RISCovER: Automatic Discovery of User-exploitable Architectural

Security Vulnerabilities in Closed-Source RISC-V CPUs

Fabian Thomas
fabian.thomas@cispa.de
CISPA Helmbholtz Center for
Information Security
Saarbriicken, Saarland, Germany

Daniel Weber
daniel. weber@cispa.de
CISPA Helmholtz Center for
Information Security
Saarbriicken, Saarland, Germany

Eric Garcia Arribas
eric.garcia-arribas@cispa.de
CISPA Helmholtz Center for

Information Security
Saarbriicken, Saarland, Germany

Lukas Gerlach
lukas.gerlach@cispa.de
CISPA Helmholtz Center for
Information Security
Saarbriicken, Saarland, Germany

Michael Schwarz
michael.schwarz@cispa.de
CISPA Helmbholtz Center for
Information Security
Saarbriicken, Saarland, Germany

Lorenz Hetterich
lorenz.hetterich@cispa.de
CISPA Helmbholtz Center for
Information Security
Saarbriicken, Saarland, Germany

Ruiyi Zhang
ruiyi.zhang@cispa.de
CISPA Helmbholtz Center for
Information Security
Saarbriicken, Saarland, Germany

Abstract

The open and extensible RISC-V instruction set has enabled many
new CPU vendors and implementations, but most commercial CPUs
are closed-source, significantly hindering vulnerability analysis—
especially for bugs exploitable from unprivileged user space.

We present RISCOVER, a user-space framework for detecting
architectural vulnerabilities in closed-source RISC-V CPUs. It com-
pares instruction-sequence behavior across CPUs, identifying de-
viations without source code, hardware changes, or models, and
achieving orders-of-magnitude speedups over RTL-based methods.
Unlike prior work, RISCOVER runs user code on Linux directly
on real hardware, exposing vulnerabilities exploitable by unprivi-
leged attackers. Evaluated on 8 off-the-shelf CPUs from 3 different
vendors, it uncovers 4 previously unknown vulnerabilities.

Notably, GhostWrite lets unprivileged code write chosen bytes to
physical memory, enabling arbitrary data leakage and full machine-
mode execution, while 3 unprivileged “halt-and-catch-fire” bugs
halt CPUs and misaligned zero-stores silently corrupt data. Our re-
sults highlight the pressing need for post-silicon fuzzing techniques.
RISCovER complements existing RTL-level fuzzers by enabling
rapid and automated security analysis of closed-source CPUs.

CCS Concepts

« Security and privacy — Systems security.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’25, Taipei, Taiwan

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1525-9/2025/10

https://doi.org/10.1145/3719027.3765141

Keywords
CPU Fuzzing; RISC-V; Architectural CPU Vulnerabilities

ACM Reference Format:

Fabian Thomas, Eric Garcia Arribas, Lorenz Hetterich, Daniel Weber, Lukas
Gerlach, Ruiyi Zhang, and Michael Schwarz. 2025. RISCOVER: Automatic Dis-
covery of User-exploitable Architectural Security Vulnerabilities in Closed-
Source RISC-V CPUs. In Proceedings of the 2025 ACM SIGSAC Conference
on Computer and Communications Security (CCS °25), October 13-17, 2025,
Taipei, Taiwan. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3719027.3765141

1 Introduction

RISC-V is still a young instruction set architecture (ISA). While
the first CPUs were mainly soft cores designed for emulators and
FPGAs [6, 12], there are now several hardware cores available on
the market [62, 63, 68, 70, 71]. These cores are already used in lap-
tops [66, 81], servers [56, 60], workstations [46], mobile phones [65],
cars [37], and gaming consoles [66]. T-Head reports that more than 4
billion of their CPUs have been sold [40]. The available CPUs imple-
ment the base ISA and typically additional ratified extensions, such
as compressed instructions or floating-point support [20-22, 79].
Ongoing work focuses on thoroughly testing these extensions to
ensure CPUs implement them correctly [24]. However, RISC-V also
supports vendor-specific custom extensions, such as the T-Head
XuanTie extensions (XTheadMemIdx, XTheadVec), which are sup-
ported by major compilers [26].

Unfortunately, most high-end cores, such as the T-Head XuanTie
C908 and €920, SiFive U74 and P550, or SpacemiT X60, lack publicly
available source code. Thus, previous approaches focusing on find-
ing vulnerabilities at the register-transfer level (RTL) [34, 39, 67]
are not applicable for researchers or third parties. Prior work often
concentrates on functional correctness rather than user-exploitable
security issues and requires hours to days to identify problems.

https://orcid.org/0009-0008-8029-0621
https://orcid.org/0009-0003-1608-0957
https://orcid.org/0009-0007-1201-0299
https://orcid.org/0009-0008-0213-5773
https://orcid.org/0009-0002-6684-2035
https://orcid.org/0009-0007-9094-6412
https://orcid.org/0000-0001-6744-3410
https://doi.org/10.1145/3719027.3765141
https://doi.org/10.1145/3719027.3765141
https://doi.org/10.1145/3719027.3765141

CCS 25, October 13-17, 2025, Taipei, Taiwan

Many of these problems can only be triggered from machine or
supervisor mode and are not relevant for the security of shared
systems, such as the cloud or mobile devices. In contrast, running in
user mode acts as an automated filter for bugs exploitable by unpriv-
ileged users. Moreover, RTL-fuzzing typically uses minimal SoCs,
e.g., without DRAM [34, 39, 67], missing vulnerabilities that arise
from interactions of system components. The required analysis
time further increases with CPU complexity, as simulation requires
more resources. Additionally, a recent study from Bolcskei et al. [8]
shows that structural coverage-based fuzzers are outperformed by
black-box fuzzers in bug discovery speed.
In this paper, we ask the following research question:

Can we automatically and efficiently discover architectural CPU
vulnerabilities which are triggerable from user space on closed-source
RISC-V CPUs across different vendors?

To answer this question, we present our proof-of-concept tool
RISCovER (RISC-V vulnerability discovery), a differential CPU fuzz-
ing framework that operates from user space to analyze RISC-V
CPUs for architectural security vulnerabilities. RISCOVER exploits
the inherent property of a well-defined ISA that the architectural
result of every deterministic instruction must be the same across
different CPUs if supported. RISCOVER crafts and executes unprivi-
leged instruction sequences on different RISC-V CPUs from Linux
user space. Any deviation from the majority vote concerning the
output or side effect, i.e., system crash, is reported as a potentially
misbehaving sequence. As we cannot run bare-metal code or per-
form hardware resets from user space, RISCOVER requires a custom
sandbox that safely executes instruction sequences and captures
exceptions. RISCOVER works on any system with Linux, making it
versatile and easily deployable.

The reported sequences are inspected to determine if they rep-
resent vulnerabilities. For example, denial-of-service attacks are
considered medium-severity [1-4] when executable from user space.
Sequences can be as simple as single instructions to complex chains
of thousands [67]. We rely on fast, short, weighted random se-
quences, biasing instructions toward rarely used ones based on our
analysis of real-world RISC-V binaries. Due to RISCOVER’s design
and applicability to hardware cores, it executes up to 59 205 instruc-
tions per second on a single CPU core. This allows RISCOVER to find
bugs and vulnerabilities within seconds to minutes, significantly out-
performing existing methods requiring hours to days. In addition
to new bugs, we rediscover 22 bugs found by previous work.

We evaluate RISCOVER on 8 RISC-V CPUs from 3 vendors: T-
Head XuanTie C906/C908/C910/C920, SiFive U54/U74/P550, and
SpacemiT X60. This test set consists of all currently consumer-
available RISC-V CPUs running a 64-bit Linux operating system. Ad-
ditionally, we evaluate RISCOVER on 4 emulators. In total, RISCOVER
discovers 4 architectural vulnerabilities and numerous bugs. No-
tably, RISCoVER discovers GhostWrite, an unprivileged instruction
sequence on the C910 and C920 that allows a user-space attacker
to write controlled bytes to chosen physical memory locations, in-
cluding attached devices. The other 3 flaws belong to the class
of “halt-and-catch-fire” CPU vulnerabilities [15], enabling unpriv-
ileged denial-of-service attacks, one each on the C906, C908, and
X60. RISCoVER also discovers a firmware bug in the M-mode code
of the BeagleV Fire (SiFive U54) that makes misaligned zero-stores

Thomas et al.

not write 0 but —1, leading to silent data corruption. For the C906
and C910 (the only cores with source availability), we verify that
the state-of-the-art RTL fuzzer Cascade [67] does not find them by
design, as the vulnerability is either not in the published source or
outside its sequence generation. In contrast, RISCOVER rediscovers
22 out of 23 bugs that Cascade found in softcores [67]. Additionally,
we discover many other architectural bugs in CPUs and emula-
tors, most within seconds of fuzzing. These include undocumented
instructions, address-handling bugs, decoder bugs, ISA incompati-
bilities, fault-reporting issues, and segmentation faults in QEMU.

We demonstrate the security impact of our findings by building
an end-to-end attack with GhostWrite that lets unprivileged users
read and write arbitrary memory, including machine-mode code
and devices mapped via MMIO. We demonstrate that this vulnera-
bility can also be exploited by unprivileged users in the cloud by
showing it on Scaleway TH1520 instances. For the instructions that
halt the CPU, we show that they can be used by any unprivileged
application and also work from inside Docker containers.

