Ryzen 9 6900HX Way predictor 16 117min
Intel Core i5-2520M DRAM address 8 18 h
Intel Core i3-7100T DRAM address 8 16 h

{h0, h1, h2} = {b8,¬b6 ∧ b7 ∧ ¬b8, b6 ∧ ¬b7 ∧ b8}

Figure 6: Cache slice function for the AMD Ryzen 9
5900HX.

diverse set of functions, we observe hash functions with
input sizes from 3 to 23 bits and output sizes from 1 to 8
bits.

6.2.1. Cache Slices. In total, we analyze 6 cache-slice func-
tions. These functions can be categorized into 3 previously
unknown functions that we are the first to demonstrate, 2
previously known functions that we optimize into a more
compact representation, and 1 previously known function
that we reproduce.
New Functions We introduce 3 new cache-slice functions.
These functions include a function for AMD Zen 3 and
Zen 3+, and a function for the hybrid Intel Alder Lake
microarchitecture. In contrast to most previous cache-slice
functions, these functions are non-linear.

Figure 9 (Section B) illustrates the reverse-engineered
cache-slice function for an Intel Core i9-12900K (Alder
Lake) and Intel Xeon E-2176M (Coffee Lake). While the
Intel Core i9-12900K has 16 cores (8 E- and 8 P-cores), it
has only 10 slices, as each 4 E-cores share one slice. Hence,
the resulting slice function is non-linear. Similarly, the Intel
Xeon E-2176M has 6 cores and 12 slices resulting in a non-
linear slice function, which differs from the 6 slice hash
previously found by Yarom et al. [65]. We experimentally
verify this slice function by comparing measurements of
cache slices with the computed function. We sample 50 000
random addresses per function and compare the ground truth
observed via performance counters to the function output.
On both processors, the reverse-engineered slice function
is 100% correct. In addition, we experimentally verify the
function of the Intel Xeon E-2176M in a Prime+Probe
attack in Section 6.3. As the Intel Core i9-12900K has a
non-inclusive L3, cross-core Prime+Probe is not directly
possible. However, as the verification using performance
counters is successful, we are highly confident that the
function is correct.

Figure 6 illustrates the reverse-engineered function for
an AMD Ryzen 9 5900HX (Zen 3). This CPU has 2 CCX
with 4 cores each. As a result, the slice function has 3
outputs, where the least-significant bit, i.e., h0 determines
the CCX, and the other two bits determine the slice within

the CCX. In contrast to the slice function on Intel CPUs, the
slice is fully determined via low address bits, simplifying
the eviction-set generation on AMD CPUs. For example,
if 2MB huge pages are available, an attacker can trivially
determine both the cache set and the cache slice from the
virtual address, as no bits above bit 20 are used.

In addition to the previously reverse-engineered slice
functions for Intel Core and Xeon CPUs, where the number
of cores is a power of two [35], we extended this function to
16 slices (from previously 8) and to newer Intel microarchi-
tectures. Surprisingly, when we recover the slice function on
an Intel Core i9-9980HK (Coffee Lake), it slightly differs
from those recovered for older Intel Core and Intel Xeon
CPUs [35]. This CPU has 8 cores, each with 2 hyperthreads,
and thus a total of 16 slices. While the function for bit
0 and bit 1 are the same, the functions for bit 2 and bit
3 are previously unknown functions. For bit 2, we can
rely on performance counters, while for bit 3, we need the
indirect oracle based on a side channel. To demonstrate the
correctness of our function, we evaluate it using a Prime+
Probe attack in Section 6.3.

We show that while the performance-counter interface
changed with Ice Lake (cf. Section A), the used function is
still the same. We recover the function on an Intel Celeron
CPU as well, specifically an Intel Celeron N4500 (Jasper
Lake). Unsurprisingly, this function is also the same on Intel
Celeron CPUs. However, on Intel Tiger Lake, which is based
on a different microarchitecture, the cache-slice function is
slightly different. For 4 slices, bit 0 is still generated by the
same hash function as for previous generations [35], but bit
1 uses a previously unknown function that is also used for
bit 3 on the i9-9980HK (cf. Figure 8 Section B).
Optimized Previous Functions We show that our approach
has benefits even for previously (partially) inferred func-
tions. The 2 non-linear functions found by McCalpin [36]
can be minimized even further using our approach. We
show this by finding more compact base sequences for
these functions. All compact base sequences are provided
in Section C.

6.2.2. Cache-Way Predictor. We recover the cache-way
predictor function on AMD Zen 3 and Zen 3+, as it is
currently only known up to Zen 2. Additionally, we verify
that our approach produces the same result for the Zen and
Zen 2 microarchitectures. The main differences between this
hash function and other hash functions are that this one
works on virtual instead of physical addresses and that it can
only be observed indirectly. We experimentally verify that
the reverse-engineered function is correct by reproducing
the AES T-table attack from the original paper [33] in
Section 6.4.

In line with the µtag hash function on Zen and Zen 2,
the function consists of 8 linear components of the form
shown in Figure 13 (Section D). The inferred functions are
the same for Zen 3 and Zen 3+, and did not change from
previous functions. We also reproduce the same function for
Zen and Zen 2 as shown in the original paper [33].

