—SACA

Trust in, and value from, information systems
Venice Chapter

201
K. WAYNE SNIPES | CCOMMUNICATIONS
AWARD CCOMMENDATION
HONORABLE MENTION

23 by

V Conference on Application
Security and Modern Technologies

In collaborazione con OWASP

The Open Web Application Security Project

5, Universita Dipartimento

8. ,(gfk“ Ca'Foscari di Scienze Ambientali
"ﬁ%‘@‘s \enezia Informatica e Statistica

Venezia, Universita Ca’ Foscari
6 Ottobre 2017

SACA|

Hello from the Other Side:
Reliable Communication over Cache Covert Channels in
the Cloud

Michael Schwarz and Manuel Weber
October 6th, 2017

About this presentation

This talks shows how caches allow to circumvent the isolation of virtual
machines

* It is not about software bugs
* The attack vector is due to hardware design
* We demonstrate a robust covert channel on the Amazon cloud

RTRTIA
B * And we have a really cool demo at the end

Take aways

» Cache-based covert channels are practical and a real threat

* Virtual machines are not a perfect isolation mechanism

| mn |I1|. II

» There is no known countermeasure for what we present

c
.
©

S
©
(=)
b
)
£

R T

I - 118

| mn |I1|. II

Manuel Weber

PhD Student, Graz University of Technology
Interested in IoT, networks and security

¥ OWeberOnNetworks

= manuel .weberQtugraz.at

@WeberOnNetworks
manuel.weber@tugraz.at

| mn |I1|. II

Michael Schwarz

PhD Student, Graz University of Technology
Likes to break stuff

¥ Omisc0110

™ michael.schwarz@iaik.tugraz.at

@misc0110
michael.schwarz@iaik.tugraz.at

And the team

The research team
 Clémentine Maurice
* Lukas Giner
 Daniel Gruss

. ¢|- ‘. - Carlo Alberto Boano ﬂTU
Grazm
|..l * Kay Romer

i * Stefan Mangard

from Graz University of
Technology

Covert channel

What is a covert channel?

* Two programs would like to communicate

RTRITR

Covert channel

What is a covert channel?

» Two programs would like to communicate but are not allowed to do so

RTRITR

Covert channel

What is a covert channel?

» Two programs would like to communicate but are not allowed to do so
« either because there is no communication channel...

| IIIN l|1h II

Covert channel

What is a covert channel?

» Two programs would like to communicate but are not allowed to do so
* either because there is no communication channel...
« ..or the channels are monitored and programs are stopped on
communication attempts

Covert channel

What is a covert channel?

» Two programs would like to communicate but are not allowed to do so
* either because there is no communication channel...
« ..or the channels are monitored and programs are stopped on
communication attempts

RTRTIN « Use side channels and stay stealthy

Covert channel

RTRITR

Covert channel

| mn ll1| II

Challenges

RTRITR

Cross-VM side channel

Challenges

RTRITR

Communication channel

Cross-VM side channel

Challenges

Synchronization

Communication channel

Cross-VM side channel

RTRITR

Challenges

Synchronization

Communication channel

Cross-VM side channel

RTRITR

Challenges

Synchronization

Communication channel

Cross-VM side channel

RTRITR

(2]
]
=
L]
0]
(S
-
o.
(S

* Main memory is slow compared to the CPU

RTRITR

* Main memory is slow compared to the CPU

* Caches buffer frequently used data

RTRITR

* Main memory is slow compared to the CPU

* Caches buffer frequently used data

* Every data access goes through the cache

RTRITR

* Main memory is slow compared to the CPU

* Caches buffer frequently used data

* Every data access goes through the cache

| mn |I1|. II

* Caches are transparent to the OS and the software

Memory access time

10000000
ot Cached

1000000

100000
(%]
[
172}
173
& 10000
Q
<
-
o
5 1000
fe)
£
p=3
Z 100

) ‘ ”||||||||| | ||| |||||||||||||
1 | | |
0 50 100 150 200 250 300 350 400 450 500+

Latency in Cycles

12

Memory access time

10000000
M Cached
 Not Cached

1000000
100000

(%]

[

172}

173

& 10000

Q

<

-

o

5 1000

fe)

£

p=3

Z 100

) hl"”“” ‘ ”|||||||||H | | || |||H||
1 1 " | | | | | | |
0 50 100 150 200 250 300 350 400 450 500+

Latency in Cycles

12

Cache hierarchy

Core 0 Core 1 Core 2 Core 3
| 1 | 1 | 1 | : | + L1and L2 are private
L1 L1 L1 L1
1 1 1 1 * Last-level cache is
‘ L" ‘ ‘ Lf ‘ ‘ Lf ‘ ‘ Lf ‘ i « divided into slices
4/ » shared across cores
: ‘ ‘ I * inclusive
ST e L e e
T slice o slice 1 slice 2 slice 3

