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About this presentation

This talks shows how caches allow to circumvent the isolation of virtual
machines

• It is not about software bugs
• The attack vector is due to hardware design
• We demonstrate a robust covert channel on the Amazon cloud
• And we have a really cool live demo at the end
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Take aways

Take aways

• Cache-based covert channels are practical and a real threat
• Virtual machines are not a perfect isolation mechanism
• There is no known countermeasure for what we present
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Introduction



Whoami

• Manuel Weber
• PhD Student, Graz University of Technology
• Interested in IoT, networks and security
• @WeberOnNetworks

• manuel.weber@tugraz.at
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Whoami

• Michael Schwarz
• PhD Student, Graz University of Technology
• Likes to break stuff
• @misc0110

• michael.schwarz@iaik.tugraz.at
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And the team

The research team
• Clémentine Maurice
• Lukas Giner
• Daniel Gruss
• Carlo Alberto Boano
• Kay Römer
• Stefan Mangard

from Graz University of Technology
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Covert channel

What is a covert channel?

• Two programs would like to communicate

but are not allowed to do so
• either because there is no communication channel...
• ...or the channels are monitored and programs are stopped on communication
attempts

• Use side channels and stay stealthy
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Challenges

Cross-VM side channel
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CPU Caches



Motivation

• Main memory is slow compared to the CPU

• Caches buffer frequently used data
• Every data access goes through the cache
• Caches are transparent to the OS and the software
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Memory access time
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Memory access time
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Cache hierarchy

Core 0

L1

L2

Core 1

L1

L2

Core 2

L1

L2

Core 3

L1

L2 ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• Last-level cache is

• divided into slices
• shared across cores
• inclusive
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Set-associative Last-level Cache

Memory Address

Cache

6 bits11 bits

2048 cache sets

• Location in cache depends on the physical address of data
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Set-associative Last-level Cache

Memory Address

Cache

Way 0 Way 1 ... Way n

6 bits11 bits

Cache Set

2048 cache sets

Cache Line

• Location in cache depends on the physical address of data

• Bits 6 to 16 determine the cache set

• A cache set has multiple ways to store the data

• A way inside a cache set is a cache line, determined by the cache replacement policy
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Prime+Probe



Prime+Probe

Prime+Probe...

• exploits the timing difference when accessing...
• cached data (fast)
• uncached data (slow)

• is applied to one cache set
• works across CPU cores as the last-level cache is shared
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Prime+Probe

Receiver
address space Cache Sender

address space

Step0: Receiver fills the cache (prime)
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Prime+Probe

Receiver
address space Cache Sender

address space

Step0: Receiver fills the cache (prime)
Step 1: Sender evicts cache lines by accessing owndata
Step 2: Receiver probes data to determine if the set was accessed

fast access
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Prime+Probe

Receiver
address space Cache Sender

address space

Step0: Receiver fills the cache (prime)
Step 1: Sender evicts cache lines by accessing owndata
Step 2: Receiver probes data to determine if the set was accessed

slow access
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Building a robust covert channel



The goal

We want to build a covert channel which...

• works across virtual machines
• runs on the Amazon cloud
• is fast (i.e., multiple kB/s)
• is free of transmission errors
• is robust against system noise
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Challenges

Cross-VM side channel

Communication channel

Synchronization

Error
correction

SSH
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Cross-VM side channel

We require a side channel which works across virtual machines

• We do not want to rely on software bugs, they can be patched
• We want to exploit the hardware
• Memory is shared between all virtual machines

• DRAM→ covert channel (Schwarz and Fogh 2016, BlackHat Europe)
• Cache→ this talk!
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Cross-VM side channel

We can use Prime+Probe for the side channel

• Prime+Probe works with the last-level cache

• The last-level cache is shared among all CPU cores
• No requirement for any form of shared memory
• We just need to build eviction sets and negotiate the used cache sets
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Cross-VM side channel

• We need a set of addresses in the same cache set and same slice

• Problem: slice number depends on all bits of the physical address

physical address

cache tag
cache set
index

cache line
offset

2MB page offset

xxxx

• We can build a set of addresses in the same cache set and same slice...

• ...without knowing which slice
• And then remove the addresses of the wrong slices afterwards
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Communication Channel

• For a communication, we have to agree on communication channels

• We have to negotiate them dynamically
• There is always noise on all cache sets

(a) Quiet system (b)Watching an 1080p video
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Communication Channel

Quite similar to a wireless communication channel
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Figure 2: Noise in wireless channels (Boano et al. 2012)
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Jamming Agreement

• Idea: »He who shouts loudest will be heard«

• One party generates a lot of “noise” on the channel
• The other party monitors the channels
• Correct channel if the noise level never falls below a certain value
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Jamming Agreement
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Figure 3: Jamming agreement in wireless channels (Boano et al. 2012) 25



Jamming Agreement
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Jamming Agreement

Sender
Eviction Sets

#1 X
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Cache Sets

Receiver
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#1

Achievement unlocked
Finding each other in the cloud
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Jamming Agreement
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Sending Data
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Why don’t we just take the file...
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...and put it into the channel?
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Sending the first image

Achievement unlocked
First transmission
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Sending the first image
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Sending the first image
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Challenges

Cross-VM side channel
Prime+Probe

Communication channel

Jamming
Agreement

Synchronization

Error
correction

SSH
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Synchronization

What we see are mostly synchronization errors

1 0 0 1 1 0Sender

1 0 0 1 1 0Receiver

Normal transmission

34



Synchronization

What we see are mostly synchronization errors

1 0 0 1 1 0Sender

1 0 0Receiver

Deletion errors due to receiver not scheduled

34



Synchronization

What we see are mostly synchronization errors

1 0 0 1 1 0Sender
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Synchronization

Only sometimes substitution errors which can be corrected

1 0 0 1 1 0Sender

1 1 0 1 1 0Receiver

Substitution errors due to unrelated noise
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Synchronization

To cope with deletion errors, we use a request-to-send scheme.

