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Microarchitectural Components S A P

e Modern CPUs contain multiple microarchitectural elements
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Caches and buffers Predictors

e Transparent for the programmer

e Timing optimizations — side-channel leakage
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DRAM access,

slow

printf ("%d", i) \
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char array[256 * 40961; // 256 pages of memory

x*(volatile charx*) 0; // raise_exzception();
array [84 * 4096] = O0;
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Building the Code
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e Flush+Reload over all pages of the array

500
400
300
0 50 100 150 200 250
Page

e “Unreachable” code line was actually executed
e Exception was only thrown afterwards
e Qut-of-order instructions leave microarchitectural traces

e Give such instructions a name: transient instructions
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e Add another layer of indirection to test
char array[256 * 4096]; // 256 pages of memory
// read kernel address (raises exception)

char data = *(char*) Oxffffffff81a000e0;
array [data * 4096] = O0;

e Then check whether any part of array is cached
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e Flush+Reload over all pages of the array

Access time

0 50 100 150 200 250
Page

e Index of cache hit reveals data

e Permission check is in some cases too late
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e CPU uses data in out-of-order execution before permission check
e Meltdown can read any kernel address
e Physical memory is usually mapped in kernel

— Read arbitrary memory
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Uncached and uncachable memory U TR

?\ e Assumed Meltdown can one only read data from the L1
! e leakage from L3 or memory is possible, just slower

' e Even leakage of UC (uncachable) memory regions...
e ..if other hyperthread (legally) accesses the data
— ...leaks from line fill buffer

Michael Schwarz (@misc0110) — Graz University of Technology
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e Kernel addresses in user space are a
problem

e Why don’'t we take the kernel addresses...
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...and remove them www.tugraz.at

e ...and remove them if not needed?

e User accessible check in hardware is not
reliable
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e Linux: Kernel Page-table Isolation (KPTI)
e Apple: Released updates
e Windows: Kernel Virtual Address (KVA) Shadow
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‘ w e Meltdown fully mitigated in software

Problem seemed to be solved

No attack surface left

That is what everyone thought
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e Meltdown is a whole category of vulnerabilities
e Not only the user-accessible check

e Looking closer at the check...
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www.tugraz.at

e CPU uses virtual address spaces to isolate processes

e Physical memory is organized in page frames

e Virtual memory pages are mapped to page frames using
page tables
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PML4
CR3 PML4E 0
PML4E 1
: PDPT
N PML4I
7 #: PDPTE 0
PML4E 511 PDPTE 1
N ZPDPTI Page Directory
. PDE 0
PDPTE 511 PDZE !
" PDE ZPDI Page Table
: PTE 0O
PDE 511 PT:E !
- 4 KiB Page
AN
% PTE #PTI Byt 0
- Byte 1
PTE 511 -
Offset
[ PML4I (9 b) [PDPTI (9 b) [ PDI (9 b) [PTI (9 b) [ Offset (12b) | Byte 4095

48-bit virtual address
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P [RWIUS|WT|{UC| R |D|S |G Ignored

|\| Hm mhber
A D€

Q.
QL
¢))

Ignored X

e User/Supervisor bit defines in which privilege level the page can be accessed
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P IRWIUSIWT|UC| R |D|S |G Ignored

CT
D

Ei
L
4))

Ignored X

e Present bit is the next obvious bit
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Foreshadow-NG www.tugraz.at

e An even worse bug — Foreshadow-NG/L1TF

= Exploitable from VMs

Allows leaking data from the L1 cache
Same mechanism as Meltdown
Just a different bit in the PTE

Michael Schwarz (@misc0110) — Graz University of Technology
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Page Table
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: t Physical
PTE ZpT1 LPresent  JGuest Physica S| Physical
- to Host Physical
: Page
PTE 511
L1 , L1 lookup
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Foreshadow-NG Fix www.tugraz.at

e KAISER/KPTI/KVA does not help
e Only software workarounds

— Flush L1 on VM entry
— Disable HyperThreading

e Workarounds might not be complete

Michael Schwarz (@misc0110) — Graz University of Technology
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operation #n

retire

exception raise

(0]
data ~fMger o |

.
: data dependency
|
1
1
1
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possibly
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transient execution

operation #rY+2 i
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Meltdown-type

Meltdown-BR
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?
cause? Meltdown-US-L1
fault

Meltdown-US-L3

Meltdown-US-LFB)

\ Meltdown-P
Meltdown-type )} §&—__ = ,—————————
\ \ , Meltdown-RW )

Meltdown-PK

fault type \\. \|| - — — — — — — — —

Meltdown-BR
Meltdown-GP
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?
cause? Meltdown-NM

fault

Meltdown-US-L1
Meltdown-P Meltdown-US-L3

Meltdown-RW ) Meltdown-US-LFB)