13

Set-associative Last-level Cache

Cache

Memory Address

’ ‘ 11 bits ‘ 6 bits

2048 cache sets

ST e Location in cache depends on the physical address of data

Set-associative Last-level Cache

Cache

Memory Address

’ ‘ 11 bits ‘ 6 bits

2048 cache sets

(TR

e Location in cache depends on the physical address of data

e Bits 6 to 16 determine the cache set

Set-associative Last-level Cache

Cache

Memory Address Wway o way 1 Way n

’ ‘ 11 bits ‘ 6 bits

2048 cache sets

ST e Location in cache depends on the physical address of data

e Bits 6 to 16 determine the cache set

e A cache set has multiple ways to store the data

Set-associative Last-level Cache

Cache

Memory Address Wway o way 1 Way n

’ ‘ 11 bits ‘ 6 bits

2048 cache sets

Cache Set

Cache Line \/7

ST e Location in cache depends on the physical address of data

e Bits 6 to 16 determine the cache set
e A cache set has multiple ways to store the data

e Away inside a cache set is a cache line, determined by the cache replacement policy

(<))
_2
(=}
S
(a ¥
+
v
E
S
(a ¥

R T

I - 118

Prime+Probe...

RTRITR

15

Prime+Probe...

+ exploits the timing difference when accessing...

RTRITR

15

Prime+Probe...

+ exploits the timing difference when accessing...
+ cached data (fast)

RTRITR

15

Prime+Probe...

+ exploits the timing difference when accessing...

+ cached data (fast)
» uncached data (slow)

| mn |I1|. II

15

Prime+Probe...

+ exploits the timing difference when accessing...

+ cached data (fast)
» uncached data (slow)

| mn |I1|. II

* is applied to one cache set

15

Prime+Probe...

+ exploits the timing difference when accessing...

+ cached data (fast)
» uncached data (slow)

r, III_N»L'H',," « works across CPU cores as the last-level cache is shared

* is applied to one cache set

15

Receiver Sender
address space Cache address space

| mn |I1|. II

Step o: Receiver fills the cache (prime)

16

Receiver Sender
address space Cache address space

RTRITR

Step o: Receiver fills the cache (prime)

16

Receiver Sender
address space Cache address space

i 2% A

XX T T [T T 1
111
'I‘mli i

Step o: Receiver fills the cache (prime)

16

Receiver Sender
address space Cache address space

loads data

4—\

000
1]
i‘IIIlI i II

Step o: Receiver fills the cache (prime)
Step 1: Sender evicts cache lines by accessing own data

16

Receiver Sender
address space Cache address space

loads data

4—\

000
1]
i‘IIIlI i II

Step o: Receiver fills the cache (prime)
Step 1: Sender evicts cache lines by accessing own data

16

Receiver Sender
address space Cache address space

loads data

000
1]
i‘IIIlI i II

Step o: Receiver fills the cache (prime)
Step 1: Sender evicts cache lines by accessing own data

16

Receiver Sender
address space Cache address space

loads data

000
1]
i‘IIIlI i II

Step o: Receiver fills the cache (prime)
Step 1: Sender evicts cache lines by accessing own data

16

Receiver Sender
address space Cache address space

000
1]
i‘IIIlI i II

Step o: Receiver fills the cache (prime)
Step 1: Sender evicts cache lines by accessing own data

16

Receiver Sender
address space Cache address space

|
>+
RTRTIA
Step o: Receiver fills the cache (prime)

Step 1: Sender evicts cache lines by accessing own data
Step 2: Receiver probes data to determine if the set was accessed

16

Receiver Sender
address space Cache address space

”~
)
N8
G
®

\'&
}

|
>+
RTRTIA
Step o: Receiver fills the cache (prime)

Step 1: Sender evicts cache lines by accessing own data
Step 2: Receiver probes data to determine if the set was accessed

16

Receiver Sender
address space Cache address space

|
>+
RTRTIA
Step o: Receiver fills the cache (prime)

Step 1: Sender evicts cache lines by accessing own data
Step 2: Receiver probes data to determine if the set was accessed

16

Building a robust covert channel

We want to build a covert channel which...

RTRITR

We want to build a covert channel which...

» works across virtual machines

RTRITR

We want to build a covert channel which...

» works across virtual machines

e runs on the Amazon cloud

| mn |I1|. II

We want to build a covert channel which...

» works across virtual machines

e runs on the Amazon cloud

« is fast (i.e., multiple kB/s)

RTRITR

We want to build a covert channel which...

» works across virtual machines
e runs on the Amazon cloud

« is fast (i.e., multiple kB/s)

* is free of transmission errors

RTRITR

We want to build a covert channel which...

» works across virtual machines

e runs on the Amazon cloud

« is fast (i.e., multiple kB/s)

* is free of transmission errors

RTRITR

* is robust against system noise

Challenges

RTRITR

Cross-VM side channel

18

Cross-VM side channel

We require a side channel which works across virtual machines

RTRITR

19

Cross-VM side channel

We require a side channel which works across virtual machines

* We do not want to rely on software bugs, they can be patched

RTRITR

19

Cross-VM side channel

We require a side channel which works across virtual machines

* We do not want to rely on software bugs, they can be patched

» We want to exploit the hardware

RTRITR

19

Cross-VM side channel

We require a side channel which works across virtual machines

* We do not want to rely on software bugs, they can be patched

» We want to exploit the hardware
* Memory is shared between all virtual machines

| IIIN l|1h II

19

Cross-VM side channel

We require a side channel which works across virtual machines

* We do not want to rely on software bugs, they can be patched

» We want to exploit the hardware
* Memory is shared between all virtual machines
* DRAM