6.2.3. DRAM Addressing. We recover the DRAM-
addressing function on a system with DDR3 and a system
with DDR4 to show that our optimized oracle works. For
the DDR3 system, we use an Intel Core i5-2520M (Sandy
Bridge), the closest to the system used by Pessl et al. [41]
(Intel Core i5-2540M). We also use the same DRAM config-
uration as described in that paper, with one channel and one
DIMM. Our framework recovers the same function within
18 h. For the DDR4 systems, we use an Intel Core i3-7100T.
The recovered function matches the Coffee Lake function of
Wang et al. [59]. We reverse-engineer this function within
16 h.

6.3. Case Study: Prime+Probe on Intel

To show that the inferred functions are correct, we
perform a Prime+Probe attack on the LLC of the Intel
Xeon E-2176M and the Intel Core i9-9980HK, for which no
slice functions were previously known. Prime+Probe allows
to monitor cross core cache accesses on the shared LLC
without the requirement for shared memory. A common
evaluation scenario for Prime+Probe is attacking the AES
T-Table implementation of OpenSSL. To enable comparison
with previous work, we attack OpenSSL 1.0.1e, as it is
widely used as a benchmark for side-channel attacks [43],
[19], [22], [32]. However, we note that the T-Table imple-
mentation did not change significantly in newer versions,
and we also verify that the attack still works on the current
version of OpenSSL 3.0.7. We base our attack on the
implementation of Gruss et al. [22] but reduce the number
of required encryptions from 1 000 000 to 1000 and use our
reverse-engineered slice function.

On the i9-9980HK, out of the 1000 times we execute the
attack, we recover, on average, 99.98% of the key correctly.
Every attack takes, on average, 2.4 s. On the Xeon E-2176M,
we recover on average 97.65% of the key correctly. Every
attack takes 4.6 s on average. The brute-force complexity
for finding the non-recovered bits is well within reach for
even the most limited attacker, as the required number
of encryptions can be performed in less than a second
on commodity hardware, for example by using AES with
hardware support [2].

6.4. Case Study: Take a Way on AMD

To verify the correctness of the inferred µtag hash
function of the AMD way predictor, we reproduce the AES
T-table attack from the original paper [33] on both the Zen 3
and Zen 3+ architectures. To evaluate our attacks, we use an
AMD Ryzen 9 5900HX for the Zen 3 and an AMD Ryzen
9 6900HX for the Zen 3+ architecture. Figure 7 shows the
result of the Load+Reload and Collide+Probe attacks on
the first AES key byte. As the diagonal is visible, we can
successfully extract the value of the key byte, i.e., 0 in this
case. In line with the attack on older architectures [33], we
successfully recover the AES key with Load+Reload and
Collide+Probe on the Zen 3 and Zen 3+ CPUs.

Plaintext byte
00 40 80 c0 f8

Plaintext byte
00 40 80 c0 f8

C
ac

he
lin

e

0

4

8

12

15

C
ac

he
lin

e

0

4

8

12

15

Figure 7: AES T-table cache access patterns (Ryzen
9 5900HX) with Load+Reload (left) and Collide+Probe
(right).

7. Alternative Hash Functions

In this section, we propose alternatives to currently used
microarchitectural hash functions that are more resistant
to reverse-engineering. While knowing a microarchitectural
hash function is generally not a strict necessity for mounting
an attack, it can significantly simplify an attack. Without
knowledge of the function, attackers have to resort to ei-
ther less-effective attacks [52], [41], [22] or additional side
channels [58]. Hence, we advocate the adoption of functions
that do not impede the system’s performance and are still re-
sistant to currently-known reverse-engineering approaches.
We suggest different approaches for such functions with
different advantages and disadvantages.
Larger Input Space For our approach, the reverse-
engineering time increases exponentially with the number
of input bits of the hash function. As indicated by both
our theoretical analysis in Section 4.5 as well as our prac-
tical benchmarking in Section 6.1, reverse engineering hash
functions on a commodity computer reaches its limits at 21–
25 input bits. Hence, increasing the number of input bits
trivially hardens the functions against reverse engineering.
However, while hash functions can be made more resistant
to reverse engineering via our proposed methods by using a
bigger input space, it only hardens these functions against
our approach. Future methods could find ways to efficiently
reverse engineer such hardened hash functions, e.g., by
finding ways to parallelize the solving. While this could be
a short-time solution, it likely does not provide long-term
security.
Cryptographic Hashes From a security perspective, cryp-
tographic primitives are an ideal candidate for replacing
microarchitectural hash functions. Using cryptographic con-
structions, such as those proposed for secure cache de-
signs [62], [48], [46], ensures that it is infeasible for an
attacker to model and solve the connection between input
and output. However, there are not many readily-usable low-
latency cryptographic primitives, as this is still an open
research problem.
Keyed Hashes We propose keyed hash functions that keep
the load-balancing properties while offering an additional
layer of randomization. Keyed hash functions allow inte-
grating additional randomness to the hash function to make
reverse-engineering more difficult, effectively resulting in a
new hash function on every boot. Random bits can be gen-

erated by the CPU on system boot, e.g., using the rdrand
instruction already present on x86 CPUs. In addition, this
random value can be changed at will during runtime, at the
cost of invalidating the targeted microarchitectural buffer.
This requires an attacker to infer the hash function every
time the randomness bits in the function are changed. The
performance impact and implementation complexity of this
mitigation depends on the underlying microarchitecture, and
an evaluation of such an approach is subject to future work.