Our results provide insights into the current state of hardware
RISC-V CPUs. Vendor extensions can easily lead to bugs and ex-
ploitable vulnerabilities, likely as existing stress tests only focus
on the ratified ISA [24] and valid instruction encodings [14]. An
additional insight is that even for open-source cores, such as the
(910, the hardware implementation differs from the released source.
We emphasize that our approach is orthogonal to RTL fuzzing,
covering scenarios RTL fuzzing cannot. While pre-silicon verifi-
cation methods and formal analysis remain essential, recent vul-
nerabilities (e.g., Zenbleed [53], Reptar [52], £PICLeak [10], or
CacheWarp [83]) in mature CPUs from Intel and AMD underscore
the necessity for robust post-silicon fuzzing. Even if the source
code is available, RISCOvER might find bugs introduced by the syn-
thesis, which are therefore invisible in the RTL. Hence, we argue
that post-silicon fuzzing is a valuable complement to existing pre-
silicon fuzzers [34, 39, 57, 67]. Another insight is that the simplicity
of RISC-V does not prevent bugs but prevents mitigating them, as
done in x86 CPUs using microcode updates [9, 48, 52, 55, 83].
Contributions. We summarize our contributions as follows.

o We present RISCOVER, a user-space differential CPU-fuzzing
framework for finding architectural CPU vulnerabilities on
closed-source RISC-V CPUs.

e We automatically test 8 consumer CPUs across 3 vendors
and discover 4 new user-space-triggerable vulnerabilities—
including a physical memory write primitive (GhostWrite)
and 3 denial-of-service sequences.

e We additionally discover numerous architectural bugs and
undocumented instructions with unclear security impact.

e We demonstrate full system compromise via physical mem-
ory writes and privileged code execution, even in the cloud.

Responsible Disclosure. We reported all the security-critical
vulnerabilities to the manufacturers, i.e., T-Head, SpacemiT, Beagle-
Board, SiFive and QEMU. GhostWrite is tracked as CVE-2024-44067
and is mitigated in Linux from version 6.14 onward by disabling the
vector extension. We also reported GhostWrite to Scaleway since
they offer C910-based bare-metal machines in the cloud. Scaleway
provided instructions to customers for manually rolling out kernel
patches that disable the vector extension, mitigating GhostWrite.
Availability. https://github.com/cispa/RISCover-artifacts.

https://nvd.nist.gov/vuln/detail/CVE-2024-44067
https://github.com/cispa/RISCover-artifacts

RISCovER: Automatic Discovery of User-exploitable Architectural Security Vulnerabilities in Closed-Source RISC-V CPUs

2 Background

This section covers the relevant background required for the re-
mainder of the paper. We introduce the RISC-V instruction set
architecture alongside some of its core features. We discuss CPU
vulnerabilities and how fuzzing can be used to find them.

2.1 RISC-V

RISC-V is an open instruction set architecture (ISA) consisting
of a mandatory core instruction set and optional extensions [77,
78]. An example of an extension is the vector extension [21] that
is implemented in the T-Head XuanTie C908 and SpacemiT X60.
In addition, vendor-specific extensions extend RISC-V cores with
additional functionality [20, 27, 72].

Privilege Levels. RISC-V has three privilege levels: User (U) for
unprivileged applications, Supervisor (S) for operating systems, and
Machine (M) for full hardware control and low-level operations [78].
While only M is required to be implemented, most non-embedded
RISC-V CPUs implement all three privilege levels. Access to Control
and Status Registers (CSRs) and privileged instructions is limited
depending on the current privilege level.

2.2 CPU Vulnerabilities

While software-based side-channel attacks have been known for
decades [42], recent years revealed more critical CPU vulnerabili-
ties [41, 44, 52, 53]. The first major class were transient execution
attacks [11, 41, 44], such as Meltdown [44] and Spectre [41]. These
exploit CPU optimizations like out-of-order and speculative exe-
cution to leak data across boundaries such as user/kernel space or
even virtual machines [11, 41, 44, 75]. However, they remain limited
to read primitives, as they follow the architectural specification but
leave microarchitectural traces.

In contrast, architectural bugs are mismatches between CPU
specification and implementation. For example, the Pentium FOOF
bug let unprivileged users lock systems via an invalid instruc-
tion [15]. More recently, several CPU bugs caused denial of ser-
vice [1-4] or even direct data leakage [10, 52, 53, 83]. Unlike tran-
sient execution, architectural bugs often allow reliable exploitation
primitives with severe impact [10, 53, 83].

2.3 CPU Fuzzing

Fuzzing tests hardware or software with random inputs to thor-
oughly check for unexpected behavior. While fuzzing cannot prove
the complete absence of bugs, it is highly effective in quickly find-
ing them [34, 39, 67]. Differential fuzzing [45] compares multiple
implementations of the same specification, flagging divergences as
potential bugs without requiring any golden model.

With the rise of severe CPU vulnerabilities, fuzzing has been
applied both pre-silicon [16, 34, 39, 67] and post-silicon [47, 50, 80].
Many works have targeted transient execution attacks [13, 16, 28,
30, 33, 47, 50, 51, 73, 74], while fewer efforts focus on architectural
vulnerabilities [34, 39, 67]. Most approaches are pre-silicon, but
Bolcskei et al. [8] show that structural-coverage fuzzers can be
slower than black-box fuzzers. This motivates further exploration
of black-box post-silicon fuzzers, especially as few exist for archi-
tectural vulnerabilities and mostly on x86 [52, 53].

CCS 25, October 13-17, 2025, Taipei, Taiwan

3 Methodology

This section outlines our overall methodology. Section 3.1 presents
the main idea, Section 3.2 challenges, and Section 3.3 the fuzzing
targets. Implementation details are provided in Section 4.

3.1 Idea

We exploit the property of the ISA that the architectural result
of every supported instruction has to be the same across different
CPUs. Consequently, this also applies to instruction sequences. Thus,
we consider any architectural effect that differs between CPUs an
instruction anomaly that needs investigation, excluding instructions
only supported on one CPU. These instruction anomalies are likely
due to a bug or, worse, a security vulnerability in the CPU.

Further, we restrict testing to user space, which acts as an auto-
mated filter for finding security-critical bugs in contrast to generic
bugs. For example, denial-of-service vulnerabilities in M- or S-mode
have limited impact as they are not part of typical threat models,
while bugs triggerable from user space can be a significant threat.
Moreover, the client can run sandboxed, e.g., in a container or an
Android app, making it applicable to many devices.

The main advantage of this approach compared to previous CPU
fuzzers searching for architectural bugs [34, 39, 67] is that we re-
quire neither source code, golden models, nor privileged execution.
Thus, this approach can automatically find user-triggerable security
vulnerabilities on closed-source CPUs, such as the T-Head C908 or
SpacemiT X60. Moreover, running code on hardware CPUs is faster
than emulating them, especially with increasingly complex CPUs.

As we cannot exhaustively test all instruction sequences, we
select instructions randomly with a probability biased by the inverse
frequency of it appearing in real-world code. In other words, our
focus is more on instructions that are not used frequently. We show
that this “weighted randomness” is fast and highly effective in
finding new and re-discovering known vulnerabilities.

3.2 Challenges

While the idea of differential CPU testing is intuitive, we identify
challenges in both design and implementation that arise from our
two main properties: finding security vulnerabilities triggerable
from user space, and analyzing CPUs without available source code.
Conceptually, there are the following 3 main challenges:

C1: Sequence Generation. The first challenge is generating in-
struction sequences that are effective at finding “interesting” effects.
In contrast to RTL fuzzers, we do not have feedback for coverage
and thus have to rely on the number of bugs and time-to-bug as
metrics for evaluating the quality of our instruction sequences.
Moreover, we want to discover vulnerabilities stemming from un-
documented instructions and can thus not fully rely on golden
models as previous work [34, 39, 59, 67]. With a large search space
for instruction sequences, we have to find a trade-off between cov-
erage of the encoding space and the number of tested instructions.
In Section 4.3.1, we describe how RISCOVER solves that challenge
by using a bottom-up approach to gradually increase the search
space using instruction types inferred from instruction encodings,
combined with a weighted random selection of instructions based
on instruction frequency of real-world code.

CCS 25, October 13-17, 2025, Taipei, Taiwan

C2: Non-deterministic Effects. Comparing the architectural ef-
fects of instructions requires that these effects only depend on
factors we can control, e.g., memory and register content. In con-
trast to RTL fuzzers that can modify, reset, and control the CPU
source code, we do not have this amount of control over the CPU
and its microarchitectural state. Some instructions provide internal
values of the CPU, such as performance counters. These values
often depend on the CPU state and previous instructions executed
on the core and can thus not be controlled. Moreover, as an entire
operating system is running on the CPU, we cannot easily modify
all architectural state to our liking, e.g., create arbitrary memory
mappings. Finally, memory reads from certain addresses, such as
Linux vDSO [25] return values that are out of the control of the
testing framework. All these cases have to be considered to avoid
false positives, i.e., reporting different behavior across CPUs even
though the differences are not introduced by the tested instruc-
tion sequence. In Section 4.2.1, we describe how we prevent the
reporting of non-deterministic effects by minimizing the sources
of non-determinism and automatically filtering the results of the
remaining non-deterministic instructions.

C3: Test-framework Integrity. The test framework has to record
the architectural effects of instruction sequences. Thus, from a
high-level perspective, the architectural state, such as register and
memory content, must be saved before and after executing the
sequence. RTL fuzzers can directly retrieve this state from the
emulator or add custom instructions to store this state [67], which
is not possible for CPUs without source code. As RISCOVER runs
purely in user space, it has to handle all corner cases that would
change the saved architectural state or the internal state of the test
framework, e.g., control-flow changes or stack manipulations. We
describe the implementation details of this approach in Section 4.2.2.