RTRITR

19

Cross-VM side channel

We require a side channel which works across virtual machines

* We do not want to rely on software bugs, they can be patched

» We want to exploit the hardware
* Memory is shared between all virtual machines
* DRAM — covert channel (Schwarz and Fogh 2016, BlackHat Europe)

| IIIN l|1h II

19

Cross-VM side channel

We require a side channel which works across virtual machines

* We do not want to rely on software bugs, they can be patched

» We want to exploit the hardware
|..l * Memory is shared between all virtual machines

il i + DRAM — covert channel (Schwarz and Fogh 2016, BlackHat Europe)
e * Cache

19

Cross-VM side channel

We require a side channel which works across virtual machines

* We do not want to rely on software bugs, they can be patched

» We want to exploit the hardware
|..l * Memory is shared between all virtual machines

ST + DRAM — covert channel (Schwarz and Fogh 2016, BlackHat Europe)
B e ﬁ:—,_ * Cache — this talk!

19

Cross-VM side channel

We can use Prime+Probe for the side channel

* Prime+Probe works with the last-level cache

RTRITR

20

Cross-VM side channel

We can use Prime+Probe for the side channel

* Prime+Probe works with the last-level cache

* The last-level cache is shared among all CPU cores

RTRITR

20

Cross-VM side channel

We can use Prime+Probe for the side channel

* Prime+Probe works with the last-level cache

* The last-level cache is shared among all CPU cores

* No requirement for any form of shared memory

RTRITR

20

Cross-VM side channel

We can use Prime+Probe for the side channel

* Prime+Probe works with the last-level cache
* The last-level cache is shared among all CPU cores

* No requirement for any form of shared memory

I IIIN i II * We just need to build eviction sets and negotiate the used cache sets

20

Cross-VM side channel

* We need a set of addresses in the same cache set and same slice

RTRITR

21

Cross-VM side channel

» We need a set of addresses in the same cache set and same slice
* Problem: slice number depends on all bits of the physical address

RTRITR

21

Cross-VM side channel

» We need a set of addresses in the same cache set and same slice
* Problem: slice number depends on all bits of the physical address

cache set cache line
cache tag index offset

physical address e

2MB page offset

* We can build a set of addresses in the same cache set and same slice...

21

Cross-VM side channel

» We need a set of addresses in the same cache set and same slice
* Problem: slice number depends on all bits of the physical address

cache set cache line
cache tag index offset

physical address e

2MB page offset

', II'_“,'JH',,," + We can build a set of addresses in the same cache set and same slice...

* ..without knowing which slice

21

Cross-VM side channel

» We need a set of addresses in the same cache set and same slice
* Problem: slice number depends on all bits of the physical address

cache set cache line
cache tag index offset

physical address Gl

2MB page offset

', II'_“,'JH',," * We can build a set of addresses in the same cache set and same slice...

* ..without knowing which slice
* And then remove the addresses of the wrong slices afterwards

21

Cross-VM side channel

» We need a set of addresses in the same cache set and same slice
* Problem: slice number depends on all bits of the physical address

cache line

- Achievement unlocked offset
ll-v'l-‘:l: Cross-VM side channel

|‘ . I 2MB page offset

L'I'_“,'ﬁlyf," * We can build a set of addresses in the same cache set and same slice...

* ..without knowing which slice
* And then remove the addresses of the wrong slices afterwards

21

Challenges

RTRITR

Prime+Probe
Cross-VM side channel

22

Challenges

Communication channel

Cross-VM side channel

Prime+Probe

22

Communication Channel

* For a communication, we have to agree on communication channels

| IIIN l|1h II

23

Communication Channel

* For a communication, we have to agree on communication channels
» We have to negotiate them dynamically

| IIIN l|1h II

23

Communication Channel

o * For a communication, we have to agree on communication channels
» We have to negotiate them dynamically
* There is always noise on all cache sets

RTRITR

(a) Quiet system (b) Watching an 1080p video
23

Communication Channel

Quite similar to a wireless communication channel

0 0 0
— 20 _ 20 —. 20
£ £ £
Z 40 D 40 T 40
é -60 é -60 é -60
-80 -80 -80
-100 -100 -100
0 2500 5000 7500 0 20000 40000 60000 0 500 1000 1500 2000
< e SRS Time [us] Time [us] Time [us]
UL TR
o T Y (a) Bluetooth (b) Microwave (c) WiFi

Figure 2: Noise in wireless channels (Boano et al. 2012)

24

Jamming Agreement

'l"l"l'

| mn ll1h II

* |dea: »He who shouts loudest will be heard«

Jamming Agreement

* |dea: »He who shouts loudest will be heard«

* One party generates a lot of “noise” on the channel

| mn ll1h II

Jamming Agreement

* |dea: »He who shouts loudest will be heard«

* One party generates a lot of “noise” on the channel

* The other party monitors the channels

| mn ll1h II

Jamming Agreement

* |dea: »He who shouts loudest will be heard«

* One party generates a lot of “noise” on the channel

The other party monitors the channels

Correct channel if the noise level never falls below a certain value

RTRITR

Jamming Agreement

0 5 0 =
Jamming sequence of 13 ms Jamming sequence of 13 ms
20 (absence of interference) 20 (presence of Wi-Fi interference)

3 3

s 40 S,

g > 2

by _
-100
ST 0 5000 10000 15000 0 5000 10000 15000
]
s Time [us] Time [us]
(a) No interference (b) WiFi interference

Figure 3: Jamming agreement in wireless channels (Boano et al. 2012) .

