Exploiting the Microarchitecture:

Transient Execution Attacks

Michael Schwarz (@misc0110)
April 11, 2019

Graz University of Technology

Who am 1? www.tugraz.at

Michael Schwarz
PhD candidate @ Graz University of Technology
¥ ©@misc0110

& michael.schwarz@iaik.tugraz.at

Michael Schwarz (@misc0110) — Graz University of Technology

https://twitter.com/misc0110
mailto:michael.schwarz@iaik.tugraz.at

| | ~ =

N, D.C

WRASHINGTO

FOXy

BLISINESS

WRASHINGTON, D.C

B

-—»\' -

:aﬁ'—"‘ NEWS | INTEL REVEALS DESIGN FLAW THAT]
—FOX\ »ALERT COULD ALLOW HACKERS TO ACCESS DATA ||

f @FOXBUSI

BUSINESS

[NETWORK)

COMPUTER CHIP SCARE
The bugs are known as 'Spectre' and 'Meltdown' ¢
A[d WORLD NEWS) = £:HKS 10.58 EURO:E 0.891

-

Side-Channel Attacks www.tugraz.at

e Bug-free software does not mean safe execution

Michael Schwarz (@misc0110) — Graz University of Technology

Side-Channel Attacks www.tugraz.at

e Bug-free software does not mean safe execution

e Information leaks due to underlying hardware

Michael Schwarz (@misc0110) — Graz University of Technology

Side-Channel Attacks www.tugraz.at

e Bug-free software does not mean safe execution

e Information leaks due to underlying hardware

| e Exploit leakage through side-effects

Michael Schwarz (@misc0110) — Graz University of Technology

Side-Channel Attacks www.tugraz.at

e Bug-free software does not mean safe execution

e Information leaks due to underlying hardware

| e Exploit leakage through side-effects
@1
T~ |
=T < ‘
N’
Power consumption Execution time CPU caches

Michael Schwarz (@misc0110) — Graz University of Technology

Architecture and Microarchitecture www.tugraz.at

e Instruction Set Architecture (ISA) is an abstract model of a
computer (x86, ARMv8, SPARC, ...)

Michael Schwarz (@misc0110) — Graz University of Technology

Architecture and Microarchitecture www.tugraz.at

e Instruction Set Architecture (ISA) is an abstract model of a
computer (x86, ARMv8, SPARC, ...)

e Interface between hardware and software

Michael Schwarz (@misc0110) — Graz University of Technology

Architecture and Microarchitecture www.tugraz.at

e Instruction Set Architecture (ISA) is an abstract model of a
computer (x86, ARMv8, SPARC, ...)

e Interface between hardware and software

e Microarchitecture is an ISA implementation

Michael Schwarz (@misc0110) — Graz University of Technology

Architecture and Microarchitecture www.tugraz.at

e Instruction Set Architecture (ISA) is an abstract model of a
computer (x86, ARMv8, SPARC, ...)

e Interface between hardware and software

e Microarchitecture is an ISA implementation

Michael Schwarz (@misc0110) — Graz University of Technology

Microarchitectural Components S A P

e Modern CPUs contain multiple microarchitectural elements

n Michael Schwarz (@misc0110) — Graz University of Technology

Microarchitectural Components S A P

e Modern CPUs contain multiple microarchitectural elements

v Q (Y 1)

Caches and buffers Predictors

n Michael Schwarz (@misc0110) — Graz University of Technology

Microarchitectural Components S A P

e Modern CPUs contain multiple microarchitectural elements

v Q (Y 1)

Caches and buffers Predictors

e Transparent for the programmer

n Michael Schwarz (@misc0110) — Graz University of Technology

Microarchitectural Components S A P

e Modern CPUs contain multiple microarchitectural elements

: @ o000

— =

Caches and buffers Predictors

e Transparent for the programmer

e Timing optimizations — side-channel leakage

n Michael Schwarz (@misc0110) — Graz University of Technology

CPU Cache www.tugraz.at

111111
printf("%d", i); : :
printf ("%d", 1i); . -

TTTTTIT

Michael Schwarz (@misc0110) — Graz University of Technology

CPU Cache www.tugraz.at

C Liilll
: no/ an 2y . my
printf("%d", i); /Ss
printf ("%d", 1i); . -
HERBR

Michael Schwarz (@misc0110) — Graz University of Technology

CPU Cache www.tugraz.at

C Liilll
ac/-]e —
: no/ an 2y . my
printf("%d", i); /Ss
printf ("%d", 1i); .
HERBR

Michael Schwarz (@misc0110) — Graz University of Technology

CPU Cache www.tugraz.at

C Liilll
ac/-]e —
: no/ an 2y . my
printf("%d", i); /Ss
printf ("%d", 1i); .
HERBR

Michael Schwarz (@misc0110) — Graz University of Technology

CPU Cache www.tugraz.at

Cac/-] —
: no/ an : € my
printf("%d", i); ISs

printf ("%d", 1i);

Michael Schwarz (@misc0110) — Graz University of Technology

CPU Cache www.tugraz.at

Cac/-] —
: no/ an : efh'
printf("%d", i); ISs

rintf("%d4", 1i); —_—
P Cache hit

Michael Schwarz (@misc0110) — Graz University of Technology

CPU Cache www.tugraz.at

DRAM access,

slow

Cac/-] —
: no/ an : efh'
printf("%d", i); ISs

rintf("%d4", 1i); —_—
P Cache hit

Michael Schwarz (@misc0110) — Graz University of Technology

CPU Cache www.tugraz.at

DRAM access,

slow

printf ("%d", i) \

Q&
printf("%d", i); ——2> 5\;)0“56
Cache hit Re

No DRAM access,
much faster

Michael Schwarz (@misc0110) — Graz University of Technology

Caching speeds up Memory Accesses U TR

00 Cache Hits

Number of accesses

100 120 140 160 180 200 220 240 260 280 300 320 340
Access time [CPU cycles]

n Michael Schwarz (@misc0110) — Graz University of Technology

Caching speeds up Memory Accesses U TR

00 Cache Hits [0 Cache Misses

Number of accesses

100 120 140 160 180 200 220 240 260 280 300 320 340
Access time [CPU cycles]

n Michael Schwarz (@misc0110) — Graz University of Technology

Flush+4Reload www.tugraz.at

Shared Memory

Attacker Victim
Lillll

Michael Schwarz (@misc0110) — Graz University of Technology

Flush+Reload

www.tugraz.at

Attacker

Shared Memory

Victim
111111

o

o

(]

