
Are Microarchitectural Attacks still 
possible on Flawless Hardware?

Erik Kraft
Michael Schwarz



Who am I?

Michael Schwarz

PhD candidate @ Graz University of Technology

7 @misc0110

R michael.schwarz@iaik.tugraz.at

1 Michael Schwarz (@misc0110), Erik Kraft

https://twitter.com/misc0110
mailto:michael.schwarz@iaik.tugraz.at


Who am I?

Erik Kraft

Master student @ Graz University of Technology

7 @ekraft95

R erik.kraft@student.tugraz.at

2 Michael Schwarz (@misc0110), Erik Kraft

https://twitter.com/ekraft95
mailto:erik.kraft@student.tugraz.at


And the Team

• Daniel Gruss (Graz University of Technology)

• Trishita Tiwari (Boston University)

• Ari Trachtenberg (Boston University)

• Jason Hennessey (NetApp)

• Alex Ionescu (CrowdStrike)

• Anders Fogh (Intel)

3 Michael Schwarz (@misc0110), Erik Kraft



Side-Channel Attacks

• Bug-free software does not mean safe execution

• Information leaks due to underlying hardware

• Exploit leakage through side-effects

Power consumption Execution time CPU caches

4 Michael Schwarz (@misc0110), Erik Kraft



Side-Channel Attacks

• Bug-free software does not mean safe execution

• Information leaks due to underlying hardware

• Exploit leakage through side-effects

Power consumption Execution time CPU caches

4 Michael Schwarz (@misc0110), Erik Kraft



Side-Channel Attacks

• Bug-free software does not mean safe execution

• Information leaks due to underlying hardware

• Exploit leakage through side-effects

Power consumption Execution time CPU caches

4 Michael Schwarz (@misc0110), Erik Kraft



Side-Channel Attacks

• Bug-free software does not mean safe execution

• Information leaks due to underlying hardware

• Exploit leakage through side-effects

Power consumption Execution time CPU caches

4 Michael Schwarz (@misc0110), Erik Kraft



Architecture and Microarchitecture

• Instruction Set Architecture (ISA) is an abstract model of a

computer (x86, ARMv8, SPARC, . . . )

• Interface between hardware and software

• Microarchitecture is an ISA implementation

5 Michael Schwarz (@misc0110), Erik Kraft



Architecture and Microarchitecture

• Instruction Set Architecture (ISA) is an abstract model of a

computer (x86, ARMv8, SPARC, . . . )

• Interface between hardware and software

• Microarchitecture is an ISA implementation

5 Michael Schwarz (@misc0110), Erik Kraft



Architecture and Microarchitecture

• Instruction Set Architecture (ISA) is an abstract model of a

computer (x86, ARMv8, SPARC, . . . )

• Interface between hardware and software

• Microarchitecture is an ISA implementation

5 Michael Schwarz (@misc0110), Erik Kraft



Architecture and Microarchitecture

• Instruction Set Architecture (ISA) is an abstract model of a

computer (x86, ARMv8, SPARC, . . . )

• Interface between hardware and software

• Microarchitecture is an ISA implementation

5 Michael Schwarz (@misc0110), Erik Kraft



Microarchitectural Components

• Modern CPUs contain multiple microarchitectural elements

Caches and buffers Predictors

• Transparent for the programmer

• Timing optimizations → side-channel leakage

6 Michael Schwarz (@misc0110), Erik Kraft



Microarchitectural Components

• Modern CPUs contain multiple microarchitectural elements

Caches and buffers Predictors

• Transparent for the programmer

• Timing optimizations → side-channel leakage

6 Michael Schwarz (@misc0110), Erik Kraft



Microarchitectural Components

• Modern CPUs contain multiple microarchitectural elements

Caches and buffers Predictors

• Transparent for the programmer

• Timing optimizations → side-channel leakage

6 Michael Schwarz (@misc0110), Erik Kraft



Microarchitectural Components

• Modern CPUs contain multiple microarchitectural elements

Caches and buffers Predictors

• Transparent for the programmer

• Timing optimizations → side-channel leakage

6 Michael Schwarz (@misc0110), Erik Kraft



CPU Cache

printf("%d", i);

printf("%d", i);

7 Michael Schwarz (@misc0110), Erik Kraft



CPU Cache

printf("%d", i);

printf("%d", i);

Cache miss

7 Michael Schwarz (@misc0110), Erik Kraft



CPU Cache

printf("%d", i);

printf("%d", i);

Cache miss
Request

7 Michael Schwarz (@misc0110), Erik Kraft



CPU Cache

printf("%d", i);

printf("%d", i);

Cache miss
Request

Response

7 Michael Schwarz (@misc0110), Erik Kraft



CPU Cache

i

printf("%d", i);

printf("%d", i);

Cache miss
Request

Response

7 Michael Schwarz (@misc0110), Erik Kraft



CPU Cache

i

printf("%d", i);

printf("%d", i);

Cache miss

Cache hit

Request

Response

7 Michael Schwarz (@misc0110), Erik Kraft



CPU Cache

i

printf("%d", i);

printf("%d", i);

Cache miss

Cache hit

Request

Response

DRAM access,

slow

7 Michael Schwarz (@misc0110), Erik Kraft



CPU Cache

i

printf("%d", i);

printf("%d", i);

Cache miss

Cache hit

Request

Response

DRAM access,

slow

No DRAM access,

much faster

7 Michael Schwarz (@misc0110), Erik Kraft



Caching speeds up Memory Accesses

80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
100

102

104

106

Access time [CPU cycles]

N
u

m
b

er
o

f
ac

ce
ss

es

Cache Hits

8 Michael Schwarz (@misc0110), Erik Kraft



Caching speeds up Memory Accesses

80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
100

102

104

106

Access time [CPU cycles]

N
u

m
b

er
o

f
ac

ce
ss

es

Cache Hits Cache Misses

8 Michael Schwarz (@misc0110), Erik Kraft



Flush+Reload

Attacker Victim

Shared Memory

flush

access
access

9 Michael Schwarz (@misc0110), Erik Kraft



Flush+Reload

Attacker Victim

Shared Memory

flush

access
accessShared Memory

ca
ch

ed
cach

ed

9 Michael Schwarz (@misc0110), Erik Kraft



Flush+Reload

Attacker Victim

Shared Memory

flushflush

access
accessShared Memory

9 Michael Schwarz (@misc0110), Erik Kraft



Flush+Reload

Attacker Victim

Shared Memory

flushflush

access
access

9 Michael Schwarz (@misc0110), Erik Kraft



Flush+Reload

Attacker Victim

Shared Memory

flush

access
accessaccess

9 Michael Schwarz (@misc0110), Erik Kraft



Flush+Reload

Attacker Victim

Shared Memory

flush

access
accessaccessShared Memory

9 Michael Schwarz (@misc0110), Erik Kraft



Flush+Reload

Attacker Victim

Shared Memory

flush

accessaccess
accessShared Memory

9 Michael Schwarz (@misc0110), Erik Kraft



Flush+Reload

Attacker Victim

Shared Memory

flush

accessaccess
accessShared Memory

vs

Victim accessed

(fast)

Victim did not access

(slow)

9 Michael Schwarz (@misc0110), Erik Kraft



Prime+Probe

Attacker Victim

prime

probe
access

10 Michael Schwarz (@misc0110), Erik Kraft



Prime+Probe

Attacker Victim

primeprime

probe
access

Attacker Data

10 Michael Schwarz (@misc0110), Erik Kraft



Prime+Probe

Attacker Victim

primeprime

probe
access

Attacker Data

Attacker Data

10 Michael Schwarz (@misc0110), Erik Kraft



Prime+Probe

Attacker Victim

primeprime

probe
access

Attacker Data

Attacker Data

Attacker Data

10 Michael Schwarz (@misc0110), Erik Kraft



Prime+Probe

Attacker Victim

primeprime

probe
access

Attacker Data

Attacker Data

Attacker Data

Attacker Data

10 Michael Schwarz (@misc0110), Erik Kraft



Prime+Probe

Attacker Victim

prime

probe
access

Attacker Data

Attacker Data

Attacker Data

Attacker Data

10 Michael Schwarz (@misc0110), Erik Kraft



Prime+Probe

Attacker Victim

prime

probe
accessaccess

Attacker Data

Victim Data

Attacker Data

Attacker Data

10 Michael Schwarz (@misc0110), Erik Kraft



Prime+Probe

Attacker Victim

prime

probe
access

Attacker Data

Victim Data

Attacker Data

Attacker Data

10 Michael Schwarz (@misc0110), Erik Kraft



Prime+Probe

Attacker Victim

prime

probeprobe
access

Attacker Data

Victim Data

Attacker Data

Attacker Data

10 Michael Schwarz (@misc0110), Erik Kraft



Prime+Probe

Attacker Victim

prime

probeprobe
access

Attacker Data

Victim Data

Attacker Data

Attacker Data

10 Michael Schwarz (@misc0110), Erik Kraft



Prime+Probe

Attacker Victim

prime

probeprobe
access

Attacker Data

Victim Data

Attacker Data

Attacker Data

10 Michael Schwarz (@misc0110), Erik Kraft



Prime+Probe

Attacker Victim

prime

probeprobe
access

Attacker Data

Victim Data

Attacker Data

Attacker Data

10 Michael Schwarz (@misc0110), Erik Kraft



Prime+Probe

Attacker Victim

prime

probeprobe
access

Attacker Data

Victim Data

Attacker Data

Attacker Data

10 Michael Schwarz (@misc0110), Erik Kraft



Prime+Probe

Attacker Victim

prime

probeprobe
access

Attacker Data

Victim Data

Attacker Data

Attacker Data

vs

Victim did not access

(fast)