3.3 Fuzzing Targets

We test all widespread commercially available 64-bit RISC-V cores
that support booting a Linux distribution. At the time of writing,
there are 3 manufacturers of silicon RISC-V CPUs—SiFive, SpacemiT,
and T-Head Semiconductors. We test on 3 SiFive (U54, U74, and
P550), 1 SpacemiT (X60) and 4 T-Head (C906, C908, C910, and C920)
CPU models. Tested CPUs are mounted on single-board computers
(U54, U74, C906, C908, C910), a laptop (X60), workstations (C920 and
P550), or a cloud server (C910). All targets run Linux distributions—
primarily Ubuntu or Debian.

All tested cores support at least the base ISA, the standard ex-
tensions, and compressed instructions, i.e., RV64GC. The C908 and
X60 support the ratified RISC-V vector extension (v), while C906
and C910 use the XTheadVec extension supported by GCC [26].
Further, we test on different QEMU versions from version 6 (default
on Ubuntu 22.04) to 9 (newest).

4 RISCovER Framework

This section describes RISCOVER (RISC-V vulnerability discovery),
our proof-of-concept implementation of the methodology described
in Section 3. Specifically, Section 4.1 describes and motivates the
design of RISCOVER. Section 4.2 and Section 4.3 discuss relevant
design and implementation details of the client and server compo-
nents of RISCOVER, respectively.

Thomas et al.

4.1 Design

Figure 1 shows a high-level overview of our proof-of-concept imple-
mentation. RISCOVER uses a centralized design: One server orches-
trating testing, and multiple clients, i.e., RISC-V CPUs, connected
to the server. A client receives an instruction sequence plus in-
put over the network, runs it, and reports back the resulting state,
e.g., register values and changed memory contents. The server is
responsible for generating test cases, distributing them to clients,
collecting results, and analyzing those results. We choose this de-
sign to reduce the task of the clients to a minimum as the tested
devices are constrained in resources. The tested RISC-V CPUs can-
not keep up with, e.g., powerful x86 CPUs which we use for the
server. Further, in contrast to the clients, the server infrastructure
can also be more easily scaled. An alternative approach that de-
creases network overhead at the cost of increasing CPU overhead is
generating inputs on-device. We evaluate this alternative approach
but find that on-server sequence generation is beneficial for our
set of devices and constraints in Section 5.1.1. Furthermore, the
tested devices offer limited storage (e.g., 8 GB on Board A), making
it impractical to store all results locally. Additionally, over 99 % of
the results can be immediately discarded once compared on the
server as the respective inputs generate no architectural difference
or are filtered by generic filters. We leave exploring alternatives
like pre-computing result checksums for each input to future work.
RISCoVER is implemented in 4 k lines of C and 6 k lines of Python.

4.2 Client

The client is a runner of server-provided test cases. To execute test
cases, the client sets the registers as specified, runs the provided
instruction sequence, and reports the results to the server. To track
memory modifications of the test case without having to scan the
entire memory, RISCOVER implements lazy memory mapping. The
test case is first executed without additionally mapped pages, lead-
ing to segmentation faults on memory accesses. RISCOVER maps
and keeps track of the required pages for the faulting accesses. The
result of a test case is used once no more faults are observed or a
threshold of mapped pages is exceeded. Consequently, only a small,
known number of pages have to be checked for modifications.

4.2.1 C2: Removing Non-determinism. Since we assume every dif-
ference in register values to be a bug, we must ensure this does
not happen non-deterministically. There are instructions that are
inherently not deterministic, e.g., the rdcycle instruction. Addition-
ally, the operating system influences values of memory locations
and performance counters [27]. As a first step to removing non-
determinism introduced by the operating system, we use static com-
pilation for our binaries and unmap non-essential user-accessible
operating-system mappings, such as vDSO. To fully remove the
remaining non-determinism, we exclude instructions that do not
produce the same result twice on different cores of the same CPU.
This is opposed to SiliFuzz [59] that reports test cases that have a
different outcome on different cores of the same CPU to find CPU
defects (instead of vulnerabilities).

4.2.2 (C3: State Protection. As RISCOVER executes arbitrary code
sequences in user space, these sequences can modify RISCOVER’s
internal state. Thus, RISCOVER has to protect its internal state to

RISCovER: Automatic Discovery of User-exploitable Architectural Security Vulnerabilities in Closed-Source RISC-V CPUs

vsetvli x@, x0, ...
vsel28.v t0, 0(t0)

luser input / -

vsetvli x0@, x@
t=rv64gcvOp7 ’
o S;kﬁ:p —>|vse128.v to
li to, 2

distribute
generate instruction generate register -
sequence inputs

CCS 25, October 13-17, 2025, Taipei, Taiwan

\, SIGSEGV

t0: 0x4000

instr seq:

_%' on other
machines
T

collect

S

regs:
t0: 0x4000,

C reproducer:
load regs from repro
run sequence

print register diffs

if diff,
generate repro

Figure 1: Overview of RISCOVER. The user selects ISA extensions and sequence length. The server generates instruction
sequences and register inputs, distributes them to the clients, and compares results. Differences are logged as a reproducer file.

ensure a correct reporting of instruction effects. In contrast to RTL
fuzzers, the CPU cannot be reset after executing a test case. Thus,
RISCOVER requires a robust sandbox design to ensure that test
cases do not influence the remaining system while still being able
to execute arbitrary instruction sequences. Specifically, RISCOVER
has to ensure the integrity of its internally used registers, mem-
ory regions, and control flow. Figure 2 illustrates the design of the
integrity-providing sandbox we discuss in the following.

Registers. If a test case exits normally, i.e., without an exception,
we use an instruction sequence that stores all registers to memory.
Otherwise, e.g., after an illegal-instruction exception, the operating
system automatically saves the registers before jumping into the
signal handler. We copy this state and return to the execution loop
with a longjmp that restores the register state.

Memory. We leverage the large virtual address space to “hide” the
internal data of RISCOVER in a region that is difficult to overwrite
accidentally. The kernels we run on our CPUs all use the Sv39
paging mode [78], i.e., 512 GB of virtual address space is available
for “hiding”. Consequently, we move the data section to a “safe”
region of memory that we experimentally determined. It is neither
close to the test cases nor at the beginning or end of virtual memory
to prevent accidental accesses by small positive or negative values
that are used as addresses. Further, we switch to a new stack that
we hide in this region as well. While this approach is heuristic, it
works well in practice.

Control Flow. As we cannot reset or bring the CPU into a clean
state from user space, a test case must not jump out of RISCOVER’s
logic or lock up the client. We pad test cases with ebreak instruc-
tions to ensure any relative jump triggers an exception and returns
control back to RISCoveR. We rely on the size of the virtual ad-
dress space to “hide” the sandbox. We move the sandbox to its own
memory range and use absolute jumps to get in and out of the run-
ner sandbox. We handle infinite loops by priming an alarm before
jumping into the sandbox, interrupting possibly infinite loops.

4.3 Server

The server generates instruction sequences and input registers and
sends these to the clients, which run the test cases and report the
resulting states back. The server compares these states and logs
differences as reproducer files that can be used for further analysis.

l abs. jump
/—\
patch code — - — - f
prime alarm |
save registers 1 <nop>
save perf counters L2 L Iseq len
load registers <nop>

break chain

d:]

load regs

san

break chain
on exception .-

2 abs. jumy
v Jump,
unprime alarm

(save registers

copy registers save perf counters
store signal meta restore registers
_) __unprime alarm

return results

Figure 2: The runner sandbox includes nop placeholders sur-
rounded by ebreak instructions. The runner patches the
placeholder instructions, primes the alarm, saves registers,
loads the supplied fuzzing registers, and jumps into the sand-
box. The executed instruction sequence either returns via
the runner or, on an exception, via signal handling.

Instruction Space

RISC-V Opcodes

® Vendor

documented

C906 halting

instructions C908/X60 halting instructions

Figure 3: Overview of the RISC-V instruction space. RISC-V
Opcodes (1) covers most parts of the RISC-V ISA specifica-
tion. The specification reserves parts of the address space for
custom vendor extensions (2). Other parts are either reserved
for future use or unclaimed (3). The dots describe where our
discovered bugs are in the instruction space.

4.3.1 C1: Sequence Generation. We use a bottom-up approach
based on the instruction encoding and their real-world frequency
to gradually increase the covered instruction space. Based on spe-
cific bits in the instruction encoding, RISC-V allows to classify the
type of instruction and whether an instruction is a standard instruc-
tion (1) or a vendor-specific instruction (2), leading to groups as
illustrated in Figure 3. This approach allows selectively including

CCS 25, October 13-17, 2025, Taipei, Taiwan

Table 1: Distribution of 4-byte RISC-V instruction space as
documented by RISC-V Opcodes. All ratified (official) parts of
the ISA cover 84.03 % of the instruction space. The vector and
T-Head extensions cover only small parts of the instruction
space. Overall, 85.51 % of the instructions are specified, and
the rest (14.49 %) are unknown or not specified.