8. Discussion

Applicability and Limitations Our approach is designed
for microarchitectural hash functions used in state-of-the-art
microarchitectures. In contrast to cryptographic hash func-
tions, these functions do not claim any security properties.
Instead, they are designed for load balancing and improving
the system’s performance. Additionally, in contrast to cryp-
tographic hash functions, the functions are secret, whereas
the inputs and sometimes outputs can be observed. Hence,
cryptographic hash functions are out of scope for our paper.
This also includes cryptographic hash functions proposed
for the use in the microarchitecture, e.g., for pointer au-
thentication [44] or secure cache designs [46], [62], [48].
Use of the Hash Functions In line with previous work,
we identify several use cases for the reverse-engineered
microarchitectural hash functions. These functions can sim-
plify microarchitectural attacks [51], [41], [33], especially
for privileged attackers against, e.g., trusted-execution envi-
ronments [49]. They can also be used to build more effective
defenses. The operating system could use knowledge of the
slice function to reduce interference on the interconnect,
reducing the observable leakage from side-channel attacks
on the ring bus [39] or mesh [14] connecting cache slices.
For cache coloring [66], [53], knowing the slice function
results in more available colors and, thus, more isolation
domains [65]. Cache coloring is not only helpful in pro-
tecting against side-channel attacks but can also be used
to improve the performance of applications by isolating
them [61], [31]. McCalpin [36] also shows that knowing
the cache-slice function can reduce hash conflicts and, as
a result, improve the performance of specific applications
up to 28%. Finally, these functions can be implemented in
CPUs and system simulators, such as gem5 [5], [56], to
model existing CPUs even more accurately.

9. Conclusion

This paper introduced a generic approach for automati-
cally reverse-engineering microarchitectural hash functions
using a combination of techniques originally used for logic-
gate minimization and in computer algebra. We inferred
the hash functions based on input-output pairs observed
via side channels, resulting in 3 previously-unknown non-
linear hash functions on AMD and Intel CPUs, including the
new Alder Lake hybrid-CPU architecture. We verified the
correctness of the functions by showing the equivalence to

some known hash functions and mounting successful side-
channel attacks that rely on these functions. We discussed
the need to design such functions with performance and
security in mind to make microarchitectural attacks more
difficult in future CPUs.

References

[1] 7-cpu. AMD Zen, 2019. URL: https://www.7-cpu.com/cpu/Zen.html.

[2] Kahraman D. Akdemir, Martin G. Dixon, Wajdi K. Feghali, and
et al. Patrick G Fay. Breakthrough AES Performance with Intel®
AES New Instructions, 2010. URL: https://www.intel.com/content/
dam/develop/external/us/en/documents/10tb24-breakthrough-aes-
performance-with-intel-aes-new-instructions-final-secure.pdf.

[3] Thomas Becker and Volker Weispfenning. Gröbner bases: a com-
putational approach to commutative algebra. Springer Science &
Business Media, 2012.

[4] Sarani Bhattacharya and Debdeep Mukhopadhyay. Curious Case of
Rowhammer: Flipping Secret Exponent Bits Using Timing Analysis.
In CHES, 2016.

[5] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower,
Tushar Krishna, Somayeh Sardashti, et al. The gem5 simulator. ACM
SIGARCH computer architecture news, 2011.

[6] R.K. Brayton, G.D. Hachtel, and A.L. Sangiovanni-Vincentelli. Mul-
tilevel logic synthesis. Proceedings of the IEEE, 1990.

[7] R.K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A.R. Wang.
Mis: A multiple-level logic optimization system. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 1987.

[8] Robert K Brayton, Gary D Hachtel, Curt McMullen, and Alberto
Sangiovanni-Vincentelli. Logic minimization algorithms for VLSI
synthesis. Springer Science & Business Media, 1984.

[9] Samira Briongos, Pedro Malagón, José M Moya, and Thomas Eisen-
barth. RELOAD+REFRESH: Abusing Cache Replacement Policies
to Perform Stealthy Cache Attacks. In USENIX Security Symposium,
2020.

[10] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basisele-
mente des Restklassenrings nach einem nulldimensionalen Polyno-
mideal. Universitat Innsbruck, Austria, Ph. D. Thesis, 1965.

[11] David Buchfuhrer and Christopher Umans. The Complexity of
Boolean Formula Minimization. Lecture Notes in Computer Science,
2008.

[12] Christopher Condrat and Priyank Kalla. A gröbner basis approach
to cnf-formulae preprocessing. In International Conference on Tools
and Algorithms for Construction and Analysis of Systems, 2007.

[13] David Cox, John Little, and Donal OShea. Ideals, varieties, and
algorithms: an introduction to computational algebraic geometry and
commutative algebra. Springer Science & Business Media, 2013.

[14] Miles Dai, Riccardo Paccagnella, Miguel Gomez-Garcia, John Mc-
Calpin, and Mengjia Yan. Don’t mesh around: Side-Channel attacks
and mitigations on mesh interconnects. In USENIX Security Sympo-
sium, 2022.

[15] Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans
Schönemann. SINGULAR 4-3-0 — A computer algebra system for
polynomial computations, 2022.

[16] The Sage Developers, William Stein, David Joyner, David Kohel,
John Cremona, and Burçin Eröcal. SageMath, version 9.7, 2022.
URL: http://www.sagemath.org.