Victim accessed

(slow)

10 Michael Schwarz (@misc0110), Erik Kraft



Flush+Reload on Keystrokes

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

·109

0

200

400

600

Runtime [cycles]

L
at

en
cy

[c
yc

le
s]

• Key presses trigger code execution in shared library (e.g., libgdk)

• Flush+Reload does not reveal actual key, only time difference between keys

• → Recover text with machine learning

11 Michael Schwarz (@misc0110), Erik Kraft



Flush+Reload on Keystrokes

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

·109

0

200

400

600

Runtime [cycles]

L
at

en
cy

[c
yc

le
s]

• Key presses trigger code execution in shared library (e.g., libgdk)

• Flush+Reload does not reveal actual key, only time difference between keys

• → Recover text with machine learning

11 Michael Schwarz (@misc0110), Erik Kraft



Flush+Reload on Keystrokes

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

·109

0

200

400

600

Runtime [cycles]

L
at

en
cy

[c
yc

le
s]

• Key presses trigger code execution in shared library (e.g., libgdk)

• Flush+Reload does not reveal actual key, only time difference between keys

• → Recover text with machine learning

11 Michael Schwarz (@misc0110), Erik Kraft



RSA

M = C
d
mod n

12 Michael Schwarz (@misc0110), Erik Kraft



RSA

M = C
d
mod n

1 1 0 0 1 1 0 . . .

Result = C

12 Michael Schwarz (@misc0110), Erik Kraft



RSA

M = C
d
mod n

1 1 0 0 1 1 0 . . .

Result = Result × Result × C

square multiply

12 Michael Schwarz (@misc0110), Erik Kraft



RSA

M = C
d
mod n

1 1 0 0 1 1 0 . . .

Result = Result × Result

square

12 Michael Schwarz (@misc0110), Erik Kraft



RSA

M = C
d
mod n

1 1 0 0 1 1 0 . . .

Result = Result × Result

square

12 Michael Schwarz (@misc0110), Erik Kraft



RSA

M = C
d
mod n

1 1 0 0 1 1 0 . . .

Result = Result × Result × C

square multiply

12 Michael Schwarz (@misc0110), Erik Kraft



RSA

M = C
d
mod n

1 1 0 0 1 1 0 . . .

Result = Result × Result × C

square multiply

12 Michael Schwarz (@misc0110), Erik Kraft



RSA

M = C
d
mod n

1 1 0 0 1 1 0 . . .

Result = Result × Result

square

12 Michael Schwarz (@misc0110), Erik Kraft



Measured Trace

Raw Prime+Probe trace...

13 Michael Schwarz (@misc0110), Erik Kraft



Measured Trace

...processed with a simple moving average...

14 Michael Schwarz (@misc0110), Erik Kraft



Measured Trace

...allows to clearly see the bits of the exponent

1 1 1 00 1 1 1 01 1 1 00000001 000 1 0 1 00 1 1 00 1 1 01 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

15 Michael Schwarz (@misc0110), Erik Kraft



Meltdown

• CPU vulnerability → out-of-order execution optimization

• Deferred privilege check → access kernel memory

• Encode transiently leaked value via cache

• Recover from cache using cache attack

16 Michael Schwarz (@misc0110), Erik Kraft



Meltdown

• CPU vulnerability → out-of-order execution optimization

• Deferred privilege check → access kernel memory

• Encode transiently leaked value via cache

• Recover from cache using cache attack

16 Michael Schwarz (@misc0110), Erik Kraft



Meltdown

• CPU vulnerability → out-of-order execution optimization

• Deferred privilege check → access kernel memory

• Encode transiently leaked value via cache

• Recover from cache using cache attack

16 Michael Schwarz (@misc0110), Erik Kraft



Meltdown

• CPU vulnerability → out-of-order execution optimization

• Deferred privilege check → access kernel memory

• Encode transiently leaked value via cache

• Recover from cache using cache attack

16 Michael Schwarz (@misc0110), Erik Kraft



Foreshadow

• Similar to Meltdown

• Forwarding non-present addresses to the L1 cache

• Encode data leaked from L1 into the cache

• Recover from cache using cache attack

17 Michael Schwarz (@misc0110), Erik Kraft



Foreshadow

• Similar to Meltdown

• Forwarding non-present addresses to the L1 cache

• Encode data leaked from L1 into the cache

• Recover from cache using cache attack

17 Michael Schwarz (@misc0110), Erik Kraft



Foreshadow

• Similar to Meltdown

• Forwarding non-present addresses to the L1 cache

• Encode data leaked from L1 into the cache

• Recover from cache using cache attack

17 Michael Schwarz (@misc0110), Erik Kraft



Foreshadow

• Similar to Meltdown

• Forwarding non-present addresses to the L1 cache

• Encode data leaked from L1 into the cache

• Recover from cache using cache attack

17 Michael Schwarz (@misc0110), Erik Kraft



ZombieLoad

• Trigger complex memory-load situations

• CPU transiently forwards data from wrong locations

• Encode these values via cache

• Recover from cache using cache attack

18 Michael Schwarz (@misc0110), Erik Kraft



ZombieLoad

• Trigger complex memory-load situations

• CPU transiently forwards data from wrong locations

• Encode these values via cache

• Recover from cache using cache attack

18 Michael Schwarz (@misc0110), Erik Kraft



ZombieLoad

• Trigger complex memory-load situations

• CPU transiently forwards data from wrong locations

• Encode these values via cache

• Recover from cache using cache attack

18 Michael Schwarz (@misc0110), Erik Kraft



ZombieLoad

• Trigger complex memory-load situations

• CPU transiently forwards data from wrong locations

• Encode these values via cache

• Recover from cache using cache attack

18 Michael Schwarz (@misc0110), Erik Kraft



Meltdown Tree

Transient

cause?

19 Michael Schwarz (@misc0110), Erik Kraft



Meltdown Tree

Transient

cause?

Meltdown-type

fault

19 Michael Schwarz (@misc0110), Erik Kraft



Meltdown Tree

Transient

cause?

Meltdown-type

fault type

Meltdown-NM

Meltdown-AC

Meltdown-DE

Meltdown-PF

Meltdown-UD

Meltdown-SS

Meltdown-BR

Meltdown-GP

Meltdown-MCA

fault

19 Michael Schwarz (@misc0110), Erik Kraft



Meltdown Tree

Transient

cause?

Meltdown-type

fault type

Meltdown-NM

Meltdown-AC

Meltdown-DE

Meltdown-PF

Meltdown-UD

Meltdown-SS

Meltdown-BR

Meltdown-GP

Meltdown-MCA

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK

Meltdown-XD

Meltdown-SM

fault

19 Michael Schwarz (@misc0110), Erik Kraft



Meltdown Tree

Transient

cause?