ISA part Percentage
Ratified + unratified 85.02%
Ratified 84.03 %
Vector extension (v) 1.05%
Vector extension (XTheadVec) 0.81%
T-Head vendor extension 0.39%
Overall known 85.51 %

and excluding ISA extensions in our tests. Consequently, this makes
it easy to first fuzz only the undocumented space (3). This drasti-
cally shrinks the search space by 85.51 % (Table 1). Note that we do
not have to separate ISA extensions exactly. The encoding-based
filtering is only a rough but deterministic guidance technique to
prevent the fuzzer from wasting resources on instruction encodings
that mainly consist of instructions with large immediate encodings.
We still strive to cover the entire 4-byte instruction space of RISC-V
but want to focus on more promising parts first. In the following,
we describe in more detail how this bottom-up approach works.

Instruction Classification. We use the official RISC-V Opcodes
repository [23] for building our filters since it encodes all stan-
dard RISC-V instructions and several unratified instructions in a
machine-parsable format. Further, it clusters the instructions into
their respective extension.

Instruction Exclusion. Encoding-based filtering also allows for
excluding instructions or entire instruction classes, such as CSR-
based instructions. As these instructions can change the behavior
of instructions on the current core, we exclude them to avoid in-
troducing false positives in the differences. Note, however, that we
permit the frcsr and fscsr instructions, which read and modify
the Floating-Point Control and Status Register (fcsr) [77], as this
CSR is part of the CPU’s well-defined architectural state. We leave
the coverage of other CSRs to future work.

Weighted Instruction Selection. The server generates instruction
sequences using a bottom-up approach guided by real-world instruc-
tion frequencies, derived from extensive analysis of Debian pack-
ages (1.36 billion disassembled instructions from 84 164 software
packages). Each instruction is selected inversely proportional to
its real-world frequency, prioritizing rarely used or undocumented
instructions, which have a higher potential for undiscovered vul-
nerabilities. Immediate values are selected from a set of predefined
“Interesting” corner-case values (e.g., zero, negative numbers, max-
imal integer values). They are augmented by randomly chosen
values in 1 out of every 5 instructions, ensuring broad encoding
coverage. Further, we initialize source and target registers of instruc-
tions with a limited set of 5 possible registers starting from x0 to
cause dependencies between instructions in a sequence. Again, we

Thomas et al.

provide a random register in 1 of 6 cases. For the rest of the fields,
we provide the required number of random bits. The sequence
length is fixed at runtime—our evaluations show that lengths of
3-5 instructions provide an optimal trade-off between vulnerability
discovery effectiveness and computational efficiency.

Not defined or missing instructions in RISC-V Opcodes are cho-
sen by generating a random 4-byte value that cannot be decoded to
a valid instruction. For any undocumented instruction, RISCOVER
does not have to fill any bitfields, as a complete instruction encod-
ing with all bits set is already chosen. Thus, RISCOVER covers the
entire instruction space with this approach.

While RISCoVER focuses on rarely used or undocumented in-
structions to maximize vulnerability discovery potential, it also
uncovers several architectural bugs within commonly used instruc-
tions (cf. Section 5.2). However, these cases typically represent
functional discrepancies rather than directly exploitable security
vulnerabilities, reaffirming our strategy to emphasize testing of the
less frequently validated and more complex instruction spaces.

4.3.2 Input Distribution. The server distributes generated fuzzing
inputs and collects results (cf. Figure 1). Since we want to achieve
high throughput fuzzing on the clients, we highly optimize the
amount of data transferred. We only send back registers and mem-
ory contents that changed during the execution of the instruction
sequence, restrict RISCOVER to a fixed set of possible register con-
tents, send batches of fuzzing inputs, and ensure enough fuzzing
inputs are buffered in the client. These optimizations ensure that
the clients are never idle and that the network is efficiently used.

4.3.3 Logging Differences. The server compares the collected ar-
chitectural states and logs a reproducer file for the fuzzing input if
it discovers a difference. This reproducer file can then be compiled
and executed as a standalone binary on any RISC-V CPU for fur-
ther analysis. While the reproducer is not necessarily minimal, it is
typically small enough for an analysis. Still, if necessary, program
reduction techniques, such as those discussed by Solt et al. [67],
can be used to reduce the reproducer further.

5 Evaluation

We evaluate the general performance of testing instruction se-
quences (Section 5.1), summarize the findings of RISCOVER (Sec-
tion 5.2), including the most severe finding, GhostWrite, and eval-
uate how long it takes RISCOVER to discover our findings (Sec-
tion 5.3). We compare RISCOVER to the state-of-the-art RTL fuzzer
Cascade [67] (Section 5.4), and evaluate the efficacy of our sequence
generation (Section 5.5).

5.1 Fuzzing Performance

This section focuses on different performance metrics of RISCOVER.
All experiments use an Intel Core i9-13900K as the server.

5.1.1 Core Utilization & Framework Overhead. To validate the effi-
ciency of the design of RISCOVER, we measure CPU utilization and
client-side overheads such as sequence generation and network
communication. All benchmarks are performed on the fastest tested
CPU, the C908 (Board G), using instruction sequences of length 3.

RISCovER: Automatic Discovery of User-exploitable Architectural Security Vulnerabilities in Closed-Source RISC-V CPUs

100 3

[other

80 | Kernel | .Generation
QE, p Kemel = Networking
E 60| 1 a Running
E { [Actual Running
& 7) 6.5
o 40 [~ —
=]
® 42.3 > User 41.2 User

20 |- -

2N 17.8
On-Server On-Device

Figure 4: Stacked bar plot comparing time spent in differ-
ent client sections for on-server and bare-bones on-device
sequence generation. On-device generation reduces kernel
overhead, but this benefit is canceled out by the extra cost of
input generation, yielding no net performance improvement.
Both approaches show comparable efficiency in the actual
running of inputs, indicated by the hatched pattern.

We achieve 100 % CPU utilization on the C908, as confirmed via
htop. This demonstrates that RISCOVER can fully saturate even fast
RISC-V CPUs like the C908.

To quantify client overhead, we instrument the client to measure
time spent in key phases. Further, we measure time spent in kernel
and user space and compute the fraction of time spent on the key
phases as the product of the fraction of time in user space and
fraction of time in the key phase. Figure 4 shows the results in a
stacked bar plot. With the default on-server sequence generation,
42.3 % of the time is spent running transmitted inputs, while 22.2 %
in that time is spent on actually running the sequence. Networking,
i.e., receiving inputs and sending results, accounts for 7 % of time.
Overall, the client spends 50.6 % of total time in user space. Note
that this includes signal handling which cannot be cleanly separated
from networking. These results indicate that RISCOVER has a low
network overhead (< 20 %).

We further benchmark the overhead of a bare-bones implemen-
tation of on-device sequence generation. Here, the client generates
the inputs on-device using a shared RNG implementation and seed.
Figure 4 again shows the results. In this setup, 10.9 % of time is
spent on input generation. 41.2 % is spent running the on-device-
generated inputs. Networking overhead drops to 6.5 %. The overall
user-space time increases to 59.4 %. This again shows that the signal
handling overhead is rather high, as even with reduced networking
we still only spent around 60 % of time in user space.

These results show that on-server sequence generation (42.3 %
running inputs) is on par with on-device sequence generation
(41.2 % running inputs) and does not introduce unnecessary over-
head. This further indicates that on-server sequence generation is
beneficial for lower-end devices or when handling more complex
sequence generation.

Takeaway On-server and on-device sequence generation per-
form comparable. On-server generation can be beneficial when
sequences are complex or the DUT is slow.

CCS 25, October 13-17, 2025, Taipei, Taiwan

Table 2: Discovered novel vulnerabilities and affected CPUs,
showing the vulnerability type, affected models, related ISA
extensions, and time-to-bug.

Vulnerability CPU Models Extension Time-to-Bug
Privilege Escalation €910, C920 XTheadVec <ls
Denial-of-Service C906 XTheadMemIdx <2min
Denial-of-Service C908 Vector <15min
Denial-of-Service X60 Vector <50 min
Wrong Misaligned Zero-Stores BeagleV Fire (U54) Base ISA <5s
User-space Hangs C906, C908, C910, X60 Base ISA <5s
Undocumented Instructions P550 Base ISA <1s
Decoder Faults C906, C910 Base ISA <ls
ISA Incompatibilities €908, C910 Vector, Base ISA <2min
QEMU Segfaults QEMU 8.2.2, 9.0.0 Vector, Cache Ops <30s

5.1.2 General Throughput. To assess the general throughput of
RISCOVER, we benchmark a fuzzing run with only the base ISA with
2 clients (C906 and C908). We test 18 194 (C906) to 59 205 (C908)
instructions per second on average.

Comparing the results to the fastest state-of-the-art RISC-V RTL
fuzzer Cascade [67] shows that fuzzing on hardware cores is orders-
of-magnitude faster. Cascade achieves 110 and 26 instructions per
second on the openC906 and openC910, respectively, fuzzing on
two Intel Xeon E5-2697 v4 (Figure 5 in Appendix E). Note though,
that this is already with a sequence length of 10 000, while we use
a sequence length of only 3 instructions.

Takeaway Testing on hardware cores is orders-of-magnitude
faster than on emulated cores.

This further highlights a desirable property of our approach:
While RTL fuzzing negatively scales with increased complexity of
the fuzzed cores, our approach scales with increased complexity
since the hardware becomes faster. Good examples here are out-
of-order and speculative execution present in the openC910. Both
increase the performance of the CPU but complicate its simulation.

Takeaway RTL-fuzzing scales inversely with CPU complexity,
while hardware core testing scales with it.

5.1.3 Sequence-Length Scaling. With our approach, performance
increases up to a sequence length of 5 and then gradually decreases
with further increasing sequence length. The results are expected
since, at some point, increasing the sequence length only rarely
leads to more instructions executed per iteration, as some earlier
instruction might already raise an exception. A sequence length of
3 is a good tradeoff since adding more instructions only slightly im-
proves performance while causing more congestion on the network,
potentially hindering other clients from receiving data.

