

PeopleViews: Human Computation for Constraint-Based Recommendation

Alexander Felfernig, Thomas Ulz, Sarah Haas, Michael Schwarz, Stefan Reiterer, Martin Stettinger, Institute for Software Technology, Graz University of Technology

Contents

- 1. Motivation
- 2. PeopleViews
- 3. Recommendation approach
- 4. Evaluation
- 5. Ongoing and future work

Constraint-based Recommendation

- Specific type of knowledge based recommendation
- Relies on a predefined set of constraints
- Rankings determined by utility function
- Why constraint-based recommendation?
 - Suitable for complex item domains
 - Possible to "explain" recommendations
 - Diagnoses for too strict requirements

Knowledge acquisition bottleneck

- Only a few Knowledge Engineers
- Possibly a lot of users with item knowledge
- Idea: enable users to contribute to knowledge bases
- Are users willing to contribute to knowledge bases?

How willing are end users to contribute?

N=161, 111 would be willing to contribute

[Felfernig et al., CrowdRec 2014]

PeopleViews

- Short-term tasks (*Micro-tasks*)
 - Domain experts perform short-term knowledge engineering tasks they are much better in compared to knowledge engineers.
- Potential advantages
 - Less effort related to recommendation knowledge base development and maintenance
 - Fewer erroneous constraints
 - Significantly higher degree of scalability

PeopleViews - Knowledge base

- Product attributes
 - "Facts" about items, e.g. sensor size of a camera
 - Defined when item is added to knowledge base
- User attributes
 - Perceived differently by users, e.g. a cameras field of application
 - Defined by users in micro tasks
- Support
 - Support of item for specific {user, product} attribute value

PeopleViews - Features

Users are able to:

- Define new knowledge bases
 - Create new recommendation domain
 - Add items to existing domains
 - Evaluate existing items
 - "Answer" micro tasks
- Use existing knowledge bases to get recommendations

Product attributes

attribute	question to user	domain	similarity metric
sensorsize	Preferred sensor size?	{fullframe, APS-C, MFT, 1", 2/3"}	EIB
max- shutterspeed	Required max. shutter speed?	{1/4000, 1/6000, 1/8000, 1/16000}	LIB
maxISO	Required max. ISO sensitivity?	{6400, 12800, 25600}	MIB
price	Max. price?	integer	LIB

Product attributes				
sensorsize	Enumeration	Exact ma	tch	Remove
Preferred sensor size?		✓	Usable as recommendation filter	
Possible answers [fullframe x APS-C x MFT x 1" x	2/3" x			
		_		
price	Number	Less is	better •	Remove
Max. Price?			Usable as recommendati filter	ion

User attributes

attribute	choice type	question to user	domain
usertype	multiple	Suited for whom?	{ beginner, amateur, expert }
application	single	Preferred application?	{ sport, architecture, macro, landscape, portrait }
usability	single	Minimum accepted usability?	{ average, high, very high }

Micro-tasks

choice type: multiple

Micro-tasks

choice type: single

Micro-tasks

choose item, single attribute

Recommendation view

Recommendation view - Item details

Recommendation approach in PeopleViews

User attributes

$$support(\Phi, u, v) = \frac{\sum s(\Phi, u, v)}{|s(\Phi, u, v)|} \cdot \frac{|s(\Phi, u, v)|}{|s(\Phi, u)|}$$

symbol	meaning	
ф	item	
U	user attribute $u \in U$	
р	product attribute	
V	{user, product} attribute value	
s(Ф, U, V)	support specified by user	

Recommendation approach in PeopleViews

Product attributes

$$support(\Phi, p, v) = \begin{cases} 1 \text{if } v = val(\Phi, p), 0 \text{ otherwise} & \text{EIB} \\ 1 - \frac{|v - val(\Phi, p)|}{\max(\Phi, p) - \min(\Phi, p)} & \text{NIB} \\ \frac{val(\Phi, p) - \min(\Phi, p)}{\max(\Phi, p) - \min(\Phi, p)} & \text{MIB} \\ \frac{\max(\Phi, p) - \min(\Phi, p)}{\max(\Phi, p) - \min(\Phi, p)} & \text{LIB} \end{cases}$$

Recommendation approach in PeopleViews

Selection of recommendation-relevant items

$$\mathsf{f}(\Phi) = \bigwedge_{u \in U} u \in \mathsf{values}(\Phi, \, \mathsf{u}) \cup \{\mathit{noval}\} \to \mathsf{include}(\Phi)$$

Ranking items by their utility

utility(
$$\Phi$$
, REQ) = $\sum_{a=v \in REQ} \text{support}(\Phi, a, v) \cdot w(a)$

Evaluation of recommender algorithms

- Collect data using WeeVis (http://www.weevis.org)
- Canon DSLR recommender
 - 16 items, 7 attributes (27 possible "answers")
- Users defined their requirements and selected best matching camera
- 356 unique sessions
- 1 out of N "training and evaluation"
- Is desired item in top n recommended items?

Comparison to other approaches

Ongoing and future work

- Recommendation approaches
 - Implementation and evaluation of further approaches; diagnoses and repair
- Micro-task scheduling
 - Automatically assign micro-tasks to users, using a content-based approach
- Quality assurance
 - Improve dataset quality and prevent manipulation

Thank you!