Jamming Agreement

Sender
M Tﬂ'f ; H Eviction Sets
=< .

*e ¢ |

|I|I | |

i i #4\ |

Cache Sets

Receiver
Eviction Sets

27

Jamming Agreement

Sender Receiver
Eviction Sets Eviction Sets

Cache Sets ‘ ‘

RTRITR

27

Jamming Agreement

Sender Receiver
Eviction Sets Eviction Sets

‘ Cache Sets ‘ ‘

pr ime

SRR

27

Jamming Agreement

Sender ™ Receiver
Eviction Sets Eviction Sets

Cache Sets ‘ ‘

|

SRR E:

27

Jamming Agreement

Sender ™ Receiver
Eviction Sets Eviction Sets

‘ Cache Sets ‘ ‘

pl‘obe

SRR

27

Jamming Agreement

Sender Receiver
Eviction Sets Eviction Sets

Cache Sets ‘ ‘

RTRITR

27

Jamming Agreement

Sender Receiver
Eviction Sets Eviction Sets
~~ LEEEEEER (LTI
; #2 ‘ ‘ Cache Sets ‘
" | e |
i i 1 # | | s|s|s|s|s|s|s|s § | |

27

Jamming Agreement

Sender ™ Receiver
Eviction Sets Eviction Sets

Cache Sets ‘ ‘

|

SRR E:

27

Jamming Agreement

Sender \

= Receiver
Eviction Sets Eviction Sets
« [(T
" H#2 ‘ ‘ Cache Sets ‘
| | of | |
il o | | SIS|S[S[S]S5]5]3 § | |

27

Jamming Agreement

Sender Receiver
Eviction Sets Eviction Sets

Cache Sets ‘ ‘

RTRITR

27

Jamming Agreement

Sender Receiver
Eviction Sets Eviction Sets
‘ Cache Sets ‘ ‘

| RRRRRRRR&{ |

SRR

27

Jamming Agreement

Sender ™ Receiver
Eviction Sets Eviction Sets

Cache Sets ‘ ‘

|

SRR E:

27

Jamming Agreement

Sender ™ Receiver
Eviction Sets Eviction Sets
IR LT

‘ Cache Sets ‘ ‘

SRR

27

Jamming Agreement

Sender Receiver
Eviction Sets Eviction Sets

Cache Sets ‘ ‘

RTRITR

27

Jamming Agreement

Sender Receiver
Eviction Sets Eviction Sets
‘ Cache Sets ‘ ‘

| | RRRRRRRR&{ |

SRR

27

Jamming Agreement

Sender ~ Receiver
Eviction Sets Eviction Sets

. ‘ ‘ #2 ‘ ‘ g% Cache Sets ‘ ‘
1 1E AN | |
i i i # | | S S$/S s s's 5 S | |

27

Jamming Agreement

Sender ~ Receiver
Eviction Sets Eviction Sets
‘ Cache Sets ‘

SRR

27

Jamming Agreement

Sender Receiver
[TﬂT l I1 EV|ct|0n Sets Eviction Sets
-~ I - RRRRRRRN
. ‘ ® ‘ ‘ Cache Sets ‘

. mu il i # | | |

|
3| | | }

27

Jamming Agreement

Achievement unlocked
Finding each other in the cloud

<+ . __4ENRN
. ‘ ‘ #2 ‘ ‘ Cache Sets ‘

j_ititi i 4 | | |

27

Jamming Agreement

Sender Receiver
[} TﬂT l I1 EV|ct|0n Sets Eviction Sets
-~ I (T
ll'vl-'l' # | | repeat! |

3| |

. mu il i # | | |

27

Jamming Agreement

Sender Receiver
[} TﬂT l I1 EV|ct|0n Sets Eviction Sets
=< v I (T
AT | v < repeat!> | |
|I|I 7| \ \ &
s #‘*\ | | E

27

Jamming Agreement

Sender Receiver
i Tﬂ'f ; H EV|ct|on Sets Eviction Sets
<+ I - T
AN | v < repeat! > | E
LR T
s #‘*\ | | E

27

Sender

i |

< repeat! >

Jamming Agreement

Receiver
Eviction Sets

I
| 3
| EZ
| |1

27

Jamming Agreement

Achievement unlocked
Agreed on common channels

< 1 - __«dNNRRES
& 'l' ® i | v | | #3
'“l) [« | &
s #‘*\ K | |

27

Sending Data

Sender Last-level cache Receiver

Cache Set #1

Cache Set #2

Cache Set #3

Cache Set #4
| Cache Set ##5
I mli l|1h || Cache Set #6

Cache Set #7

Cache Set #8

28

Sending Data

Sender Last-level cache Receiver

N 'mT i [|| Cache Set #1

s Cache Set #2
" “" =

Cache Set #3

Cache Set #4

I Cache Set #5

I illli ||Ih i Cache Set #6

Cache Set #7

Cache Set #8

28

Sending Data

Sender Last-level cache Receiver

Cache Set #1

Cache Set #2

Cache Set #3

Cache Set #4

fuf{.
1]