[17] Catherine Easdon, Michael Schwarz, Martin Schwarzl, and Daniel
Gruss. Rapid Prototyping for Microarchitectural Attacks. In USENIX
Security, 2022.

https://www.7-cpu.com/cpu/Zen.html
https://www.intel.com/content/dam/develop/external/us/en/documents/10tb24-breakthrough-aes-performance-with-intel-aes-new-instructions-final-secure.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/10tb24-breakthrough-aes-performance-with-intel-aes-new-instructions-final-secure.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/10tb24-breakthrough-aes-performance-with-intel-aes-new-instructions-final-secure.pdf
http://www.sagemath.org

[18] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen,
Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
TRRespass: Exploiting the Many Sides of Target Row Refresh. In
S&P, 2020.

[19] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A Survey
of Microarchitectural Timing Attacks and Countermeasures on Con-
temporary Hardware. Journal of Cryptographic Engineering, 2016.

[20] Lukas Gerlach, Fabian Thomas, Robert Pietsch, and Michael
Schwarz. A Large-Scale Rowhammer Reproduction Study Using the
Blacksmith Fuzzer. In ESORICS, 2023.

[21] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Trans-
lation Leak-aside Buffer: Defeating Cache Side-channel Protections
with TLB Attacks. In USENIX Security Symposium, 2018.

[22] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Man-
gard. Flush+Flush: A Fast and Stealthy Cache Attack. In DIMVA,
2016.

[23] Martin Heckel and Florian Adamsky. Reverse-engineering bank
addressing functions on amd cpus. In DRAMSec, 2023.

[24] Christian Helm, Soramichi Akiyama, and Kenjiro Taura. Reliable
reverse engineering of intel dram addressing using performance coun-
ters. In International Symposium on Modeling, Analysis, and Simula-
tion of Computer and Telecommunication Systems (MASCOTS), 2020.

[25] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical Timing
Side Channel Attacks against Kernel Space ASLR. In S&P, 2013.

[26] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas
Eisenbarth, and Berk Sunar. Seriously, get off my cloud! Cross-VM
RSA Key Recovery in a Public Cloud. Cryptology ePrint Archive,
Report 2015/898, 2015.

[27] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Systematic
reverse engineering of cache slice selection in intel processors. In
Euromicro Conference on Digital System Design, 2015.

[28] Kevin Karplus. Using If-Then-Else DAGs for Multi-Level Logic
Minimization. 1989.

[29] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre Attacks:
Exploiting Speculative Execution. In S&P, 2019.

[30] Jakob Koschel, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
TagBleed: Breaking KASLR on the Isolated Kernel Address Space
Using Tagged TLBs. In EuroS&P, 2020.

[31] Haifeng Li, Tianyue Lu, Yuhang Liu, and Mingyu Chen. Make page
coloring more efficient on slice-based three-level cache. In ICPADS,
2019.

[32] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. ARMageddon: Cache Attacks on Mobile
Devices. In USENIX Security Symposium, 2016.

[33] Moritz Lipp, Vedad Hadžić, Michael Schwarz, Arthur Perais,
Clémentine Maurice, and Daniel Gruss. Take a Way: Exploring the
Security Implications of AMD’s Cache Way Predictors. In AsiaCCS,
2020.

[34] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
Last-Level Cache Side-Channel Attacks are Practical. In S&P, 2015.

[35] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann,
Olivier Heen, and Aurélien Francillon. Reverse Engineering Intel
Complex Addressing Using Performance Counters. In RAID, 2015.

[36] John D McCalpin. Mapping addresses to l3/cha slices in intel
processors. Technical report, 2021.

[37] Edward J McCluskey. Minimization of boolean functions. The Bell
System Technical Journal, 35(6), 1956.

[38] Thanh Hung Nguyen. Combinations of Boolean Groebner Bases and
SAT Solvers. PhD thesis, Technische Universität Kaiserslautern, 2014.

[39] Riccardo Paccagnella, Licheng Luo, and Christopher W Fletcher.
Lord of the Ring (s): Side Channel Attacks on the CPU On-Chip
Ring Interconnect Are Practical. In USENIX Security Symposium,
2021.

[40] Colin Percival. Cache Missing for Fun and Profit. In BSDCan, 2005.

[41] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. DRAMA: Exploiting DRAM Addressing for
Cross-CPU Attacks. In USENIX Security Symposium, 2016.

[42] Klaus Pommerening. Lecture notes in cryptology, 1999. URL:
https://www.staff.uni-mainz.de/pommeren/Cryptology/Bitblock/
Fourier/ANF.pdf.

[43] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede.
Prime+Scope: Overcoming the Observer Effect for High-Precision
Cache Contention Attacks. In CCS, 2021.

[44] Qualcomm Technologies. Pointer Authentication on ARMv8.3:
Design and Analysis of the New Software Security Instructions,
2017. URL: https://www.qualcomm.com/media/documents/files/
whitepaper-pointerauthentication-on-armv8-3.pdf.

[45] Willard V Quine. The problem of simplifying truth functions. The
American mathematical monthly, 59(8), 1952.

[46] Moinuddin K Qureshi. CEASER: Mitigating Conflict-Based Cache
Attacks via Encrypted-Address and Remapping. In IEEE MICRO,
2018.

[47] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuf-
frida, and Herbert Bos. Flip feng shui: Hammering a needle in the
software stack. In USENIX Security Symposium, 2016.

[48] Gururaj Saileshwar and Moinuddin Qureshi. MIRAGE: Mitigating
conflict-based cache attacks with a practical fully-associative design.
In USENIX Security Symposium, 2021.

[49] Michael Schwarz and Daniel Gruss. How Trusted Execution Environ-
ments Fuel Research on Microarchitectural Attacks. IEEE Security
& Privacy, 2020.

