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Introduction



Motivation

• Recommender systems are ubiquitous

• These systems are usually based on knowledge

• Reliable but expensive if entered by small number of experts

• Unreliable but cheap if entered by regular users

• Combine approaches to reliably and cheaply collect knowledge
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Overview

• Design and implement a web-based generic recommender platform

• Add mechanisms to collect data from regular users

• Develope techniques to ensure the quality of the collected data

• Efficiently distribute tasks to users to improve the knowledge base

2



Overview

• Design and implement a web-based generic recommender platform

• Add mechanisms to collect data from regular users

• Develope techniques to ensure the quality of the collected data

• Efficiently distribute tasks to users to improve the knowledge base

2



Overview

• Design and implement a web-based generic recommender platform

• Add mechanisms to collect data from regular users

• Develope techniques to ensure the quality of the collected data

• Efficiently distribute tasks to users to improve the knowledge base

2



Overview

• Design and implement a web-based generic recommender platform

• Add mechanisms to collect data from regular users

• Develope techniques to ensure the quality of the collected data

• Efficiently distribute tasks to users to improve the knowledge base

2



Recommender Systems



Recommender Systems

• There are different types of recommender systems

• They all recommend products/items...

• ...but use different techniques to find the best item(s)

• Three types of systems are commonly used
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Content-based Systems

• Collect information about the items (e.g., keywords)

• Find items similar to ones the user liked in the past

• Idea: user preferences do not change

• Advantage: independent of other users
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• Find similar users
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same in the future
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Knowledge-based Systems

• Explicit information about the items and user

• Find items that fulfill the user-given constraints

• Idea: recommendation boils down to a constraint
satisfaction problem

• Advantage: no history of the user is necessary
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A Generic Framework



Web-based Client-Server Model

• Subdivided into frontend and backend

• Backend is based on the Spring Framework (Java)

• Frontend is mobile-friendly HTML5

• Parts are loosely coupled
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Message Passing

Client Server
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Message Format

Message to register a new user

1 {
2 type: "register",
3 content : {
4 username: "michael",
5 password: "12345678",
6 email: "michael.schwarz@noreply.com"
7 }
8 }
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Multiple Frontends

• Loose coupling and easy API allows easy
implementation of new frontends

• Bachelor Thesis: Implementation of a
native iOS client
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Knowledge Acquisition



Acquire Knowledge

• Users do not like lengthy tasks

• Acquire knowledge from the user using small tasks
(microtasks)

• Microtask has only one question

• 6 different types of microtasks
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Microtask #1

Item’s support regarding one specific attribute
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Microtask #2

Best matching item regarding one specific attribute
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Microtask #3

Best matching answer regarding one specific attribute
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Microtask #4

Weighted answers regarding one specific attribute
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Microtask #5

Implicit CAPTCHA
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Microtask #6

Binary decision
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Quality Assurance



Human Score

• Users have to “earn” trust

• Score is influenced by CAPTCHAs, user behavior, etc.

• All contributions of the user are weighted with this
score (0% - 100%)

• New or malicious users have minor to no influence on
the knowledge base
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Ground Truth

• Depending on the human score, users get microtask
with known answers (ground truth)

• Similar to CAPTCHAs, but not seen as such by the user

• Influence the human score (positively and negatively)

• Classify an image, hard to do automatically
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Timing Models

• We model the time it takes to answer a microtask

• Timings are matched using Kullback-Leibler distance

• Answers are weighted according to how well they fit

• Non-matching timings are discarded and decrease the
human score
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Microtask Timings
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Spam

• Users can add new item, we have to cope with spam

• CAPTCHAs only prevent automated spam

• For a new item, we generate verification microtasks

• If the community decides that an item does not belong
to the recommender, it is removed
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Data Collection

• We need knowledge for new items

• Dynamic approach to calculate number of distributed
microtasks

• Loosely based on local working set algorithm for task
scheduling

• Settle on minimum number of microtasks based on
quality of the results
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Evaluation



Study

• We conducted a worldwide study

• Users had to complete microtasks, evaluate items, and
use the recommender

• 1307 users (90.9%) completed all tasks

• Quality assurance led to recommendation
improvement of >20%
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Recommendation Quality Improvement
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Conclusion



Summary

• We developed a generic recommender framework for knowledge-based
recommenders

• We showed that users are willing to contribute through small tasks

• We presented automatic ways to ensure the quality of user content
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Thank you for your attention!
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THE BEST THESIS DEFENSE IS A GOOD THESIS OFFENSE

IN CONCLUSION,



Recommendation Quality Improvement without Ground Truth
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Human Score Calculation Example

Support

User Human Score Answer 1 Answer 2
Answer 1

(weighted)
Answer 2

(weighted)

User 1 1 0.8 0.3 0.8 0.3

User 2 0.5 0.9 0.4 0.45 0.2

User 3 0.5 0.6 0.5 0.3 0.25

User 4 0 0.2 0.7 0 0

Sum 2 2.5 1.9 1.55 0.75

Average - 2.5
4 = 0.625 1.9

4 = 0.475 1.55
2 = 0.775 0.75

2 = 0.375

Table 1: Four different users and their support values for Answer 1 and Answer 2.



Optimal Number of Microtasks Example

# of microtasks Answered Data is good New # of microtasks

Cycle 1 10 4 no 10× 1.5 = 15

Cycle 2 15 11 yes 15× 0.75 = 11

Cycle 3 11 6 yes 11× 0.75 = 8

Cycle 4 8 4 no 8× 1.5 = 12

Goal: 5 answers

Cycle 1 Start with 10 tasks→ not enough, increase to 15

Cycle 2 15 was enough, decrase to 15 · 0.75 = 11 tasks

Cycle 3 11 was enough, decrease to 11 · 0.75 = 6 tasks

Cycle 4 8 was not enough, increase to 8 · 1.5 = 12 tasks
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Worker Distribution



Position of Chosen Item



Recommendation Screen
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