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Hello from the Other Side:
Reliable Communication over Cache Covert Channels in
the Cloud

Michael Schwarz and Manuel Weber
October 6th, 2017




About this presentation

This talks shows how caches allow to circumvent the isolation of virtual
machines

* It is not about software bugs
* The attack vector is due to hardware design
* We demonstrate a robust covert channel on the Amazon cloud

RTRTIA
B * And we have a really cool demo at the end




Take aways

» Cache-based covert channels are practical and a real threat

* Virtual machines are not a perfect isolation mechanism

| mn |I1|. II

» There is no known countermeasure for what we present
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Covert channel

What is a covert channel?

» Two programs would like to communicate but are not allowed to do so
* either because there is no communication channel...
« ..or the channels are monitored and programs are stopped on
communication attempts

RTRTIN « Use side channels and stay stealthy
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* Main memory is slow compared to the CPU
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* Main memory is slow compared to the CPU

* Caches buffer frequently used data

* Every data access goes through the cache
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* Caches are transparent to the OS and the software
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Cache hierarchy

Core 0 Core 1 Core 2 Core 3
| 1 | 1 | 1 | : | + L1and L2 are private
L1 L1 L1 L1
1 1 1 1 * Last-level cache is
‘ L" ‘ ‘ Lf ‘ ‘ Lf ‘ ‘ Lf ‘ i « divided into slices
4/ » shared across cores
: ‘ ‘ I * inclusive
ST e L e e
T slice o slice 1 slice 2 slice 3
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Set-associative Last-level Cache
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Set-associative Last-level Cache

Cache

Memory Address Wway o way 1 Way n

’ ‘ 11 bits ‘ 6 bits

2048 cache sets

Cache Set

Cache Line \/7

ST e Location in cache depends on the physical address of data

e Bits 6 to 16 determine the cache set
e A cache set has multiple ways to store the data

e Away inside a cache set is a cache line, determined by the cache replacement policy
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Prime+Probe...
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Prime+Probe...

+ exploits the timing difference when accessing...

+ cached data (fast)
» uncached data (slow)

r, III_N»L'H',," « works across CPU cores as the last-level cache is shared

* is applied to one cache set
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Receiver Sender
address space Cache address space
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Step o: Receiver fills the cache (prime)
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Step 1: Sender evicts cache lines by accessing own data
Step 2: Receiver probes data to determine if the set was accessed
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We want to build a covert channel which...

» works across virtual machines

e runs on the Amazon cloud

« is fast (i.e., multiple kB/s)

* is free of transmission errors

RTRITR

* is robust against system noise
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Cross-VM side channel

We require a side channel which works across virtual machines

* We do not want to rely on software bugs, they can be patched

» We want to exploit the hardware
|..l * Memory is shared between all virtual machines

ST + DRAM — covert channel (Schwarz and Fogh 2016, BlackHat Europe)
B e ﬁ:—,_ * Cache — this talk!
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Cross-VM side channel

We can use Prime+Probe for the side channel

* Prime+Probe works with the last-level cache
* The last-level cache is shared among all CPU cores

* No requirement for any form of shared memory

I IIIN i II * We just need to build eviction sets and negotiate the used cache sets
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Cross-VM side channel

» We need a set of addresses in the same cache set and same slice
* Problem: slice number depends on all bits of the physical address

cache line

- Achievement unlocked offset
ll-v'l-‘:l: Cross-VM side channel

|‘ . I 2MB page offset

L'I'_“,'ﬁlyf," * We can build a set of addresses in the same cache set and same slice...

* ..without knowing which slice
* And then remove the addresses of the wrong slices afterwards
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Challenges
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Challenges

Communication channel

Cross-VM side channel

Prime+Probe
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Communication Channel

* For a communication, we have to agree on communication channels
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Communication Channel

o * For a communication, we have to agree on communication channels
» We have to negotiate them dynamically
* There is always noise on all cache sets

RTRITR

(a) Quiet system (b) Watching an 1080p video
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Communication Channel

Quite similar to a wireless communication channel

0 0 0
— 20 _ 20 —. 20
£ £ £
Z 40 D 40 T 40
é -60 é -60 é -60
-80 -80 -80
-100 -100 -100
0 2500 5000 7500 0 20000 40000 60000 0 500 1000 1500 2000
< e SRS Time [us] Time [us] Time [us]
UL TR
o T Y (a) Bluetooth (b) Microwave (c) WiFi

Figure 2: Noise in wireless channels (Boano et al. 2012)
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Jamming Agreement

* |dea: »He who shouts loudest will be heard«

* One party generates a lot of “noise” on the channel

The other party monitors the channels

Correct channel if the noise level never falls below a certain value

RTRITR




Jamming Agreement

0 5 0 =
Jamming sequence of 13 ms Jamming sequence of 13 ms
20 (absence of interference) 20 (presence of Wi-Fi interference)

3 3

s 40 S,

g > 2

by _
-100
ST 0 5000 10000 15000 0 5000 10000 15000
]
s Time [us] Time [us]
(a) No interference (b) WiFi interference

