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Abstract. The transient-execution attack Meltdown leaks sensitive in-
formation by transiently accessing inaccessible data during out-of-order
execution. Although Meltdown is fixed in hardware for recent CPU gen-
erations, most currently-deployed CPUs have to rely on software miti-
gations, such as KPTI. Still, Meltdown is considered non-exploitable on
current systems.
In this paper, we show that adding another layer of indirection to Melt-
down transforms a transient-execution attack into a side-channel attack,
leaking metadata instead of data. We show that despite software mit-
igations, attackers can still leak metadata from other security domains
by observing the success rate of Meltdown on non-secret data. With
LeakIDT, we present the first cache-line granular monitoring of kernel
addresses. LeakIDT allows an attacker to obtain cycle-accurate times-
tamps for attacker-chosen interrupts.
We use our attack to get accurate inter-keystroke timings and fingerprint
visited websites. While we propose a low-overhead software mitigation to
prevent the exploitation of LeakIDT, we emphasize that the side-channel
aspect of transient-execution attacks should not be underestimated.

1 Introduction

Microarchitectural side-channel attacks have been known for several years [27].
These attacks exploit the side effects of CPU implementations to infer metadata
about processed data. Well-known examples of microarchitectural side-channel
attacks include cache attacks, e.g., Flush+Reload [64] or Prime+Probe [40],
which have been used to leak cryptographic secrets [2,64] or violate the privacy
of users, e.g., by spying on user input [39,17,48]. The discovery of transient-
execution attacks, such as Meltdown [35] and Spectre [26], was a game changer
for microarchitectural attacks, as these directly leak data instead of metadata.
Hence, even best practices for side-channel-resistant software [23,11] do not pro-
tect secrets anymore. In Meltdown attacks, architecturally inaccessible data is
accessed during out-of-order execution and encoded into a microarchitectural
element, e.g., the cache, protected from the pipeline flush [35,44]. A subsequent
side-channel attack, e.g., Flush+Reload, converts the microarchitectural into an
architectural state, revealing the data.
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As only new CPU generations contain hardware fixes for Meltdown-type
attacks, short- and mid-term mitigations rely on software workarounds. These
workarounds ensure that no confidential data is stored in affected buffers when
untrusted code is executed [57,49,21] or that the victim data is not address-
able [14,54]. For Meltdown-US-L1 [35], i.e., the original Meltdown attack, the
OS unmaps the majority of its address space while running in user space, making
sensitive data non-addressable [15]. The remaining mapped pages are not consid-
ered confidential, such that Meltdown-US-L1 is considered not exploitable. On
Linux, this technique is implemented as kernel page-table isolation (KPTI) [12].

In this paper, we show that even with state-of-the-art mitigations, Meltdown
can be transformed from a transient-execution attack into a side-channel attack.
The main idea is based on two properties. First, while KPTI unmaps most
kernel pages, several kernel pages with non-secret content are necessary on x86
CPUs and cannot be unmapped in user space. Second, Meltdown [35] can only
leak data if it is cached in the L1D cache, making it usable as a cache-state
oracle. Combining these two properties leaks the meta information on whether
(non-confidential) kernel data was accessed. Hence, Meltdown can be used as a
high-resolution cache attack with cache-line granularity on the kernel. This side
channel is superior to state-of-the-art cache attacks on the kernel, which only
achieve page [32] or cache-set granularity [48].
We gain an interesting insight from this attack:

While a layer of indirection is necessary for Meltdown to leak data, another
layer of indirection transforms the attack to leak metadata of architecturally in-
accessible data.

In other words, exploiting a modified version of the Meltdown attack en-
ables the leakage of metadata that cannot be leaked in this granularity with a
traditional side-channel attack.

Based on this, we present LeakIDT, a side-channel attack able to spy on
interrupts. We exploit that the interrupt descriptor table (IDT) must always be
mapped on x86 [19,15]. Hence, despite software mitigations such as KPTI, an
attacker can use the side channel to monitor interrupt activity. In contrast to
previous works that exploit interrupts as a side channel [33,48,56], LeakIDT can
target specific interrupts, e.g., network or keyboard interrupts, instead of just
observing that any interrupt occurred and works for unprivileged attackers. We
identify which website a user visits from the Alexa top 15 and top 100 web-
sites with a precision of 80% and 55%, respectively. Furthermore, we reliably
observe keystroke timings with an average F-score of 0.89. We propose to miti-
gate LeakIDT by marking the IDT uncachable, preventing any entry from being
cached. This mitigation is practical, with an average performance overhead of
less than 0.5% in 5 different benchmarks simulating real-world workloads.

Our attacks show that while mitigating data leakage is essential, the side-
channel aspect of such fixes can be overlooked. We show that adding additional
layers of indirection to existing attacks can change their properties. As a result,
we create a new side-channel attack from a CPU vulnerability commonly consid-
ered unexploitable when applying state-of-the-art software mitigations. Hence,
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we argue that future software workarounds should consider the side-channel as-
pect to prevent such attack vectors. Thus, we encourage researchers to look at
other mitigations for hardware vulnerabilities to determine whether they can be
circumvented to repurpose the underlying vulnerability as a side channel. For
this purpose and to ease reproducibility, we open-source the code of our findings
on GitHub1.

To summarize, we make the following contributions:
1. We show that adding another layer of indirection to Meltdown transforms

Meltdown into a side channel that infers the cache state of non-sensitive
kernel pages with cache line granularity, leaking details about, e.g., interrupts.

