
TU
Graz

Quality Assurance for Human Computation Based

Recommendation

Master Defense Presentation

Michael Schwarz

June 13, 2017

Graz University of Technology

Introduction

Motivation

• Recommender systems are ubiquitous

• These systems are usually based on knowledge

• Reliable but expensive if entered by small number of experts

• Unreliable but cheap if entered by regular users

• Combine approaches to reliably and cheaply collect knowledge

1

Motivation

• Recommender systems are ubiquitous

• These systems are usually based on knowledge

• Reliable but expensive if entered by small number of experts

• Unreliable but cheap if entered by regular users

• Combine approaches to reliably and cheaply collect knowledge

1

Motivation

• Recommender systems are ubiquitous

• These systems are usually based on knowledge

• Reliable but expensive if entered by small number of experts

• Unreliable but cheap if entered by regular users

• Combine approaches to reliably and cheaply collect knowledge

1

Motivation

• Recommender systems are ubiquitous

• These systems are usually based on knowledge

• Reliable but expensive if entered by small number of experts

• Unreliable but cheap if entered by regular users

• Combine approaches to reliably and cheaply collect knowledge

1

Motivation

• Recommender systems are ubiquitous

• These systems are usually based on knowledge

• Reliable but expensive if entered by small number of experts

• Unreliable but cheap if entered by regular users

• Combine approaches to reliably and cheaply collect knowledge

1

Overview

• Design and implement a web-based generic recommender platform

• Add mechanisms to collect data from regular users

• Develope techniques to ensure the quality of the collected data

• Efficiently distribute tasks to users to improve the knowledge base

2

Overview

• Design and implement a web-based generic recommender platform

• Add mechanisms to collect data from regular users

• Develope techniques to ensure the quality of the collected data

• Efficiently distribute tasks to users to improve the knowledge base

2

Overview

• Design and implement a web-based generic recommender platform

• Add mechanisms to collect data from regular users

• Develope techniques to ensure the quality of the collected data

• Efficiently distribute tasks to users to improve the knowledge base

2

Overview

• Design and implement a web-based generic recommender platform

• Add mechanisms to collect data from regular users

• Develope techniques to ensure the quality of the collected data

• Efficiently distribute tasks to users to improve the knowledge base

2

Recommender Systems

Recommender Systems

• There are different types of recommender systems

• They all recommend products/items...

• ...but use different techniques to find the best item(s)

• Three types of systems are commonly used

3

Recommender Systems

• There are different types of recommender systems

• They all recommend products/items...

• ...but use different techniques to find the best item(s)

• Three types of systems are commonly used

3

Recommender Systems

• There are different types of recommender systems

• They all recommend products/items...

• ...but use different techniques to find the best item(s)

• Three types of systems are commonly used

3

Recommender Systems

• There are different types of recommender systems

• They all recommend products/items...

• ...but use different techniques to find the best item(s)

• Three types of systems are commonly used

3

Content-based Systems

• Collect information about the items (e.g., keywords)

• Find items similar to ones the user liked in the past

• Idea: user preferences do not change

• Advantage: independent of other users

4

Content-based Systems

• Collect information about the items (e.g., keywords)

• Find items similar to ones the user liked in the past

• Idea: user preferences do not change

• Advantage: independent of other users

4

Content-based Systems

• Collect information about the items (e.g., keywords)

• Find items similar to ones the user liked in the past

• Idea: user preferences do not change

• Advantage: independent of other users

4

Content-based Systems

• Collect information about the items (e.g., keywords)

• Find items similar to ones the user liked in the past

• Idea: user preferences do not change

• Advantage: independent of other users

4

Collaborative Filtering Systems

• Collect information about the user

• Find similar users

• Idea: people who liked the same things will like the
same in the future

• Advantage: no understanding of the items necessary

5

Collaborative Filtering Systems

• Collect information about the user

• Find similar users

• Idea: people who liked the same things will like the
same in the future

• Advantage: no understanding of the items necessary

5

Collaborative Filtering Systems

• Collect information about the user

• Find similar users

• Idea: people who liked the same things will like the
same in the future

• Advantage: no understanding of the items necessary

5

Collaborative Filtering Systems

• Collect information about the user

• Find similar users

• Idea: people who liked the same things will like the
same in the future

• Advantage: no understanding of the items necessary

5

Knowledge-based Systems

• Explicit information about the items and user

• Find items that fulfill the user-given constraints

• Idea: recommendation boils down to a constraint
satisfaction problem

• Advantage: no history of the user is necessary

6

Knowledge-based Systems

• Explicit information about the items and user

• Find items that fulfill the user-given constraints

• Idea: recommendation boils down to a constraint
satisfaction problem

• Advantage: no history of the user is necessary

6

Knowledge-based Systems

• Explicit information about the items and user

• Find items that fulfill the user-given constraints

• Idea: recommendation boils down to a constraint
satisfaction problem

• Advantage: no history of the user is necessary

6

Knowledge-based Systems

• Explicit information about the items and user

• Find items that fulfill the user-given constraints

• Idea: recommendation boils down to a constraint
satisfaction problem

• Advantage: no history of the user is necessary

6

A Generic Framework

Web-based Client-Server Model

• Subdivided into frontend and backend

• Backend is based on the Spring Framework (Java)