[50] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-
Privilege-Boundary Data Sampling. In CCS, 2019.

[51] Mark Seaborn. Exploiting the DRAM rowhammer bug to
gain kernel privileges, March 2015. Retrieved on June
26, 2015. URL: http://googleprojectzero.blogspot.com/2015/03/
exploiting-dram-rowhammer-bug-to-gain.html.

[52] Mark Seaborn. L3 cache mapping on Sandy Bridge
CPUs, April 2015. Retrieved on June 26, 2015. URL:
http://lackingrhoticity.blogspot.com/2015/04/l3-cache-mapping-
on-sandy-bridge-cpus.html.

[53] Jicheng Shi, Xiang Song, Haibo Chen, and Binyu Zang. Limiting
cache-based side-channel in multi-tenant cloud using dynamic page
coloring. In DSN-W, 2011.

[54] Anton Shilov. SK Hynix Shows Off 48GB and 96GB DDR5-6400
Memory Modules, 2022. URL: https://www.tomshardware.com/news/
sk-hynix-shows-off-48gb-and-96gb-ddr5-6400-memory-modules.

[55] Mathias Soeken, Winston Haaswijk, Eleonora Testa, Alan
Mishchenko, Luca Gaetano Amarù, Robert K. Brayton, and
Giovanni De Micheli. Practical exact synthesis. In DATE, 2018.

[56] Fabian Thomas, Lukas Gerlach, and Michael Schwarz. Hammulator:
Simulate Now – Exploit Later. In DRAMSec, 2023.

[57] Christopher Umans. The Minimum Equivalent DNF Problem and
Shortest Implicants. Journal of Computer and System Sciences, 2001.

[58] Pepe Vila, Boris Köpf, and Jose Morales. Theory and Practice of
Finding Eviction Sets. In S&P, 2019.

[59] Minghua Wang, Zhi Zhang, Yueqiang Cheng, and Surya Nepal.
DRAMDig: A knowledge-assisted tool to uncover DRAM address
mapping. In DAC, 2020.

https://www.staff.uni-mainz.de/pommeren/Cryptology/Bitblock/Fourier/ANF.pdf
https://www.staff.uni-mainz.de/pommeren/Cryptology/Bitblock/Fourier/ANF.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointerauthentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointerauthentication-on-armv8-3.pdf
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://lackingrhoticity.blogspot.com/2015/04/l3-cache-mapping-on-sandy-bridge-cpus.html
http://lackingrhoticity.blogspot.com/2015/04/l3-cache-mapping-on-sandy-bridge-cpus.html
https://www.tomshardware.com/news/sk-hynix-shows-off-48gb-and-96gb-ddr5-6400-memory-modules
https://www.tomshardware.com/news/sk-hynix-shows-off-48gb-and-96gb-ddr5-6400-memory-modules

[60] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, Xi-
aoFeng Wang, Vincent Bindschaedler, Haixu Tang, and Carl A
Gunter. Leaky Cauldron on the Dark Land: Understanding Memory
Side-Channel Hazards in SGX. In CCS, 2017.

[61] Xiaodong Wang, Shuang Chen, Jeff Setter, and José F Martı́nez.
Swap: Effective fine-grain management of shared last-level caches
with minimum hardware support. In HPCA, 2017.

[62] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael
Schwarz, Daniel Gruss, and Stefan Mangard. ScatterCache: Thwart-
ing Cache Attacks via Cache Set Randomization. In USENIX Security
Symposium, 2019.

[63] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu.
One bit flips, one cloud flops: Cross-vm row hammer attacks and
privilege escalation. In USENIX Security Symposium, 2016.

[64] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher
Fletcher, Roy Campbell, and Josep Torrellas. Attack directories, not
caches: Side channel attacks in a non-inclusive world. In S&P, 2019.

[65] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and Gernot Heiser.
Mapping the Intel Last-Level Cache. Cryptology ePrint Archive,
Report 2015/905, 2015.

[66] Ying Ye, Richard West, Zhuoqun Cheng, and Ye Li. Coloris: a
dynamic cache partitioning system using page coloring. In PACT,
2014.

Appendix A.
Cache Slice Performance Counter

As the performance counters used to infer cache slices
change over microarchitectures, we provide a table contain-
ing all necessary MSR configurations for various microar-
chitectures. Table 4 lists these performance counters and
configuration values. These values can be used in, e.g., the
code of Maurice et al. [35].

Appendix B.
Cache-slice Functions

This section contains the full equations for all newly
inferred cache slice functions.

Figure 8 shows the cache slice function for an Intel Core
i9-9980HK with 16 slices. Figure 9 shows the cache slice
mapping for an Intel Alder Lake CPU with 16 cores and 10
slices. Listing 1 provides source code to compute the cache
slice functions on both processors.

Appendix C.
McCalpin’s Cache Slice Mappings [36]

We show a minimized version of McCalpin’s cache slice
mappings [36]. Figures 10 to 12 show the minimized base
sequence for a 16-, 20-, and 24-slice Intel Skylake CPU,
respectively.

Appendix D.
µtag hash for Zen 3 and Zen 3+

Figure 13 shows the µtag hash function of Zen 3 and Zen
3+ CPUs. The inferred function is identical to the previously
reverse-engineered functions for older AMD microarchitec-
tures.

Appendix E.
Proof of Theorem 1

In the following, we provide a proof of Theorem 1 from
Section 4.3.3. However, we first have to introduce ideals
before we can prove the theorem. To simplify the notation,
all polynomials are over F2, and we identify a polynomial
p with the corresponding equation p(x) = 0.