2. We use our side channel to detect the visited websites of a user and spy on
their keystroke timings.

3. We present a practical mitigation that stops our attack, while introducing
an average overhead of less than 0.5% for real-world workloads.
Responsible Disclosure. We disclosed our findings to Intel on February 15,

2023 and AMD on February 16, 2023. Despite both vendors acknowledging our
findings, they informed us that they do not plan to roll out further mitigations.

2 Background

In this section, we provide the background for this paper. We introduce side
channels, transient-execution attacks, and the interrupt descriptor table.

2.1 Side Channels

Side channels leak metadata of (secret) information. In a side-channel attack,
an attacker infers secrets from this metadata. For leaking metadata, secret-
dependent observable differences must exist, e.g., response time or power con-
sumption that depends on the bits of a cryptographic key. Previous research
showed that side channels can be practical tools in an attacker’s repertoire [27,38],
especially for attacking cryptographic implementation [27,38]. In recent years, re-
searchers have shown various side-channel attacks exploiting microarchitectural
components [38,39,61,60,41]. These components include CPU caches [64,40],
branch predictors [4,3], execution units [13,61], DRAM components [41], and
power usage [63]. The fundamental property that enables such microarchitec-
tural side-channel attacks is that different processes share many hardware com-
ponents. Hence, the resource usage of one process affects the possible resource
usage of another process, leaking meta information between the processes.

2.2 Transient-Execution Attacks

Two important performance optimizations in modern CPUs are out-of-order ex-
ecution and speculative execution. Out-of-order execution allows the CPU to
1 https://github.com/cispa/indirect-meltdown

https://github.com/cispa/indirect-meltdown
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reorder or parallelize the execution of instructions in the instruction stream.
Speculative execution predicts the outcome of branch and memory load instruc-
tions, reducing pipeline stalls. Executed instructions that never commit their
state changes to the architecture due to a misspeculation or preceding fault are
called transient instructions [8,24]. Transient-execution attacks [8] exploit tran-
sient instructions to read otherwise inaccessible memory [35,26]. While transient
instructions do not have an architectural effect, they can influence microarchitec-
tural states, such as cache states. These traces can be converted to architectural
states using a microarchitectural side channel, e.g., Flush+Reload. In recent
years, researchers and CPU vendors discovered a variety of transient-execution
attacks [35,26,6,49,57,37,55,36,28,46,45,44,8].

One category of transient-execution attacks are Meltdown-type attacks [8].
The first discovered Meltdown-type attack, later referred to as Meltdown-US-
L1 [8], allows unprivileged attackers to leak cached kernel memory. After a fault-
ing load to a kernel address, the value is transiently available and can be encoded
in the microarchitecture, e.g., in the cache. The attacker decodes the encoded
value using a side channel, e.g., using Flush+Reload. Meltdown-type attacks,
and especially Meltdown-US-L1, affect a variety of modern CPUs [22].

2.3 Interrupt Descriptor Table (IDT)

Devices, such as network interface controllers or keyboards, use interrupts to
notify the OS of events, e.g., incoming network packets or key presses. On an
interrupt, the CPU switches to ring 0 and looks up the corresponding interrupt
service routine (ISR) for the specific interrupt in the interrupt descriptor table
(IDT). The CPU interrupts the current execution and jumps to the ISR to
handle the interrupt. After handling the interrupt, the CPU continues executing
the previous instruction stream. We only consider the 64-bit x86 IDT. Each core
can have its own IDT containing 256 interrupt vectors [20, Chapter 6.10 & 6.14].
Each interrupt vector is 16 bytes in size and represents one device [20, Chapter
6.10 & 6.14]. Hence, the IDT has a total size of 4 kB, i.e., one memory page, and is
stored in the main memory. Each of these interrupt vectors essentially consists
of a 64-bit (8-byte) pointer to its ISR in the kernel. The remaining 8 bytes
store additional meta-information about the interrupt, such as the type and the
privilege level of the interrupt [20, Chapter 6.14]. The base pointer to the IDT is
stored in a CPU-internal register, which can be read with the sidt instruction.
On modern Linux systems, the IDT is hard-coded to 0xfffffe0000000000 [31].

3 Meltdown as a Side Channel

In this section, we introduce the concept of transforming the transient-execution
attack Meltdown into a side channel. The main idea is that the success rate of
Meltdown-US-L1 reveals the cache state of the target memory address. We dis-
cuss which kernel memory ranges are still mapped despite the KPTI mitigation
and how Meltdown-US-L1 can be used to leak metadata about these memory
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Meltdown Attack

Leakage: 0x90

Leakage: 0x00

0x400000: 0x90
(Target Memory)

Cached

Uncached

Fig. 1: Meltdown as a side channel. The Meltdown attack only leaks data if the
target address is in the L1D cache. Otherwise, the value 0x00 is leaked.

1 ; rax = kernel address, rcx/rbx= probe page 1/2,
2 cmp [rax], 0x0
3 cmovne rcx, rbx
4 mov rax, [rcx]

Listing 1: Using Meltdown-US-L1 as a side channel. If the target kernel address
is cached, the user address stored in RBX is cached. Otherwise, the user address
stored in RCX is cached.

pages. For a list of CPUs affected by Meltdown-US-L1 and thus affected by our
attack, we refer the reader to the Intel’s list of vulnerable CPUs [22].

