

Quality Assurance for Human Computation Based Recommendation

Master Defense Presentation

Michael Schwarz

June 13, 2017

Graz University of Technology

Introduction

• Recommender systems are ubiquitous

- Recommender systems are ubiquitous
- These systems are usually based on knowledge

- Recommender systems are ubiquitous
- These systems are usually based on knowledge
- Reliable but expensive if entered by small number of experts

- Recommender systems are ubiquitous
- These systems are usually based on knowledge
- Reliable but expensive if entered by small number of experts
- Unreliable but cheap if entered by regular users

- Recommender systems are ubiquitous
- These systems are usually based on knowledge
- Reliable but expensive if entered by small number of experts
- Unreliable but cheap if entered by regular users
- Combine approaches to reliably and cheaply collect knowledge

• Design and implement a web-based generic recommender platform

- Design and implement a web-based generic recommender platform
- · Add mechanisms to collect data from regular users

- Design and implement a web-based generic recommender platform
- Add mechanisms to collect data from regular users
- Develope techniques to ensure the quality of the collected data

- Design and implement a web-based generic recommender platform
- Add mechanisms to collect data from regular users
- Develope techniques to ensure the quality of the collected data
- Efficiently distribute tasks to users to improve the knowledge base

Recommender Systems

• There are different types of recommender systems

- There are different types of recommender systems
- They all recommend products/items...

- There are different types of recommender systems
- They all recommend products/items...
- ...but use different techniques to find the best item(s)

- There are different types of recommender systems
- They all recommend products/items...
- ...but use different techniques to find the best item(s)
- Three types of systems are commonly used

• Collect information about the items (e.g., keywords)

- Collect information about the items (e.g., keywords)
- Find items similar to ones the user liked in the past

- Collect information about the items (e.g., keywords)
- Find items similar to ones the user liked in the past
- Idea: user preferences do not change

- Collect information about the items (e.g., keywords)
- Find items similar to ones the user liked in the past
- Idea: user preferences do not change
- Advantage: independent of other users

Collect information about the user

- Collect information about the user
- Find similar users

- Collect information about the user
- Find similar users
- Idea: people who liked the same things will like the same in the future

- Collect information about the user
- Find similar users
- Idea: people who liked the same things will like the same in the future
- Advantage: no understanding of the items necessary

• Explicit information about the items and user

- Explicit information about the items and user
- Find items that fulfill the user-given constraints

- Explicit information about the items and user
- Find items that fulfill the user-given constraints
- Idea: recommendation boils down to a constraint satisfaction problem

- Explicit information about the items and user
- Find items that fulfill the user-given constraints
- Idea: recommendation boils down to a constraint satisfaction problem
- Advantage: no history of the user is necessary

A Generic Framework

• Subdivided into frontend and backend

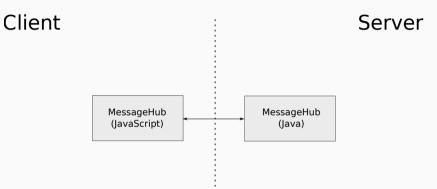
- Subdivided into frontend and backend
- Backend is based on the Spring Framework (Java)

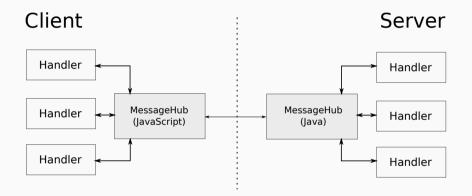
- Subdivided into frontend and backend
- Backend is based on the Spring Framework (Java)
- Frontend is mobile-friendly HTML5

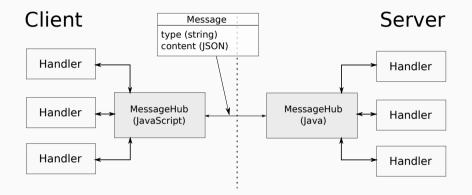
- Subdivided into frontend and backend
- Backend is based on the Spring Framework (Java)
- Frontend is mobile-friendly HTML5
- Parts are loosely coupled