5.2 Findings

In this section, we summarize findings around GhostWrite and
the CPU-halting instructions, which we discuss in more detail in
Section 6 and Section 7, respectively. Further, we discuss illegal
misaligned zero-store behavior on the BeagleV Fire (SiFive U54,
Board A), undocumented instructions on the SiFive P550 and cat-
egorize other findings into address-handling bugs, decoder bugs,
ISA incompatibilities, and fault-reporting issues. Table 2 provides
an overview, including the fuzzing time required for each bug.

CCS 25, October 13-17, 2025, Taipei, Taiwan

Beyond bug discovery, we evaluate the exploitability of bugs
found by RISCovERr. Notably, RISCOVER automatically finds archi-
tectural differences triggerable by an unprivileged user from user
space. The analysis of whether these bugs are security vulnerabili-
ties still requires manual analysis. However, our reproducer files
typically contain fewer than 5 instructions, allowing rapid manual
analysis to classify discovered anomalies into functional bugs or
exploitable vulnerabilities. Our analysis process involves systemat-
ically varying register contents and immediate values to observe
architectural effects, confirm consistency across reboots and envi-
ronments, and investigate potential security implications such as
arbitrary memory accesses or CPU denial-of-service conditions. The
average time required per reproducer to confirm vulnerability sta-
tus ranges from seconds to a few minutes, significantly accelerated
by the minimal and focused nature of our generated reproducers.

Bug Sources. The location of buggy instructions in the encoding
space hints at the bug source. Figure 3 visualizes where RISCOVER
finds the most severe bugs. GhostWrite is in the vector extension,
hinting at a bug in the vector engine. The C908 and X60 halting
instructions are illegally encoded vector instructions close to but
outside the vector extension. The C906 halting instructions are on
the edge of the vendor extension since they use an edge case in
the instruction encoding. Other bugs, including illegal misaligned
zero-stores lie in the base ISA as summarized in Table 2.

GhostWrite. GhostWrite produces differences when fuzzing the
XTheadVec extension between C906 and C910. While the illegally-
encoded vector-store instructions generate a segmentation fault
on illegal memory addresses on the C906, the C910 generates no
exception. We provide an example of such a difference logged into
a reproducer file in Appendix C. During manual inspection of the
instruction behavior, by varying register values, we observe kernel
crashes when passing addresses in the physical kernel range, which
motivates further analysis of these faulty instructions (cf. Section 6).

Undocumented & CPU-Halting Instructions. We find CPU-halting
instruction sequences on the C906, C908, and X60 which directly
crash the fuzzing client. No further analysis of such reproducers
is needed as such a denial of service is always considered a se-
curity problem [1-4]. On the SiFive P550, we find 41 943 072 un-
documented instruction encodings. These are split over two op-
codes with opcode @xb having 20 971 535 and opcode @x2b having
20971537 encodings. We suspect these to be decoder bugs as they
encode additional base instructions like shifts or immediate loads,
which also have valid documented encodings.

Wrong Misaligned Zero-Stores. RISCOVER finds that misaligned
zero-stores—such that use the zero register as source—show illegal
behavior on the BeagleV Fire (SiFive U54, Board A). These non-
deterministically write —1 of different sizes, e.g., 4- or 8-byte for a
8-byte wide store, instead of 0. While the ISA specification leaves
open if misaligned stores should be trapped or if and how they
are implemented, e.g., via trap or in hardware, it does not permit
such illegal behavior. By comparing the speed of misaligned and
aligned stores, we verify that misaligned stores indeed take longer,
as they need special handling as the manual suggests [61]. We verify
that this is a bug in the M-mode firmware of the BeagleV Fire that

Thomas et al.

emulates these misaligned stores. This issue is fixed in the latest
version of the firmware.

Address-handling. RISCoveR finds different bugs around virtual
address handling. On the C910, reading from physically-backed
virtual address ‘0’ locks the CPU. On the T-Head XuanTie C906,
C908, and C910, and on the SpacemiT X60, a load to a non-canonical
address is stuck until an interrupt arrives if the canonical part of
the address is a valid address.

Decoder Bugs. On the C906 and C910, RISCoVER discovers fence
and fence. i instructions that raise an illegal-instruction excep-
tion, although they are valid according to the ISA specification. The
RISC-V standard reserves these instructions for “finer-grain fences
in future extensions” and dictates that “implementations shall ig-
nore these fields” [77]. Conversely, RISCOVER discovers instructions
that do not raise such an exception, although they are invalid. For
example, the C906 and C910 execute the half-precision floating-
point instructions fsqrt.h and fmv.x.h even when the rs2 field is
0 [22]. Finally, for QEMU 9.0.0 and QEMU 8.2.2, RISCovER discov-
ers that cache-block management instructions such as cbo. inval
crash QEMU with a segmentation fault. This is fixed with QEMU
9.1.2. For QEMU 7.2.0 (Emulator B), RISCovERr discovers that trun-
cating vector conversion instructions such as vfnevt.rtz.x.f.w
crash QEMU. However, as the crash is due to an assertion, we do
not expect that this is further exploitable.

ISA Incompatibility. The C906 and C910 are not fully compatible
with the ISA specifications. These CPUs do not ignore writes to bits
8 to 10 of the fcsr register. Further, the C910 and the C908 support
only a subset of the vector extension. This manifests itself in some
of the instructions doing nothing, others doing unexpected things
(cf. Section 6), and some not being implemented at all. Interestingly,
the subset of instructions also differs between the two CPUs.

Fault-reporting Issues. On all tested CPUs, RISCOVER discovers
bugs during fault reporting. Overall, there are various inconsisten-
cies in the raised signal for exceptions. SiFive CPUs tend to raise
bus faults, whereas T-Head CPUs raise segmentation faults. Addi-
tionally, the reported program counter of the fault and the faulting
address are not always correct. On the C910, the reported address
for faults is rounded up to the next multiple of 16 if the address
modulo 16 is larger than 8. The C908 raises a segmentation fault
instead of a bus error for a valid misaligned address.

5.3 Time to Bug

In line with other papers on fuzzing [57, 67], we provide the fuzzing
time to find the bugs. We use all extensions, i.e., all ratified and
unratified extensions, during fuzzing. We find GhostWrite within
the first second of fuzzing, as no particular encoding in the broken
instruction is needed to make the bug visible. Thus, the fuzzer only
needs to select one of the 8 broken instructions out of 1283 possible
instructions when enabling all extensions as outlined above.

We find the C906 halting instruction sequence bug within the
first 2 minutes. The longer time to bug can be explained by lower
fuzzing throughput on the C906 and by more involved conditions
that the broken instruction and the sequence need to satisfy, e.g.,
using the same registers in the encoding of the instruction and

RISCovER: Automatic Discovery of User-exploitable Architectural Security Vulnerabilities in Closed-Source RISC-V CPUs

the following instructions. On the C908 and X60, RISCoVER finds
the undocumented CPU-halting instructions in under 15 min and
50 min of iterating over the undocumented space, respectively.

For the other documented instruction findings, the time to bug
is typically below 1s. However, for some findings, fuzzing times of
up to 2 min are required to reveal them (cf. Table 2).

5.4 Comparison to RTL Fuzzer Cascade

We compare RISCOVER to the fastest state-of-the-art RISC-V RTL
CPU fuzzer Cascade [67], evaluating the bug-finding efficacy of both
approaches. We use the openC906 and openC910, the open-source
designs T-Head claims are used in the C906 and C910 CPUs, respec-
tively. These are the only cores that are available as off-the-shelf
hardware and RTL source. We compare our sequence generation
with the complex sequence generation of Cascade, showing that
our sequence generation can also find 22 out of 23 user-space-
triggerable bugs Cascade found. Additionally, we show that even
after 14 days of fuzzing, Cascade does not find the bugs RISCOVER
discovers on the C906 and C910, but only CSR value mismatches
without security implications.

5.4.1 Rediscovering Cascade Bugs. We analyze all bugs Cascade
found on RTL designs that are in scope for RISCOVER, i.e., trigger-
able from user space, and demonstrate that our sequence generation
generates a test case for 22 of the 23 bugs. The verification func-
tions are created based on the bug descriptions of the Cascade paper,
the corresponding code of the Cascade time-to-bug analysis, and
the publicly available information on the bugs from bug trackers.
Due to Cascade executing its code sequences in machine mode,
RISCOVER’s user-space approach can, by design, not find bugs that
require access to privileged CSRs or a disabled FPU. Hence, we ex-
clude them in our analysis, as they are also not a security problem
when considering an unprivileged attacker. Table 4 (Appendix B)
contains the results of all 23 in-scope bugs that Cascade found. We
see that while our weighted sequence generation is not always
faster than our unweighted sequence generation, e.g., for bug C1,
it is on par for most bugs while bringing a significant speedup for
bugs that are hard to find with an unweighted sequence generation,
e.g., for bug V4. The only bug we do not rediscover is bug V12, as
our approach does not identify transient execution vulnerabilities.
For more details on why we choose this design decision, we refer
the reader to Section 10. Assuming a hardware implementation of
the cores, RISCover would discover all 22 bugs in under 10, with
18 bugs in the first 500 ms.