While Lipp et al. [35] discussed that Meltdown-US-L1 works best if the target
address is stored in the L1D cache, Xiao et al. [62] and Schwarzl et al. [50] show
that Meltdown-US-L1 is limited to the L1D cache. Leakage from other cache
levels is only caused by prefetching the data into the L1 cache, e.g., via specula-
tive execution. We exploit this requirement to use Meltdown as a side channel:
If data is leaked via Meltdown-US-L1, it is in the L1D cache. An illustration of
this concept is given in Figure 1.

By detecting whether the target memory address can be leaked, we learn
whether it was previously accessed. If the cache-line content can be leaked, the
cache line is cached in the L1D, which is only the case if the cache line was re-
cently accessed. As this attack can be applied to any mapped memory address,
we can also use it on kernel memory pages that are mapped while in userspace.
This converts Meltdown-US-L1 into an Evict+Reload-style side channel for ker-
nel memory.

Attack Details. Listing 1 shows the implementation of the encoding step
when using Meltdown-US-L1 as a side channel. We compare the content of the
kernel address to zero (Line 2) and, based on the result, select (Line 3) and ac-
cess (Line 4) one out of two different pages. This works as the access transiently
results in a zero if no value can be leaked by Meltdown-US-L1. Otherwise, the
result is non-zero if the targeted memory address is non-zero. This code sequence
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is simpler than the Meltdown-US-L1 code [35] that transiently loads the value
at the kernel address into a register and accesses one out of 256 pages based
on the loaded value, since we only need to consider two cases, i.e., cached and
non-cached. This means that instead of monitoring 256 cache lines, our attack
only has to monitor a single cache line. In line with the Meltdown-US-L1 attack,
this code snippet raises an exception that has to be handled, e.g., with fault
handling, TSX, or fault suppression via speculation [35]. For the decoding, i.e.,
transferring the information encoded in the microarchitecture to an architec-
tural state, any side channel can be used. For simplicity and in line with related
work [35,54,49,57,6], we rely on Flush+Reload to recover the encoded informa-
tion. In case of a recent access by the victim, the target address is stored in
the L1D cache. Thus, to monitor further cache accesses, we need to remove the
target address from the L1D cache. As the target memory address cannot be
accessed, we need to rely on eviction. However, as the L1D cache is virtually-
indexed, evicting from it is straightforward and can be achieved by accessing
virtual memory addresses falling into the same cache line as the target address.
Note that we only need to evict the target address when an access occurred, as
the Meltdown attack itself does not cache the target address.

Attack Surface. We investigate the attack surface of using Meltdown-US-
L1 as a side channel by analyzing which kernel pages are mapped in user space
when KPTI is active. As Meltdown-US-L1 cannot be fixed via microcode on
affected hardware, KPTI [14] is used as a software workaround on Meltdown-US-
L1-affected CPUs. KPTI ensures that while an application runs in user space, no
kernel page containing sensitive information is mapped into the address space.
For this, KPTI relies on a second set of page tables [15]. However, while this
works theoretically, x86 always requires some kernel pages to be mapped, even
when running in user space. Luckily, the content of these pages, e.g., the IDT,
can be chosen such that they do not contain secrets.

We investigate which pages are still mapped in userspace by iterating through
the user page tables using the kernel module PTEditor [47]. For the user-page-
table root, we set bit 11 of the physical address stored in the kernel CR3 regis-
ter [15]. We iterate through the mappings in the upper half of the address space
for kernel addresses mapped in user space. We discover between 198 and 394 4 kB
kernel pages mapped in user space, depending on the CPU. However, these pages
can be classified into only 3 distinct ranges. The first range is the kernel entry.
This range has been exploited for microarchitectural KASLR breaks [46,7,61].
The second range is used for descriptor tables, such as the interrupt-descriptor
table or the global-descriptor table. Finally, the third range is within the range
of the direct physical map [31], mapping 4 physical pages. One of these mappings
is to the task state segment, which is also mapped directly. We cannot explain
the reason for these remaining mappings, as the target is already mapped in
user space. Still, this does at least not increase the attack surface. The most
interesting target for using Meltdown-US-L1 as a side channel is the IDT (cf.
Section 4).
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Victim
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Access memory page if
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Check for encoded value

IDT

Memory Page

Fig. 2: Using LeakIDT to leak interrupts, such as keystrokes.

4 LeakIDT

In this section, we introduce LeakIDT, a side-channel attack that precisely de-
tects when an attacker-chosen interrupt occurs. LeakIDT achieves that by ob-
serving the cache state of the IDT entries of the targeted interrupts.

Linux uses one IDT per core that always resides at the same location (cf.
Section 2.3). This IDT is mapped in all processes, even with KPTI. Hence,
our attack can target the IDT despite applied software-based Meltdown-US-L1
mitigations. Note that a different operating system could randomize the location
of the IDT upon booting and thus harden the system against our attack.

Attack Overview. Figure 2 shows an overview of LeakIDT. We use Meltdown-
US-L1 to read a specific IDT entry corresponding to a targeted interrupt. IDT
entries are accessed—and thus cached in L1D—if the CPU core handles an inter-
rupt. Hence, if the leakage of the entry is successful, we infer that the interrupt
was triggered; otherwise, it was not. Consequently, with LeakIDT we know the
timestamp when the interrupt occurred. Note that due to the CPU’s hardware
prefetchers the actual accuracy of our attack is reduced to blocks of 8 adjacent
IDT entries. Further details on this are discussed later in this section. When
detecting an interrupt, LeakIDT uses eviction to remove the targeted IDT entry
from the L1D cache again. This is crucial for the attack as after every observed
interrupt, the attacker must ensure that the IDT entry is removed from the cache
as quickly as possible. Otherwise, subsequent accesses to that memory address,
i.e., subsequent interrupts of the same type, cannot be detected.