S
@
o

Cached

Shared Memory

Michael Schwarz (@misc0110) — Graz University of Technology

Flush+4Reload www.tugraz.at

Shared Memory

Attacker Victim
Lillll

flush \ - -
Shared Memory

Michael Schwarz (@misc0110) — Graz University of Technology

Flush+4Reload www.tugraz.at

Shared Memory

Attacker Victim

L1l
flush _

Michael Schwarz (@misc0110) — Graz University of Technology

Flush+4Reload www.tugraz.at

Shared Memory

Attacker Victim
Lillll

—__— | access

Michael Schwarz (@misc0110) — Graz University of Technology

Flush+4Reload www.tugraz.at

Shared Memory

Attacker Victim
Lillll

Shared Memory aC C e S S

Michael Schwarz (@misc0110) — Graz University of Technology

Flush+4Reload www.tugraz.at

Shared Memory

Attacker Victim
Lillll

Shared Memory

access]

Michael Schwarz (@misc0110) — Graz University of Technology

Flush+4Reload www.tugraz.at

Shared Memory

Attacker Victim
Lillll

Shared Memory

access]

\
B - ()

Victim accessed Victim did not access
(fast) (slow)

Michael Schwarz (@misc0110) — Graz University of Technology

T0y example www.tugraz.at

char array[256 * 40961; // 256 pages of memory

n Michael Schwarz (@misc0110) — Graz University of Technology

T0y example www.tugraz.at

char array[256 * 40961; // 256 pages of memory

x*(volatile charx*) 0; // raise_exzception();
array [84 * 4096] = O0;

n Michael Schwarz (@misc0110) — Graz University of Technology

www.tugraz.at

Building the Code

e Flush+Reload over all pages of the array

g __ 500
e [0}
" i 400
S 5. 300
O
° ° < ‘ : L : : :
0 50 100 150 200 250
Page

n Michael Schwarz (@misc0110) — Graz University of Technology

www.tugraz.at

Building the Code

e Flush+Reload over all pages of the array

g __ 500
e [0}
" i 400
S 5. 300
O
° ° < ‘ : L : : :
0 50 100 150 200 250
Page

e “Unreachable” code line was actually executed

n Michael Schwarz (@misc0110) — Graz University of Technology

www.tugraz.at

Building the Code

e Flush+Reload over all pages of the array

g __ 500
e [0}
" i 400
S 5. 300
O
° ° < ‘ : L : : :
0 50 100 150 200 250
Page

e “Unreachable” code line was actually executed

e Exception was only thrown afterwards

n Michael Schwarz (@misc0110) — Graz University of Technology

www.tugraz.at

Building the Code

e Flush+Reload over all pages of the array

500
400
300

0 50 100 150 200 250
Page

Access time
[cycles]

e “Unreachable” code line was actually executed

e Exception was only thrown afterwards

e Qut-of-order instructions leave microarchitectural traces

n Michael Schwarz (@misc0110) — Graz University of Technology

www.tugraz.at

Building the Code

()
E
e
O
S >
[SENCH
O
<

e Flush+Reload over all pages of the array

500
400
300
0 50 100 150 200 250
Page

e “Unreachable” code line was actually executed
e Exception was only thrown afterwards
e Qut-of-order instructions leave microarchitectural traces

e Give such instructions a name: transient instructions

n Michael Schwarz (@misc0110) — Graz University of Technology

Building the Code www.tugraz.at

e Add another layer of indirection to test

char array[256 * 4096]; // 256 pages of memory

Michael Schwarz (@misc0110) — Graz University of Technology

Building the Code www.tugraz.at

e Add another layer of indirection to test
char array[256 * 4096]; // 256 pages of memory
// read kernel address (raises exception)

char data = *(char*) Oxffffffff81a000e0;
array [data * 4096] = O0;

Michael Schwarz (@misc0110) — Graz University of Technology

Building the Code www.tugraz.at

e Add another layer of indirection to test
char array[256 * 4096]; // 256 pages of memory
// read kernel address (raises exception)

char data = *(char*) Oxffffffff81a000e0;
array [data * 4096] = O0;

e Then check whether any part of array is cached

Michael Schwarz (@misc0110) — Graz University of Technology

Building the Code www.tugraz.at

e Flush+Reload over all pages of the array

Access time

0 50 100 150 200 250
Page

e Index of cache hit reveals data

Michael Schwarz (@misc0110) — Graz University of Technology

Building the Code www.tugraz.at

e Flush+Reload over all pages of the array

Access time

0 50 100 150 200 250
Page

e Index of cache hit reveals data

e Permission check is in some cases too late

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown www.tugraz.at

e CPU uses data in out-of-order execution before permission check

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown www.tugraz.at

e CPU uses data in out-of-order execution before permission check

e Meltdown can read any kernel address

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown www.tugraz.at

e CPU uses data in out-of-order execution before permission check
e Meltdown can read any kernel address

e Physical memory is usually mapped in kernel

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown www.tugraz.at

e CPU uses data in out-of-order execution before permission check
e Meltdown can read any kernel address
e Physical memory is usually mapped in kernel

— Read arbitrary memory

Michael Schwarz (@misc0110) — Graz University of Technology

Uncached and uncachable memory www.tugraz.at

?\ e Assumed Meltdown can one only read data from the L1
ﬁ

Michael Schwarz (@misc0110) — Graz University of Technology

Uncached and uncachable memory U TR

g e Assumed Meltdown can one only read data from the L1

’ D
e leakage from L3 or memory is possible, just slower

Michael Schwarz (@misc0110) — Graz University of Technology

Uncached and uncachable memory U TR

g e Assumed Meltdown can one only read data from the L1

; D
! e leakage from L3 or memory is possible, just slower

' e Even leakage of UC (uncachable) memory regions...

Michael Schwarz (@misc0110) — Graz University of Technology

Uncached and uncachable memory U TR

?\ e Assumed Meltdown can one only read data from the L1
! e leakage from L3 or memory is possible, just slower

' e Even leakage of UC (uncachable) memory regions...
e ..if other hyperthread (legally) accesses the data

Michael Schwarz (@misc0110) — Graz University of Technology

Uncached and uncachable memory U TR

?\ e Assumed Meltdown can one only read data from the L1
! e leakage from L3 or memory is possible, just slower

' e Even leakage of UC (uncachable) memory regions...
e ..if other hyperthread (legally) accesses the data
— ...leaks from line fill buffer

Michael Schwarz (@misc0110) — Graz University of Technology

Take the kernel addresses... www.tugraz.at

e Kernel addresses in user space are a
problem

Michael Schwarz (@misc0110) — Graz University of Technology

Take the kernel addresses... www.tugraz.at

e Kernel addresses in user space are a
problem

e Why don’'t we take the kernel addresses...

/»)/
/4(4

Michael Schwarz (@misc0110) — Graz University of Technology

...and remove them www.tugraz.at

e ...and remove them if not needed?