Figure 3: Jamming agreement in wireless channels (Boano et al. 2012) .
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Jamming Agreement
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Jamming Agreement

Sender Receiver
[ TﬂT l I1 EV|ct|0n Sets Eviction Sets
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Jamming Agreement

Achievement unlocked
Finding each other in the cloud
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Jamming Agreement
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Jamming Agreement

Achievement unlocked
Agreed on common channels
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Sending Data
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Sending Data
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Why don't we just take the file...
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..and put it into the channel?
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Sending the first image
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Sending the first image

Achievement unlocked
First transmission
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Sendmg the first image

""""""" JUST APPLY ERROR
CORRECTION THEYSAID

'l”l"l'
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 ITWILL BE EASY THEYSRIDES
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Sending the first image

ATHATISINOT HOW IT WORKS

| IIIH IIII i
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Challenges

Synchronlzatlon

Communication channel

Cross-VM side channel

QTR II

Prime+Probe
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Synchronization

What we see are mostly synchronization errors

Sender ’1|o|o|1|1|o‘

Receiver ’1|0|0|1|1|o‘
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Normal transmission
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What we see are mostly synchronization errors

Sender ’1|o|o|1|1|o‘

Receiver’1|0| | | |o‘

—_— - - - B
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Deletion errors due to receiver not scheduled
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Sender ’1|O| | | |o|1|1|o‘

'l”l"l' =

|I|I s (o [8leloL ][>
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Insertion errors due to sender not scheduled
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Synchronization

Only sometimes substitution errors which can be corrected

Sender ’1|o|o|1|1|o‘

veceiver [+ [0 ] o]

| mn |I1|. II

Substitution errors due to unrelated noise
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Synchronization

To cope with deletion errors, we use a request-to-send scheme.
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Synchronization

To cope with deletion errors, we use a request-to-send scheme.

» Transmission uses packets with 3-bit sequence numbers

Physical layer word Data SQN

RTRITR 12 bits 3 bits

» Receiver acknowledges by requesting the next sequence number
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Important observation: insertion errors are almost always ‘0's.
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Physical layer word Data SQN | EDC
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* Count the number of ‘0’s in a word
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Achievement unlocked

Detect Interrupts

Physical layer word Data SQN | EDC

|‘ . I 12 bits 3 bits 4 bits

| nm nn. II * Count the number of ‘0’s in a word
* Side effect: there is no ‘0’-word anymore
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Error correction

 Substitution errors can be corrected using forward error correction
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Error correction

Substitution errors can be corrected using forward error correction

* We use wide-spread Reed-Solomon codes

Packets made of symbols

« Symbol size: 12 bits (“RS-word”)
* Packet size: 4095 symbols (= 25ymbol _ 1)

', II'_N, L'Hf,)" * Packet consists of actual message and error correction symbols

42




Error correction

RS codes are a simple matrix multiplication
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Error correction

RS codes are a simple matrix multiplication

1 0 0 0]
0 1 0 0 do
0O 0 1 0 d
X
0o 0 0 1 dy
ST Zoo To1 To2 To03 ds
e T |T10 Z11 Z12 213 ]
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Error correction

RS codes are a simple matrix multiplication

(10 0 0] do]

O 1 0 0 do dy

0o 0 1 0 L |4 B o

o 0 0 1 dy ds

ST Zoo To1 To2 To03 ds o
P |10 Z11 T12 T13] 1 |
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Error correction

* Better safe than sorry: 10% error-correcting code
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Error correction

* Better safe than sorry: 10% error-correcting code

* 3686 data symbols and 409 error correction symbols

ey 3686 RS-words 409 RS-words
'. ‘ ‘ Data-link layer packet | | | | | | Data "

|.. l Physical layer word ‘ Data | SQN | EDC ‘

UL TR 12 bits 3bits 4 bits
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Error correction

Getting rid of noise

'||||||' Achievement unlocked

Physical layer word ‘ Data |SQN| EDC ‘

12 bits 3bits 4 bits
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The covert channel is fast and error free
We want it to be useful

A remote shell without network access would be really nice...

>

SSH

Prerequisites: just TCP
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TCP-over-Cache
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TCP Client TCP Server

/\ Achievement unlocked
./ TCP over anything
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SSH between two instances on Amazon EC2

Noise Connection
No noise v
stress -m 8 on third VM v
Web server on third VM v
Web server on all VMs v

stress -m 1 on server side unstable

Telnet also works with occasional corrupted bytes with stress -m 1
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Challenges
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+ Cache covert channels are practical

» We can get a noise-free and fast channel, even in the cloud

| mn |I1|. II

* Noise does not protect against covert channels
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) https://github.com/IAIK/CIAG

53]


https://github.com/IAIK/CJAG

IIIN I1 II




What you just saw

We extended Amazon’s product portfolio
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CPU Cache in Detail
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Hadamard Codes

* ACKs need error detection as well

e Hadamard codes can detect and correct errors

« Used in very noisy channels — can detect if up to  of the bits changed
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+ Disadvantage: large codewords — k bits encoded to 2* bits
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