• Transmission uses packets

DataPhysical layer word

12 bits

SQN

3 bits

• Receiver acknowledges by requesting the next sequence number
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Synchronization

Important observation: insertion errors are almost always ‘0’s.

• Detecting additional ‘0’s detects (many) insertion errors
• We need an error detection code

DataPhysical layer word

12 bits

SQN

3 bits

EDC

4 bits

• Count the number of ‘0’s in a word
• Side effect: there is no ‘0’-word anymore

Achievement unlocked
Detect Interrupts
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Synchronization

Sender Receiver
SEQ = 1 Initiate
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Receiver
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Without synchronization
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Synchronization

C S I : C a c h e
Covertly Sending Information
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Challenges

Cross-VM side channel
Prime+Probe

Communication channel

Jamming
Agreement

Synchronization
EDC

Error
correction

SSH
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Error correction

• Substitution errors can be corrected using forward error correction

• We use wide-spread Reed-Solomon codes
• Packets made of symbols

• Symbol size: 12 bits (“RS-word”)
• Packet size: 4095 symbols (= 2symbol − 1)

• Packet consists of actual message and error correction symbols
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Error correction

RS codes are a simple matrix multiplication



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

x00 x01 x02 x03

x10 x11 x12 x13


×


d0

d1

d2

d3



=



d0

d1

d2

d3

c0

c1
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Error correction

• Better safe than sorry: 10% error-correcting code

• 3686 data symbols and 409 error correction symbols

Data Parity

3686 RS-words 409 RS-words

Data SQN EDC

12 bits 3 bits 4 bits

Data-link layer packet

Physical layer word

Achievement unlocked
Getting rid of noise
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Comparison of transmission speeds (in kbit/s)
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SSH

• The covert channel is fast and error free

• We want it to be useful
• A remote shell without network access would be really nice...

• Prerequisites: just TCP
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Hypervisor

Last Level Cache (LLC)

VM 1 VM 2

Achievement unlocked
TCP over anything

48



SSH

TCP-over-Cache

Hypervisor

Last Level Cache (LLC)

VM 1

Covert Channel

Prime+Probe

VM 2

Covert Channel

Prime+Probe

Achievement unlocked
TCP over anything

48



SSH

TCP-over-Cache

Hypervisor

Last Level Cache (LLC)

VM 1

Covert Channel

Prime+Probe

File System

VM 2

Covert Channel

Prime+Probe

File System

Achievement unlocked
TCP over anything

48



SSH

TCP-over-Cache

Hypervisor

Last Level Cache (LLC)

VM 1

Covert Channel

Prime+Probe

TCP↔File

File System

VM 2

Covert Channel

Prime+Probe

TCP↔File

File System

Achievement unlocked
TCP over anything

48



SSH

TCP-over-Cache

Hypervisor

Last Level Cache (LLC)

VM 1

Covert Channel

Prime+Probe

TCP↔File

File System

Socket

VM 2

Covert Channel

Prime+Probe

TCP↔File

File System

Socket

Achievement unlocked
TCP over anything

48



SSH

TCP-over-Cache

Hypervisor

Last Level Cache (LLC)

VM 1

Covert Channel

Prime+Probe

TCP↔File

File System

TCP Client
(e.g. ssh)

Socket

VM 2

Covert Channel

Prime+Probe

TCP↔File

File System

TCP Server
(e.g. sshd)

Socket

Achievement unlocked
TCP over anything

48



SSH

TCP-over-Cache

Hypervisor

Last Level Cache (LLC)

VM 1

Covert Channel

Prime+Probe

TCP↔File

File System

TCP Client
(e.g. ssh)

Socket

VM 2

Covert Channel

Prime+Probe

TCP↔File

File System

TCP Server
(e.g. sshd)

Socket

Achievement unlocked
TCP over anything

48



SSH

TCP-over-Cache

Hypervisor

Last Level Cache (LLC)

VM 1

Covert Channel

Prime+Probe

TCP↔File

File System

TCP Client
(e.g. ssh)

Socket

VM 2

Covert Channel

Prime+Probe

TCP↔File

File System

TCP Server
(e.g. sshd)

SocketAchievement unlocked
TCP over anything

48



SSH

SSH between two instances on Amazon EC2

Noise Connection

No noise 3

stress -m 8 on third VM 3

Web server on third VM 3

Web server on all VMs 3

stress -m 1 on server side unstable

Telnet also works with occasional corrupted bytes with stress -m 1
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Conclusion



Black Hat Sound Bytes

Black Hat Sound Bytes.

• Cache covert channels are practical
• We can get a noise-free and fast channel, even in the cloud
• Noise does not protect against covert channels
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Try it!

Is my cloud (provider) vulnerable?

https://github.com/IAIK/CJAG 52
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Demo

Live
DEMO
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What you just saw

We extended Amazon’s product portfolio
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