Michael Schwarz (@misc0110) — Graz University of Technology

...and remove them www.tugraz.at

e ...and remove them if not needed?

e User accessible check in hardware is not
reliable

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown Mitigation: KAISER www.tugraz.at

@) Userspace

Operating

Applications System Memory

Kernelspace

Michael Schwarz (@misc0110) — Graz University of Technology

KAISER

www.tugraz.at

Kernel View

@ Userspace

’

Operating
System

Kernelspace

|
-

|
E |
-
|
A

|

Memory

N

context

@ Userspace

Applications

!

switch

User View

Kernelspace

Michael Schwarz (@misc0110) — Graz University of Technology

Mitigations www.tugraz.at

e Linux: Kernel Page-table Isolation (KPTI)

Michael Schwarz (@misc0110) — Graz University of Technology

Mitigations www.tugraz.at

e Linux: Kernel Page-table Isolation (KPTI)
e Apple: Released updates

Michael Schwarz (@misc0110) — Graz University of Technology

Mitigations www.tugraz.at

e Linux: Kernel Page-table Isolation (KPTI)
e Apple: Released updates
e Windows: Kernel Virtual Address (KVA) Shadow

Michael Schwarz (@misc0110) — Graz University of Technology

Problem Solved? www.tugraz.at

‘ w e Meltdown fully mitigated in software

Michael Schwarz (@misc0110) — Graz University of Technology

Problem Solved? www.tugraz.at

‘ w e Meltdown fully mitigated in software

e Problem seemed to be solved

Michael Schwarz (@misc0110) — Graz University of Technology

Problem Solved? www.tugraz.at

‘ w e Meltdown fully mitigated in software

e Problem seemed to be solved

e No attack surface left

Michael Schwarz (@misc0110) — Graz University of Technology

Problem Solved? www.tugraz.at

‘ w e Meltdown fully mitigated in software

Problem seemed to be solved

No attack surface left

That is what everyone thought

Michael Schwarz (@misc0110) — Graz University of Technology

There are no busgs,
just happy little accidents

Generalization www.tugraz.at

e Meltdown is a whole category of vulnerabilities

Michael Schwarz (@misc0110) — Graz University of Technology

Generalization www.tugraz.at

e Meltdown is a whole category of vulnerabilities

e Not only the user-accessible check

Michael Schwarz (@misc0110) — Graz University of Technology

Generalization www.tugraz.at

e Meltdown is a whole category of vulnerabilities
e Not only the user-accessible check

e Looking closer at the check...

Michael Schwarz (@misc0110) — Graz University of Technology

www.tugraz.at

e CPU uses virtual address spaces to isolate processes

Michael Schwarz (@misc0110) — Graz University of Technology

www.tugraz.at

e CPU uses virtual address spaces to isolate processes

e Physical memory is organized in page frames

Michael Schwarz (@misc0110) — Graz University of Technology

www.tugraz.at

e CPU uses virtual address spaces to isolate processes

e Physical memory is organized in page frames

e Virtual memory pages are mapped to page frames using
page tables

Michael Schwarz (@misc0110) — Graz University of Technology

Address Translation on x86-64 www.tugraz.at

PML4
CR3 PML4E 0
PML4E 1
: PDPT
N PML4I
7 #: PDPTE 0
PML4E 511 PDPTE 1
N ZPDPTI Page Directory
. PDE 0
PDPTE 511 PDZE !
" PDE ZPDI Page Table
: PTE 0O
PDE 511 PT:E !
- 4 KiB Page
AN
% PTE #PTI Byt 0
- Byte 1
PTE 511 -
Offset
[PML4I (9 b) [PDPTI (9 b) [PDI (9 b) [PTI (9 b) [Offset (12b) | Byte 4095

48-bit virtual address

Michael Schwarz (@misc0110) — Graz University of Technology

Page Table Entl’y www.tugraz.at

P [RWIUS|WT|{UC| R |D|S |G Ignored

|\| Hm mhber
A D€

Q.
QL
¢))

Ignored X

e User/Supervisor bit defines in which privilege level the page can be accessed

Michael Schwarz (@misc0110) — Graz University of Technology

Page Table Entl’y www.tugraz.at

P IRWIUSIWT|UC| R |D|S |G Ignored

CT
D

Ei
L
4))

Ignored X

Michael Schwarz (@misc0110) — Graz University of Technology

Page Table Entl’y www.tugraz.at

P IRWIUSIWT|UC| R |D|S |G Ignored

CT
D

Ei
L
4))

Ignored X

e Present bit is the next obvious bit

Michael Schwarz (@misc0110) — Graz University of Technology

Foreshadow-NG www.tugraz.at

e An even worse bug — Foreshadow-NG/L1TF

Michael Schwarz (@misc0110) — Graz University of Technology

Foreshadow-NG www.tugraz.at

e An even worse bug — Foreshadow-NG/L1TF
2 e Exploitable from VMs

Michael Schwarz (@misc0110) — Graz University of Technology

Foreshadow-NG www.tugraz.at

e An even worse bug — Foreshadow-NG/L1TF
2 e Exploitable from VMs

e Allows leaking data from the L1 cache

Michael Schwarz (@misc0110) — Graz University of Technology

Foreshadow-NG www.tugraz.at

e An even worse bug — Foreshadow-NG/L1TF
= Exploitable from VMs

Allows leaking data from the L1 cache

Same mechanism as Meltdown

Michael Schwarz (@misc0110) — Graz University of Technology

Foreshadow-NG www.tugraz.at

e An even worse bug — Foreshadow-NG/L1TF

= Exploitable from VMs

Allows leaking data from the L1 cache
Same mechanism as Meltdown
Just a different bit in the PTE

Michael Schwarz (@misc0110) — Graz University of Technology

Foreshadow-NG www.tugraz.at

Page Table
PTE O
PTE 1

PTE #PTI

PTE 511

L1
Cache

Michael Schwarz (@misc0110) — Graz University of Technology

Foreshadow-NG www.tugraz.at

Page Table
PTE O
PTE 1

present

¥

PTE #PTI

PTE 511

L1
Cache

Michael Schwarz (@misc0110) — Graz University of Technology

Foreshadow-NG www.tugraz.at

Page Table
PTE O
PTE 1
: present Guest Physical
PTE #PTI 5
:# “lto Host Physical
PTE 511

L1
Cache

Michael Schwarz (@misc0110) — Graz University of Technology

Foreshadow-NG www.tugraz.at

Page Table
PTE O
PTE 1
: t Physical
PTE ZpT1 LPresent JGuest Physica S| Physical
- to Host Physical
: Page
PTE 511
L1 , L1 lookup
N\ .
with
it physical address

Michael Schwarz (@misc0110) — Graz University of Technology

Foreshadow-NG www.tugraz.at

Page Table
PTE O
PTE 1

not present

PTE #PTI

PTE 511

L1
Cache

Michael Schwarz (@misc0110) — Graz University of Technology

Foreshadow-NG www.tugraz.at

Page Table
PTE O
PTE 1

not present

PTE #PTI

PTE 511

L1 lookup
with
virtual address

h

L1
Cache

Michael Schwarz (@misc0110) — Graz University of Technology

£

‘&[7 Demo
| Foreshadow-NG

Foreshadow-NG Fix www.tugraz.at

e KAISER/KPTI/KVA does not help

Michael Schwarz (@misc0110) — Graz University of Technology

Foreshadow-NG Fix www.tugraz.at

e KAISER/KPTI/KVA does not help

e Only software workarounds

Michael Schwarz (@misc0110) — Graz University of Technology

Foreshadow-NG Fix www.tugraz.at

e KAISER/KPTI/KVA does not help
e Only software workarounds
— Flush L1 on VM entry