ST

Cache Set #5

Cache Set #6

Cache Set #7

©O 0O 0~ 0 0 = O

Cache Set #8

28

Sending Data

Sender Last-level cache Receiver

Cache Set #1

nTﬂT H1

"“""

|I|I

| IIIH Illh I

evict

Cache Set #2

Cache Set #3

Cache Set #4

evict

Cache Set #5

Cache Set #6

Cache Set #7

©O 0O 0~ 0 0 =~ O©

Cache Set #8

28

Sending Data

X0
1]
inHiHH.H

Sender

©O 0O 0~ 0 0 =~ O©

Last-level cache

Cache Set #1

Cache Set #2

Cache Set #3

Cache Set #4

Cache Set #5

Cache Set #6

Cache Set #7

Cache Set #8

Receiver

measure @
measure f/\
measure @
measure @
measure f/\
measure @

measure

measure

e, LN
VR

_— «

O O 0O - 0 0 = O©

28

Sending Data

Sender Last-level cache Receiver

Cache Set #1

Cache Set #2

Cache Set #3

Cache Set #4

fuf{.
1]

ST

Cache Set #5

Cache Set #6

Cache Set #7

2 0 0 = 0 = 0 ©°

Cache Set #8

28

Sending Data

Sender Last-level cache Receiver

Cache Set #1

nTﬂT H1

"“""

|I|I

| IIIH Illh I

Cache Set #2

evict

Cache Set #3

Cache Set #4

evict

Cache Set #5

Cache Set #6

Cache Set #7

2 0 0 = 0 = 0 ©°

evict

—_— Cache Set #8

28

Sending Data

Sender Last-level cache Receiver

Cache Set #1 measure @

Cache Set #2 mmeasurey f\i\
Cache Set #3 measure f/\
Cache Set #z measure f\i\
Cache Set #5 measure f/\
Cache Set #6 G f\i\

measure

Cache Set #7 f\i\
oD

00
ki
'I‘IIIH il .II

measure

Cache Set #8 _ , >,

4 0 0 = 0 2 0 O
- 0 0 - 0 =~ 0 O©°

28

Why don't we just take the file...

RIITRITE

..and put it into the channel?

| Illli Illh i

30

Sending the first image

ST

31

Sending the first image

Achievement unlocked
First transmission

uml‘ i

vv"

i nm il II

31

Sendmg the first image

""""""" JUST APPLY ERROR
CORRECTION THEYSAID

'l”l"l'

| mn |I1| II

 ITWILL BE EASY THEYSRIDES

32

Sending the first image

ATHATISINOT HOW IT WORKS

| IIIH IIII i

33

Challenges

Communication channel

Cross-VM side channel

Prime+Probe

34

Challenges

Synchronlzatlon

Communication channel

Cross-VM side channel

QTR II

Prime+Probe

34

Synchronization

What we see are mostly synchronization errors

Sender ’1|o|o|1|1|o‘

Receiver ’1|0|0|1|1|o‘

| mn |I1|. II

Normal transmission

35

What we see are mostly synchronization errors

Sender ’1|o|o|1|1|o‘

Receiver’1|0| | | |o‘

—_— - - - B

| mn |I1|. II

Deletion errors due to receiver not scheduled

35

Sender ’1|O| | | |o|1|1|o‘

'l”l"l' =

|I|I s (o [8leloL][>

| mn |I1|. II

Insertion errors due to sender not scheduled

35

Synchronization

Only sometimes substitution errors which can be corrected

Sender ’1|o|o|1|1|o‘

veceiver [+ [0] o]

| mn |I1|. II

Substitution errors due to unrelated noise

35

Synchronization

To cope with deletion errors, we use a request-to-send scheme.

RTRITR

36

Synchronization

To cope with deletion errors, we use a request-to-send scheme.

» Transmission uses packets

Physical layer word Data

RTRITR 12 bits

36

Synchronization

To cope with deletion errors, we use a request-to-send scheme.

» Transmission uses packets with 3-bit sequence numbers

Physical layer word Data SQN

RTRITR 12 bits 3 bits

36

Synchronization

To cope with deletion errors, we use a request-to-send scheme.

» Transmission uses packets with 3-bit sequence numbers

Physical layer word Data SQN

RTRITR 12 bits 3 bits

» Receiver acknowledges by requesting the next sequence number

36

Synchronization

Important observation: insertion errors are almost always ‘0's.

RTRITR

37

Synchronization

Important observation: insertion errors are almost always ‘0's.

« Detecting additional ‘0’s detects (many) insertion errors

RTRITR

37

Synchronization

Important observation: insertion errors are almost always ‘0's.

« Detecting additional ‘0’s detects (many) insertion errors

* We need an error detection code

Physical layer word Data SQN

12 bits 3 bits

RTRITR

37

Synchronization

Important observation: insertion errors are almost always ‘0's.

« Detecting additional ‘0’s detects (many) insertion errors

* We need an error detection code — Berger codes

Physical layer word Data SQN | EDC

12 bits 3 bits 4 bits

RTRITR

37

Synchronization

Important observation: insertion errors are almost always ‘0's.