Client

Server







Message to register a new user

```
1 {
2 type: "register",
3 content : {
4 username: "michael",
5 password: "12345678",
6 email: "michael.schwarz@noreply.com"
7 }
8 }
```

• Loose coupling and easy API allows easy implementation of new frontends

- Loose coupling and easy API allows easy implementation of new frontends
- Bachelor Thesis: Implementation of a native iOS client

Carrier 🗢	7:43 PM	-
< Berlin	Evaluate	Save
Be	erlin	
	rlin is the capital of Germa pulation of 3.5 million peop	
What is the gen	neral price level in this city?	
expensive		
—		
inexpensive	e	
	0	
moderate		
O -	-0	
overpriced		
O -		
When is the bes	st time to visit this city?	
What are the po city?	pints of interest worth visiti	ng in this
What are the ac	ctivities worth doing in this	city?
	Ŭ	,
What is the leve	el of security in this city?	
Who speaks En	glish in this city?	

Knowledge Acquisition

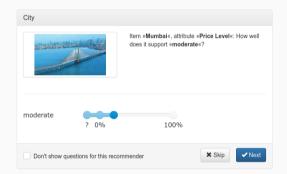
• Users do not like lengthy tasks

- Users do not like lengthy tasks
- Acquire knowledge from the user using small tasks (microtasks)

- Users do not like lengthy tasks
- Acquire knowledge from the user using small tasks (microtasks)
- Microtask has only one question

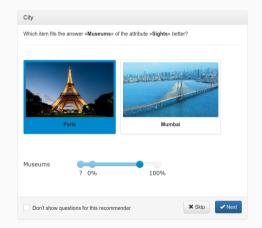
- Users do not like lengthy tasks
- Acquire knowledge from the user using small tasks (microtasks)
- Microtask has only one question
- 6 different types of microtasks

Item's support regarding one specific attribute

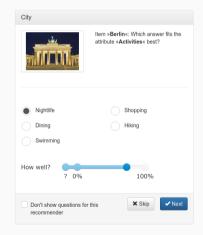


Microtask #2

Best matching item regarding one specific attribute

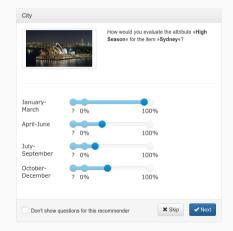


Best matching answer regarding one specific attribute

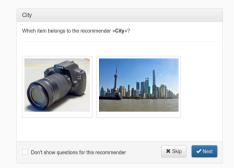


Microtask #4

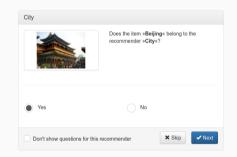
Weighted answers regarding one specific attribute



Implicit CAPTCHA



Binary decision



Quality Assurance

• Users have to "earn" trust

- Users have to "earn" trust
- Score is influenced by CAPTCHAs, user behavior, etc.

- Users have to "earn" trust
- Score is influenced by CAPTCHAs, user behavior, etc.
- All contributions of the user are weighted with this score (0 % 100 %)

- Users have to "earn" trust
- Score is influenced by CAPTCHAs, user behavior, etc.
- All contributions of the user are weighted with this score (0 % 100 %)
- New or malicious users have minor to no influence on the knowledge base

• Depending on the human score, users get microtask with known answers (ground truth)

- Depending on the human score, users get microtask with known answers (ground truth)
- Similar to CAPTCHAs, but not seen as such by the user

- Depending on the human score, users get microtask with known answers (ground truth)
- Similar to CAPTCHAs, but not seen as such by the user
- Influence the human score (positively and negatively)

- Depending on the human score, users get microtask with known answers (ground truth)
- Similar to CAPTCHAs, but not seen as such by the user
- Influence the human score (positively and negatively)
- Classify an image, hard to do automatically

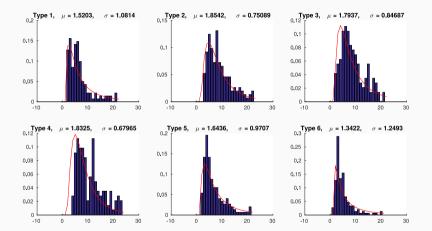
• We model the time it takes to answer a microtask