Threat Model. Our attack requires a victim application that leaks in-
formation by having secret or data-dependent interrupts. Such a victim can,
e.g., receive keystrokes [17,33], issue secret-dependant legacy syscalls [65], or
communicate over the network [66]. Besides this, we assume a bug-free software
containing no logical vulnerabilities. We further consider the attacker and victim
both executing unprivileged native code on the same Meltdown-US-L1-affected
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CPU. The attack does not assume any disabled mitigations, i.e., it works with
state-of-the-art software-based Meltdown mitigations.

Implementation. For inferring the cache state of the IDT entry, we use the
code from Listing 1. Note that each IDT entry is 16 bytes in size. Thus, there are
4 IDT entries per cache line that are all cached when an interrupt occurs. The
exact offset of the IDT entry we are targeting with LeakIDT is irrelevant, as every
interrupt corresponding to that entry caches the entire cache line. One should
note that the granularity of our attack in a normal environment is restricted to
blocks of 8 IDT entries. The reason is that upon receiving an interrupt, the CPU’s
adjacent cache-line prefetcher puts two adjacent cache lines, i.e., 8 adjacent IDT
entries, into the L1D cache at once.

To detect the correct entry in the IDT, we template the IDT entries. First, we
record the number of interrupts for every IDT entry over a fixed time window,
e.g., 100ms. Second, we repeat this recording step while inducing the interrupt
in parallel. Depending on the type of interrupt, this can be done in soft- or
hardware. Some interrupts can be triggered the same way the victim triggers
the interrupt, e.g., sending a network packet for network interrupts. If this is not
possible, e.g., for keyboard interrupts, an attacker can induce the same interrupt
as a software interrupt, using the int instruction. If the difference in the number
of interrupts correlates with the induced interrupts, the correct IDT entry is iden-
tified. As we do not require fine-grained measurements for this step, we can take
the information exposed by the Linux interface, i.e., the file /proc/interrupts.

As discussed in Section 3, to ensure that LeakIDT can detect more than the
first interrupt, the IDT entry has to be evicted again from the L1D cache. The
cache replacement policy on our machines is Tree-PLRU [1], and the cache is
virtually indexed using bits 6 to 11. Thus, we access memory addresses falling
into the same L1D cache set by accessing pages at the same offset as IDT entry
offset, which performs well enough for the attacks.

5 Evaluation

In this section, we evaluate the performance and reliability of LeakIDT. All
experiments are executed on an Intel Core i7-6600U running Ubuntu 20.04 with
Linux kernel 5.4.0. On a general level, LeakIDT allows observing the cache state
of an inaccessible but mapped memory page. More precisely, we can distinguish
between a memory address that is cached in the L1D cache and a memory
address that is not cached in the L1D.

First, we evaluate how precisely we can distinguish between such two memory
addresses. We mount our exploit on two memory addresses, one being cached in
the L1D cache and one not being cached. Note that distinguishing between an
address cached in L1D and not cached at all is enough for an attacker to mount
side-channel attacks. Our tests show that for a memory address cached in L1D,
we have a successful leak in 99.6% of cases and no leakage in 100% of cases for
uncached memory addresses. We observe that for the uncached target byte, we
only see the byte 0x0 encoded in our lookup array. This observation is in line
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Fig. 3: Delay between interrupts and number of interrupts missed by LeakIDT
(upper line) and Prime+Probe (lower line).

with previous work [35,62]. These results show that an attacker can reliably infer
the cache state of the target kernel memory address by observing whether the
Meltdown-US-L1 leakage exists.

Figure 3 shows how different delays between interrupts interfere with the
observation rate of our attack, i.e., the number of interrupts successfully de-
tected. More precisely, we trigger 10 000 interrupts with an artificial busy wait
of n cycles between them. This allows us to measure the success rate of our
attack when the victim triggers interrupts at a high frequency. We observe that
if the interrupts are more closely spaced than 25 000 cycles, our detection rate
decreases. We further observe that for interrupts happening at a slower rate,
we have success rates of up to 99.5%. Thus, attackers can exploit LeakIDT to
reliably leak interrupts up until this frequency.

Comparison to Related Kernel Attacks. To the best of our knowl-
edge, LeakIDT is the first cache-line-granular side-channel attack on the kernel.
LeakIDT does not require read- or writable shared memory, which is typical for
cache attacks [64,16,34], preventing their use on kernel memory. While there are
also cache attacks not requiring shared memory [5,43,10,40], LeakIDT yields a
better granularity as it allows targeting specific cache lines of the kernel. Addi-
tionally, cache attacks without shared memory often require knowledge of phys-
ical addresses to construct reliable and efficient eviction sets [53]. As we do not
assume that knowledge in our threat model, we compare LeakIDT with Prime+
Probe on the L1D, as this attack has the same threat model.