« Detecting additional ‘0’s detects (many) insertion errors

* We need an error detection code — Berger codes

Physical layer word Data SQN | EDC

12 bits 3 bits 4 bits

e Count the number of ‘0’s in a word

RTRITR

37

Synchronization

Important observation: insertion errors are almost always ‘0's.

« Detecting additional ‘0’s detects (many) insertion errors

* We need an error detection code — Berger codes

Physical layer word Data SQN | EDC

12 bits 3 bits 4 bits

* Count the number of ‘0’s in a word
* Side effect: there is no ‘0’-word anymore

RTRITR

37

Achievement unlocked

Detect Interrupts

Physical layer word Data SQN | EDC

|‘ . I 12 bits 3 bits 4 bits

| nm nn. II * Count the number of ‘0’s in a word
* Side effect: there is no ‘0’-word anymore

37

Synchronization

Sender Receiver
,,,,, SEQ=1 i
Initiate,
transmission

nTﬂT Hi

: Receiver
. ‘ ‘ descheduled

Sender
i III_N‘ L"J',,," descheduled

38

Synchronization

Sender Receiver

Initiate,
transmission

[DATA] SEQ = 4

nTﬂT Hi

: Receiver
. ‘ ‘ descheduled

Sender
i III_N‘ L"J',,," descheduled

38

Synchronization

Sender Receiver

Initiate,
transmission

[DATA] SEQ = 4

nTﬂT Hi

: Receiver
. ‘ ‘ descheduled

Sender
i III_N‘ L"J',,," descheduled

38

Synchronization

Sender Receiver

Initiate,
transmission

[DATA] SEQ = 4

nTﬂT ,ui

YA [DATA) SEQ - » Receiver
..‘.‘I descheduled
| TR TSR Sender

et descheduled

38

Synchronization

Sender Receiver

Initiate,
transmission

[DATA] SEQ = 4

nTﬂT ,ui

YA [DATA) SEQ - » Receiver
. ‘ ‘ descheduled
| ITRTIT Sender

et descheduled

38

Synchronization

Sender Receiver

Initiate,
transmission

[DATA] SEQ = 4

nTﬂT ,ui

. 3 - i
v v [DATA] SEQ = Receiver

. LXK descheduled
1] o

Sender SEQ=3
: III_N,LILI',,," Jdrriln) ee—— |

38

Synchronization

Sender Receiver

Initiate,
transmission

[DATA] SEQ = 4

nTﬂT ,ui

. 3 - i
v v [DATA] SEQ = Receiver

. L K J descheduled
1] o

Sender SEQ=3
: III_N,LILI',,," Jdrriln) ee—— |

38

Synchronization

Sender Receiver

Initiate,
transmission

[DATA] SEQ = 4

. S - i
v.v [DATA] SEQ = Receiver

. ‘ ‘ descheduled
1] D
e fE M Sender SEQat)

'III_N,LILI'" descheduled — |
%

38

Synchronization

Sender Receiver

Initiate,
transmission

[DATA] SEQ = 4

Achievement unlocked

l.mﬁ

Synchronlzed parties

Sender SEQ=3
IJI_N, L‘D',,," descheduled

38

Without synchronization

RSN SRANS 2

i 2% A

*e e
I

Iii

nm 11

39

c
(=]
=]
3]
-
c
(=}
S
=
%)
s,
n

R T

40

Synchronization

R T

40

Synchronization

R T

Synchronization

I hTmu li

'l”l"l'

IIIII II I

] CAN YOU
ENHANCE THAT

Synchronization

L SI:Cache
‘ overtly Sending Information

I hTmu li

'l”l"l'

IIIII II I

] CAN YOU
ENHANCE THAT

Challenges

Synchronlzatlon

Communication channel

Cross-VM side channel

QTR II

Prime+Probe

41

Challenges

Synchronization

Communication channel

Cross-VM side channel

RTRITR

Prime+Probe

41

Error correction

 Substitution errors can be corrected using forward error correction

RTRITR

42

Error correction

 Substitution errors can be corrected using forward error correction

* We use wide-spread Reed-Solomon codes

| IIIN l|1h II

42

Error correction

 Substitution errors can be corrected using forward error correction

* We use wide-spread Reed-Solomon codes
» Packets made of symbols

| IIIN l|1h II

42

Error correction

 Substitution errors can be corrected using forward error correction

* We use wide-spread Reed-Solomon codes
» Packets made of symbols
« Symbol size: 12 bits (“RS-word”)

| IIIN l|1h II

42

Error correction

 Substitution errors can be corrected using forward error correction

* We use wide-spread Reed-Solomon codes
» Packets made of symbols

« Symbol size: 12 bits (“RS-word”)
* Packet size: 4095 symbols (= 25ymbol _ 1)

| IIIN l|1h II

42

Error correction

Substitution errors can be corrected using forward error correction

* We use wide-spread Reed-Solomon codes

Packets made of symbols

« Symbol size: 12 bits (“RS-word”)
* Packet size: 4095 symbols (= 25ymbol _ 1)

', II'_N, L'Hf,)" * Packet consists of actual message and error correction symbols

42

Error correction

RS codes are a simple matrix multiplication

RTRITR

43

Error correction

RS codes are a simple matrix multiplication

1 0 0 0]
0 1 0 0 do
0O 0 1 0 d
X
0o 0 0 1 dy
ST Zoo To1 To2 To03 ds
e T |T10 Z11 Z12 213]