Meltdown-type

fault type

Meltdown-NM

Meltdown-AC

Meltdown-DE

Meltdown-PF

Meltdown-UD

Meltdown-SS

Meltdown-BR

Meltdown-GP

Meltdown-MCA

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK

Meltdown-XD

Meltdown-SM

Meltdown-MPX

Meltdown-BND

fault

19 Michael Schwarz (@misc0110), Erik Kraft



Meltdown Outlook

• Meltdown is not a fully solved issue

• The tree is extensible

• More Meltdown-type issues to come

20 Michael Schwarz (@misc0110), Erik Kraft



Meltdown Outlook

• Meltdown is not a fully solved issue

• The tree is extensible

• More Meltdown-type issues to come

20 Michael Schwarz (@misc0110), Erik Kraft



Meltdown Outlook

• Meltdown is not a fully solved issue

• The tree is extensible

• More Meltdown-type issues to come

20 Michael Schwarz (@misc0110), Erik Kraft



Spectre

• Mistrain CPUs internal predictors

• CPU speculatively works with unintended values

• Encode these values via cache

• Recover from cache using cache attack

21 Michael Schwarz (@misc0110), Erik Kraft



Spectre

• Mistrain CPUs internal predictors

• CPU speculatively works with unintended values

• Encode these values via cache

• Recover from cache using cache attack

21 Michael Schwarz (@misc0110), Erik Kraft



Spectre

• Mistrain CPUs internal predictors

• CPU speculatively works with unintended values

• Encode these values via cache

• Recover from cache using cache attack

21 Michael Schwarz (@misc0110), Erik Kraft



Spectre

• Mistrain CPUs internal predictors

• CPU speculatively works with unintended values

• Encode these values via cache

• Recover from cache using cache attack

21 Michael Schwarz (@misc0110), Erik Kraft



Spectre Variants

Transient

cause?

22 Michael Schwarz (@misc0110), Erik Kraft



Spectre Variants

Transient

cause?

Spectre-type

prediction

22 Michael Schwarz (@misc0110), Erik Kraft



Spectre Variants

Transient

cause?

Spectre-type

microarchitec-

tural buffer
Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

prediction

22 Michael Schwarz (@misc0110), Erik Kraft



Spectre Variants

Transient

cause?

Spectre-type

microarchitec-

tural buffer
Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

mistraining

strategy Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

prediction

22 Michael Schwarz (@misc0110), Erik Kraft



Spectre Variants

Transient

cause?

Spectre-type

microarchitec-

tural buffer
Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

mistraining

strategy Cross-address-space

Same-address-space

PHT-CA-IP

PHT-CA-OP

PHT-SA-IP

PHT-SA-OP

in-place (IP) vs., out-of-place (OP)

Cross-address-space

Same-address-space

BTB-CA-IP

BTB-CA-OP

BTB-SA-IP

BTB-SA-OP

Cross-address-space

Same-address-space

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

prediction

22 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures for µ-arch. Attacks

• Deeply rooted in hardware → no real fixes

• More isolation → make exploitation harder

• Attacks on design difficult to fix

• Caches → we want timing differences

• Prediction → we don’t want stalls

• So far: fixing symptoms

23 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures for µ-arch. Attacks

• Deeply rooted in hardware → no real fixes

• More isolation → make exploitation harder

• Attacks on design difficult to fix

• Caches → we want timing differences

• Prediction → we don’t want stalls

• So far: fixing symptoms

23 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures for µ-arch. Attacks

• Deeply rooted in hardware → no real fixes

• More isolation → make exploitation harder

• Attacks on design difficult to fix

• Caches → we want timing differences

• Prediction → we don’t want stalls

• So far: fixing symptoms

23 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures for µ-arch. Attacks

• Deeply rooted in hardware → no real fixes

• More isolation → make exploitation harder

• Attacks on design difficult to fix

• Caches → we want timing differences

• Prediction → we don’t want stalls

• So far: fixing symptoms

23 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures for µ-arch. Attacks

• Deeply rooted in hardware → no real fixes

• More isolation → make exploitation harder

• Attacks on design difficult to fix

• Caches → we want timing differences

• Prediction → we don’t want stalls

• So far: fixing symptoms

23 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures for µ-arch. Attacks

• Deeply rooted in hardware → no real fixes

• More isolation → make exploitation harder

• Attacks on design difficult to fix

• Caches → we want timing differences

• Prediction → we don’t want stalls

• So far: fixing symptoms

23 Michael Schwarz (@misc0110), Erik Kraft



...in a parallel universe

Original image from commitstrip.com

24 Michael Schwarz (@misc0110), Erik Kraft



Operating System and CPU Architecture

OS CPU

High Level
Application Software

Interface
Syscall ISA

Low Level
Kernel Hardware

25 Michael Schwarz (@misc0110), Erik Kraft



Operating System and CPU Architecture

OS CPU

High Level
Application Software

Interface
Syscall ISA

Low Level
Kernel Hardware

25 Michael Schwarz (@misc0110), Erik Kraft



Operating System and CPU Architecture

OS CPU

High Level
Application Software

Interface
Syscall ISA

Low Level
Kernel Hardware

25 Michael Schwarz (@misc0110), Erik Kraft



Operating System and CPU Architecture

OS CPU

High Level
Application Software

Interface
Syscall ISA

Low Level
Kernel Hardware

25 Michael Schwarz (@misc0110), Erik Kraft



Operating System and CPU Microarchitecture

OS CPU

µ-arch. Interface
Non-standard Syscall ISA Extension

µ-Architecture
Software Caches Hardware Caches

Software Prefetcher Hardware Prefetcher

26 Michael Schwarz (@misc0110), Erik Kraft



Operating System and CPU Microarchitecture

OS CPU

µ-arch. Interface
Non-standard Syscall ISA Extension

µ-Architecture
Software Caches Hardware Caches

Software Prefetcher Hardware Prefetcher

26 Michael Schwarz (@misc0110), Erik Kraft



Operating System and CPU Microarchitecture

OS CPU

µ-arch. Interface
Non-standard Syscall ISA Extension

µ-Architecture
Software Caches Hardware Caches

Software Prefetcher Hardware Prefetcher

26 Michael Schwarz (@misc0110), Erik Kraft



Operating System and CPU Microarchitecture

OS CPU

µ-arch. Interface
Non-standard Syscall ISA Extension

µ-Architecture
Software Caches Hardware Caches

Software Prefetcher Hardware Prefetcher

26 Michael Schwarz (@misc0110), Erik Kraft



Operating System and CPU Microarchitecture

OS CPU

µ-arch. Interface
Non-standard Syscall ISA Extension

µ-Architecture
Software Caches Hardware Caches

Software Prefetcher Hardware Prefetcher

26 Michael Schwarz (@misc0110), Erik Kraft



Page Cache

• Managed by operating system

• Buffers file pages in RAM for faster accesses

• Ideally all file pages in page cache

• State of pages is tracked:

• No write access → clean → no write back

• Write access → dirty → write back

• Implemented by all major operating systems

27 Michael Schwarz (@misc0110), Erik Kraft



Page Cache

• Managed by operating system

• Buffers file pages in RAM for faster accesses

• Ideally all file pages in page cache

• State of pages is tracked:

• No write access → clean → no write back

• Write access → dirty → write back

• Implemented by all major operating systems

27 Michael Schwarz (@misc0110), Erik Kraft



Page Cache

• Managed by operating system

• Buffers file pages in RAM for faster accesses

• Ideally all file pages in page cache

• State of pages is tracked:

• No write access → clean → no write back

• Write access → dirty → write back

• Implemented by all major operating systems

27 Michael Schwarz (@misc0110), Erik Kraft



Page Cache

• Managed by operating system

• Buffers file pages in RAM for faster accesses

• Ideally all file pages in page cache

• State of pages is tracked:

• No write access → clean → no write back

• Write access → dirty → write back

• Implemented by all major operating systems

27 Michael Schwarz (@misc0110), Erik Kraft



Page Cache

• Managed by operating system

• Buffers file pages in RAM for faster accesses

• Ideally all file pages in page cache

• State of pages is tracked:

• No write access → clean → no write back

• Write access → dirty → write back

• Implemented by all major operating systems

27 Michael Schwarz (@misc0110), Erik Kraft



Page Cache

• Managed by operating system

• Buffers file pages in RAM for faster accesses

• Ideally all file pages in page cache

• State of pages is tracked:

• No write access → clean → no write back

• Write access → dirty → write back

• Implemented by all major operating systems

27 Michael Schwarz (@misc0110), Erik Kraft



Page Cache

• Managed by operating system

• Buffers file pages in RAM for faster accesses

• Ideally all file pages in page cache

• State of pages is tracked:

• No write access → clean → no write back

• Write access → dirty → write back

• Implemented by all major operating systems

27 Michael Schwarz (@misc0110), Erik Kraft



Page Cache Attacks

OS

Disk

Victim Attacker

Address space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address space

RAM

page cache

28 Michael Schwarz (@misc0110), Erik Kraft



Page Cache Attacks

OS

Disk

Victim Attacker

Address space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address space

RAM

page cache

foo.so#2

faults

fetches foo.so#2

buffers foo.so#2

accesses

slow

29 Michael Schwarz (@misc0110), Erik Kraft



Page Cache Attacks

OS

Disk

Victim Attacker

Address space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address space

RAM

page cache

foo.so#2

30 Michael Schwarz (@misc0110), Erik Kraft



Page Cache Attacks

OS

Disk

Victim Attacker

Address space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address space

RAM

page cache

foo.so#2

accesses

fast

31 Michael Schwarz (@misc0110), Erik Kraft



Page Cache Attacks

OS

Disk

Victim Attacker

Address space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address space

RAM

page cache

foo.so#2

eviction#5

accessesfetches eviction#5

buffers eviction#5

faults

slow

32 Michael Schwarz (@misc0110), Erik Kraft



Page Cache Attacks

OS

Disk

Victim Attacker

Address space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address space

RAM

page cache

eviction#4
foo.so#2

eviction#5

accessesfetches eviction#4

buffers eviction#4

faults

slow

33 Michael Schwarz (@misc0110), Erik Kraft



Page Cache Attacks

OS

Disk

Victim Attacker

Address space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address space

RAM

page cache

eviction#4
foo.so#2

eviction#3

eviction#5

accessesfetches eviction#3

buffers eviction#3

faults

slow

34 Michael Schwarz (@misc0110), Erik Kraft



Page Cache Attacks

OS

Disk

Victim Attacker

Address space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address space

RAM

page cache

eviction#4
foo.so#2

eviction#3
eviction#2

eviction#5

accessesfetches eviction#2

buffers eviction#2

faults

slow

35 Michael Schwarz (@misc0110), Erik Kraft



Page Cache Attacks

OS

Disk

Victim Attacker

Address space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address space

RAM

page cache

eviction#4
eviction#1
eviction#3
eviction#2

eviction#5

accessesfetches eviction#1

buffers eviction#1

faults

slow

36 Michael Schwarz (@misc0110), Erik Kraft



Page Cache Attacks

OS

Disk

Victim Attacker

Address space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address space

RAM

page cache

eviction#4
eviction#1
eviction#3
eviction#2

eviction#5

37 Michael Schwarz (@misc0110), Erik Kraft



Page Cache Attacks

OS

Disk

Victim Attacker

Address space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address space

RAM

page cache

eviction#4
eviction#1
eviction#3
eviction#2

foo.so#2

accessesfetches foo.so#2

buffers foo.so#2

faults

slow

38 Michael Schwarz (@misc0110), Erik Kraft



Observe Page Cache State

1010 1

First idea:

• Measure page access time

• Buffers pages in page cache → destructive

• Eviction always necessary → lower resolution

Better:

• Use APIs provided by the operating system

• mincore

• QueryWorkingSetEx

• Non-destructive → higher resolution

39 Michael Schwarz (@misc0110), Erik Kraft



Observe Page Cache State

1010 1

First idea:

• Measure page access time

• Buffers pages in page cache → destructive

• Eviction always necessary → lower resolution

Better:

• Use APIs provided by the operating system

• mincore

• QueryWorkingSetEx

• Non-destructive → higher resolution

39 Michael Schwarz (@misc0110), Erik Kraft



Observe Page Cache State

1010 1

First idea:

• Measure page access time

• Buffers pages in page cache → destructive

• Eviction always necessary → lower resolution

Better:

• Use APIs provided by the operating system

• mincore

• QueryWorkingSetEx

• Non-destructive → higher resolution

39 Michael Schwarz (@misc0110), Erik Kraft



Observe Page Cache State

1010 1

First idea:

• Measure page access time

• Buffers pages in page cache → destructive

• Eviction always necessary → lower resolution

Better:

• Use APIs provided by the operating system

• mincore

• QueryWorkingSetEx

• Non-destructive → higher resolution

39 Michael Schwarz (@misc0110), Erik Kraft



Observe Page Cache State

1010 1

First idea:

• Measure page access time

• Buffers pages in page cache → destructive

• Eviction always necessary → lower resolution

Better:

• Use APIs provided by the operating system

• mincore

• QueryWorkingSetEx

• Non-destructive → higher resolution

39 Michael Schwarz (@misc0110), Erik Kraft



Observe Page Cache State

1010 1

First idea:

• Measure page access time

• Buffers pages in page cache → destructive

• Eviction always necessary → lower resolution

Better:

• Use APIs provided by the operating system

• mincore

• QueryWorkingSetEx

• Non-destructive → higher resolution

39 Michael Schwarz (@misc0110), Erik Kraft



Observe Page Cache State

1010 1

First idea:

• Measure page access time

• Buffers pages in page cache → destructive

• Eviction always necessary → lower resolution

Better:

• Use APIs provided by the operating system

• mincore

• QueryWorkingSetEx

• Non-destructive → higher resolution

39 Michael Schwarz (@misc0110), Erik Kraft



Observe Page Cache State

1010 1

First idea:

• Measure page access time

• Buffers pages in page cache → destructive

• Eviction always necessary → lower resolution

Better:

• Use APIs provided by the operating system

• mincore

• QueryWorkingSetEx

• Non-destructive → higher resolution

39 Michael Schwarz (@misc0110), Erik Kraft



Observe Page Cache State

1010 1

First idea:

• Measure page access time

• Buffers pages in page cache → destructive

• Eviction always necessary → lower resolution

Better:

• Use APIs provided by the operating system

• mincore

• QueryWorkingSetEx

• Non-destructive → higher resolution

39 Michael Schwarz (@misc0110), Erik Kraft



Observe Page Cache State

1010 1

mincore (2.04µs)

• Takes virtual memory range, returns vector

• Indicates presence of queried pages in page cache

QueryWorkingSetEx (465.91 ns)

• Takes process handle + virtual memory address, returns struct

• Exposes attributes of queried page ...

• ... presence in working set

• ... number of working sets containing page (ShareCount)

40 Michael Schwarz (@misc0110), Erik Kraft



Observe Page Cache State

1010 1

mincore (2.04µs)

• Takes virtual memory range, returns vector

• Indicates presence of queried pages in page cache

QueryWorkingSetEx (465.91 ns)

• Takes process handle + virtual memory address, returns struct

• Exposes attributes of queried page ...

• ... presence in working set

• ... number of working sets containing page (ShareCount)

40 Michael Schwarz (@misc0110), Erik Kraft



Observe Page Cache State

1010 1

mincore (2.04µs)

• Takes virtual memory range, returns vector

• Indicates presence of queried pages in page cache

QueryWorkingSetEx (465.91 ns)

• Takes process handle + virtual memory address, returns struct

• Exposes attributes of queried page ...

• ... presence in working set

• ... number of working sets containing page (ShareCount)

40 Michael Schwarz (@misc0110), Erik Kraft



Observe Page Cache State

1010 1

mincore (2.04µs)

• Takes virtual memory range, returns vector

• Indicates presence of queried pages in page cache

QueryWorkingSetEx (465.91 ns)

• Takes process handle + virtual memory address, returns struct

• Exposes attributes of queried page ...

• ... presence in working set

• ... number of working sets containing page (ShareCount)

40 Michael Schwarz (@misc0110), Erik Kraft



Observe Page Cache State

1010 1

mincore (2.04µs)

• Takes virtual memory range, returns vector

• Indicates presence of queried pages in page cache

QueryWorkingSetEx (465.91 ns)

• Takes process handle + virtual memory address, returns struct

• Exposes attributes of queried page ...

• ... presence in working set

• ... number of working sets containing page (ShareCount)

40 Michael Schwarz (@misc0110), Erik Kraft



Observe Page Cache State

1010 1

mincore (2.04µs)

• Takes virtual memory range, returns vector

• Indicates presence of queried pages in page cache

QueryWorkingSetEx (465.91 ns)

• Takes process handle + virtual memory address, returns struct

• Exposes attributes of queried page ...

• ... presence in working set

• ... number of working sets containing page (ShareCount)

40 Michael Schwarz (@misc0110), Erik Kraft



Observe Page Cache State

1010 1

mincore (2.04µs)

• Takes virtual memory range, returns vector

• Indicates presence of queried pages in page cache

QueryWorkingSetEx (465.91 ns)

• Takes process handle + virtual memory address, returns struct

• Exposes attributes of queried page ...

• ... presence in working set

• ... number of working sets containing page (ShareCount)

40 Michael Schwarz (@misc0110), Erik Kraft



Observe Page Cache State

1010 1

mincore (2.04µs)

• Takes virtual memory range, returns vector

• Indicates presence of queried pages in page cache

QueryWorkingSetEx (465.91 ns)

• Takes process handle + virtual memory address, returns struct

• Exposes attributes of queried page ...