Meltdown-PK

" Meltdown-XD )

Meltdown-type

fault type

Meltdown-BR Meltdown-MPX
Meltdown-GP Meltdown-BND
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e Meltdown is not a fully solved issue
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e Meltdown is not a fully solved issue

The tree is extensible

More Meltdown-type issues to come

I

Silicon fixes might not be complete

Michael Schwarz (@misc0110) — Graz University of Technology



Transient Execution Attacks www.tugraz.at

e Meltdown not the only transient execution attacks

Michael Schwarz (@misc0110) — Graz University of Technology



Transient Execution Attacks www.tugraz.at

e Meltdown not the only transient execution attacks

e Spectre is a second class of transient execution attacks

Michael Schwarz (@misc0110) — Graz University of Technology



Transient Execution Attacks www.tugraz.at

e Meltdown not the only transient execution attacks
e Spectre is a second class of transient execution attacks

e Instead of faults, exploit control (or data) flow predictions
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e CPU tries to predict the future (branch predictor), ...
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Speculative Execution www.tugraz.at

e CPU tries to predict the future (branch predictor), ...
e ...based on events learned in the past
e Speculative execution of instructions

e If the prediction was correct, ...

e ... very fast
e otherwise: Discard results

Michael Schwarz (@misc0110) — Graz University of Technology
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A e Many predictors in modern CPUs

e Branch taken/not taken (PHT)
¢ @ b e Call/Jump destination (BTB)
e Function return destination (RSB)
v e Load matches previous store (STL)

e Most are even shared among processes
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Spectre Fix

www.tugraz.at

e Spectre is not a bug
e |t is an useful optimization
— Cannot simply fix it (as with Meltdown)

e Workarounds for critical code parts

Michael Schwarz (@misc0110) — Graz University of Technology



Spectre Defense Categorization RICEE Ea 2t

Spectre defenses in 3 categories:

Q‘

1

C1 Mitigating or reducing C2 Mitigating or aborting C3 Ensuring secret data
the accuracy of covert speculation cannot be reached
channels
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e Many countermeasures only consider the cache to get data...
e _..but there are other possibilities, e.g.,

e Port contention (SMoTherSpectre)
e AVX (NetSpectre)

e Cache is just the easiest

Michael Schwarz (@misc0110) — Graz University of Technology



Linux 4.19.4 & 4.14.83 Released With STIBP Code
Dropped

Written by Michael Larabel in Linux Kernel on 24 November 2018 at 09:00 AM EST. 6 Comments

On Friday marked the release of the Linux 4.19.4 kernel as well as
4.14.83 and 4.9.139.

Greg Kroah-Hartman issued this latest round of stable point releases as
basic maintenance updates. While these point releases don't tend to be
too notable and generally go unmentioned on Phoronix, this round is
worth pointing out since 4.19.4 and 4.14.83 are the releases that end up reverting the
STIBP behavior that applied Single Thread Indirect Branch Predictors to all processes on
supported systems. That is what was introduced in Linux 4.20 and then back-ported to
the 4.19/4.14 LTS branches, which in turn hurt the performance a lot. So for now the
code is removed.

As covered yesterday, there is improved STIBP code on the way for Linux 4.20 that by
default just apply STIBP to SECCOMP threads and processes requesting it via prctl() but
otherwise is off by default (that behavior can also be changed via kernel parameters).
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Retpoline (compiler extension)

push <call_target>

call 1f
2: ;
lfence 5
jmp 2b ;
1:

lea 8(%rsp), %rsp ;

ret

B

speculation continues here
speculation barrier

endless loop

restore stack pointer
the call to <call_target>

— Always predict to enter an endless loop
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Retpoline (compiler extension)

push <call_target>

call 1f
2: ;
lfence 5
jmp 2b ;
1:

lea 8(%rsp), %rsp ;

ret

B

speculation continues here
speculation barrier

endless loop

restore stack pointer
the call to <call_target>

— Always predict to enter an endless loop

e What if someone decides to fix the wrong prediction?

Michael Schwarz (@misc0110) — Graz University of Technology
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e Current mitigations are either incomplete or cost performance
— More research required
e Both on attacks and defenses

— Efficient defenses only possible when attacks are known

Michael Schwarz (@misc0110) — Graz University of Technology
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o . o e Transient Execution Attacks are...

e = e ...a novel class of attacks
e ...extremely powerful
e ..only at the beginning

e Many optimizations introduce side channels — now exploitable

Michael Schwarz (@misc0110) — Graz University of Technology
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