43

Error correction

RS codes are a simple matrix multiplication

(10 0 0] do]

O 1 0 0 do dy

0o 0 1 0 L |4 B o

o 0 0 1 dy ds

ST Zoo To1 To2 To03 ds o
P |10 Z11 T12 T13] 1 |

43

I TﬂTA

'l”l"l'

|I|I

| IIIH IIII I

44

Error correction

RTRITR

44

Error correction

| Illli IR

44

Error correction

* Better safe than sorry: 10% error-correcting code

| mn |I1|. II

45

Error correction

* Better safe than sorry: 10% error-correcting code

* 3686 data symbols and 409 error correction symbols

ey 3686 RS-words 409 RS-words
'. ‘ ‘ Data-link layer packet | | | | | | Data "

|.. l Physical layer word ‘ Data | SQN | EDC ‘

UL TR 12 bits 3bits 4 bits

45

Error correction

Getting rid of noise

'||||||' Achievement unlocked

Physical layer word ‘ Data |SQN| EDC ‘

12 bits 3bits 4 bits

RTRITR

45

Error correction

Comparison of transmission speeds (in kbit/s)

RTRITR

Dial Up [l 56

46

Error correction

Comparison of transmission speeds (in kbit/s)

RTRITR
e ISDN [128

Dial Up [l 56

46

Error correction

Comparison of transmission speeds (in kbit/s)

11l GPRS 144
BRI
ominion ISDN [128
Dial Up [l 56

46

Error correction

Comparison of transmission speeds (in kbit/s)

Amazon EC2 covert channel 362
| . GPRS [144
UL

YRR ISDN [128

Dial Up [l 56

46

Error correction

Comparison of transmission speeds (in kbit/s)

EDGE [T 384
Amazon EC2 covert channel [T 362
GPRS [144
pr g ISDN [128

RTRITR

Dial Up [l 56

46

Error correction

Comparison of transmission speeds (in kbit/s)

Native covert channel | 600
EDGE 384

. Amazon EC2 covert channel 362

|. l GPRS [144

TR

P 1@ ISDN [128

Dial Up [l 56

46

Error correction

Comparison of transmission speeds (in kbit/s)

3G

1,433

Native covert channel | 600
EDGE 384

Amazon EC2 covert channel 362

|..l GPRS [144

TR

s g ISDN [128

Dial Up [l 56

46

Challenges

Synchronization
Communication channel

Cross-VM side channel

Prime+Probe

47

Challenges

Synchronization
Communication channel

Cross-VM side channel

Prime+Probe

47

* The covert channel is fast and error free

RTRITR

48

* The covert channel is fast and error free

* We want it to be useful

| mn |I1|. II

48

* The covert channel is fast and error free

* We want it to be useful

» A remote shell without network access would be really nice...

| mn |I1|. II

48

* The covert channel is fast and error free
* We want it to be useful

» A remote shell without network access would be really nice...

>
!M!

48

| Illli Illh i

The covert channel is fast and error free
We want it to be useful

A remote shell without network access would be really nice...

>

SSH

Prerequisites: just TCP

48

TCP-over-Cache

RTRITR

Hypervisor |

| Last Level Cache (LLC) |

49

| Covert Channel |

RTRITR |

Hypervisor |

Prime+Probe Prime+Probe

| Last Level Cache (LLC) |

49

File System File System

| Covert Channel | | Covert Channel |

RTRITR |

Hypervisor |

Prime+Probe Prime+Probe

| Last Level Cache (LLC) |

49

|ITﬂT l

TCP+File |

]: File System File System I

1
1
1
1
:
"v"w“r"-i :|
1
1
1
1
1
1

I . . I | Covert
1

Channel |

1
1
1
1
:
1
| TCPsFile |
1
1
1
1
1

| Covert Channel |

I illli nn. Il —

Hypervisor

Prime+Probe Prime+Probe

Last Level Cache (LLC)

49

RTRITR

VM 1 VM 2
________________________ 1 Y |
l L !
! 1 ! 1
! 1 ! 1
: Socket : : Socket :
1 1
:| TCP<File |: :| TCP<File |:
1 1
|]: File System ' | File System I '
! 1 ! 1
:| Covert Channel |: :| Covert Channel |:
——————F———————————"=- ——————F———————————x-
| Hypervisor |

Prime+Probe

Prime+Probe

Last Level Cache (LLC)

49

= || g
X0
ki
LT 0)

VM 1 VM 2
________________________ 1 —_—-s - m m e — — — — — —
I TCP Client vy TCP Server .
! (e.g. ssh) . ! (e.g. sshd) .