• ... presence in working set

• ... number of working sets containing page (ShareCount)

40 Michael Schwarz (@misc0110), Erik Kraft



Reset Page Cache State

• Necessary for detecting multiple accesses

• Bottleneck of side channel

• Ideal strategy depends on page cache implementation

• Differences in page replacement

• Global CLOCK-Pro like algorithm

• Per-process working sets with Aging algorithm

41 Michael Schwarz (@misc0110), Erik Kraft



Reset Page Cache State

• Necessary for detecting multiple accesses

• Bottleneck of side channel

• Ideal strategy depends on page cache implementation

• Differences in page replacement

• Global CLOCK-Pro like algorithm

• Per-process working sets with Aging algorithm

41 Michael Schwarz (@misc0110), Erik Kraft



Reset Page Cache State

• Necessary for detecting multiple accesses

• Bottleneck of side channel

• Ideal strategy depends on page cache implementation

• Differences in page replacement

• Global CLOCK-Pro like algorithm

• Per-process working sets with Aging algorithm

41 Michael Schwarz (@misc0110), Erik Kraft



Reset Page Cache State

• Necessary for detecting multiple accesses

• Bottleneck of side channel

• Ideal strategy depends on page cache implementation

• Differences in page replacement

• Global CLOCK-Pro like algorithm

• Per-process working sets with Aging algorithm

41 Michael Schwarz (@misc0110), Erik Kraft



Reset Page Cache State

• Necessary for detecting multiple accesses

• Bottleneck of side channel

• Ideal strategy depends on page cache implementation

• Differences in page replacement

• Global CLOCK-Pro like algorithm

• Per-process working sets with Aging algorithm

41 Michael Schwarz (@misc0110), Erik Kraft



Reset Page Cache State

• Necessary for detecting multiple accesses

• Bottleneck of side channel

• Ideal strategy depends on page cache implementation

• Differences in page replacement

• Global CLOCK-Pro like algorithm

• Per-process working sets with Aging algorithm

41 Michael Schwarz (@misc0110), Erik Kraft



Eviction Linux

• Access pages until target page is replaced

• Basic eviction set: Large memory-mapped file

• Optimisation 1: Add pages already in page cache

• Target page more likely selected for eviction

• Higher responsiveness of system

• Optimisation 2: Fill memory with anonymous dirty pages

• Very effective if swapping disabled

• Decreases average eviction set size

• Significant influence on eviction time and stability

• Average run time down to 149 ms depending on optimisations

42 Michael Schwarz (@misc0110), Erik Kraft



Eviction Linux

• Access pages until target page is replaced

• Basic eviction set: Large memory-mapped file

• Optimisation 1: Add pages already in page cache

• Target page more likely selected for eviction

• Higher responsiveness of system

• Optimisation 2: Fill memory with anonymous dirty pages

• Very effective if swapping disabled

• Decreases average eviction set size

• Significant influence on eviction time and stability

• Average run time down to 149 ms depending on optimisations

42 Michael Schwarz (@misc0110), Erik Kraft



Eviction Linux

• Access pages until target page is replaced

• Basic eviction set: Large memory-mapped file

• Optimisation 1: Add pages already in page cache

• Target page more likely selected for eviction

• Higher responsiveness of system

• Optimisation 2: Fill memory with anonymous dirty pages

• Very effective if swapping disabled

• Decreases average eviction set size

• Significant influence on eviction time and stability

• Average run time down to 149 ms depending on optimisations

42 Michael Schwarz (@misc0110), Erik Kraft



Eviction Linux

• Access pages until target page is replaced

• Basic eviction set: Large memory-mapped file

• Optimisation 1: Add pages already in page cache

• Target page more likely selected for eviction

• Higher responsiveness of system

• Optimisation 2: Fill memory with anonymous dirty pages

• Very effective if swapping disabled

• Decreases average eviction set size

• Significant influence on eviction time and stability

• Average run time down to 149 ms depending on optimisations

42 Michael Schwarz (@misc0110), Erik Kraft



Eviction Linux

• Access pages until target page is replaced

• Basic eviction set: Large memory-mapped file

• Optimisation 1: Add pages already in page cache

• Target page more likely selected for eviction

• Higher responsiveness of system

• Optimisation 2: Fill memory with anonymous dirty pages

• Very effective if swapping disabled

• Decreases average eviction set size

• Significant influence on eviction time and stability

• Average run time down to 149 ms depending on optimisations

42 Michael Schwarz (@misc0110), Erik Kraft



Eviction Linux

• Access pages until target page is replaced

• Basic eviction set: Large memory-mapped file

• Optimisation 1: Add pages already in page cache

• Target page more likely selected for eviction

• Higher responsiveness of system

• Optimisation 2: Fill memory with anonymous dirty pages

• Very effective if swapping disabled

• Decreases average eviction set size

• Significant influence on eviction time and stability

• Average run time down to 149 ms depending on optimisations

42 Michael Schwarz (@misc0110), Erik Kraft



Eviction Linux

• Access pages until target page is replaced

• Basic eviction set: Large memory-mapped file

• Optimisation 1: Add pages already in page cache

• Target page more likely selected for eviction

• Higher responsiveness of system

• Optimisation 2: Fill memory with anonymous dirty pages

• Very effective if swapping disabled

• Decreases average eviction set size

• Significant influence on eviction time and stability

• Average run time down to 149 ms depending on optimisations

42 Michael Schwarz (@misc0110), Erik Kraft



Eviction Linux

• Access pages until target page is replaced

• Basic eviction set: Large memory-mapped file

• Optimisation 1: Add pages already in page cache

• Target page more likely selected for eviction

• Higher responsiveness of system

• Optimisation 2: Fill memory with anonymous dirty pages

• Very effective if swapping disabled

• Decreases average eviction set size

• Significant influence on eviction time and stability

• Average run time down to 149 ms depending on optimisations

42 Michael Schwarz (@misc0110), Erik Kraft



Eviction Linux

• Access pages until target page is replaced

• Basic eviction set: Large memory-mapped file

• Optimisation 1: Add pages already in page cache

• Target page more likely selected for eviction

• Higher responsiveness of system

• Optimisation 2: Fill memory with anonymous dirty pages

• Very effective if swapping disabled

• Decreases average eviction set size

• Significant influence on eviction time and stability

• Average run time down to 149 ms depending on optimisations

42 Michael Schwarz (@misc0110), Erik Kraft



Eviction Linux

• Access pages until target page is replaced

• Basic eviction set: Large memory-mapped file

• Optimisation 1: Add pages already in page cache

• Target page more likely selected for eviction

• Higher responsiveness of system

• Optimisation 2: Fill memory with anonymous dirty pages

• Very effective if swapping disabled

• Decreases average eviction set size

• Significant influence on eviction time and stability

• Average run time down to 149 ms depending on optimisations

42 Michael Schwarz (@misc0110), Erik Kraft



Eviction Windows

• Page cache eviction ↔ target page drops out of all working sets

• Previous approach slow...

• Different approach: Use working-set eviction + observation

• Limited maximum ws size

• Apply memory pressure → self-eviction (<2 s)

• Eviction from own ws → VirtualUnlock (17.69µs)

• Eviction other ws → SetProcessWorkingSetSize (4.48 ms)

• for processes with same integrity level as attacker

• Observe via QueryWorkingSetEx

• on own process (ShareCount)

• on other process (same integrity level as attacker)

43 Michael Schwarz (@misc0110), Erik Kraft



Eviction Windows

• Page cache eviction ↔ target page drops out of all working sets

• Previous approach slow...

• Different approach: Use working-set eviction + observation

• Limited maximum ws size

• Apply memory pressure → self-eviction (<2 s)

• Eviction from own ws → VirtualUnlock (17.69µs)

• Eviction other ws → SetProcessWorkingSetSize (4.48 ms)

• for processes with same integrity level as attacker

• Observe via QueryWorkingSetEx

• on own process (ShareCount)

• on other process (same integrity level as attacker)

43 Michael Schwarz (@misc0110), Erik Kraft



Eviction Windows

• Page cache eviction ↔ target page drops out of all working sets

• Previous approach slow...

• Different approach: Use working-set eviction + observation

• Limited maximum ws size

• Apply memory pressure → self-eviction (<2 s)

• Eviction from own ws → VirtualUnlock (17.69µs)

• Eviction other ws → SetProcessWorkingSetSize (4.48 ms)

• for processes with same integrity level as attacker

• Observe via QueryWorkingSetEx

• on own process (ShareCount)

• on other process (same integrity level as attacker)

43 Michael Schwarz (@misc0110), Erik Kraft



Eviction Windows

• Page cache eviction ↔ target page drops out of all working sets

• Previous approach slow...