Michael Schwarz (@misc0110) — Graz University of Technology

Foreshadow-NG Fix www.tugraz.at

e KAISER/KPTI/KVA does not help
e Only software workarounds

— Flush L1 on VM entry
— Disable HyperThreading

Michael Schwarz (@misc0110) — Graz University of Technology

Foreshadow-NG Fix www.tugraz.at

e KAISER/KPTI/KVA does not help
e Only software workarounds

— Flush L1 on VM entry
— Disable HyperThreading

e Workarounds might not be complete

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown Variants www.tugraz.at

Pagefault

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown Variants www.tugraz.at

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown Variants www.tugraz.at

Pagefault Meltdown-US-L1
Meltdown-US-L3

Meltdown-US-LFB

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown Variants www.tugraz.at

Pagefault Meltdown-US-L1
Meltdown-US-L3

Meltdown-US-LFB

Meltdown-P

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown Variants www.tugraz.at

Meltdown-US-L1

Meltdown-US-L3
Meltdown-US-LFB

Pagefault

Meltdown-P
Meltdown-RW

Meltdown-PK

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown Variants www.tugraz.at

Meltdown-US-L1

Meltdown-US-L3
Meltdown-US-LFB

Pagefault

Meltdown-P
Meltdown-RW
Meltdown-PK

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown Root Cause www.tugraz.at

operation #n

»

time

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown Root Cause www.tugraz.at

operation #n

data

»

time

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown Root Cause www.tugraz.at

operation #n

data

data dependency

operation #r\{+2

»

time

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown Root Cause www.tugraz.at

operation #n

retire

exception

data 0

data dependency

possibly

architectural transient execution

»

|

L . v

| operation #n+2
1

' time

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown Root Cause www.tugraz.at

()
operation #n &=
exception
data
Il >

data dependency

operation #rY+2

possibly

architectural transient execution

»

time

L
1
1
1
1
1
1
T
1
1
1

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown Root Cause www.tugraz.at

operation #n

retire

exception

data g
>

.
: data dependency
|
1
1
1
1

operation #rY+2

possibly

architectural transient execution

»

time

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown Root Cause www.tugraz.at

operation #n

retire

exception raise

(0]
data ~fMger o |

.
: data dependency
|
1
1
1
1

possibly
architectural

transient execution

operation #rY+2 i

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown Tree www.tugraz.at

Transient
cause?

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown Tree www.tugraz.at

Transient
cause?

fault

Meltdown-type

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown Tree www.tugraz.at

Transient
cause?

fault

Meltdown-type

Meltdown-BR
Meltdown-GP

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown Tree www.tugraz.at

?
cause? Meltdown-US-L1
fault

Meltdown-US-L3

Meltdown-US-LFB)

\ Meltdown-P
Meltdown-type)} §&—__ = ,—————————
\ \ , Meltdown-RW)

Meltdown-PK

fault type \\. \|| - — — — — — — — —

Meltdown-BR
Meltdown-GP

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown Tree www.tugraz.at

?
cause? Meltdown-NM

fault

Meltdown-US-L1
Meltdown-P Meltdown-US-L3

Meltdown-RW) Meltdown-US-LFB)

Meltdown-PK

" Meltdown-XD)

Meltdown-type

fault type

Meltdown-BR Meltdown-MPX
Meltdown-GP Meltdown-BND

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown Outlook www.tugraz.at

e Meltdown is not a fully solved issue

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown Outlook www.tugraz.at

e Meltdown is not a fully solved issue

e The tree is extensible

4/

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown Outlook www.tugraz.at

e Meltdown is not a fully solved issue

e The tree is extensible

m e More Meltdown-type issues to come

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown Outlook www.tugraz.at

e Meltdown is not a fully solved issue

The tree is extensible

More Meltdown-type issues to come

I

Silicon fixes might not be complete

Michael Schwarz (@misc0110) — Graz University of Technology

Transient Execution Attacks www.tugraz.at

e Meltdown not the only transient execution attacks

Michael Schwarz (@misc0110) — Graz University of Technology

Transient Execution Attacks www.tugraz.at

e Meltdown not the only transient execution attacks

e Spectre is a second class of transient execution attacks

Michael Schwarz (@misc0110) — Graz University of Technology

Transient Execution Attacks www.tugraz.at

e Meltdown not the only transient execution attacks
e Spectre is a second class of transient execution attacks

e Instead of faults, exploit control (or data) flow predictions

Michael Schwarz (@misc0110) — Graz University of Technology

Speculative Execution www.tugraz.at

e CPU tries to predict the future (branch predictor), ...

Michael Schwarz (@misc0110) — Graz University of Technology

Speculative Execution www.tugraz.at

e CPU tries to predict the future (branch predictor), ...

e ...based on events learned in the past

Michael Schwarz (@misc0110) — Graz University of Technology

Speculative Execution www.tugraz.at

e CPU tries to predict the future (branch predictor), ...

e ...based on events learned in the past

e Speculative execution of instructions

Michael Schwarz (@misc0110) — Graz University of Technology

Speculative Execution www.tugraz.at

e CPU tries to predict the future (branch predictor), ...

e ...based on events learned in the past

e Speculative execution of instructions

e If the prediction was correct, ...

Michael Schwarz (@misc0110) — Graz University of Technology

Speculative Execution www.tugraz.at

e CPU tries to predict the future (branch predictor), ...
e ...based on events learned in the past
e Speculative execution of instructions

e If the prediction was correct, ...

e ... very fast

Michael Schwarz (@misc0110) — Graz University of Technology

Speculative Execution www.tugraz.at

e CPU tries to predict the future (branch predictor), ...
e ...based on events learned in the past
e Speculative execution of instructions

e If the prediction was correct, ...

e ... very fast
e otherwise: Discard results

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre-PHT (aka Spectre Variant 1) AL

if (index <

Shared Memory ‘y &‘

AlB

ggg glyph[datal[index]]
I|J|K

LM N L1l
O|P|Q - -
R|S|T - —
U|V|W

X|Y|Z TTTTT]

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre-PHT (aka Spectre Variant 1) AL

if (index <

Shared Memory ‘y &

AlB
ggg glyph[datal[index]] Speculate
I[J|K
L M| N LLLLLl
O|P|Q = -
R|S|T - -
Ulv|w
X|Y|Z TTTTT]

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre-PHT (aka Spectre Variant 1) . tugraz.at

mnoex = if (index < 4)