• Frontend is mobile-friendly HTML5

• Parts are loosely coupled

7

Web-based Client-Server Model

• Subdivided into frontend and backend

• Backend is based on the Spring Framework (Java)

• Frontend is mobile-friendly HTML5

• Parts are loosely coupled

7

Web-based Client-Server Model

• Subdivided into frontend and backend

• Backend is based on the Spring Framework (Java)

• Frontend is mobile-friendly HTML5

• Parts are loosely coupled

7

Web-based Client-Server Model

• Subdivided into frontend and backend

• Backend is based on the Spring Framework (Java)

• Frontend is mobile-friendly HTML5

• Parts are loosely coupled

7

Message Passing

Client Server

8

Message Passing

MessageHub
(JavaScript)

MessageHub
(Java)

Client Server

8

Message Passing

MessageHub
(JavaScript)

MessageHub
(Java)

Handler

Handler

Handler

Handler

Handler

Handler

Client Server

8

Message Passing

MessageHub
(JavaScript)

MessageHub
(Java)

Message

type (string)
content (JSON)

Handler

Handler

Handler

Handler

Handler

Handler

Client Server

8

Message Format

Message to register a new user

1 {
2 type: "register",
3 content : {
4 username: "michael",
5 password: "12345678",
6 email: "michael.schwarz@noreply.com"
7 }
8 }

9

Multiple Frontends

• Loose coupling and easy API allows easy
implementation of new frontends

• Bachelor Thesis: Implementation of a
native iOS client

10

Multiple Frontends

• Loose coupling and easy API allows easy
implementation of new frontends

• Bachelor Thesis: Implementation of a
native iOS client

10

Knowledge Acquisition

Acquire Knowledge

• Users do not like lengthy tasks

• Acquire knowledge from the user using small tasks
(microtasks)

• Microtask has only one question

• 6 different types of microtasks

11

Acquire Knowledge

• Users do not like lengthy tasks

• Acquire knowledge from the user using small tasks
(microtasks)

• Microtask has only one question

• 6 different types of microtasks

11

Acquire Knowledge

• Users do not like lengthy tasks

• Acquire knowledge from the user using small tasks
(microtasks)

• Microtask has only one question

• 6 different types of microtasks

11

Acquire Knowledge

• Users do not like lengthy tasks

• Acquire knowledge from the user using small tasks
(microtasks)

• Microtask has only one question

• 6 different types of microtasks

11

Microtask #1

Item’s support regarding one specific attribute

12

Microtask #2

Best matching item regarding one specific attribute

13

Microtask #3

Best matching answer regarding one specific attribute

14

Microtask #4

Weighted answers regarding one specific attribute

15

Microtask #5

Implicit CAPTCHA

16

Microtask #6

Binary decision

17

Quality Assurance

Human Score

• Users have to “earn” trust

• Score is influenced by CAPTCHAs, user behavior, etc.

• All contributions of the user are weighted with this
score (0% - 100%)

• New or malicious users have minor to no influence on
the knowledge base

18

Human Score

• Users have to “earn” trust

• Score is influenced by CAPTCHAs, user behavior, etc.

• All contributions of the user are weighted with this
score (0% - 100%)

• New or malicious users have minor to no influence on
the knowledge base

18

Human Score

• Users have to “earn” trust

• Score is influenced by CAPTCHAs, user behavior, etc.

• All contributions of the user are weighted with this
score (0% - 100%)

• New or malicious users have minor to no influence on
the knowledge base

18

Human Score

• Users have to “earn” trust

• Score is influenced by CAPTCHAs, user behavior, etc.

• All contributions of the user are weighted with this
score (0% - 100%)

• New or malicious users have minor to no influence on
the knowledge base

18

Ground Truth

• Depending on the human score, users get microtask
with known answers (ground truth)

• Similar to CAPTCHAs, but not seen as such by the user

• Influence the human score (positively and negatively)

• Classify an image, hard to do automatically

19

Ground Truth

• Depending on the human score, users get microtask
with known answers (ground truth)

• Similar to CAPTCHAs, but not seen as such by the user

• Influence the human score (positively and negatively)

• Classify an image, hard to do automatically

19

Ground Truth

• Depending on the human score, users get microtask
with known answers (ground truth)

• Similar to CAPTCHAs, but not seen as such by the user

• Influence the human score (positively and negatively)