Definition 1. Let H = {p1, . . . , pk} be a set of equations
in a polynomial ring R. Then the ideal generated by H is

⟨H⟩ :=

{
k∑

i=1

qipi : q1, . . . , qk ∈ R

}
.

The following proposition contains an elementary prop-
erty of ideals, which states that a point (x1, . . . , xn) satisfies
all equations in H if and only if it satisfies all equations in
the ideal ⟨H⟩. For convenience, we also include a proof of
this statement.

Proposition 1. Let H = {p1, . . . , pk} be a set of equations
in a polynomial ring R and let x ∈ Fn

2 . Then

∀p ∈ H : p(x) = 0 ⇐⇒ ∀p ∈ ⟨H⟩ : p(x) = 0.

Proof. First, assume pi(x) = 0 for all pi ∈ H and let p′ ∈
⟨H⟩. By definition, p′ has the form

p′ =

k∑
i=1

qipi

for some q1, . . . , qk ∈ F2[x1, . . . , xn] and we obtain

p′(x) =

n∑
i=1

qi(x)pi(x) =

n∑
i=1

qi · 0 = 0.

Conversely, assume p′(x) = 0 for all p′ ∈ ⟨H⟩ and let
pi ∈ H . Define

qj :=

{
1 if i = j,

0 otherwise

and

p′ :=

k∑
j=1

qjpj .

Then pi = p′ and pi(x) = 0, since p′ ∈ ⟨H⟩.

Now, we can prove Theorem 1. Recall that we are given
a function h and a system of polynomial equations H , which
satisifes the properties:
• P1: h(x1, . . . , xn) = 0 =⇒ ∀p ∈ H : p(x1, . . . , xn) =
0,

• P2: h(x1, . . . , xn) = 1 =⇒ ∃p ∈ H : p(x1, . . . , xn) ̸=
0.

We have to show that the properties P1 and P2 are pre-
served if we replace H by Gröbner(H). Observe that both

TABLE 4: MSRs and their configuration values for inferring cache slices on Intel CPUs as shown by Maurice et al. [35].

Variable Name < Skylake >= Skylake >= Ice Lake >= Alder Lake

Counter MSR 0x706 0x706 0x702 0x2002

Counter MSR spacing 0x10 0x10 0x8 0x8

Control MSR 0x700 0x700 0x700 0x2000

Control MSR spacing 0x10 0x10 0x8 0x8

Control MSR value 0x408f34 0x408f34 0x408834 0x408834

Global Counter MSR 0x391 0xe01 0xe01 0x2ff0

Enable-counter mask 0x2000000f 0x20000000 0x20000000 0x20000000

h0 = b6 ⊕ b10 ⊕ b12 ⊕ b14 ⊕ b16 ⊕ b17 ⊕ b18 ⊕ b20 ⊕ b22 ⊕ b24 ⊕ b25 ⊕ b26 ⊕ b27 ⊕ b28 ⊕ b30 ⊕ b32 ⊕ b33 ⊕ b35 ⊕ b36

h1 = b7 ⊕ b11 ⊕ b13 ⊕ b15 ⊕ b17 ⊕ b19 ⊕ b20 ⊕ b21 ⊕ b22 ⊕ b23 ⊕ b24 ⊕ b26 ⊕ b28 ⊕ b29 ⊕ b31 ⊕ b33 ⊕ b34 ⊕ b35 ⊕ b37

h2 = b10 ⊕ b11 ⊕ b13 ⊕ b16 ⊕ b17 ⊕ b18 ⊕ b19 ⊕ b20 ⊕ b21 ⊕ b22 ⊕ b27 ⊕ b28 ⊕ b30 ⊕ b31 ⊕ b32 ⊕ b33

h3 = b9 ⊕ b12 ⊕ b16 ⊕ b17 ⊕ b19 ⊕ b21 ⊕ b22 ⊕ b23 ⊕ b25 ⊕ b26 ⊕ b27 ⊕ b29 ⊕ b31 ⊕ b32 ⊕ b33 ⊕ b34 ⊕ b35

Figure 8: Cache slice function for Intel Core i9-9980HK with 16 slices.

1 #include <stdint.h>
2 #define _B(x, pos) (((x) >> (pos)) & 1)
3

4 int compute_slice(uint64_t x) {
5 uint64_t A_0 = _B(x, 6) ˆ _B(x, 11) ˆ _B(x, 12) ˆ _B(x, 16) ˆ _B(x, 18) ˆ _B(x, 21) ˆ
6 _B(x, 22) ˆ _B(x, 23) ˆ _B(x, 24) ˆ _B(x, 26) ˆ _B(x, 30) ˆ _B(x, 31);
7 uint64_t A_1 = _B(x, 7) ˆ _B(x, 12) ˆ _B(x, 13) ˆ _B(x, 17) ˆ _B(x, 19) ˆ _B(x, 22) ˆ
8 _B(x, 23) ˆ _B(x, 24) ˆ _B(x, 25) ˆ _B(x, 27) ˆ _B(x, 31);
9 uint64_t A_2 = _B(x, 8) ˆ _B(x, 13) ˆ _B(x, 14) ˆ _B(x, 18) ˆ _B(x, 20) ˆ _B(x, 23) ˆ

