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Side-Channel Attacks

• Bug-free software does not mean safe execution

• Information leaks due to underlying hardware

• Exploit leakage through side-effects

Power consumption Execution time CPU caches
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Architecture and Microarchitecture

• Instruction Set Architecture (ISA) is an abstract model of a

computer (x86, ARMv8, SPARC, . . . )

• Interface between hardware and software

• Microarchitecture is an ISA implementation
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Microarchitectural Components

• Modern CPUs contain multiple microarchitectural elements

Caches and buffers Predictors

• Transparent for the programmer

• Timing optimizations → side-channel leakage
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CPU Cache
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Caching speeds up Memory Accesses
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Flush+Reload

Attacker Victim
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Flush+Reload on Keystrokes
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• Key presses trigger code execution in shared library (e.g., libgdk)

• Flush+Reload does not reveal actual key, only time difference between keys

• → Recover text with machine learning
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Measured Trace

Raw Prime+Probe trace...
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Measured Trace

...processed with a simple moving average...
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Measured Trace

...allows to clearly see the bits of the exponent
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Meltdown

• CPU vulnerability → out-of-order execution optimization

• Deferred privilege check → access kernel memory

• Encode transiently leaked value via cache

• Recover from cache using cache attack
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Foreshadow

• Similar to Meltdown

• Forwarding non-present addresses to the L1 cache

• Encode data leaked from L1 into the cache

• Recover from cache using cache attack
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ZombieLoad

• Trigger complex memory-load situations

• CPU transiently forwards data from wrong locations

• Encode these values via cache

• Recover from cache using cache attack
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Meltdown Outlook

• Meltdown is not a fully solved issue

• The tree is extensible

• More Meltdown-type issues to come
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Spectre

• Mistrain CPUs internal predictors

• CPU speculatively works with unintended values

• Encode these values via cache

• Recover from cache using cache attack
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Countermeasures for µ-arch. Attacks

• Deeply rooted in hardware → no real fixes

• More isolation → make exploitation harder

• Attacks on design difficult to fix

• Caches → we want timing differences

• Prediction → we don’t want stalls

• So far: fixing symptoms
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...in a parallel universe

Original image from commitstrip.com

24 Michael Schwarz (@misc0110), Erik Kraft



Operating System and CPU Architecture
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Operating System and CPU Microarchitecture
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Page Cache

• Managed by operating system

• Buffers file pages in RAM for faster accesses

• Ideally all file pages in page cache

• State of pages is tracked:

• No write access → clean → no write back

• Write access → dirty → write back

• Implemented by all major operating systems
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Observe Page Cache State

1010 1

First idea:

• Measure page access time

• Buffers pages in page cache → destructive

• Eviction always necessary → lower resolution

Better:

• Use APIs provided by the operating system

• mincore

• QueryWorkingSetEx

• Non-destructive → higher resolution
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Observe Page Cache State

1010 1

mincore (2.04µs)

• Takes virtual memory range, returns vector

• Indicates presence of queried pages in page cache

QueryWorkingSetEx (465.91 ns)

• Takes process handle + virtual memory address, returns struct

• Exposes attributes of queried page ...

• ... presence in working set

• ... number of working sets containing page (ShareCount)
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Reset Page Cache State

• Necessary for detecting multiple accesses

• Bottleneck of side channel

• Ideal strategy depends on page cache implementation

• Differences in page replacement

• Global CLOCK-Pro like algorithm

• Per-process working sets with Aging algorithm
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Eviction Linux

• Access pages until target page is replaced

• Basic eviction set: Large memory-mapped file

• Optimisation 1: Add pages already in page cache

• Target page more likely selected for eviction

• Higher responsiveness of system

• Optimisation 2: Fill memory with anonymous dirty pages

• Very effective if swapping disabled

• Decreases average eviction set size

• Significant influence on eviction time and stability

• Average run time down to 149 ms depending on optimisations
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Eviction Windows

• Page cache eviction ↔ target page drops out of all working sets

• Previous approach slow...

• Different approach: Use working-set eviction + observation

• Limited maximum ws size

• Apply memory pressure → self-eviction (<2 s)

• Eviction from own ws → VirtualUnlock (17.69µs)

• Eviction other ws → SetProcessWorkingSetSize (4.48 ms)

• for processes with same integrity level as attacker

• Observe via QueryWorkingSetEx

• on own process (ShareCount)

• on other process (same integrity level as attacker)
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Covert Channel

• Shared file as information carrier

• File page presence in page cache ↔ message bits

• Additional file pages for transmission control

Different implementation approaches:

OS Eviction Observation Speed

Linux

like side channel mincore 20.20 kB/s

madvise

posix fadvise
mincore 81.16 kB/s

Windows
process WS

VirtualUnlock

QueryWorkingSetEx

(ShareCount)
100.11 kB/s

• Low bit error rate for all approaches (down to 0.000 03 %)
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PHP RNG Attack

• Targets seeding of PHP PRNG

• microtime used as seed by some frameworks

• Returns UNIX timestamp in microseconds

• Later PRNG used for cryptographic operations :(

• Side channel used to detect microtime call

• Seed recoverable

• zif microtime on page 781 of php-fpm executable

• PHP 7.3.5, depends on build environment/configuration

• Average detection accuracy: ±1 ms
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Live Demo
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UI Redressing Attack

• Detect opening of interesting window

• e.g. authentication windows

• Overlay original window with fake

• Side channel used as a trigger

• Provides low latency → hardly noticeable

• Tested with root authentication window on Ubuntu 16.04

• Page 6 of binary polkit-gnome-authentication-agent-1
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UI Redressing Attack
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Impact

• Identified as CVE-2019-5489

• CVSS v3.0: 5.5 MEDIUM

• Findings addressed by Linux and Windows

• Countermeasures developed
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Countermeasures

• Increase observation effort

• Higher privileges for leaking APIs

• Access times still can be used ...

• ... but they destroy state → additional evictions

• Eviction is the bottleneck → lower resolution

• Increase eviction effort

• Use a local page replacement approach

• e.g. per-process working sets

• Page evicted only if in no working set

• No direct influence on replacement choices between processes

• Harder to evict pages → lower frequency
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Countermeasures - Windows

• Higher privilege for QueryWorkingSetEx on other processes

• No direct querying of working set state

• ShareCount removed

• No indirect querying of working set state

• Non-destructive probing no longer possible
Working set probing no longer possible → weaker attack

• If QueryWorkingSetEx only possible leakage source

• Page-cache eviction already harder than on Linux
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Countermeasures - Linux

• mincore only reveals information for writeable file pages

• Read-only files excluded → shared libraries, executables

• Newest patch, not in mainline yet

• Non-destructive probing no longer possible?

• No, preadv2 with RWF NOWAIT leaks same information

• Countermeasure currently under development
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Countermeasures are Difficult

• We want the performance optimizations

• Many side-channel attacks exploit intended behavior

• Often a trade-off between security and performance

• Every optimization is potentially a side channel
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The Future

• We won’t get rid of side channels

• More optimizations → more side channels

• More attacks on the “OS microarchitecture”
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Take Aways

• Abstraction leads to side channels

• Software-cache attacks are similar to hardware-cache attacks

• Finding countermeasures is difficult
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