• Classify an image, hard to do automatically

19

Ground Truth

• Depending on the human score, users get microtask
with known answers (ground truth)

• Similar to CAPTCHAs, but not seen as such by the user

• Influence the human score (positively and negatively)

• Classify an image, hard to do automatically

19

Timing Models

• We model the time it takes to answer a microtask

• Timings are matched using Kullback-Leibler distance

• Answers are weighted according to how well they fit

• Non-matching timings are discarded and decrease the
human score

20

Timing Models

• We model the time it takes to answer a microtask

• Timings are matched using Kullback-Leibler distance

• Answers are weighted according to how well they fit

• Non-matching timings are discarded and decrease the
human score

20

Timing Models

• We model the time it takes to answer a microtask

• Timings are matched using Kullback-Leibler distance

• Answers are weighted according to how well they fit

• Non-matching timings are discarded and decrease the
human score

20

Timing Models

• We model the time it takes to answer a microtask

• Timings are matched using Kullback-Leibler distance

• Answers are weighted according to how well they fit

• Non-matching timings are discarded and decrease the
human score

20

Microtask Timings

21

Spam

• Users can add new item, we have to cope with spam

• CAPTCHAs only prevent automated spam

• For a new item, we generate verification microtasks

• If the community decides that an item does not belong
to the recommender, it is removed

22

Spam

• Users can add new item, we have to cope with spam

• CAPTCHAs only prevent automated spam

• For a new item, we generate verification microtasks

• If the community decides that an item does not belong
to the recommender, it is removed

22

Spam

• Users can add new item, we have to cope with spam

• CAPTCHAs only prevent automated spam

• For a new item, we generate verification microtasks

• If the community decides that an item does not belong
to the recommender, it is removed

22

Spam

• Users can add new item, we have to cope with spam

• CAPTCHAs only prevent automated spam

• For a new item, we generate verification microtasks

• If the community decides that an item does not belong
to the recommender, it is removed

22

Data Collection

• We need knowledge for new items

• Dynamic approach to calculate number of distributed
microtasks

• Loosely based on local working set algorithm for task
scheduling

• Settle on minimum number of microtasks based on
quality of the results

23

Data Collection

• We need knowledge for new items

• Dynamic approach to calculate number of distributed
microtasks

• Loosely based on local working set algorithm for task
scheduling

• Settle on minimum number of microtasks based on
quality of the results

23

Data Collection

• We need knowledge for new items

• Dynamic approach to calculate number of distributed
microtasks

• Loosely based on local working set algorithm for task
scheduling

• Settle on minimum number of microtasks based on
quality of the results

23

Data Collection

• We need knowledge for new items

• Dynamic approach to calculate number of distributed
microtasks

• Loosely based on local working set algorithm for task
scheduling

• Settle on minimum number of microtasks based on
quality of the results

23

Evaluation

Study

• We conducted a worldwide study

• Users had to complete microtasks, evaluate items, and
use the recommender

• 1307 users (90.9%) completed all tasks

• Quality assurance led to recommendation
improvement of >20%

24

Study

• We conducted a worldwide study

• Users had to complete microtasks, evaluate items, and
use the recommender

• 1307 users (90.9%) completed all tasks

• Quality assurance led to recommendation
improvement of >20%

24

Study

• We conducted a worldwide study

• Users had to complete microtasks, evaluate items, and
use the recommender

• 1307 users (90.9%) completed all tasks

• Quality assurance led to recommendation
improvement of >20%

24

Study

• We conducted a worldwide study

• Users had to complete microtasks, evaluate items, and
use the recommender

• 1307 users (90.9%) completed all tasks

• Quality assurance led to recommendation
improvement of >20%

24

Recommendation Quality Improvement

12345678910
−5

0

5

10

15

20

25

Q
A

im
pr

ov
em

en
t o

ve
r r

aw
 d

at
a

in
 %

top n items considered

25

Conclusion

Summary

• We developed a generic recommender framework for knowledge-based
recommenders

• We showed that users are willing to contribute through small tasks

• We presented automatic ways to ensure the quality of user content

26

Summary

• We developed a generic recommender framework for knowledge-based
recommenders

• We showed that users are willing to contribute through small tasks

• We presented automatic ways to ensure the quality of user content

26

Summary

• We developed a generic recommender framework for knowledge-based
recommenders

• We showed that users are willing to contribute through small tasks

• We presented automatic ways to ensure the quality of user content

26

Contribution #1

Human Computation Based Acquisition of Financial Service Advisory
Practices

Alexander Felfernig, Michael Jeran, Martin Stettinger, Thomas Absenger, Thomas Gruber,