Shared Memory ExeCute)y &Q

A|B ,
% g fﬁ glyph[dataEi_rifc_eic_]_l/,/”’ 0
IJ|K
L MR L1111l
O|P|Q - —
R|S|T - -
U|V|W
RIS TTTTT1

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre-PHT (aka Spectre Variant 1)

www.tugraz.at

if (index <

Shared Memory et

A|B

CH ’///’;;;£h[data[index]] e
F|G|H SR

I]J|K

LM N L1l
O|P|Q - -
R|S|T - —
U|v|w

X|Y|Z TTTTT]

Michael Schwarz

e)y &Q

)

-
-

{

(@misc0110) — Graz University of Technology

Spectre-PHT (aka Spectre Variant 1) . tugraz.at

Hdex = if (index <

Shared Memory EXecutey &Q
]B -

A
i(gz g H .glyph[data[lnd?c—]’]’ Pt
IJ|K <
LM Liiill
0[P[Q .= _
R|S|T) = -
UlVvVIiw RIN
X|Y|Z

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre-PHT (aka Spectre Variant 1) AL

if (index <

Shared Memory y @(9@

A|B

ggg glyph[datal[index]]
I1|J|K

L M| N LLLLLl
O|P|Q - -
R[S|T - —
U|V|W

X|Y|Z

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre-PHT (aka Spectre Variant 1) . tugraz.at

sndex = if (index <

Shared Memory Speculat/ &‘

A|B

%gg glyph[datal[index]]
I|J|K

LM LLLLL]
O|P|Q - _
R|S|T = -
U|V|W

X|Y|Z

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre-PHT (aka Spectre Variant 1) AL

if (index <

Shared Memory Speculat/ &‘

AlB
C|DE glyph[datal[index]] _ T {}
FIGH -7
AR
L | M|N LLilll
o|rP|Q - —
R|S|T = -
U | VW
XY |Z

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre-PHT (aka Spectre Variant 1) AL

if (index <

Shared Memory Speculat/ &‘

A
C|DE glyph[data[lndex]] _ T {}
FIGH -7
AR
L | M|N LLilll
o|rP|Q - —
R|S|T = -
U | VW
XY |Z

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre-PHT (aka Spectre Variant 1) AL

if (index <

Shared Memory Specmatj/ &‘

Al
C|D E glyph[data[lndex]] I g
FlGlH| %% =~
117K)
L |M|N * LILLLI
O|P|Q - -
R|S|T . ™ -
U V W Ttangy
x|ylz

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre-PHT (aka Spectre Variant 1) . tugraz.at

Hdex = if (index <

Shared Memory ExeCutey &‘

A|B

%gfﬁ glyph[datal[index]]
IlJ|K

L MR P11l
O|P|Q - -
R(S|T - -
U|V W

X|Y|Z

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre-PHT (aka Spectre Variant 1) . tugraz.at

e S if (index <

Shared Memory Speculat/ &‘

A|B

%gg glyph[datal[index]]
I|J|K

LM LLLLL]
O|P|Q - _
R|S|T = -
U|V|W

X|Y|Z

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre-PHT (aka Spectre Variant 1) . tugraz.at

sndex = if (index <

Shared Memory Speculat/ &‘

A|B

Flclh glyph[datal[index]]

F|G|H el
17K

A LLLLLI

O|P|Q . _

R[S|T - -

U|V|W

X|Y|Z

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre-PHT (aka Spectre Variant 1) . tugraz.at

sndex = if (index <

Shared Memory Speculat/ &‘

A|B

Flclh glyph[datal[index]]

F|G|H el
17K

A LLLLLI

O|P|Q . _

R|S|T - -

U|V|W

X|Y|Z

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre-PHT (aka Spectre Variant 1) . tugraz.at

sndex = if (index <

Shared Memory Speculat/ &‘

AlB
C|D|E
F|G|H
IJ|K
L [M|N
O PIQ
R|S [T
U|V W
X|Y|Z

glyph[data[index]]

(- ——————————————

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre-PHT (aka Spectre Variant 1) . tugraz.at

Hdex = if (index <

Shared Memory ExeCutey &‘

A|B

%gfﬁ glyph[datal[index]]
IlJ|K

L MR P11l
O|P|Q - -
R(S|T - -
U|V W

X|Y|Z

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre-PHT (aka Spectre Variant 1) . tugraz.at

e S if (index <

Shared Memory Speculat/ &‘

A|B

%gg glyph[datal[index]]
I|J|K

LM LLLLL]
O|P|Q - _
R|S|T = -
U|V|W

X|Y|Z

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre-PHT (aka Spectre Variant 1) AL

if (index <

Shared Memory Speculat/ &‘

A|B

C|D|E glyph[data[index]]

F|G|H « ------------

LK 5= T
LIMIN 111111l

O|P|Q - =

R[S|T - ~

UV W

XY |Z

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre-PHT (aka Spectre Variant 1) AL

if (index <

Shared Memory Speculat/ &‘

A

C|D|E glyph[data[lndeX]]

F|G|H « ------------

LK 5= T
LIMIN 111111l

O|P|Q - =

R[S|T - ~

UV W

XY |Z

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre-PHT (aka Spectre Variant 1) AL

if (index <

Shared Memory Specmatj/ &‘

A
Gy E glyph[data[lndex]]
F|G|H Al
IlJ|K T
L M|N k LLiLLl
O|P|Q - -
R|S[T e = -
U V W "u.--
X|Y|Z

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre-PHT (aka Spectre Variant 1) . tugraz.at

Hdex = if (index <

Shared Memory ExeCutey &‘

A|B

%gfﬁ glyph[datal[index]]
IlJ|K

L MR P11l
O|P|Q - -
R(S|T - -
U|V W

X|Y|Z

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre-PHT (aka Spectre Variant 1) . tugraz.at

e S if (index <

Shared Memory Speculat/ &‘

A|B

%gg glyph[datal[index]]
I|J|K

LM LLLLL]
O|P|Q - _
R|S|T = -
U|V|W

X|Y|Z

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre-PHT (aka Spectre Variant 1) AL

if (index <

Shared Memory Speculat/ &‘

A|B

C|DE glyph[data[lndex]]

F|GH

Jg| BT

LIMIN prrrr
0P|Q - —

R[S|T - -

U|VW

XY |Z

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre-PHT (aka Spectre Variant 1) AL

if (index <

Shared Memory Speculat/ &‘

AlB

C|DE glyph[data[lndex]]

F|G|H

J— =

LIMIN prrrr
o[P|Q - =

R|S|T - =

U|v|w

X|y|z

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre-PHT (aka Spectre Variant 1) . tugraz.at

sndex = if (index <

Shared Memory Speculat/ &‘

AlB
S glyph[data[mdex]]
F|G|H
TTg— Ko o
LM . Lprrryr00
O|P|Q - —
RIS|T v o -
U|V|W
X|Y|Z