- We model the time it takes to answer a microtask
- Timings are matched using Kullback-Leibler distance

- We model the time it takes to answer a microtask
- Timings are matched using Kullback-Leibler distance
- Answers are weighted according to how well they fit

- We model the time it takes to answer a microtask
- Timings are matched using Kullback-Leibler distance
- Answers are weighted according to how well they fit
- Non-matching timings are discarded and decrease the human score

Microtask Timings



• Users can add new item, we have to cope with spam

- Users can add new item, we have to cope with spam
- CAPTCHAs only prevent automated spam

- Users can add new item, we have to cope with spam
- CAPTCHAs only prevent automated spam
- For a new item, we generate verification microtasks

- Users can add new item, we have to cope with spam
- CAPTCHAs only prevent automated spam
- For a new item, we generate verification microtasks
- If the community decides that an item does not belong to the recommender, it is removed

• We need knowledge for new items

- We need knowledge for new items
- Dynamic approach to calculate number of distributed microtasks

- We need knowledge for new items
- Dynamic approach to calculate number of distributed microtasks
- Loosely based on local working set algorithm for task scheduling

- We need knowledge for new items
- Dynamic approach to calculate number of distributed microtasks
- Loosely based on local working set algorithm for task scheduling
- Settle on minimum number of microtasks based on quality of the results

Evaluation

• We conducted a worldwide study

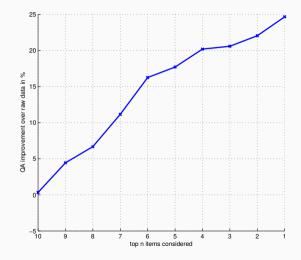
- We conducted a worldwide study
- Users had to complete microtasks, evaluate items, and use the recommender

Study

- We conducted a worldwide study
- Users had to complete microtasks, evaluate items, and use the recommender
- 1307 users (90.9%) completed all tasks

- We conducted a worldwide study
- Users had to complete microtasks, evaluate items, and use the recommender
- + 1307 users (90.9 %) completed all tasks
- Quality assurance led to recommendation improvement of >20 %

Recommendation Quality Improvement



Conclusion

• We developed a generic recommender framework for knowledge-based recommenders

- We developed a generic recommender framework for knowledge-based recommenders
- We showed that users are willing to contribute through small tasks

- We developed a generic recommender framework for knowledge-based recommenders
- We showed that users are willing to contribute through small tasks
- We presented automatic ways to ensure the quality of user content

Human Computation Based Acquisition of Financial Service Advisory Practices

Alexander Felfernig, Michael Jeran, Martin Stettinger, Thomas Absenger, Thomas Gruber, Sarah Haas, Emanuel Kirchengast, <u>Michael Schwarz</u>, Lukas Skofitsch, Thomas Ulz FINREC'15

Peopleviews: Human computation for constraint-based recommendation

Alexander Felfernig, Thomas Ulz, Sarah Haas, <u>Michael Schwarz</u>, Stefan Reiterer, Martin Stettinger

ACM RecSys 2015 CrowdRec Workshop

Human computation for constraint-based recommenders

Thomas Ulz, <u>Michael Schwarz</u>, Alexander Felfernig, Sarah Haas, Amal Shehadeh, Stefan Reiterer, Martin Stettinger

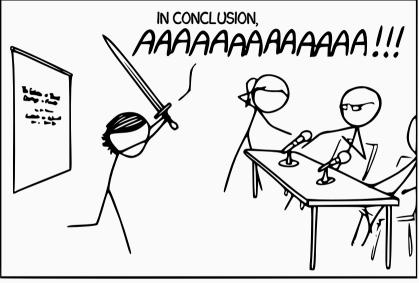
Journal of Intelligent Information Systems 2016

A Short Overview of the PeopleViews Mobile User Interface

Angela Promitzer, Alexander Felfernig, <u>Michael Schwarz</u>, Thomas Ulz, Amal Shehadeh, Sarah Haas

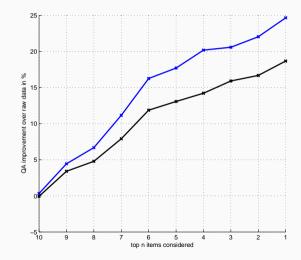
TU Graz Technical Report 2016

Thank you for your attention!