Not only does LeakIDT have a finer granularity, but it also outperforms
Prime+Probe in terms of reliability. Figure 3 shows the number of interrupts
missed by our Prime+Probe implementation. Note that our implementation only
counts an interrupt if two probe steps show higher access timing. While this may
not be optimal, it significantly reduces the number of false positives and shows
the best performance during our evaluation. We suspect that the reason for this
is that the probes execute fast enough to measure the activity on the IDT entry
multiple times during the interrupt handling. To further compare the two side
channels, we compare their performance in a more artifical scenario. We take
100 000 measurements for each attack while the victim accesses the targeted
cache line 50 000 times per attack. Finally, we compare the results of our side-
channel attacks to the ground truth of victim accesses. For LeakIDT, we get a
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recall of 0.999 and a precision of 1.0, yielding an F-score of 0.999. For Prime+
Probe on the L1D, we measure a recall of 1.0 and a precision of 0.834, yielding
an F-score of 0.91.

6 Case Studies

In this section, we introduce 2 case studies demonstrating LeakIDT. Leveraging
LeakIDT, we show that an attacker can spy on websites visited by a victim on
the same system (cf. Section 6.1). Furthermore, we show that fine-grained timing
measurements of interrupts leak information about the keystrokes entered by a
user (cf. Section 6.2).

6.1 Website Fingerprinting

In this section, we use LeakIDT to detect which website a user opens by monitor-
ing network interrupts. For this purpose, we perform the website fingerprinting
attack on an Intel Xeon E3-1505M v5, with Ubuntu 20.04 and Linux kernel 5.4.0.

Threat Model. In line with previous work [65,25,52,29,18], we assume
an unprivileged attacker with native code execution on the victim system. In
contrast to these works, we do not rely on OS interfaces, as they are nowadays
only available to privileged users. We assume the attacker application runs on
the physical core that handles the network interrupts, which the unprivileged
pthread_setaffinity_np Linux API can achieve.

Attack Overview. We do not assume prior knowledge of the IDT entry that
the attacker needs to probe. Thus, the first step of the attack is to find the specific
IDT entry that handles the network interrupts. To do that, we use LeakIDT on
all IDT entries while introducing additional network traffic. For each entry, we
record the number of accesses during a short fixed period, e.g., 1 second. Next,
we repeat the measurement without generating additional network interrupts.
As the network interrupts bring the specific IDT entries into the cache, entries
with the most significant differences in the number of accesses are likely related
to the network interrupts.

In line with previous work [66], we rely on a coarse-grained timer, e.g.,
clock_gettime or setitimer, to record the number of interrupts per 5ms in-
terval when a user opens a website. We then train a random forest classifier to
fingerprint the opened website.

Results. We collect 100 interrupt traces for each of the Alexa 100 most-
visited websites. Each trace collects the number of interrupts in a 5ms interval
400 times (2 s in total). The dataset is split into a training set of 7000 and a test
set of 3000 examples, and the n_estimators for the random forest classification
are set to the default of 100. For the top 15 websites, we achieve a precision
of 80% and a recall of 81%, as illustrated in the confusion matrix in Figure 4.
For the top 100 websites, we achieve an overall precision of 55% and a recall
of 56%. Note that a more precise timer, i.e., with a better accuracy than 5ms
would likely improve these results.
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Fig. 4: The confusion matrix for the website classification. Given the Alexa top
15 websites, the trace is classified correctly with an overall probability of 80%.

Comparison to Related Work. While Spreitzer et al. [52] report 89%
accuracy on 100 sites on Android, the attack requires the unprivileged interface
for sampling data-usage statistics. Zhang et al. [66] report 71% accuracy on
100 sites on Intel, relying on the new umwait instructions only available on the
latest Intel microarchitectures. The interrupt attack by Lipp et al. [33] correctly
classifies a website in 81.75% of cases inside the browser when only looking at
10 websites. Lee et al. [29] exploit GPU vulnerabilities and report 69.4% and
60.9% with two different techniques on 100 sites randomly chosen from Alexa
Top 1000.

6.2 Keystroke Timings via LeakIDT

In this section, we show that LeakIDT can be used for keystroke-timing attacks,
as first discussed by Song et al. [51]. We show that LeakIDT reliably recov-
ers keystroke timings on USB keyboards on an Intel Xeon E3-1505M v5, with
Ubuntu 20.04 and Linux kernel 5.4.0.

Threat Model. We assume an unprivileged attacker with native code exe-
cution on a system vulnerable to LeakIDT. We further assume that the attacker
application can be pinned to specific physical cores by unprivileged APIs.

Experiment Setup. In line with the first case study, we do not assume
knowledge of the IDT entry. Thus, an attacker trying to locate the core respon-
sible for handling keyboard interrupts can probe all interrupts on all cores for
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Table 1: Results for the inter-keystroke timing attack.

Run Noise Recall Precision F-score Delay (std dev.)

1 no 0.93 0.89 0.91 −323µs (35.66µs)
2 no 0.91 0.95 0.93 −334.5µs (29.71µs)
3 no 0.90 0.90 0.90 −324µs (34.11µs)
1 yes 0.89 0.87 0.88 −573µs (64.25µs)
2 yes 0.88 0.88 0.88 −568µs (49.46µs)
3 yes 0.86 0.86 0.86 −551µs (56.28µs)

a short and fixed time interval. Afterward, when the attacker knows that the
victim is likely pressing keys, e.g., by checking for interactive applications in the
list of running processes, the attacker can probe these interrupts again and check
for significant differences. To optimize the measurements for this case study, the
attacker pins the spy process on the sibling of the previously identified core.

We perform our experiments in two settings. In the first setting, a lab en-
vironment, the eXtensible Host Controller Interface (xHCI) interrupts are han-
dled by an isolated core. In the second setting, a realistic environment, we boot
the system without any preparations and simulate heavy system load with the
stress utility (stress -m 2 -c 2). The kernel distributes the interrupts over the
available 4 cores. xHCI interrupts share their core only with peripheral network
interrupts in our experiments. These interrupts occur every 2 s.