• Different approach: Use working-set eviction + observation

• Limited maximum ws size

• Apply memory pressure → self-eviction (<2 s)

• Eviction from own ws → VirtualUnlock (17.69µs)

• Eviction other ws → SetProcessWorkingSetSize (4.48 ms)

• for processes with same integrity level as attacker

• Observe via QueryWorkingSetEx

• on own process (ShareCount)

• on other process (same integrity level as attacker)

43 Michael Schwarz (@misc0110), Erik Kraft



Eviction Windows

• Page cache eviction ↔ target page drops out of all working sets

• Previous approach slow...

• Different approach: Use working-set eviction + observation

• Limited maximum ws size

• Apply memory pressure → self-eviction (<2 s)

• Eviction from own ws → VirtualUnlock (17.69µs)

• Eviction other ws → SetProcessWorkingSetSize (4.48 ms)

• for processes with same integrity level as attacker

• Observe via QueryWorkingSetEx

• on own process (ShareCount)

• on other process (same integrity level as attacker)

43 Michael Schwarz (@misc0110), Erik Kraft



Eviction Windows

• Page cache eviction ↔ target page drops out of all working sets

• Previous approach slow...

• Different approach: Use working-set eviction + observation

• Limited maximum ws size

• Apply memory pressure → self-eviction (<2 s)

• Eviction from own ws → VirtualUnlock (17.69µs)

• Eviction other ws → SetProcessWorkingSetSize (4.48 ms)

• for processes with same integrity level as attacker

• Observe via QueryWorkingSetEx

• on own process (ShareCount)

• on other process (same integrity level as attacker)

43 Michael Schwarz (@misc0110), Erik Kraft



Eviction Windows

• Page cache eviction ↔ target page drops out of all working sets

• Previous approach slow...

• Different approach: Use working-set eviction + observation

• Limited maximum ws size

• Apply memory pressure → self-eviction (<2 s)

• Eviction from own ws → VirtualUnlock (17.69µs)

• Eviction other ws → SetProcessWorkingSetSize (4.48 ms)

• for processes with same integrity level as attacker

• Observe via QueryWorkingSetEx

• on own process (ShareCount)

• on other process (same integrity level as attacker)

43 Michael Schwarz (@misc0110), Erik Kraft



Eviction Windows

• Page cache eviction ↔ target page drops out of all working sets

• Previous approach slow...

• Different approach: Use working-set eviction + observation

• Limited maximum ws size

• Apply memory pressure → self-eviction (<2 s)

• Eviction from own ws → VirtualUnlock (17.69µs)

• Eviction other ws → SetProcessWorkingSetSize (4.48 ms)

• for processes with same integrity level as attacker

• Observe via QueryWorkingSetEx

• on own process (ShareCount)

• on other process (same integrity level as attacker)

43 Michael Schwarz (@misc0110), Erik Kraft



Eviction Windows

• Page cache eviction ↔ target page drops out of all working sets

• Previous approach slow...

• Different approach: Use working-set eviction + observation

• Limited maximum ws size

• Apply memory pressure → self-eviction (<2 s)

• Eviction from own ws → VirtualUnlock (17.69µs)

• Eviction other ws → SetProcessWorkingSetSize (4.48 ms)

• for processes with same integrity level as attacker

• Observe via QueryWorkingSetEx

• on own process (ShareCount)

• on other process (same integrity level as attacker)

43 Michael Schwarz (@misc0110), Erik Kraft



Eviction Windows

• Page cache eviction ↔ target page drops out of all working sets

• Previous approach slow...

• Different approach: Use working-set eviction + observation

• Limited maximum ws size

• Apply memory pressure → self-eviction (<2 s)

• Eviction from own ws → VirtualUnlock (17.69µs)

• Eviction other ws → SetProcessWorkingSetSize (4.48 ms)

• for processes with same integrity level as attacker

• Observe via QueryWorkingSetEx

• on own process (ShareCount)

• on other process (same integrity level as attacker)

43 Michael Schwarz (@misc0110), Erik Kraft



Covert Channel

• Shared file as information carrier

• File page presence in page cache ↔ message bits

• Additional file pages for transmission control

Different implementation approaches:

OS Eviction Observation Speed

Linux

like side channel mincore 20.20 kB/s

madvise

posix fadvise
mincore 81.16 kB/s

Windows
process WS

VirtualUnlock

QueryWorkingSetEx

(ShareCount)
100.11 kB/s

• Low bit error rate for all approaches (down to 0.000 03 %)

44 Michael Schwarz (@misc0110), Erik Kraft



Covert Channel

• Shared file as information carrier

• File page presence in page cache ↔ message bits

• Additional file pages for transmission control

Different implementation approaches:

OS Eviction Observation Speed

Linux

like side channel mincore 20.20 kB/s

madvise

posix fadvise
mincore 81.16 kB/s

Windows
process WS

VirtualUnlock

QueryWorkingSetEx

(ShareCount)
100.11 kB/s

• Low bit error rate for all approaches (down to 0.000 03 %)

44 Michael Schwarz (@misc0110), Erik Kraft



Covert Channel

• Shared file as information carrier

• File page presence in page cache ↔ message bits

• Additional file pages for transmission control

Different implementation approaches:

OS Eviction Observation Speed

Linux

like side channel mincore 20.20 kB/s

madvise

posix fadvise
mincore 81.16 kB/s

Windows
process WS

VirtualUnlock

QueryWorkingSetEx

(ShareCount)
100.11 kB/s

• Low bit error rate for all approaches (down to 0.000 03 %)

44 Michael Schwarz (@misc0110), Erik Kraft



Covert Channel

• Shared file as information carrier

• File page presence in page cache ↔ message bits

• Additional file pages for transmission control

Different implementation approaches:

OS Eviction Observation Speed

Linux

like side channel mincore 20.20 kB/s

madvise

posix fadvise
mincore 81.16 kB/s

Windows
process WS

VirtualUnlock

QueryWorkingSetEx

(ShareCount)
100.11 kB/s

• Low bit error rate for all approaches (down to 0.000 03 %)

44 Michael Schwarz (@misc0110), Erik Kraft



Covert Channel

• Shared file as information carrier

• File page presence in page cache ↔ message bits

• Additional file pages for transmission control

Different implementation approaches:

OS Eviction Observation Speed

Linux

like side channel mincore 20.20 kB/s

madvise

posix fadvise
mincore 81.16 kB/s

Windows
process WS

VirtualUnlock

QueryWorkingSetEx

(ShareCount)
100.11 kB/s

• Low bit error rate for all approaches (down to 0.000 03 %)

44 Michael Schwarz (@misc0110), Erik Kraft



Covert Channel

• Shared file as information carrier

• File page presence in page cache ↔ message bits

• Additional file pages for transmission control

Different implementation approaches:

OS Eviction Observation Speed

Linux

like side channel mincore 20.20 kB/s

madvise

posix fadvise
mincore 81.16 kB/s

Windows
process WS

VirtualUnlock

QueryWorkingSetEx

(ShareCount)
100.11 kB/s

• Low bit error rate for all approaches (down to 0.000 03 %)