5.4.2 Fuzzing OpenC906 & OpenC910. We integrate the openC906
and openC910 into Cascade to evaluate the efficacy of Cascade on
these complex cores. We adapt existing Cascade and T-Head test
benches to fit the softcores but additionally modify the T-Head
provided RTL code and the ISA simulator Spike [35] to enable
fuzzing. On the RTL level, changes include increasing the available
address space and modifying the bootup location of the softcore.

Discovered Bugs. We run Cascade with up to 100 blocks (1000
to 2000 instructions) on the openC910 and openC906 for 14 days
on 64 cores of two Intel Xeon E5-2697 v4. In total, we discover
3 identifiable mismatches regarding CSRs and several unknown
mismatches. We find that MINSTRET and MEPC can be off by 1 and 4

CCS 25, October 13-17, 2025, Taipei, Taiwan

respectively for openC906 and openC910, and that MCAUSE can be
off by 4 in the openC906. Cascade does not find GhostWrite and the
C906 halting instruction sequence for multiple reasons. First, as we
show in Section 6.1.3, GhostWrite is not present in the open-source
code of the C910. Second, Cascade does not set up virtual memory.
Therefore, there is no way to detect a broken or skipped translation.
Third, Cascade does not embed illegal encodings such as GhostWrite
or the custom C906 halting instructions nor vector instructions into
the sequences. RISCOVER, on the other hand, does not find these
CSR-related mismatches as we exclude CSRs during fuzzing since
they can produce arbitrary differences and are partially privileged.

Fuzzing Throughput. To measure the fuzzing performance on
the openC910 and openC906, we run the same fuzzing execution
throughput experiment as Cascade for 1-core. We reproduce the
results of Cascade nearly perfectly, i.e., find the sweet spot of pro-
gram length to be at around 10 000 instructions. The openC906
and openC910 are even slower to simulate than the slowest core
(BOOM) Cascade evaluated. They only achieve 110 and 26 fuzzing
instructions per second compared to 556 for the BOOM core. This
is expected since these softcores come with a much larger non-
minimal SoC and are, therefore, bigger and more complex. The full
results for all cores are in Appendix E.

5.5 Sequence Generation Evaluation

In addition to showing that our sequence generation is effective
at finding CPU bugs (cf. Section 5.4), we evaluate the effect of the
weighted random instruction selection. We use RISCOVER once with
purely randomly chosen instructions and once with the weighted
random approach. In both cases, we generate instruction sequences
of length 3. Unsurprisingly, we find the same bugs with either
configuration. However, we discover the C906 hang in 26 s without
weights, while it only takes 19 s with weights.

To show that the weights are a generic improvement, we analyze
their impact on the time to bug for the 22 Cascade bugs RISCOVER
finds. For 18 bugs, the weighted random selection improves the time
to bug, and only for 4 bugs it is slower (cf. Table 4 in Appendix B).

6 GhostWrite: Writing Physical Memory

In this section, we analyze GhostWrite, the arbitrary physical write
primitive RISCoveRr finds on the C910 and C920. In Section 6.1, we
reverse-engineer the prerequisites and microarchitectural proper-
ties, showing that GhostWrite can deterministically write attacker-
chosen values to attacker-chosen physical addresses with byte gran-
ularity. Section 6.2 demonstrates how to use GhostWrite for read-
ing arbitrary physical memory and executing arbitrary code with
kernel- and machine-mode privileges.

6.1 Analysis

Listing 1 shows the assembly code of GhostWrite with the rele-
vant instruction with machine code 9x10028027. The instruction
disassembles to a vector-unit stride store instruction from the un-
supported vector extension 1.0. This instruction should operate on
virtual memory and store vector registers continuously to target
virtual addresses stored in a general-purpose register. We reduce
the instruction’s encoding to its minimal form and perform tests
on each component of the instruction encoding.

CCS 25, October 13-17, 2025, Taipei, Taiwan

1 ; t@ = physical address, a@ = byte to be written
2 vsetvli zero, zero, e8, mil

3 VMV.V.X VO, a0

4 ; encoded: 0x10028027

5 vsel128.v vO, 0(t0)

Listing 1: Code of GhostWrite. vsetvli and vmv.v.x set up the
vector engine’s internal state and the byte to be written. The
non-standardized vse128.v instruction (provided as machine
code 0x10028027) performs the physical write.

The source registers encoded in the instruction work as intended,
however only 1 byte is written. The destination register encoding
also works as intended, besides interpreting the address as a physi-
cal instead of a virtual address. The encoding of the effective element
width is 128-bit. Thus, the vector registers should be handled as
16-byte registers. The encoded effective element width contrasts
what we observe in practice, i.e., only one-byte stores. We further
test the 256-, 512- and 1024-bit encodings of the instruction and
find that they behave the same, i.e., write only one byte.

We further test the nf (number of fields) encoding of the instruc-
tion, which controls how many fields are stored to memory. Increas-
ing nf shifts the used source vector register for the written byte by
that exact amount. Thus, we only see the value of the last vector
register in the group of fields. We suspect that the buggy instruc-
tion always writes to the same physical address, thereby dropping
intermediate writes of other field values that should normally be
continuously visible in memory. To further test this hypothesis, we
measure the cycles the instruction takes to execute while varying
the nf field and find that the instruction takes linearly more time to
execute. This observation strengthens the hypothesis that multiple
writes are scheduled, one for each field, but only the last one is
visible since every write goes to the same address.

6.1.1 Memory Interaction. Based on the observed effects, we hy-
pothesize that the instruction entirely circumvents the cache, di-
rectly writing to memory. We back this hypothesis using a series of
experiments. We set up a base experiment in which we initialize a
memory address V, backed by the physical memory address P, with
a known value x1. Next, we perform operations to ensure that the
target memory address, i.e., V, is in a specific state before overwrit-
ing P with value x3 using GhostWrite. Afterward, we check whether
a memory read from V returns the original value x; or whether it
was overwritten by the write gadget returning x3. Our experiment
shows that if V is flushed or evicted from the CPU cache before the
write gadget is executed, the primitive works in 100 % of the test
cases (n = 10 000). We observe that if the memory at V is cached in
a non-dirty cache line before we use the write gadget, we need to
evict or flush it from memory to make x, visible. Once the memory
is no longer cached, we successfully read x3 in 100 % of the tests. If
the memory at V is cached in a dirty cache line, after flushing or
evicting the cache line, the previous value x; remains in memory.
These observations lead to the hypothesis that GhostWrite does
not write through the cache hierarchy but directly to the physical
memory without interfering with the cache state. This hypoth-
esis explains why dirty cache lines can reset the state to xi, as
their value is written back to main memory. To further strengthen

10

Thomas et al.

this hypothesis, we investigate the hardware performance monitor
counters available on the C910. First, the counter that keeps track of
dTLB misses (mhpmcounter6) does not count any event during the
execution of the write primitive. Thus, we conclude that no virtual
mapping is being resolved upon execution of the write primitive.
Second, even if V is uncached, the counter keeping track of memory
writes that miss the L1d cache (mhpmcounter17) and the L2d cache
(mhpmcounter21) do not count events for our write primitive. This
further strengthens our hypothesis that the write primitive does
not interact with the cache hierarchy.

6.1.2 MMIO. GhostWrite can write values to any address in the
physical address space, including memory-mapped input-output
(MMIO). We use GhostWrite to write values of ‘0’ and ‘0xff’ to
the first 8 bytes of the MMIO range on a LicheePi4A [64]. With a
voltmeter, we verify that this changes the state of the GPIO pins.
This demonstrates that the instruction bypasses any virtual memory
mechanics and has full privileges.

6.1.3 Simulation. In the openC910 [70], the vector extension can-
not be enabled, as it is not part of the source. Any attempt to execute
GhostWrite in the simulator fails. This aligns with discussions in the
GitHub repository mentioning that the “openC910 didn’t include
the V extension because it wasn’t officially final yet” [70].

Takeaway Even for open-source cores, the published source
is not necessarily the code used for synthesizing the hardware.
Thus, black-box testing techniques are needed even when the
sources are public.

6.2 Exploiting GhostWrite

In this section, we show how GhostWrite can be exploited for
privileged code execution and for arbitrary memory leakage.

Threat Model. We assume unprivileged native code execution on
a target running up-to-date Linux on a C910 or C920 CPU.

Privileged Code Execution. To gain code execution in the kernel,
the attacker uses GhostWrite to overwrite the code of a system
call handler that can be executed by triggering the corresponding
syscall. In our proof-of-concept implementation, the attacker over-
writes the getuid syscall to always return ‘0’. On Linux systems,
the user ID ‘0’ is reserved for the privileged root user. Then, the
exploit executes the su setuid binary. If getuid returns ‘0’ su as-
sumes a user is already root and skips authentication, leading to
privilege escalation to the root user. Once a privileged shell is ob-
tained, the exploit uses GhostWrite to restore the original getuid
to not break any legitimate functionality of other applications and
to purge any traces of the attack.

For code execution in machine mode, our proof-of-concept over-
writes parts of the function sbi_ecall_base_handler, which han-
dles ecalls in OpenSBI. Since our previous attack enables code
execution in the kernel, we assume an attacker can trigger arbitrary
SBI ecalls. In our proof of concept, we patch the ecall handler for
SBI_EXT_BASE_GET_MVENDORID to return 42 and verify the return
value using a kernel module. In a real-world scenario, an attacker
could place arbitrary code at any physical address and patch a jump
to their payload into the ecall handler.

RISCovER: Automatic Discovery of User-exploitable Architectural Security Vulnerabilities in Closed-Source RISC-V CPUs

1 th.lbib to, (t0), o, @
2 frcsr to
3 1i to, o

Listing 2: The interaction of the th.1bib instruction with the
same register as source and destination, a CSR read, and an
unrelated operation on the register halts the C906.