10 _B(x, 24) ˆ _B(x, 25) ˆ _B(x, 26) ˆ _B(x, 28);
11 uint64_t A_3 = _B(x, 9) ˆ _B(x, 14) ˆ _B(x, 15) ˆ _B(x, 19) ˆ _B(x, 21) ˆ _B(x, 24) ˆ
12 _B(x, 25) ˆ _B(x, 26) ˆ _B(x, 27) ˆ _B(x, 29);
13 uint64_t A_4 = _B(x, 10) ˆ _B(x, 15) ˆ _B(x, 16) ˆ _B(x, 20) ˆ _B(x, 22) ˆ _B(x, 25) ˆ
14 _B(x, 26) ˆ _B(x, 27) ˆ _B(x, 28) ˆ _B(x, 30);
15 uint64_t A_5 = _B(x, 11) ˆ _B(x, 16) ˆ _B(x, 17) ˆ _B(x, 21) ˆ _B(x, 23) ˆ _B(x, 26) ˆ
16 _B(x, 27) ˆ _B(x, 28) ˆ _B(x, 29) ˆ _B(x, 31);
17

18 #ifdef COFFEE_LAKE
19 uint64_t val2 = (((A_2) | (A_4) | (A_5)) & ((A_2) | (A_3)) & (A_0)) & 1;
20 uint64_t val1 = (˜val2 & A_1) & 1;
21 uint64_t val0 = _B(x, 6) ˆ _B(x, 8) ˆ _B(x, 9) ˆ _B(x, 10) ˆ _B(x, 14) ˆ _B(x, 15) ˆ
22 _B(x, 17) ˆ _B(x, 18) ˆ _B(x, 20) ˆ _B(x, 23) ˆ _B(x, 27) ˆ _B(x, 30) ˆ _B(x,31);
23 return val0 | (val1 << 1) | (val2 << 2);
24 #elif defined(ALDER_LAKE)
25 uint64_t val3 = ((A_4 | A_5) & (A_1 & A_3)) & 1;
26 uint64_t val2 = (˜val3 & A_0) & 1;
27 uint64_t val1 = (˜val3 & A_2) & 1;
28 uint64_t val0 = _B(x, 6) ˆ _B(x, 8) ˆ _B(x, 9) ˆ _B(x, 10) ˆ _B(x, 14) ˆ _B(x, 15) ˆ
29 _B(x, 17) ˆ _B(x, 18) ˆ _B(x, 20) ˆ _B(x, 23) ˆ _B(x, 27) ˆ _B(x, 30) ˆ _B(x,31);
30 return val0 | (val1 << 1) | (val2 << 2) | (val3 << 3);
31 #endif
32 }
33

34

Listing 1: Code to compute the cache slice functions for the analyzed Alder Lake and Coffee Lake processors

Cache slice circuit for Alder Lake

A4 A5 A1 A3

A2

A0

h3

h2

h1

A6 h0

Cache slice circuit for Coffe Lake

A3 A2 A4 A5 A0

A1

h3

h2

A6 h0

Common slice circuit input

A0 = x6 ⊕x11 ⊕ x12 ⊕ x16 ⊕ x18 ⊕ x21 ⊕ x22 ⊕ x23 ⊕ x24 ⊕ x26

⊕x30 ⊕ x31

A1 = x7 ⊕x12 ⊕ x13 ⊕ x17 ⊕ x19 ⊕ x22 ⊕ x23 ⊕ x24 ⊕ x25 ⊕ x27

⊕x31

A2 = x8 ⊕x13 ⊕ x14 ⊕ x18 ⊕ x20 ⊕ x23 ⊕ x24 ⊕ x25 ⊕ x26 ⊕ x28

A3 = x9 ⊕x14 ⊕ x15 ⊕ x19 ⊕ x21 ⊕ x24 ⊕ x25 ⊕ x26 ⊕ x27 ⊕ x29

A4 = x10 ⊕x15 ⊕ x16 ⊕ x20 ⊕ x22 ⊕ x25 ⊕ x26 ⊕ x27 ⊕ x28 ⊕ x30

A5 = x11 ⊕x16 ⊕ x17 ⊕ x21 ⊕ x23 ⊕ x26 ⊕ x27 ⊕ x28 ⊕ x29 ⊕ x31

A6 = x6 ⊕x8 ⊕ x9 ⊕ x10 ⊕ x14 ⊕ x15 ⊕ x17 ⊕ x18 ⊕ x20 ⊕ x23

⊕x27 ⊕ x30 ⊕ x31

Figure 9: Cache slice functions for Alder Lake and Coffee
Lake

h0 = x6 ⊕ x10 ⊕ x12 ⊕ x14 ⊕ x16 ⊕ x17 ⊕ x18 ⊕ 1

h1 = x7 ⊕ x11 ⊕ x13 ⊕ x15 ⊕ x17 ⊕ x19 ⊕ 1

h2 = x8 ⊕ x12 ⊕ x13 ⊕ x16 ⊕ x19 ⊕ 1

h3 = x9 ⊕ x12 ⊕ x16 ⊕ x17 ⊕ x19 ⊕ 1

Figure 10: The partial 16-slice addressing function for a
Xeon Skylake processor from McCalpin [36]. In the function
provided by McCalpin, bits above bit 19 are missing.

h0 =x0 ⊕ x2 ⊕ x3 ⊕ x4

h1 =x0 ⊕ x1 ⊕ x2 ⊕ x6

h2 =(¬x5 ∧ ¬x4 ∧ (x2 ⊕ x7))

∨ (¬(x1 ⊕ x6 ⊕ x7) ∧ (x2 ⊕ x7))