44 Michael Schwarz (@misc0110), Erik Kraft



PHP RNG Attack

• Targets seeding of PHP PRNG

• microtime used as seed by some frameworks

• Returns UNIX timestamp in microseconds

• Later PRNG used for cryptographic operations :(

• Side channel used to detect microtime call

• Seed recoverable

• zif microtime on page 781 of php-fpm executable

• PHP 7.3.5, depends on build environment/configuration

• Average detection accuracy: ±1 ms

45 Michael Schwarz (@misc0110), Erik Kraft



PHP RNG Attack

• Targets seeding of PHP PRNG

• microtime used as seed by some frameworks

• Returns UNIX timestamp in microseconds

• Later PRNG used for cryptographic operations :(

• Side channel used to detect microtime call

• Seed recoverable

• zif microtime on page 781 of php-fpm executable

• PHP 7.3.5, depends on build environment/configuration

• Average detection accuracy: ±1 ms

45 Michael Schwarz (@misc0110), Erik Kraft



PHP RNG Attack

• Targets seeding of PHP PRNG

• microtime used as seed by some frameworks

• Returns UNIX timestamp in microseconds

• Later PRNG used for cryptographic operations :(

• Side channel used to detect microtime call

• Seed recoverable

• zif microtime on page 781 of php-fpm executable

• PHP 7.3.5, depends on build environment/configuration

• Average detection accuracy: ±1 ms

45 Michael Schwarz (@misc0110), Erik Kraft



PHP RNG Attack

• Targets seeding of PHP PRNG

• microtime used as seed by some frameworks

• Returns UNIX timestamp in microseconds

• Later PRNG used for cryptographic operations :(

• Side channel used to detect microtime call

• Seed recoverable

• zif microtime on page 781 of php-fpm executable

• PHP 7.3.5, depends on build environment/configuration

• Average detection accuracy: ±1 ms

45 Michael Schwarz (@misc0110), Erik Kraft



PHP RNG Attack

• Targets seeding of PHP PRNG

• microtime used as seed by some frameworks

• Returns UNIX timestamp in microseconds

• Later PRNG used for cryptographic operations :(

• Side channel used to detect microtime call

• Seed recoverable

• zif microtime on page 781 of php-fpm executable

• PHP 7.3.5, depends on build environment/configuration

• Average detection accuracy: ±1 ms

45 Michael Schwarz (@misc0110), Erik Kraft



PHP RNG Attack

• Targets seeding of PHP PRNG

• microtime used as seed by some frameworks

• Returns UNIX timestamp in microseconds

• Later PRNG used for cryptographic operations :(

• Side channel used to detect microtime call

• Seed recoverable

• zif microtime on page 781 of php-fpm executable

• PHP 7.3.5, depends on build environment/configuration

• Average detection accuracy: ±1 ms

45 Michael Schwarz (@misc0110), Erik Kraft



PHP RNG Attack

• Targets seeding of PHP PRNG

• microtime used as seed by some frameworks

• Returns UNIX timestamp in microseconds

• Later PRNG used for cryptographic operations :(

• Side channel used to detect microtime call

• Seed recoverable

• zif microtime on page 781 of php-fpm executable

• PHP 7.3.5, depends on build environment/configuration

• Average detection accuracy: ±1 ms

45 Michael Schwarz (@misc0110), Erik Kraft



PHP RNG Attack

• Targets seeding of PHP PRNG

• microtime used as seed by some frameworks

• Returns UNIX timestamp in microseconds

• Later PRNG used for cryptographic operations :(

• Side channel used to detect microtime call

• Seed recoverable

• zif microtime on page 781 of php-fpm executable

• PHP 7.3.5, depends on build environment/configuration

• Average detection accuracy: ±1 ms

45 Michael Schwarz (@misc0110), Erik Kraft



PHP RNG Attack

• Targets seeding of PHP PRNG

• microtime used as seed by some frameworks

• Returns UNIX timestamp in microseconds

• Later PRNG used for cryptographic operations :(

• Side channel used to detect microtime call

• Seed recoverable

• zif microtime on page 781 of php-fpm executable

• PHP 7.3.5, depends on build environment/configuration

• Average detection accuracy: ±1 ms

45 Michael Schwarz (@misc0110), Erik Kraft



Live Demo

46 Michael Schwarz (@misc0110), Erik Kraft



UI Redressing Attack

• Detect opening of interesting window

• e.g. authentication windows

• Overlay original window with fake

• Side channel used as a trigger

• Provides low latency → hardly noticeable

• Tested with root authentication window on Ubuntu 16.04

• Page 6 of binary polkit-gnome-authentication-agent-1

47 Michael Schwarz (@misc0110), Erik Kraft



UI Redressing Attack

• Detect opening of interesting window

• e.g. authentication windows

• Overlay original window with fake

• Side channel used as a trigger

• Provides low latency → hardly noticeable

• Tested with root authentication window on Ubuntu 16.04

• Page 6 of binary polkit-gnome-authentication-agent-1

47 Michael Schwarz (@misc0110), Erik Kraft



UI Redressing Attack

• Detect opening of interesting window

• e.g. authentication windows

• Overlay original window with fake

• Side channel used as a trigger

• Provides low latency → hardly noticeable

• Tested with root authentication window on Ubuntu 16.04

• Page 6 of binary polkit-gnome-authentication-agent-1

47 Michael Schwarz (@misc0110), Erik Kraft



UI Redressing Attack

• Detect opening of interesting window

• e.g. authentication windows

• Overlay original window with fake

• Side channel used as a trigger

• Provides low latency → hardly noticeable

• Tested with root authentication window on Ubuntu 16.04

• Page 6 of binary polkit-gnome-authentication-agent-1

47 Michael Schwarz (@misc0110), Erik Kraft



UI Redressing Attack

• Detect opening of interesting window

• e.g. authentication windows

• Overlay original window with fake

• Side channel used as a trigger

• Provides low latency → hardly noticeable

• Tested with root authentication window on Ubuntu 16.04

• Page 6 of binary polkit-gnome-authentication-agent-1

47 Michael Schwarz (@misc0110), Erik Kraft



UI Redressing Attack

• Detect opening of interesting window

• e.g. authentication windows

• Overlay original window with fake

• Side channel used as a trigger

• Provides low latency → hardly noticeable

• Tested with root authentication window on Ubuntu 16.04

• Page 6 of binary polkit-gnome-authentication-agent-1

47 Michael Schwarz (@misc0110), Erik Kraft



UI Redressing Attack

• Detect opening of interesting window

• e.g. authentication windows

• Overlay original window with fake

• Side channel used as a trigger

• Provides low latency → hardly noticeable

• Tested with root authentication window on Ubuntu 16.04

• Page 6 of binary polkit-gnome-authentication-agent-1

47 Michael Schwarz (@misc0110), Erik Kraft



UI Redressing Attack

48 Michael Schwarz (@misc0110), Erik Kraft



Impact

• Identified as CVE-2019-5489

• CVSS v3.0: 5.5 MEDIUM

• Findings addressed by Linux and Windows

• Countermeasures developed

49 Michael Schwarz (@misc0110), Erik Kraft



Impact

• Identified as CVE-2019-5489

• CVSS v3.0: 5.5 MEDIUM

• Findings addressed by Linux and Windows

• Countermeasures developed

49 Michael Schwarz (@misc0110), Erik Kraft



Impact

• Identified as CVE-2019-5489

• CVSS v3.0: 5.5 MEDIUM

• Findings addressed by Linux and Windows

• Countermeasures developed

49 Michael Schwarz (@misc0110), Erik Kraft



Impact

• Identified as CVE-2019-5489

• CVSS v3.0: 5.5 MEDIUM

• Findings addressed by Linux and Windows

• Countermeasures developed

49 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures

• Increase observation effort

• Higher privileges for leaking APIs

• Access times still can be used ...

• ... but they destroy state → additional evictions

• Eviction is the bottleneck → lower resolution

• Increase eviction effort

• Use a local page replacement approach

• e.g. per-process working sets

• Page evicted only if in no working set

• No direct influence on replacement choices between processes

• Harder to evict pages → lower frequency

50 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures

• Increase observation effort

• Higher privileges for leaking APIs

• Access times still can be used ...

• ... but they destroy state → additional evictions

• Eviction is the bottleneck → lower resolution

• Increase eviction effort

• Use a local page replacement approach

• e.g. per-process working sets

• Page evicted only if in no working set

• No direct influence on replacement choices between processes

• Harder to evict pages → lower frequency

50 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures

• Increase observation effort

• Higher privileges for leaking APIs

• Access times still can be used ...

• ... but they destroy state → additional evictions

• Eviction is the bottleneck → lower resolution

• Increase eviction effort

• Use a local page replacement approach

• e.g. per-process working sets

• Page evicted only if in no working set

• No direct influence on replacement choices between processes

• Harder to evict pages → lower frequency

50 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures

• Increase observation effort

• Higher privileges for leaking APIs

• Access times still can be used ...

• ... but they destroy state → additional evictions

• Eviction is the bottleneck → lower resolution

• Increase eviction effort

• Use a local page replacement approach

• e.g. per-process working sets

• Page evicted only if in no working set

• No direct influence on replacement choices between processes

• Harder to evict pages → lower frequency

50 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures

• Increase observation effort

• Higher privileges for leaking APIs

• Access times still can be used ...

• ... but they destroy state → additional evictions

• Eviction is the bottleneck → lower resolution

• Increase eviction effort

• Use a local page replacement approach

• e.g. per-process working sets

• Page evicted only if in no working set

• No direct influence on replacement choices between processes

• Harder to evict pages → lower frequency

50 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures

• Increase observation effort

• Higher privileges for leaking APIs

• Access times still can be used ...

• ... but they destroy state → additional evictions

• Eviction is the bottleneck → lower resolution

• Increase eviction effort

• Use a local page replacement approach

• e.g. per-process working sets

• Page evicted only if in no working set

• No direct influence on replacement choices between processes

• Harder to evict pages → lower frequency

50 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures

• Increase observation effort

• Higher privileges for leaking APIs

• Access times still can be used ...

• ... but they destroy state → additional evictions

• Eviction is the bottleneck → lower resolution

• Increase eviction effort

• Use a local page replacement approach

• e.g. per-process working sets

• Page evicted only if in no working set

• No direct influence on replacement choices between processes

• Harder to evict pages → lower frequency

50 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures

• Increase observation effort

• Higher privileges for leaking APIs

• Access times still can be used ...