We have a 100 % success rate on 3 different C910 boards (H, I, and
J in Table 5). The attacks take less than 1 s since the addresses are
known and only a physical write with GhostWrite is needed. The
OpenSBI binaries, implementing the machine-mode functionality
for RISC-V systems, are mapped at physical address ‘0’ on the C910-
based systems. The kernel code and data follow at 0x200000. We
verify that this layout is stable across reboots.

Reading Memory. By rewriting page-table entries, we can convert
GhostWrite to a primitive for reading arbitrary memory. We fill the
entire available physical memory with page tables by mapping the
same file numerous times until the physical memory is exhausted.
We use GhostWrite to overwrite one of the two least significant
bytes of the page frame number of a potential page-table entry
(PTE). Given that the memory is filled with page tables, we choose a
random address. If, after the modification, one of our page mappings
does not map to the initially mapped file anymore, we know that
we successfully overwrote a PTE. We verify that by reading from
every mapping and comparing the read value to a fixed marker
value. When no such virtual address is found, we write the PFN
byte on a different physical page. Once such a virtual page is found,
we have complete control over a PTE and its corresponding virtual
address [58]. Thus, we can rewrite the PFN to any physical address
to read the content of the address.

We run the attack successfully on all 3 boards with 3 differ-
ent DRAM configurations, 4 GB, 8 GB, and 16 GB. The attack also
works from within a Docker container. We reboot the machine
between each run of the attack. Our attack is successful in all 20
tries, resulting in a success rate of 100 %. The attack takes 32 to 94s.

7 CPU-Halting Instruction Sequences

In this section, we analyze the instruction sequences for halting
the C906, C908, and X60. We analyze the sequences on hardware,
reproduce the findings in the simulation of the C906, and present
an end-to-end denial-of-service attack from within Docker.

7.1 Analysis

C906. Listing 2 shows the instruction sequence halting the C906.
The core of the sequence is the th.1bib instruction from the cus-
tom XTheadMemIdx extension. This vendor extension provides ad-
ditional memory operations such as increment-address-before-load
(th.1bib). The halt occurs in combination with using the same
register for source and destination operand, a subsequent CSR read,
and any subsequent interaction with the register provided to the
instruction. In the example code, we read a CSR using the unprivi-
leged frcsr instruction. However, any other instruction reading a
CSR, such as rdcycle, can also be used. While the example uses
the load immediate instruction (11i), the last instruction can be any

11

CCS 25, October 13-17, 2025, Taipei, Taiwan

instruction interacting with the used register. Unrelated instruc-
tions can be part of the sequence if they do not read from or write
to the used register (t0 in the example).

We further discover 13 other instructions from the XTheadMemIdx
extension that are vulnerable in the same way (cf. Listing 4 in Ap-
pendix A). The variants with 3 source registers are not vulnerable.

Takeaway CPU vulnerabilities exist for both single instructions
and instruction sequences.

C908. The instructions found by RISCOvER on the C908 corre-
spond to the vector mask store/load instructions vsm.v and vlm.v.
Setting any of the bits 29 to 31 in the encoding of these instructions
crashes the machine. Note that these bits should be all zero.

Takeaway Testing the entire possible encoding space is neces-
sary, as vulnerabilities are in the documented and undocumented
range.

X60. Similar to the C908, the discovered halting instructions on
the X60 seem to be close to vector store/load instructions. We find
that different encodings of the invalid instructions raise a segmen-
tation fault in user space, further strengthening this hypothesis.

7.2 Bug Reproduction in Simulator

In contrast to the other tested CPUs, the source code of the C906
is available, and the source contains the same vulnerability as the
hardware CPU. Thus, we can also reproduce the vulnerability in
the simulation of the Verilog source. We reduce the instruction
sequence to a minimal 24 B bare-metal binary containing only 6
instructions. Running this sequence reliably stops the simulator
with the error message that the CPU is stuck and no instructions are
retiring anymore. This happens after 11.5 ps CPU time. It takes the
simulation 2.5 min to reach this point. While this also demonstrates
that the bug can be triggered in all privilege modes, it is only a
security problem for the user mode.

7.3 Case Study

To assess the impact of the halting vulnerabilities, we evaluate in
which contexts they can be executed to halt the CPU. The straight-
forward scenario is an unrestricted native environment as has been
used by RISCoveR. Executing the instruction sequence as an un-
privileged user immediately results in the CPU being halted. We
verify the C906 behavior on two different boards using Debian
11 and Debian 12. Additionally, we verify the C908 behavior with
Debian 13. Attackers can also use the instruction sequence in more
restricted environments. We verify that executing the instruction
in an unprivileged Docker container also halts the CPU. Thus, sand-
boxing mechanisms that work on the operating-system level cannot
prevent an attacker from halting the CPU. Furthermore, given that
all involved instructions are unprivileged instructions, we also ex-
pect that sequence to work from a virtual machine. Unfortunately,
we cannot verify that, as no hypervisor supports the affected CPUs.

8 Mitigations

In this section, we discuss mitigations for GhostWrite (Section 6)
and the CPU-halting sequences (Section 7).

CCS 25, October 13-17, 2025, Taipei, Taiwan

Table 3: Analysis of whether prior CPU fuzzing work could
theoretically find the bugs discovered by RISCoveR. RTL-
fuzzing approaches can only detect the C906 hang, as it is the
only CPU where the bug is present in the available softcore. T-
Head instructions still need to be added to the golden model
and sequence generation for Cascade. SiliFuzz cannot find
any of the bugs, as none appear in disassemblers it relies on.

Ij:;i‘;vnfde; GhostWrite C906 hang €908 hang K1 hang
DiruzzRTL [34] B D C C
TheHuzz [39] X X x X
Cascade [67] X xB DE xC xC
SiliFuzz [59] xa XA XA XA

RISCoOVER

ANot in disassembler ®Bug not in RTL RTL not available °If T-Head instructions
added to Spike FIf T-Head instructions added to sequence generation

GhostWrite and C908/X60 Halting Instructions. Disabling
the vector extension is a viable mitigation for GhostWrite and the
halting instructions on the C908 and X60. The CPU throws an illegal
instruction exception when executing the affected instructions [78],
making the gadgets unusable for an attacker.

We benchmark the impact of this mitigation on standard memory

operations such as memcpy and memset. We use the RISC-V vector
benchmarking suite rvv-bench [7]. We compare the fastest vector
implementation of memcpy and memset to the fastest of glibc and
musl libc. We observe a performance hit of up to 33 % for memcpy
and 8 % for memset on the C910 (Board I). On the C908 (Board G),
the performance of memcpy and memset decreases by up to 77 % and
2 %, respectively. On the X60 (Board L), we observe a decrease of
up to 65 % and 11 %. Benchmarking the mitigation on a full-system
level is currently not possible, since no distribution uses the vector
extension in the kernel and standard libraries.
C906 Halting Sequence. There is no mitigation for the C906
halting instruction sequence. Since no special condition is required
to execute the C906 halting instruction sequence, we argue that
the only option for mitigating the vulnerability is to disable one
of the instructions. Unfortunately, the T-Head vendor extension
that includes the broken instructions cannot be disabled: “The
th.sxstatus. THEADISAEE bit is not expected to be cleared. The
behavior of clearing this bit is undefined” [72]. We verify that we
cannot clear this bit from a kernel module.

Takeaway Optional hardware features should have the capabil-
ity to be deactivated.

9 Related Work

We analyze related work, with an overview in Table 3 showing
whether it could theoretically find the bugs discovered by RISCOVER.
Most bugs remain undetectable due to unavailable RTL or different
goals and methodologies, as we detail below.

Undocumented Instructions. Armshaker [69] and Dofferhoff et al.

[18] search for undocumented ARM and RISC instructions using
disassemblers as ground truth, uncovering emulator bugs and ISA

12

Thomas et al.

inconsistencies. DifuzzRTL [34] and Morfuzz [82] also fuzz un-
documented RISC-V instructions but require machine mode and a
perfect simulator. Sandsifter [19] shows the feasibility of exploring
x86’s larger instruction space via a decoding side channel. Un-
like these, RISCOVER requires no ground truth, exhaustively tests
all instructions, and operates purely from user space, exposing
security-relevant bugs.

Differential CPU Fuzzing. Ormandy [52, 53] used Oracle Se-
rialization, i.e., inserting memory fences to detect optimization-
dependent differences. Such methods miss bugs like GhostWrite,
which behave identically with fences, and cannot reveal cross-
vendor or cross-generation issues. In contrast, RISCOVER compares
CPUs from different vendors. SiliFuzz [59] targets electrical defects
x86 cores, yielding results orthogonal to ours. Qin et al. [54] and
Jiang et al. [36] compare CPUs with emulators and disassemblers
for stealthy malware, exploiting software rather than CPU bugs.
Model Fuzzing. TheHuzz [39] and DifuzzRTL [34] fuzz RTL using
emulation to guide search, while Cascade [67] generates more com-
plex sequences for higher throughput. RTL fuzzers are valuable in
development but require complete RTL, typically unavailable for
commercial cores (the C906 being the only exception). RISCOVER
instead targets opaque hardware CPUs, offering faster throughput
and testing of deployed systems. Its speed enables full exploration
of undocumented instructions via a bottom-up approach rather
than mutation. While guidance [38] or fuzzing by proxy [59] could
extend RISCOVER, its current form already produces many results.
Fuzzers for Microarchitectural Vulnerabilities. Work on tran-
sient execution (e.g., Revizor [50], Transynther [47]) targets specu-
lation, whereas RISCOVER uncovers architectural bugs reproducible
without speculation. Other efforts study instruction-level timing dif-
ferences [17, 29, 32, 76, 80] or architectural side channels [73], which
yield weaker attacker capabilities. Unlike RTL fuzzers [34, 67],
RISCoVER needs no RTL or golden model, making it complementary
to existing microarchitectural fuzzing and formal verification.
Time-Multiplexed Testing. Time-multiplexed testing, close to
RISCover and RTL fuzzers, duplicates execution contexts to catch
faults. EDDI-V [31] and RMT-V [31] build on EDDI tests [49] to
detect silicon faults via temporal redundancy within one pipeline.
These approaches excel at random or manufacturing faults on single
CPUs. RISCovER instead applies spatial redundancy across different
vendors’ CPUs, detecting systemic design and implementation bugs.