∨ (¬x3 ∧ (x2 ⊕ x7))

h3 =(¬x4 ∨ ¬x3 ∨ ¬(x1 ⊕ x6 ⊕ x7))

∧ (¬x5 ∨ ¬x3 ∨ ¬(x1 ⊕ x6 ⊕ x7))

∧ (x0 ⊕ x5 ⊕ x6)

h4 =(x5 ∨ x4) ∧ (x1 ⊕ x6 ⊕ x7) ∧ x3

Figure 11: Function generating the base sequence for a 20-
core Skylake CPU from McCalpin [36]

h0 =x0 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x8

h1 =x0 ⊕ x1 ⊕ x2 ⊕ x6

h2 =x2 ⊕ x3 ⊕ x6

h3 =(¬x4 ∨ ¬(x3 ⊕ x8) ∨ ¬(x0 ⊕ x5 ⊕ x6))

∧ (¬x5 ∨ ¬(x3 ⊕ x8) ∨ (x0 ⊕ x6))

∧ (¬(x2 ⊕ x7 ⊕ x8) ∨ ¬(x0 ⊕ x5 ⊕ x6))

∧ (x1 ⊕ x6 ⊕ x7)

h4 =(x5 ∨ x4 ∨ (x2 ⊕ x7 ⊕ x8))

∧ ((x2 ⊕ x7 ⊕ x8) ∨ (x3 ⊕ x8))

∧ (x0 ⊕ x5 ⊕ x6)

Figure 12: Function generating the base sequence for a 24-
core Skylake CPU from McCalpin [36]

h0 = b12 ⊕ b27

h1 = b13 ⊕ b26

h2 = b14 ⊕ b25

h3 = b15 ⊕ b20

h4 = b16 ⊕ b21

h5 = b17 ⊕ b22

h6 = b18 ⊕ b23

h7 = b19 ⊕ b24

Figure 13: µtag hash function for Zen 3 and Zen 3+

properties can be combined into

h(x1, . . . , xn) = 0 ⇐⇒ ∀p ∈ H : p(x1, . . . , xn) = 0,

because we are working over F2. By applying Proposition 1,
we can replace H with ⟨H⟩ in the previous statement. A key
property of Gröbner bases is that they generate the same
ideal (see Cox et al. [13]), i.e., we have

⟨H⟩ = ⟨Gröbner(H)⟩.

Thus,

h(x1, . . . , xn) = 0 ⇐⇒
∀p ∈ ⟨Gröbner(H)⟩ : p(x1, . . . , xn) = 0

By applying Proposition 1 again, we obtain

h(x1, . . . , xn) = 0 ⇐⇒
∀p ∈ Gröbner(H) : p(x1, . . . , xn) = 0

which is equivalent to P1 and P2 for Gröbner(H).

Appendix F.
Meta-Review

F.1. Summary

The paper considers the task of reverse engineering hash
functions used to load balance microarchitectural structures,
such as LLC cache slices, and DRAM addressing functions.
As knowing the details of these hash functions is often
needed for mounting side channel attacks, the authors show
how to reverse engineer these functions using automated

tools. Finally, the authors demonstrate their approach on
several previously unknown hash functions, across different
data structures on both AMD and Intel CPUs.

F.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established Field
• Establishes a New Research Direction

F.3. Reasons for Acceptance

• Being one of the first tools to automatically reverse engi-
neer hash functions used in microarchitectural structures,
the paper provides a novel tool to enable advances in
side channel research. In particular, this has the potential
to simplify various ad-hoc manual approaches used to
recover such structures.

• Next, the framework presented in the paper is generic
and works across multiple architectures, functions, and
oracles.

• Finally, from a technical perspective, the papers tech-
niques are clever. Resulting in being able to handle
processors where the number of slices is not a power of
two, as well as minimizing the extracted hash functions.

F.4. Noteworthy Concerns

The performance of the proposed framework is rather
slow, requiring days in order to recover the targeted function.
However, as the measurement needs to only be done once
per processor, this is not considered to be a major limitation.

	Introduction
	Background
	Hash Functions
	Linear Functions
	Logic Minimization
	Gröbner Bases

	Microarchitectural Hash Functions
	Cache Slices
	DRAM Addressing
	Cache Way Predictor tag
	TLB Set

	Generic Hash-function Recovery
	Linearity Check
	DNF Minimization
	Gröbner Minimization
	Encoding a Boolean Formula
	Interpretation as System of Linear Equations
	Gröbner Bases
	Formula Reconstruction

	Recursive Solutions
	Runtime & Limits

	A Unified Measurement Framework
	High-level Overview
	Measurement
	Input Bits Determination
	Data Collection
	Noise Elimination

	Measurement Oracles
	Cache Slices on Intel CPUs
	Cache Slices on AMD CPUs
	DRAM Addressing
	Way Predictor

	Evaluation
	Performance Evaluation
	Hash Functions
	Cache Slices
	Cache-Way Predictor
	DRAM Addressing

	Case Study: Prime+Probe on Intel
	Case Study: Take a Way on AMD

	Alternative Hash Functions
	Discussion
	Conclusion
	References
	Appendix A: Cache Slice Performance Counter
	Appendix B: Cache-slice Functions
	Appendix C: McCalpin's Cache Slice Mappings Mccalpin2021slices
	Appendix D: tag hash for Zen 3 and Zen 3+
	Appendix E: Proof of thm:properties-preserved
	Appendix F: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