We spawn two processes. The first one reads characters from stdin and logs
microsecond timestamps of the keystrokes. This process can be spawned on any
core and provides ground-truth data. The second process is pinned to the physi-
cal core handling xHCI interrupts. This process logs microsecond timestamps of
leaked interrupts via LeakIDT.

We perform 3 runs of typing 200 random keys on the keyboard for both
setups. In our case study, all inputs are entered by a single person. We record
the timestamp traces of both processes. We then match every recorded interrupt
timestamp to the nearest ground truth timestamp. Since xHCIs generate two
interrupts for USB keyboards, i.e., key down and key up, we assume two captured
interrupts per actual timestamp. Even though the difference between key down
and key up events can improve the results of keystroke attacks [42], we choose
to ignore their impact in this case study to focus on the concept. Any missing
timestamp from the expected 2 interrupts for each actual timestamp is counted
as a false negative. Any detected interrupt matching with more than one uniquely
identifiable key-up and key-down event is counted as a false positive.

Results. Table 1 shows the results for the 3 runs for both setups. We
calculate recall, precision, and F-score with the data acquired from matching
recorded interrupts to ground truth timestamps. We measure the median and
the standard deviation of the delay when we detect the interrupts, showing that
we detect keystroke interrupts around half a microsecond before they can be read
from stdin in the victim application. As expected, LeakIDT performs slightly
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worse in the realistic setup compared to the isolated lab setup. In the isolated
setup, we observe an F-score of 0.91, and for the realistic setup an F-score of 0.87.
In comparison, the Android-based keystroke timing attacks from Schwarz et al.
[48] achieve an F-score of 0.94 and 0.81. Similar attacks from Vila et al. [58]
and Wang et al. [59] achieve a recall of 0.98 and 0.57, respectively. Thus, our
results are comparable to previous work. Note that depending on the goal of an
attacker, further steps are required for an end-to-end attack, such as machine-
learning-based password recovery or user classification.

7 Mitigations

In this section, we propose a mitigation against LeakIDT. We evaluate the mit-
igation and show that it only introduces a minimal performance overhead.

Although the root cause of LeakIDT cannot be mitigated in software, we
propose a software mitigation to prevent exploitation. The main idea is to ensure
that the cache state of an IDT entry cannot be inferred by marking the IDT as
uncachable, ensuring that the cache state is always the same.

Implementation. Linux uses a shared IDT across all CPU cores. This single
IDT is allocated once by the OS and keeps its physical location until reboot. We
rely on memory-type range registers (MTRRs) to mark the physical range of
the IDT as uncachable. While the number of MTRRs is limited [20, Chapter
11.11], we only require a single MTRR due to the shared IDT. MTRRs have the
advantage that the memory type defined by them cannot be overwritten.

Alternatively, if no MTRR can be spared, the IDT mapping can be marked
as uncachable via the memory type in the corresponding page-table entry. Care
has to be taken that this is done in every single user-space process, as well as
in the kernel. This requires more changes to the kernel and introduces a startup
overhead for every application. Thus, we opted for the MTRR-based approach,
requiring only a minimal overhead at boot for the configuration and allowing
the implementation as a kernel module.

Evaluation. We evaluate the security and performance of our approach. All
evaluations are run on an Intel Xeon E3-1505M v5, with Ubuntu 20.04.1 and
kernel 5.4.0. For the security evaluation, we mount LeakIDT with our active
mitigation. As expected, we do not see any leakage. With the uncachable IDT,
LeakIDT can never leak an entry of the IDT, preventing LeakIDT.

To evaluate the overhead of our mitigation, we execute benchmarks gen-
erating both high CPU loads and a large number of interrupts. We execute
SPEC CPU 2017, which resembles generic real-world workloads, and addition-
ally, Kraken and JetStream, two JavaScript benchmarks, to see the impact on
web services. For the baseline, we run the benchmarks on the unmodified sys-
tem. As marking the IDT as uncachable is implemented as a kernel module, we
can run the benchmark on precisely the same kernel without even rebooting.
Hence, with this setup, there should not be any other factors influencing the
benchmark results. Table 2 shows the results of the SPEC CPU benchmark.
The details of the JavaScript benchmarks can be found in Appendix A. On av-
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Table 2: Performance of uncachable IDT on the SPEC CPU 2017 benchmark.

Benchmark SPEC Score Overhead
Baseline Uncachable [%]

600.perlbench_s 1.88 1.88 0.00%
602.gcc_s 1.11 1.11 0.00%
605.mcf_s 1.91 1.91 0.00%
620.omnetpp_s 1.50 1.52 +1.33%
623.xalancbmk_s 1.55 1.58 +1.94%
625.x264_s 1.54 1.54 0.00%
631.deepsjeng_s 1.33 1.33 0.00%
641.leela_s 1.20 1.20 0.00%
648.exchange2_s 3.50 3.52 +0.57%
657.xz_s 0.91 0.91 0.00%