1 1
: Socket : : Socket :
1 1
:| TCP<File |: :| TCP<File |:

1 1
, . p U 2 1
:]: File System : : File System I :
:| Covert Channel |: :| Covert Channel |:
e ————————3F—————————————— e ——————————F————————————
| Hypervisor |

Prime+Probe

Prime+Probe

Last Level Cache (LLC)

49

= || g
X0
ki
LT 0)

VM 1 VM 2
________________________ 1 —_—-s - m m e — — — — — —
: TCP Client ! : TCP Server !
! _ (e.g. ssh) ! (e.g. sshd) _ n
0 1 0 1
: H Socket : : Socket . :
1 - 1 5
f TCP<sFile || TCPsFile P
1 1
i]: File System ' i File System I '
- 1 . 1
:| 2 Covert Channel |: :| Covert Channel |:
IT=——————————3-———-—-————"—- —_——1
| Hypervisor |

Prime+Probe

Prime+Probe

Last Level Cache (LLC)

49

TCP Client TCP Server

/\ Achievement unlocked
./ TCP over anything

RTRITR

Hypervisor 8 |

Prime+Probe Prime+Probe

[e Last Level Cache (LLC)) |

49

SSH between two instances on Amazon EC2

Noise Connection

No noise v

RTRITR

50

SSH between two instances on Amazon EC2

Noise Connection
No noise v
stress -m 8 on third VM v

RTRITR

50

SSH between two instances on Amazon EC2

Noise Connection
No noise v
stress -m 8 on third VM v
Web server on third VM v

| mn |I1|. II

50

SSH between two instances on Amazon EC2

Connection

stress -m 8 on third VM
Web server on third VM
Web server on all VMs

v

v
v
v

RTRITR

SSH between two instances on Amazon EC2

Noise Connection
No noise v
stress -m 8 on third VM v
Web server on third VM v
Web server on all VMs v

stress -m 1 on server side unstable

50

RTRITR

SSH between two instances on Amazon EC2

Noise Connection
No noise v
stress -m 8 on third VM v
Web server on third VM v
Web server on all VMs v

stress -m 1 on server side unstable

Telnet also works with occasional corrupted bytes with stress -m 1

50

Challenges

Synchronization
Communication channel

Cross-VM side channel

Prime+Probe

51

Challenges

£\ Achievement unlocked

\ / Error-free covert channel

o EDC
Synchronization

Communication channel

Cross-VM side channel

| . - . Jamming
N Agreement

Prime+Probe

51

LLL

SS==soooo

c
2
@
S
—
3]
c
o
&)

R T

I .

+ Cache covert channels are practical

» We can get a noise-free and fast channel, even in the cloud

| mn |I1|. II

* Noise does not protect against covert channels

52

File

Edit

View Bookmarks Settings Help

: start receiving...

nder[e]
nder[1]

cjag : zsh

) https://github.com/IAIK/CIAG

53]

https://github.com/IAIK/CJAG

IIIN I1 II

What you just saw

We extended Amazon’s product portfolio
ll' vl- ~l'

| mn |I1|. II

55

What you just saw

We extended Amazon’s product portfolio

amaZoncom
Prime

| IIIN l|1l II

55

What you just saw

We extended Amazon’s product portfolio

Y amaZon.Ccom
[Prime +Probe

1 AT

Hello from the Other Side:
Reliable Communication over Cache Covert Channels in
the Cloud

RUTRTIN

Michael Schwarz and Manuel Weber
October 6th, 2017

O https://github.com/IAIK/CJIAG

https://github.com/IAIK/CJAG

Bibliography |

References

A

Boano, Carlo Alberto et al. (2012). “Jag: Reliable and predictable wireless agreement under
external radio interference”. In: IEEE 33rd Real-Time Systems Symposium (RTSS).

Schwarz, Michael and Anders Fogh (2016). “DRAMA: How your DRAM becomes a security
problem”. In: Black Hat Europe 2016.

RTRITR

57

CPU Cache in Detail

Memory Address Cache

’ ‘ 11 bits ‘ 6 bits | Tag Data

!Tﬂf i

i-c--u-

| mn |I1|. II

2048 cache sets

Cache Set

58

CPU Cache in Detail

Memory Address Cache

Way 1 Tag Way 1 Data

’ ‘ 11 bits ‘ 6 bits l Way 2 Tag Way 2 Data

2048 cache sets

g A A

SO0
1]
'I‘mli il ||

Cache set

58

CPU Cache in Detail

Memory Address Cache

Way 1 Tag Way 1 Data

’ ‘ 11 bits ‘ 6 bits l Way 2 Tag Way 2 Data

2048 cache sets

g A A

SO0
1]
'I‘mli il ||

Cache set

58

CPU Cache in Detail

nTﬂT H1

i-cl--l-

| Illli Illh i

Memory Address

‘ 11 bits ‘ 6 bits |

Tag

Cache set

2048 cache sets

Cache

Way 1 Tag
Way 2 Tag

Way 1 Data
Way 2 Data

D)

—/
2)

Data

58

Hadamard Codes

* ACKs need error detection as well

RTRITR

59

Hadamard Codes

* ACKs need error detection as well
e Hadamard codes can detect and correct errors

RTRITR

59

Hadamard Codes

* ACKs need error detection as well

e Hadamard codes can detect and correct errors

« Used in very noisy channels — can detect if up to of the bits changed

| IIIN l|1h II

59

Hadamard Codes

* ACKs need error detection as well

e Hadamard codes can detect and correct errors

« Used in very noisy channels — can detect if up to of the bits changed

| IIIN l|1h II

+ Disadvantage: large codewords — k bits encoded to 2* bits

59

	Introduction
	CPU Caches
	Prime+Probe
	Building a robust covert channel
	Conclusion