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre-PHT (aka Spectre Variant 1) AL

if (index <

Shared Memory ‘y &

A|B
i(; g gi glyph[datal[index]] S
I1|J|K
LM N L1l
O|P|Q - -
R[S|T - —
U|V|W
X|Y|Z

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Root Cause www.tugraz.at

operation #n

»

time

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Root Cause www.tugraz.at

operation #n

prediction

»

time

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Root Cause www.tugraz.at

operation #n

prediction

predict
CF/DF

> operation #n+2

»

time

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Root Cause www.tugraz.at

operation #n

prediction

predict
CF/DF

> operation #n+2

possibly
architectural | transient execution

»

time

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Root Cause www.tugraz.at

operation #n

retire

prediction

predict
CF/DF

> operation #n+2

possibly
architectural | transient execution

»

time

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Root Cause www.tugraz.at

(O]
Operatlon #n '8 flush pipeline
- on wrong
prediction
.. g
prediction 5
T

predict
CF/DF

> operation #n+2

possibly
architectural | transient execution

»

time

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Root Cause www.tugraz.at

()
Operatlon #n '8 flush pipeline
~ on wrong
prediction
.o o
prediction &
+ L : i
20 1 1
T~ T
Sul . " g
8O operation #n+2 . |z
possibly : =
architectural ! transient execution :
]

y

time

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Root Cause www.tugraz.at

A e Many predictors in modern CPUs

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Root Cause www.tugraz.at

A e Many predictors in modern CPUs

¢ @ b e Branch taken/not taken (PHT)

v

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Root Cause www.tugraz.at

A e Many predictors in modern CPUs
e Branch taken/not taken (PHT)
¢ @ b e Call/Jump destination (BTB)

v

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Root Cause www.tugraz.at

A e Many predictors in modern CPUs

e Branch taken/not taken (PHT)
¢ @ b e Call/Jump destination (BTB)

e Function return destination (RSB)

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Root Cause www.tugraz.at

A e Many predictors in modern CPUs

e Branch taken/not taken (PHT)
¢ @ b e Call/Jump destination (BTB)
e Function return destination (RSB)
v e Load matches previous store (STL)

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Root Cause www.tugraz.at

A e Many predictors in modern CPUs

e Branch taken/not taken (PHT)
¢ @ b e Call/Jump destination (BTB)
e Function return destination (RSB)
v e Load matches previous store (STL)

e Most are even shared among processes

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Mistraining www.tugraz.at

Victim
same address space/ Victim
in place branch

Michael Schwarz (@misc0110) — Graz University of Technology

www.tugraz.at

Spectre Mistraining

Victim
same address space/ Congruent
out of place branch

wnl c
8.9
=IE
<|8
same address space/ Victim
in place branch

Michael Schwarz (@misc0110) — Graz University of Technology

www.tugraz.at

Spectre Mistraining

Victim
same address space/ Congruent
out of place branch

wnl c
8.9
=IE
<|8
same address space/ Victim
in place branch

Shared Branch Prediction State

Michael Schwarz (@misc0110) — Graz University of Technology

www.tugraz.at

Spectre Mistraining

Victim Attacker

same address space/ Congruent
out of place branch

wnl c

8.9

=IE

<|8
same address space/ Victim
in place branch

Shared Branch Prediction State

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Mistraining

www.tugraz.at

same address space/
out of place

same address space/
in place

Victim Attacker
Congruent
branch
wnl c
&l1.e
=IE
<|8
Victim Shadow
branch branch

Shared Branch Prediction State

cross address space/
in place

Michael Schwarz (@misc0110) — Graz University of Technology

www.tugraz.at

Spectre Mistraining

Victim Attacker

same address space/ Congruent Congruent cross address space/
out of place branch branch out of place

wlc | <

8.9 alo

=IE 3|2

<|8 <|8
same address space/ Victim Shadow cross address space/
in place branch branch in place

Shared Branch Prediction State

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Variants www.tugraz.at

Transient
cause?

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Variants www.tugraz.at

Spectre-type

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Variant

www.tugraz.at

microarchitec-

tural buffer

Spectre-type

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Variant

mistraining

Cross-address-space

Same-address-space

strategy

microarchitec-

Spectre-PHT

Spectre-BTB
Spectre-RSB
Spectre-STL

tural buffer

Cross-address-space
Same-address-space

Cross-address-space
Same-address-space

Spectre-type

prediction

Transient
cause?

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Variant

in-place (IP) vs., out-of-place (OP)
mistraining PHT-CA-IP

strategy PHT-CA-OP

:;Z/Ozchgfeo PHT-SA-IP

BTB-CA-IP

!Q Spectre-STL BTB-CA-OP

prediction BTB-SA-IP
Transient

BTB-SA-OP

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Fix www.tugraz.at

e Spectre is not a bug

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Fix www.tugraz.at

e Spectre is not a bug

e |t is an useful optimization

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Fix www.tugraz.at

e Spectre is not a bug
e |t is an useful optimization

— Cannot simply fix it (as with Meltdown)

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Fix

www.tugraz.at

e Spectre is not a bug
e |t is an useful optimization
— Cannot simply fix it (as with Meltdown)

e Workarounds for critical code parts

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Defense Categorization RICEE Ea 2t

Spectre defenses in 3 categories:

Q‘

1

C1 Mitigating or reducing C2 Mitigating or aborting C3 Ensuring secret data
the accuracy of covert speculation cannot be reached
channels

Michael Schwarz (@misc0110) — Graz University of Technology

www.tugraz.at

Spectre: Defense Analysis

3
o &
o L 5 2 XN v S
9 g S § S 35 NS
o K L v 3§ 5 % Q Q N s
Defense -2 2 $ & & .gao gf 5 T 5 jo /i\L L g &5 ¢ 5
Attack S &£ 65 FX Qg Y ILLK s

Spectre-PHT
Spectre-BTB

Intel Spectre-RSB
Spectre-STL

Attack is mitigated (@), partially mitigated (@), not mitigated (O), theoretically mitigated (H),

theoretically impeded (I), not theoretically impeded ((J), or out of scope (<).
Michael Schwarz (@misc0110) — Graz University of Technology

www.tugraz.at

Spectre: Defense Analysis

§

) L0 S

<
s s £ 8§ S &
O & T & S S O T &N
(S) 5 & N O w0 50 2 &
§ g IR S 3 g ~ & X
O FL OS5 50 2, Paoi s s
Defenseg&vé)bﬁgggi‘f&/:Qg'fES’%’
Attack S Q0 £ 46X Q4656 FTRKG G

[] ([
[[J

[J

Spectre-PHT
Spectre-BTB
Intel
Spectre-RSB

Spectre-STL
Attack is mitigated (@), partially mitigated (@), not mitigated (O), theoretically mitigated (H),

theoretically impeded (I), not theoretically impeded ((J), or out of scope (<).
Michael Schwarz (@misc0110) — Graz University of Technology

www.tugraz.at

Spectre: Defense Analysis

IS
% 0 F
S S
& 5§ sy &
&) & o T &K 5 S5 0 (7])
7 ¢ S & K NS Y
S o Fs S8 @ N~ AN
9 4 S 5 x Y Q “» QO Q@ A X 5 <« Q
Defense & @ $ Y £ &g 2 TS5 T T F S EFTQ
Attack £ LG FXLYGTIILAR GG
Spectre-PHT ® O O o (D) ()
Spectre-BTB o © ® O O O
Intel
Spectre-RSB O © O
Spectre-STL © O [J

Attack is mitigated (@), partially mitigated (@), not mitigated (O), theoretically mitigated (H),
theoretically impeded (I), not theoretically impeded ((J), or out of scope (<).