Average +0.65%

erage, we only measure a minimal performance overhead of 0.65% with SPEC
CPU 2017, 0.57% with Kraken (cf. Table 3), and 0.32% with JetStream. We
further test the impact on two interrupt-heavy benchmarks. We execute the
YCSB benchmark [9] to evaluate the overhead for databases. We test against
a MongoDB instance and configure YCSB for 4 500 000 operations. We observe
an increase in interrupts of 2326.29%, i.e., 52 853.62 interrupts (on average over
the 8 cores of the system), compared to the system idling for the same amount
of time, i.e., 2326.29 interrupts. As these benchmarks have a shorter execution
time than the previous ones, we repeat this measurement 10 times on the base-
line system and 10 times on the same system with the applied mitigation, thus
ensuring a stable result. We observe a median runtime of 155 155ms with a
standard deviation of 243.01 for the baseline system and a median runtime of
155 181.5ms with a standard deviation of 286.99, i.e., an overhead of 0.02%. To
test the performance of a network-based key-value store, we evaluate the impact
on a Memcached instance using the benchmarking framework mutilate [30]. We
configure mutilate to execute 16 connections spanned over 8 threads. Table 4
shows the results. Hereby, we observe an increase in interrupts of 2630.30%, i.e.,
69 892.38 interrupts (on average over the 8 cores of the system), compared to the
system idling for the same amount of time, i.e., 2559.88 interrupts. We execute
this benchmark 10 times with and without the mitigation applied. We observe a
slowdown of the receive rate, the transmission rate, and the QPS of 0.14% each.

8 Discussion

In this section, we discuss Meltdown mitigations, their remaining leakage, and
their applicability to other Meltdown variants, OS, and architectures.

Meltdown Mitigations. Gruss et al. [15] showed that unmapping the
kernel when possible mitigates several side-channel attacks on it. This has be-
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Table 3: Kraken benchmark results.

Test Case Baseline Uncacheable IDT Overhead

ai 164.8ms (+/- 6.0%) 169.6ms (+/- 6.0%) +2.91%
astar 164.8ms (+/- 6.0%) 169.6ms (+/- 6.0%) +2.91%
audio 532.8ms (+/- 2.6%) 540.8ms (+/- 2.1%) +1.50%
beat-detection 141.2ms (+/- 3.6%) 141.7ms (+/- 3.0%) +0.28%
dft 115.8ms (+/- 3.7%) 117.9ms (+/- 5.2%) +1.81%
fft 125.2ms (+/- 2.9%) 125.8ms (+/- 3.3%) +0.48%
oscillator 150.6ms (+/- 6.6%) 155.5ms (+/- 5.3%) +3.25%
imaging 406.2ms (+/- 2.1%) 400.3ms (+/- 2.4%) −1.45%
gaussian-blur 158.3ms (+/- 4.0%) 154.0ms (+/- 2.3%) −2.72%
darkroom 80.1ms (+/- 0.8%) 79.6ms (+/- 0.9%) −0.62%
desaturate 167.8ms (+/- 4.4%) 166.7ms (+/- 5.9%) −0.66%
json 73.9ms (+/- 7.0%) 76.7ms (+/- 5.0%) +3.79%
parse-financial 37.0ms (+/- 13.7%) 37.7ms (+/- 9.6%) +1.89%
stringify-tinderbox 36.9ms (+/- 2.7%) 39.0ms (+/- 4.5%) +5.69%
stanford 288.3ms (+/- 2.3%) 287.0ms (+/- 1.6%) −0.45%
crypto-aes 73.9ms (+/- 3.2%) 74.1ms (+/- 3.2%) +0.27%
crypto-ccm 65.6ms (+/- 4.1%) 63.6ms (+/- 2.4%) −3.05%
crypto-pbkdf2 100.0ms (+/- 1.9%) 101.1ms (+/- 1.7%) +1.10%
crypto-sha256-iterative 48.8ms (+/- 5.6%) 48.2ms (+/- 3.0%) −1.23%

Total 1466.0ms (+/- 0.9%) 1474.4ms (+/- 0.7%) +0.57%

Table 4: Mutilate benchmark results.

Attribute Baseline score UC IDT score Slowdown

QPS 176 238.35 (std: 1376.41) 175 987.5 (std: 1407.86) 0.14%
RX 7 759 664 293B (std: 60 596 022.33) 7 748 550 743.5B (std: 62 033 777.92) 0.14%
TX 1 208 593 212B (std: 9 439 659.48) 1 206 927 213B (std: 9 614 344.61) 0.14%

come the state-of-the-art mitigation against Meltdown-US-L1 [35,14]. However,
a limitation of the x86 architecture is that specific kernel structures, such as the
IDT, must always be mapped. While related work used these mappings to break
KASLR [46,7,61], such attacks can be prevented by using a different randomiza-
tion offset for the pages that remain mapped. However, this would not prevent
LeakIDT. The reason is that LeakIDT exploits the metadata of the data stored
on kernel pages and not the content [35] or the location [46,7,61].

We show that uncachable memory eliminates the remaining leakage of KPTI.
Restricting the uncachable memory to the IDT ensures that the performance
impact is minimal. Hence, combining two incomplete mitigations for orthogonal
problems hardens a system against side-channel attacks.

Ideally, vulnerabilities are mitigated in the hardware. Still, despite hardware
fixes, Canella et al. [7] showed that they leak metadata about the mapping of a
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virtual address. While the leakage is much more limited than in our attack, it also
shows that side-channel leakage can be overlooked when designing mitigations.