• ... but they destroy state → additional evictions

• Eviction is the bottleneck → lower resolution

• Increase eviction effort

• Use a local page replacement approach

• e.g. per-process working sets

• Page evicted only if in no working set

• No direct influence on replacement choices between processes

• Harder to evict pages → lower frequency

50 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures

• Increase observation effort

• Higher privileges for leaking APIs

• Access times still can be used ...

• ... but they destroy state → additional evictions

• Eviction is the bottleneck → lower resolution

• Increase eviction effort

• Use a local page replacement approach

• e.g. per-process working sets

• Page evicted only if in no working set

• No direct influence on replacement choices between processes

• Harder to evict pages → lower frequency

50 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures

• Increase observation effort

• Higher privileges for leaking APIs

• Access times still can be used ...

• ... but they destroy state → additional evictions

• Eviction is the bottleneck → lower resolution

• Increase eviction effort

• Use a local page replacement approach

• e.g. per-process working sets

• Page evicted only if in no working set

• No direct influence on replacement choices between processes

• Harder to evict pages → lower frequency

50 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures

• Increase observation effort

• Higher privileges for leaking APIs

• Access times still can be used ...

• ... but they destroy state → additional evictions

• Eviction is the bottleneck → lower resolution

• Increase eviction effort

• Use a local page replacement approach

• e.g. per-process working sets

• Page evicted only if in no working set

• No direct influence on replacement choices between processes

• Harder to evict pages → lower frequency

50 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures - Windows

• Higher privilege for QueryWorkingSetEx on other processes

• No direct querying of working set state

• ShareCount removed

• No indirect querying of working set state

• Non-destructive probing no longer possible
Working set probing no longer possible → weaker attack

• If QueryWorkingSetEx only possible leakage source

• Page-cache eviction already harder than on Linux

51 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures - Windows

• Higher privilege for QueryWorkingSetEx on other processes

• No direct querying of working set state

• ShareCount removed

• No indirect querying of working set state

• Non-destructive probing no longer possible
Working set probing no longer possible → weaker attack

• If QueryWorkingSetEx only possible leakage source

• Page-cache eviction already harder than on Linux

51 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures - Windows

• Higher privilege for QueryWorkingSetEx on other processes

• No direct querying of working set state

• ShareCount removed

• No indirect querying of working set state

• Non-destructive probing no longer possible
Working set probing no longer possible → weaker attack

• If QueryWorkingSetEx only possible leakage source

• Page-cache eviction already harder than on Linux

51 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures - Windows

• Higher privilege for QueryWorkingSetEx on other processes

• No direct querying of working set state

• ShareCount removed

• No indirect querying of working set state

• Non-destructive probing no longer possible
Working set probing no longer possible → weaker attack

• If QueryWorkingSetEx only possible leakage source

• Page-cache eviction already harder than on Linux

51 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures - Windows

• Higher privilege for QueryWorkingSetEx on other processes

• No direct querying of working set state

• ShareCount removed

• No indirect querying of working set state

• Non-destructive probing no longer possible

Working set probing no longer possible → weaker attack

• If QueryWorkingSetEx only possible leakage source

• Page-cache eviction already harder than on Linux

51 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures - Windows

• Higher privilege for QueryWorkingSetEx on other processes

• No direct querying of working set state

• ShareCount removed

• No indirect querying of working set state

• Non-destructive probing no longer possible
Working set probing no longer possible → weaker attack

• If QueryWorkingSetEx only possible leakage source

• Page-cache eviction already harder than on Linux

51 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures - Windows

• Higher privilege for QueryWorkingSetEx on other processes

• No direct querying of working set state

• ShareCount removed

• No indirect querying of working set state

• Non-destructive probing no longer possible
Working set probing no longer possible → weaker attack

• If QueryWorkingSetEx only possible leakage source

• Page-cache eviction already harder than on Linux

51 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures - Windows

• Higher privilege for QueryWorkingSetEx on other processes

• No direct querying of working set state

• ShareCount removed

• No indirect querying of working set state

• Non-destructive probing no longer possible
Working set probing no longer possible → weaker attack

• If QueryWorkingSetEx only possible leakage source

• Page-cache eviction already harder than on Linux

51 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures - Linux

• mincore only reveals information for writeable file pages

• Read-only files excluded → shared libraries, executables

• Newest patch, not in mainline yet

• Non-destructive probing no longer possible?

• No, preadv2 with RWF NOWAIT leaks same information

• Countermeasure currently under development

52 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures - Linux

• mincore only reveals information for writeable file pages

• Read-only files excluded → shared libraries, executables

• Newest patch, not in mainline yet

• Non-destructive probing no longer possible?

• No, preadv2 with RWF NOWAIT leaks same information

• Countermeasure currently under development

52 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures - Linux

• mincore only reveals information for writeable file pages

• Read-only files excluded → shared libraries, executables

• Newest patch, not in mainline yet

• Non-destructive probing no longer possible?

• No, preadv2 with RWF NOWAIT leaks same information

• Countermeasure currently under development

52 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures - Linux

• mincore only reveals information for writeable file pages

• Read-only files excluded → shared libraries, executables

• Newest patch, not in mainline yet

• Non-destructive probing no longer possible?

• No, preadv2 with RWF NOWAIT leaks same information

• Countermeasure currently under development

52 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures - Linux

• mincore only reveals information for writeable file pages

• Read-only files excluded → shared libraries, executables

• Newest patch, not in mainline yet

• Non-destructive probing no longer possible?

• No, preadv2 with RWF NOWAIT leaks same information

• Countermeasure currently under development

52 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures - Linux

• mincore only reveals information for writeable file pages

• Read-only files excluded → shared libraries, executables

• Newest patch, not in mainline yet

• Non-destructive probing no longer possible?

• No, preadv2 with RWF NOWAIT leaks same information

• Countermeasure currently under development

52 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures are Difficult

• We want the performance optimizations

• Many side-channel attacks exploit intended behavior

• Often a trade-off between security and performance

• Every optimization is potentially a side channel

53 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures are Difficult

• We want the performance optimizations

• Many side-channel attacks exploit intended behavior

• Often a trade-off between security and performance

• Every optimization is potentially a side channel

53 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures are Difficult

• We want the performance optimizations

• Many side-channel attacks exploit intended behavior

• Often a trade-off between security and performance

• Every optimization is potentially a side channel

53 Michael Schwarz (@misc0110), Erik Kraft



Countermeasures are Difficult

• We want the performance optimizations

• Many side-channel attacks exploit intended behavior

• Often a trade-off between security and performance

• Every optimization is potentially a side channel

53 Michael Schwarz (@misc0110), Erik Kraft



The Future

• We won’t get rid of side channels

• More optimizations → more side channels

• More attacks on the “OS microarchitecture”

54 Michael Schwarz (@misc0110), Erik Kraft



The Future

• We won’t get rid of side channels

• More optimizations → more side channels

• More attacks on the “OS microarchitecture”

54 Michael Schwarz (@misc0110), Erik Kraft



The Future

• We won’t get rid of side channels

• More optimizations → more side channels

• More attacks on the “OS microarchitecture”

54 Michael Schwarz (@misc0110), Erik Kraft



Take Aways

• Abstraction leads to side channels

• Software-cache attacks are similar to hardware-cache attacks

• Finding countermeasures is difficult

55 Michael Schwarz (@misc0110), Erik Kraft



Take Aways

• Abstraction leads to side channels

• Software-cache attacks are similar to hardware-cache attacks

• Finding countermeasures is difficult

55 Michael Schwarz (@misc0110), Erik Kraft



Take Aways

• Abstraction leads to side channels

• Software-cache attacks are similar to hardware-cache attacks

• Finding countermeasures is difficult

55 Michael Schwarz (@misc0110), Erik Kraft



Are Microarchitectural Attacks still 
possible on Flawless Hardware?

Erik Kraft
Michael Schwarz



Acknowledgements

We want to thank James Forshaw for helpful discussions on COM use cases and

Simon Gunacker for early explorative work on this topic. Daniel Gruss and

Michael Schwarz were supported by a generous gift from ARM and also by a

generous gift from Intel. Ari Trachtenberg and Trishita Tiwari were supported, in

part, by the National Science Foundation under Grant No. CCF-1563753 and

Boston University’s Distinguished Summer Research Fellowship, Undergraduate

Research Opportunities Program, and the department of Electrical and Computer

Engineering. Any opinions, findings, and conclusions or recommendations

expressed in this paper are those of the authors and do not necessarily reflect the

views of the funding parties.

56 Michael Schwarz (@misc0110), Erik Kraft