Michael Schwarz (@misc0110) — Graz University of Technology

www.tugraz.at

IS
% 0 F
S N
£ s S5y &
&) & o T &K 5 S5 0 (7])
g g S £ > sy g TS @ 4
x-SR I PSS § Q Y IS A\
9 S 0 5 5 X L v 25 s s 8
Defense & @ $ Y £ &g 2 TS5 T T F S EFTQ
Attack f§J LG FXYGIILRsSF
Spectre-PHT ® O 0O o O (D) ()
Spectre-BTB o © ® O O O
Intel
Spectre-RSB O © O
Spectre-STL © O [J

Attack is mitigated (@), partially mitigated (@), not mitigated (O), theoretically mitigated (H),
theoretically impeded (I), not theoretically impeded ((J), or out of scope (<).

Michael Schwarz (@misc0110) — Graz University of Technology

www.tugraz.at

<
% 0 F
S N
& 5§ sy &
j9) & o @ & 5 S o 9 “
7 ¢ S & K NS Y
S o Fs S8 @ N~ AN
9 4 S 5 x Y Q “» QO Q@ A X 5 <« Q
Defense & @ $ Y £ &g 2 TS5 T T F S EFTQ
Attack £ LG FXLYGTIILAR GG
Spectre-PHT ® © © o O o B o
Intel Spectre-BTB ® () ® © O H o
nte
Spectre-RSB ()] () H o
© H o m o

Spectre-STL

Attack is mitigated (@), partially mitigated (@), not mitigated (O), theoretically mitigated (H),
theoretically impeded (I), not theoretically impeded ((J), or out of scope (<).

Michael Schwarz (@misc0110) — Graz University of Technology

www.tugraz.at

<
o 0 F
S N
& & s§5s &
3 & o @ & 5 S o 9 “
g g S & > & oS Q@ v
S o s s 9 Q y = D
9 4 S 5 x Y Q “» QO Q@ A X 5 <« Q
Defense & @ $ Y £ &g 2 TS5 T T F S EFTQ
Attack QL EGFTFXIGTIIRLKKG G
Spectre-PHT ® © 0 0 O O 0 oL
Intel Spectre-BTB ® () ® © O H o
nte
Spectre-RSB ()] () H o
© H o m o

Spectre-STL

Attack is mitigated (@), partially mitigated (@), not mitigated (O), theoretically mitigated (H),
theoretically impeded (I), not theoretically impeded ((J), or out of scope (<).

Michael Schwarz (@misc0110) — Graz University of Technology

www.tugraz.at

IS
&0 0 8
& S £ .8 s £ § &
O & T L S e v T 1%
o] @) S v N T o <S5 o (7] &
Q 7] Py \S § S ,(}7 ~ & X
9 E L v S 5§ T 9 Q D p T oL s Q
Defense & & $ & &L ¢ o0z (,? & /i\L & 5 g § Q2
Attack QL EGFTFXIGTIIRLKKG G
Spectre-PHT O o o ® O 0 0 O O 0 0@
Intel Spectre-BTB O o o (] © ® O © H o
nte
Spectre-RSB O 0O 0 o © B ©
Spectre-STL O 0O O © H o n o

Attack is mitigated (@), partially mitigated (@), not mitigated (O), theoretically mitigated (H),
theoretically impeded (I), not theoretically impeded ((J), or out of scope (<).

Michael Schwarz (@misc0110) — Graz University of Technology

www.tugraz.at

Spectre: Defense Analysis

&
& g T ¢ X g% 5 5 & &
S e d 558 o0, 08,855 &
Defenseg@qf_é)b«g@og(glfé)ég'g's.ggm
Attack £ LG FXLYGTIILAR GG
Spectre-PHT Ooo0oo0<¢ <o @ 00 0 O O ol o O
Intel Spectre-BTB O00d<¢ e ¢ < 0 < < @ 0 0 < 1 o & °©
ne SpectreeRSB O O O © © © © ©0 © O 0 0 0 © W © © ©
SpectreSTL. O O 0O ¢ ¢ ¢ 0 0 © O O 0 0 O W oW e

Attack is mitigated (@), partially mitigated (@), not mitigated (O), theoretically mitigated (H),
theoretically impeded (I), not theoretically impeded ((J), or out of scope (<).

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Misconceptions www.tugraz.at

e Many countermeasures only consider the cache to get data...

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Misconceptions www.tugraz.at

e Many countermeasures only consider the cache to get data...

e ...but there are other possibilities, e.g.,

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Misconceptions www.tugraz.at

e Many countermeasures only consider the cache to get data...
e ...but there are other possibilities, e.g.,
e Port contention (SMoTherSpectre)

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Misconceptions www.tugraz.at

e Many countermeasures only consider the cache to get data...
e _..but there are other possibilities, e.g.,

e Port contention (SMoTherSpectre)
e AVX (NetSpectre)

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Misconceptions www.tugraz.at

e Many countermeasures only consider the cache to get data...
e _..but there are other possibilities, e.g.,

e Port contention (SMoTherSpectre)
e AVX (NetSpectre)

e Cache is just the easiest

Michael Schwarz (@misc0110) — Graz University of Technology

Linux 4.19.4 & 4.14.83 Released With STIBP Code
Dropped

Written by Michael Larabel in Linux Kernel on 24 November 2018 at 09:00 AM EST. 6 Comments

On Friday marked the release of the Linux 4.19.4 kernel as well as
4.14.83 and 4.9.139.

Greg Kroah-Hartman issued this latest round of stable point releases as
basic maintenance updates. While these point releases don't tend to be
too notable and generally go unmentioned on Phoronix, this round is
worth pointing out since 4.19.4 and 4.14.83 are the releases that end up reverting the
STIBP behavior that applied Single Thread Indirect Branch Predictors to all processes on
supported systems. That is what was introduced in Linux 4.20 and then back-ported to
the 4.19/4.14 LTS branches, which in turn hurt the performance a lot. So for now the
code is removed.

As covered yesterday, there is improved STIBP code on the way for Linux 4.20 that by
default just apply STIBP to SECCOMP threads and processes requesting it via prctl() but
otherwise is off by default (that behavior can also be changed via kernel parameters).