Applicability to other Meltdown-Type Attacks. Our attack is not
limited to attacking the kernel. While we convert Meltdown-US-L1 into a side
channel, the same technique can also be applied to other Meltdown variants.
For example, on CPUs affected by Foreshadow [54], our technique could be
used to implement an Evict+Reload-style attack on Intel SGX enclaves. For
this, only the Meltdown attack has to be replaced with the related Foreshadow
attack. However, in contrast to the Meltdown-US-L1 mitigations in the OS, the
Foreshadow mitigations for SGX entirely prevent Foreshadow. Hence, an enclave
that can be attacked with Foreshadow as a side channel could also be attacked
directly with Foreshadow. We leave it to future work to investigate whether other
Meltdown-type attacks, such as RIDL [57], ZombieLoad [49], or Fallout [6], could
also be transformed into practical side-channel attacks.

Other OS and Architectures. The underlying effects exploited in this
paper are OS-agnostic. While this paper targets Linux, we do not require any
Linux-specific functionality. For example, while the interrupt numbers differ on
Windows, the mechanism is still the same. The IDT is also mapped, as this is
required by the x86 architecture, enabling LeakIDT.

As LeakIDT fundamentally relies on the Meltdown-US-L1 CPU vulnerability,
it does not apply to Meltdown-unaffected CPUs. Hence, AMD and most Arm
CPUs are not affected [35]. While there are Arm CPUs affected by Meltdown-
US-L1 [35], the interrupt handling is different, which would require adapting
LeakIDT to work with the IDT-equivalent, the Interrupt Vector Table (IVT).

9 Conclusion

We showed that Meltdown cannot only act as a transient-execution attack but
can also be exploited as a side-channel attack by adding another layer of indirec-
tion, despite active software mitigations. We presented LeakIDT, a side-channel
attack that allows an attacker to monitor mapped kernel pages with cache-line
granularity, enabling attackers to spy on chosen interrupts. We showed that
attackers can exploit this primitive to spy on websites visited by a user. We an-
alyzed that this fine-granular information leakage also reveals valuable insights
into the typing behavior of a user by allowing to spy on their keystroke timings.
Hence, we conclude that even though Meltdown-US-L1 is considered no longer
exploitable, it still threatens the security of modern systems.
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A JavaScript Benchmark Results

Table 5 shows the impact of our mitigations measured using the JetStream
JavaScript benchmark. The total overhead is 0.23%.

Table 5: JetStream benchmark results.

Test Case Baseline UC IDT Overhead

3d-cube-SP 142.229 142.101 −0.09%
3d-raytrace-SP 120.536 130.642 +8.38%
acorn-wtb 14.267 13.714 −3.88%
ai-astar 335.52 330.153 −1.60%
Air 186.75 195.861 +4.88%
async-fs 73.995 68.635 −7.24%
Babylon 180.118 169.655 −5.81%
babylon-wtb 14.468 16.173 +11.78%
base64-SP 218.656 236.194 +8.02%
Basic 195.428 168.823 −13.61%
bomb-workers 20.826 17.721 −14.91%
Box2D 120.487 144.29 +19.76%
cdjs 32.632 28.819 −11.68%
chai-wtb 42.27 42.068 −0.48%
coffeescript-wtb 21.964 18.937 −13.78%
crypto 279.665 341.319 +22.05%
crypto-aes-SP 179.095 146.226 −18.35%
crypto-md5-SP 113.45 106.569 −6.07%
delta-blue 226.869 176.9 −22.03%
earley-boyer 199.003 201.622 +1.32%
espree-wtb 15.742 14.141 −10.17%
first-inspector-code-load 102.469 99.755 −2.65%
FlightPlanner 176.477 176.196 −0.16%
float-mm.c 7.474 7.497 +0.31%
gaussian-blur 225.208 230.45 +2.33%
gbemu 62.156 57.95 −6.77%
gcc-loops-wasm 21.568 22.449 +4.08%
hash-map 94.658 124.756 +31.80%
HashSet-wasm 27.422 29.125 +6.21%
jshint-wtb 21.484 20.658 −3.84%
json-parse-inspector 111.78 108.445 −2.98%

json-stringify-inspector 122.419 120.712 −1.39%
lebab-wtb 24.557 24.599 +0.17%
mandreel 32.562 32.546 −0.05%
ML 13.853 13.274 −4.18%
multi-inspector-code-load 109.236 92.512 −15.31%
n-body-SP 466.978 459.006 −1.71%
navier-stokes 400.438 409.595 +2.29%
octane-code-load 502.996 460.544 −8.44%
octane-zlib 14.938 15.063 +0.84%
OfflineAssembler 36.527 33.54 −8.18%
pdfjs 75.934 78.712 +3.66%
prepack-wtb 20.974 20.541 −2.06%
quicksort-wasm 215.166 217.597 +1.13%
raytrace 202.931 222.117 +9.45%
regex-dna-SP 255.332 249.183 −2.41%
regexp 281.028 279.361 −0.59%
richards 196.298 189.976 −3.22%
richards-wasm 37.949 33.478 −11.78%
segmentation 11.835 12.609 +6.54%
splay 88.279 85.402 −3.26%
stanford-crypto-aes 173.872 188.774 +8.57%
stanford-crypto-pbkdf2 213.472 258.864 +21.26%
stanford-crypto-sha256 322.22 317.002 −1.62%
string-unpack-code-SP 168.69 141.399 −16.18%
tagcloud-SP 77.685 99.776 +28.44%
tsf-wasm 42.163 67.481 +60.05%
typescript 6.67 6.598 −1.08%
uglify-js-wtb 12.796 13.636 +6.56%
UniPoker 196.529 195.398 −0.58%
WSL 0.411 0.405 −1.46%

Total 7909.404 7927.544 +0.23%
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