Sarah Haas, Emanuel Kirchengast, Michael Schwarz, Lukas Skofitsch, Thomas Ulz

FINREC’15

27

Contribution #2

Peopleviews: Human computation for constraint-based recommendation

Alexander Felfernig, Thomas Ulz, Sarah Haas, Michael Schwarz, Stefan Reiterer, Martin

Stettinger

ACM RecSys 2015 CrowdRec Workshop

28

Contribution #3

Human computation for constraint-based recommenders

Thomas Ulz, Michael Schwarz, Alexander Felfernig, Sarah Haas, Amal Shehadeh, Stefan

Reiterer, Martin Stettinger

Journal of Intelligent Information Systems 2016

29

Contribution #4

A Short Overview of the PeopleViews Mobile User Interface

Angela Promitzer, Alexander Felfernig, Michael Schwarz, Thomas Ulz, Amal Shehadeh,

Sarah Haas

TU Graz Technical Report 2016

30

Thank you for your attention!

30

THE BEST THESIS DEFENSE IS A GOOD THESIS OFFENSE

IN CONCLUSION,

Recommendation Quality Improvement without Ground Truth

12345678910
−5

0

5

10

15

20

25

Q
A

 im
pr

ov
em

en
t o

ve
r

ra
w

 d
at

a
in

 %

top n items considered

Human Score Calculation Example

Support

User Human Score Answer 1 Answer 2
Answer 1

(weighted)
Answer 2

(weighted)

User 1 1 0.8 0.3 0.8 0.3

User 2 0.5 0.9 0.4 0.45 0.2

User 3 0.5 0.6 0.5 0.3 0.25

User 4 0 0.2 0.7 0 0

Sum 2 2.5 1.9 1.55 0.75

Average - 2.5
4 = 0.625 1.9

4 = 0.475 1.55
2 = 0.775 0.75

2 = 0.375

Table 1: Four different users and their support values for Answer 1 and Answer 2.

Optimal Number of Microtasks Example

of microtasks Answered Data is good New # of microtasks

Cycle 1 10 4 no 10× 1.5 = 15

Cycle 2 15 11 yes 15× 0.75 = 11

Cycle 3 11 6 yes 11× 0.75 = 8

Cycle 4 8 4 no 8× 1.5 = 12

Goal: 5 answers

Cycle 1 Start with 10 tasks→ not enough, increase to 15

Cycle 2 15 was enough, decrase to 15 · 0.75 = 11 tasks

Cycle 3 11 was enough, decrease to 11 · 0.75 = 6 tasks

Cycle 4 8 was not enough, increase to 8 · 1.5 = 12 tasks

Optimal Number of Microtasks Example

of microtasks Answered Data is good New # of microtasks

Cycle 1 10 4 no 10× 1.5 = 15

Cycle 2 15 11 yes 15× 0.75 = 11

Cycle 3 11 6 yes 11× 0.75 = 8

Cycle 4 8 4 no 8× 1.5 = 12

Goal: 5 answers

Cycle 1 Start with 10 tasks→ not enough, increase to 15

Cycle 2 15 was enough, decrase to 15 · 0.75 = 11 tasks

Cycle 3 11 was enough, decrease to 11 · 0.75 = 6 tasks

Cycle 4 8 was not enough, increase to 8 · 1.5 = 12 tasks

Optimal Number of Microtasks Example

of microtasks Answered Data is good New # of microtasks

Cycle 1 10 4 no 10× 1.5 = 15

Cycle 2 15 11 yes 15× 0.75 = 11

Cycle 3 11 6 yes 11× 0.75 = 8

Cycle 4 8 4 no 8× 1.5 = 12

Goal: 5 answers

Cycle 1 Start with 10 tasks→ not enough, increase to 15

Cycle 2 15 was enough, decrase to 15 · 0.75 = 11 tasks

Cycle 3 11 was enough, decrease to 11 · 0.75 = 6 tasks

Cycle 4 8 was not enough, increase to 8 · 1.5 = 12 tasks

Optimal Number of Microtasks Example

of microtasks Answered Data is good New # of microtasks

Cycle 1 10 4 no 10× 1.5 = 15

Cycle 2 15 11 yes 15× 0.75 = 11

Cycle 3 11 6 yes 11× 0.75 = 8

Cycle 4 8 4 no 8× 1.5 = 12

Goal: 5 answers

Cycle 1 Start with 10 tasks→ not enough, increase to 15

Cycle 2 15 was enough, decrase to 15 · 0.75 = 11 tasks

Cycle 3 11 was enough, decrease to 11 · 0.75 = 6 tasks

Cycle 4 8 was not enough, increase to 8 · 1.5 = 12 tasks

Worker Distribution

Position of Chosen Item

Recommendation Screen

	Introduction
	Recommender Systems
	A Generic Framework
	Knowledge Acquisition
	Quality Assurance
	Evaluation
	Conclusion
	Appendix