Linux 4.19.4 & 4.14.83 Released With STIBP Code
Dropped

Written by Michael Larabel in Linux Kernel on 24 November 2018 at 09:00 AM EST. 6 Comments

On Friday marked the release of the Linux 4.19.4 kernel as well as
4.14.83 and 4.9.139.

Greg Kroah-Hartman issued this latest round of stable point releases as
basic maintenance updates. While these point releases don't tend to be
too notable and generally go unmentioned on Phoronix, this round is
worth pointing out since 4.19.4 and 4.14.83 are the releases that end up reverting the
STIBP behavior that applied Single Thread Indirect Branch Predictors to all processes on
supported systems. That is what was introduced in Linux 4.20 and then back-ported to
the 4.19/4.14 LTS branches, which in turn hurt the performance a lot. So for now the
code is removed.

As covered yesterday, there is improved STIBP code on the way for Linux 4.20 that by
default just apply STIBP to SECCOMP threads and processes requesting it via prctl() but
otherwise is off by default (that behavior can also be changed via kernel parameters).

Linux 4.19.4 & 4.14.83 Released With STIBP Code
Dropped

Written by Michael Larabel in Linux Kernel on 24 November 2018 at 09:00 AM EST. 6 Comments

On Friday marked the release of the Linux 4.19.4 kernel as well as
4.14.83 and 4.9.139.

Greg Kroah-Hartman issued this latest round of stable point releases as
basic maintenance updates. While these point releases don't tend to be
too notable and generally go unmentioned on Phoronix, this round is
worth pointing out since 4.19.4 and 4.14.83 are the releases that end up reverting the
STIBP behavior that applied Single Thread Indirect Branch Predictors to all processes on
supported systems. That is what was introduced in Linux 4.20 and then back-ported to
the 4.19/4.14 LTS branches, which in turn hurt the performance a lot. So for now the
code is removed.

As covered yesterday, there is improved STIBP code on the way for Linux 4.20 that by
default just apply STIBP to SECCOMP threads and processes requesting it via prctl() but
otherwise is off by default (that behavior can also be changed via kernel parameters).

Linux 4.19.4 & 4.14.83 Released With STIBP Code
Dropped

Written by Michael Larabel in Linux Kernel on 24 November 2018 at 09:00 AM EST. 6 Comments

On Friday marked the release of the Linux 4.19.4 kernel as well as
4.14.83 and 4.9.139.

Greg Kroah-Hartman issued this latest round of stable point releases as
basic maintenance updates. While these point releases don't tend to be
too notable and generally go unmentioned on Phoronix, this round is
worth pointing out since 4.19.4 and 4.14.83 are the releases that end up reverting the
STIBP behavior that applied Single Thread Indirect Branch Predictors to all processes on
supported systems. That is what was introduced in Linux 4.20 and then back-ported to
the 4.19/4.14 LTS branches, which in turn hurt the performance a lot. So for now the
code is removed.

As covered yesterday, there is improved STIBP code on the way for Linux 4.20 that by
default just apply STIBP to SECCOMP threads and processes requesting it via prctl() but
otherwise is off by default (that behavior can also be changed via kernel parameters).

Spectre-BTB Mitigations (Software) wwuw.tugraz.at

Retpoline (compiler extension)

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre-BTB Mitigations (Software)

www.tugraz.at

Retpoline (compiler extension)

push <call_target>

call 1f
2: ;
lfence 5
jmp 2b ;
1:

lea 8(%rsp), %rsp ;

ret

B

speculation continues here
speculation barrier

endless loop

restore stack pointer
the call to <call_target>

— Always predict to enter an endless loop

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre-BTB Mitigations (Software)

www.tugraz.at

Retpoline (compiler extension)

push <call_target>

call 1f
2: ;
lfence 5
jmp 2b ;
1:

lea 8(%rsp), %rsp ;

ret

B

speculation continues here
speculation barrier

endless loop

restore stack pointer
the call to <call_target>

— Always predict to enter an endless loop

e What if someone decides to fix the wrong prediction?

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Mitigations www.tugraz.at

e Current mitigations are either incomplete or cost performance

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Mitigations www.tugraz.at

e Current mitigations are either incomplete or cost performance

— More research required

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Mitigations www.tugraz.at

e Current mitigations are either incomplete or cost performance
— More research required

e Both on attacks and defenses

Michael Schwarz (@misc0110) — Graz University of Technology

Spectre Mitigations

www.tugraz.at

e Current mitigations are either incomplete or cost performance
— More research required
e Both on attacks and defenses

— Efficient defenses only possible when attacks are known

Michael Schwarz (@misc0110) — Graz University of Technology

ansient Execution Attacks

in-place (IP) vs., out-of-place (OP) PHT-CA-IP
mistraining Cross-address-space PHT-CA-OP
strategy

Same-address-space

Spectre-PHT
Spectre-BTB

microarchitec-
tural buffer

A-l|

PHT-SA-OP
BTB-CA-IP

BTB-CA-OP

Spectre-RSB

BTB-SA-IP)

Spectre-type

Spectre-STL)

(Cross-address-space
(Sa me-address-space

BTB-SAOP)

RSB-CA-OP

Cross-address-space RSB.SAIP
(Sarne—address—space RSB-SA-OP D

Meltdown-NM) Meltdown-US

Meltdown-US-L1
Meltdown-US-L3

Meltdown-P

Meltdown-RW

Meltdown-PK)

™\
|

Meltdown-PF

Meltdown-UD

\
|

Meltdown-SS

Meltdown-BR Meltdown-MPX)
Meltdown-GP Meltdown-BND)

Michael Schwarz (@misc0110) — Graz University of Technology

Meltdown-US-LFB

Transient Execution Attacks www.tugraz.at

o . o e Transient Execution Attacks are...

Michael Schwarz (@misc0110) — Graz University of Technology

Transient Execution Attacks www.tugraz.at

o . o e Transient Execution Attacks are...

e o e ...a novel class of attacks

Michael Schwarz (@misc0110) — Graz University of Technology

Transient Execution Attacks www.tugraz.at

o . o e Transient Execution Attacks are...

e o e ...a novel class of attacks
e ...extremely powerful

Michael Schwarz (@misc0110) — Graz University of Technology

Transient Execution Attacks www.tugraz.at

o . o e Transient Execution Attacks are...

e = e ...a novel class of attacks
e ...extremely powerful
e ..only at the beginning

Michael Schwarz (@misc0110) — Graz University of Technology

Transient Execution Attacks www.tugraz.at

o . o e Transient Execution Attacks are...

e = e ...a novel class of attacks
e ...extremely powerful
e ..only at the beginning

e Many optimizations introduce side channels — now exploitable

Michael Schwarz (@misc0110) — Graz University of Technology

Exploiting the Microarchitecture:

Transient Execution Attacks

Michael Schwarz (@misc0110)
April 11, 2019

Graz University of Technology