THE BEST THESIS DEFENSE IS A GOOD THESIS OFFENSE

Recommendation Quality Improvement without Ground Truth



		Support			
User	Human Score	Answer 1	Answer 2	Answer 1 (weighted)	Answer 2 (weighted)
User 1	1	0.8	0.3	0.8	0.3
User 2	0.5	0.9	0.4	0.45	0.2
User 3	0.5	0.6	0.5	0.3	0.25
User 4	0	0.2	0.7	0	0
Sum	2	2.5	1.9	1.55	0.75
Average	-	$\frac{2.5}{4} = 0.625$	$\frac{1.9}{4} = 0.475$	$\frac{1.55}{2} = 0.775$	$\frac{0.75}{2} = 0.375$

Table 1: Four different users and their support values for Answer 1 and Answer 2.

	# of microtasks	Answered	Data is good	New # of microtasks
Cycle 1	10	4	no	10 imes 1.5 = 15

Goal: 5 answers

Cycle 1 Start with 10 tasks \rightarrow not enough, increase to 15

	# of microtasks	Answered	Data is good	New # of microtasks
Cycle 1	10	4	no	$10 \times 1.5 = 15$
Cycle 2	15	11	yes	$15 \times 0.75 = 11$

Goal: 5 answers

Cycle 1 Start with 10 tasks \rightarrow not enough, increase to 15 **Cycle 2** 15 was enough, decrase to $15 \cdot 0.75 = 11$ tasks

	# of microtasks	Answered	Data is good	New # of microtasks
Cycle 1	10	4	no	10 imes 1.5 = 15
Cycle 2	15	11	yes	15 imes 0.75 = 11
Cycle 3	11	6	yes	11 imes 0.75=8

Goal: 5 answers

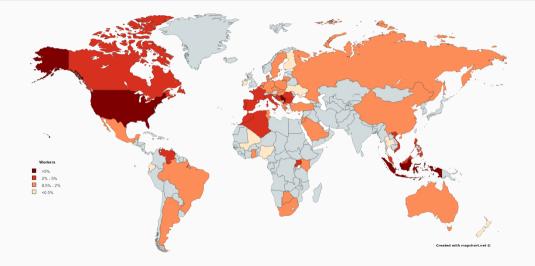
Cycle 1 Start with 10 tasks \rightarrow not enough, increase to 15 **Cycle 2** 15 was enough, decrase to $15 \cdot 0.75 = 11$ tasks **Cycle 3** 11 was enough, decrease to $11 \cdot 0.75 = 6$ tasks

	# of microtasks	Answered	Data is good	New # of microtasks
Cycle 1	10	4	no	10 imes 1.5 = 15
Cycle 2	15	11	yes	15 imes 0.75 = 11
Cycle 3	11	6	yes	11 imes 0.75=8
Cycle 4	8	4	no	8 imes 1.5 = 12

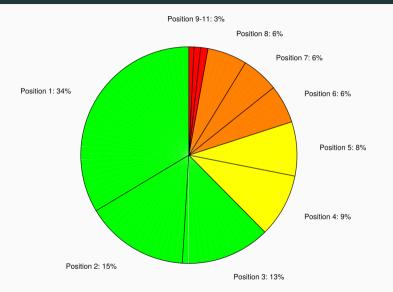
Goal: 5 answers

Cycle 1 Start with 10 tasks \rightarrow not enough, increase to 15 **Cycle 2** 15 was enough, decrase to $15 \cdot 0.75 = 11$ tasks **Cycle 3** 11 was enough, decrease to $11 \cdot 0.75 = 6$ tasks **Cycle 4** 8 was not enough, increase to $8 \cdot 1.5 = 12$ tasks

Worker Distribution



Position of Chosen Item



Recommendation Screen