10 Discussion

We discuss applicability to other ISAs, limitations of our current
implementation, and implications for future CPUs.

Other Architectures. RISCOVER is architecture-agnostic and can
be extended to other ISAs such as ARM or x86, given engineering
effort to handle ISA-specific details. However, it requires multiple
hardware implementations or accurate emulators for meaningful
differential comparisons. For architectures or extensions with a sin-
gle vendor or identical multi-core silicon, the efficacy of differential
fuzzing diminishes.

Vulnerability Types. Our methodology targets architectural
bugs triggerable from user space; microarchitectural bugs rely-
ing on speculation or out-of-order execution [47, 50] fall outside
our current scope. These require side channels to infer hidden state,

RISCovER: Automatic Discovery of User-exploitable Architectural Security Vulnerabilities in Closed-Source RISC-V CPUs

which are noisy and ill-suited for exhaustive testing. In principle,
RISCovER could be extended to leverage architectural interfaces on
other ISAs, but given extensive existing work [13, 16, 28, 30, 33, 47,
50, 51, 74] and the orthogonal nature of the problem, we exclude
this from our prototype.

Coverage. Coverage is a common metric to compare fuzzers, but
RISCoVER cannot obtain coverage from silicon RISC-V CPUs. While
RTL sources for the C906 and C910 exist, using them is impractical.
First, simulation is prohibitively slow: our time-to-bug analysis
shows sufficient coverage within minutes on hardware, but even an
optimistic 100 000X slowdown in simulation would require years.
FPGA-based coverage, as shown by Laeufer et al. [43], would also
demand significant engineering and powerful hardware. Second,
RTL coverage would be misleading since public RTL deviates from
silicon. For example, the C910 RTL lacks the vector extension in-
corporating GhostWrite (cf. Section 6.1.3). Third, RISCOVER needs
a full Linux environment with advanced OS features, and even a
single boot in simulation would take days.

We therefore evaluate coverage as bug coverage. RISCOVER finds
all but one bug discovered by Cascade (cf. Section 5.4.1), which
achieves state-of-the-art RTL coverage. This suggests comparable
effectiveness. Moreover, RISCOVER exercises diverse parts of the
microarchitecture, uncovering bugs in vector units, floating point,
decoder, memory system, and firmware (cf. Section 5.2).

CPU Testing Suites. Vendor validation suites, such as Arm’s [5],
increase robustness but often miss undocumented or improperly
implemented instructions that RISCOVER reveals. Similarly, the tool
RISCV-DV [14] is widely used for RISC-V verification but only
generates valid ratified instructions, unlike our approach.
Benefits of Post-silicon Fuzzing. Bugs discovered post-silicon
cannot be patched in existing hardware, but since designs are reused,
fixes propagate to future generations. Thus, post-silicon fuzzing
benefits both security researchers and vendors, who gain from high
fuzzing throughput as soon as engineering samples exist.
Consequences for Future CPUs. Insights from RISCovEer allow
vendors to integrate preemptive mitigations into new designs, pre-
venting recurring flaws. For instance, silicon could support selective
disabling of problematic instructions.

11 Conclusion

In this paper, we introduced RISCOVER, a differential RISC-V CPU
fuzzing framework for automatically discovering architectural se-
curity vulnerabilities in hardware CPUs. RISCOVER compares the
architectural results of instruction sequences without relying on
CPU source code or any emulator. Within minutes, RISCOVER dis-
covered 4 severe security vulnerabilities that can be exploited from
user space and several other bugs on 8 different CPUs. On the T-
Head XuanTie C910 and C920, RISCovER discovered GhostWrite,
an instruction sequence that allows unprivileged attackers to write
arbitrary values directly to physical memory, entirely circumvent-
ing virtual memory and its protection. Further, we investigated 3
“halt-and-catch-fire instructions” on 3 different CPUs, the T-Head
XuanTie C906 and C908, and the SpacemiT X60. We outperform
state-of-the-art RTL-based fuzzers in instruction execution by or-
ders of magnitude, making it a valuable extension to these fuzzers.

13

CCS 25, October 13-17, 2025, Taipei, Taiwan

Acknowledgment

This work was supported in part by the Semiconductor Research
Corporation (SRC) Hardware Security Program (HWS) and a Google
Research Scholar Award. The views expressed are those of the
authors and do not necessarily reflect those of the sponsors.

References

[1] 2015. CVE-2015-5307. https://nvd.nist.gov/vuln/detail/cve-2015-5307 CVE-2015-
5307.

[2] 2015. CVE-2015-8104. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2015-8104 CVE-2015-8104.

[3] 2018. CVE-2018-12207. https://nvd.nist.gov/vuln/detail/CVE-2018-12207 CVE-
2018-12207.

[4] 2021. CVE-2021-26339. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2021-26339 CVE-2021-26339.

[5] Arm. 2016. System Validation at ARM: Enabling Our Partners to Build Better
Systems. https://developer.arm.com/-/media/ArmDeveloperCommunity/
PDF/SystemIP/System_Validation_at_ARM_Enabling_our_partners_to_build_
better_systems.pdf?revision=a82b4e93-4118-4a3a-ba5f-70e38f6b4616&hash=
88D9B7CF58BE13B124E43EE538D21F4D

[6] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, et al. 2016. The rocket chip generator. EECS Berkley (2016).

[7] Olaf Bernstein. 2023. rvv-bench: RISC-V Vector benchmark. https://github.com/
camel-cdr/rvv-bench

[8] Matej Bolceskei, Flavien Solt, Katharina Ceesay-Seitz, and Kaveh Razavi. 2025. En-
carsia: Evaluating CPU Fuzzers via Automatic Bug Injection. In USENIX Security.

[9] Pietro Borrello, Catherine Easdon, Martin Schwarzl, Roland Czerny, and Michael

Schwarz. 2023. CustomProcessingUnit: Reverse Engineering and Customization

of Intel Microcode. In WOOT.

Pietro Borrello, Andreas Kogler, Martin Schwarzl, Moritz Lipp, Daniel Gruss, and

Michael Schwarz. 2022. £PIC Leak: Architecturally Leaking Uninitialized Data

from the Microarchitecture. In USENIX Security.

Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg,

Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. 2019. A

Systematic Evaluation of Transient Execution Attacks and Defenses. In USENIX

Security. Extended classification tree and PoCs at https://transient.fail/..

Christopher Celio, David A. Patterson, and Krste Asanovi¢. 2015. The Berkeley

Out-of-Order Machine (BOOM): An Industry-Competitive, Synthesizable, Parame-

terized RISC-V Processor. Technical Report.

Anirban Chakraborty, Nimish Mishra, and Debdeep Mukhopadhyay. 2024. She-

sha: Multi-head Microarchitectural Leakage Discovery in new-generation Intel

Processors. arXiv preprint (2024).

CHIPS Alliance. 2023. riscv-dv. https://github.com/chipsalliance/riscv-dv

Robert R. Collins. 1998. The Pentium FOOF Bug. http://www.rcollins.org/ddj/

May98/F00FBug.html

Alvise de Faveri Tron, Raphael Isemann, Hany Ragab, Cristiano Giuffrida, Klaus

von Gleissenthall, and Herbert Bos. 2025. Phantom Trails: Practical Pre-Silicon

Discovery of Transient Data Leaks. In USENIX Security.

Sushant Dinesh, Madhusudan Parthasarathy, and Christopher W Fletcher. 2024.

Conjunct: Learning inductive invariants to prove unbounded instruction safety

against microarchitectural timing attacks. In S&P.

Rens Dofferhoff, Michael Géebel, Kristian Rietveld, and Erik Van Der Kouwe. 2020.

IScanU: A portable scanner for undocumented instructions on risc processors. In

International Conference on Dependable Systems and Networks.

Christopher Domas. 2018. Hardware Backdoors in x86 CPUs. Black Hat US

(2018).

RISC-V Foundation. 2019. RISC-V "V" Vector Extension 0.7.1. https://github.com/

riscv/riscv-v-spec/releases/tag/0.7.1

RISC-V Foundation. 2021. RISC-V "V" Vector Extension 1.0. https://wiki.riscv.org/

display/HOME/Ratified +Extensions

RISC-V Foundation. 2021. RISC-V “Zfh” and “Zfhmin” Standard Extensions for

Half-Precision Floating-Point, Version 1.0. https://wiki.riscv.org/display/HOME/

Recently+Ratified+Extensions

RISC-V Foundation. 2022. riscv-opcodes. https://github.com/riscv/riscv-opcodes

RISC-V Foundation. 2023. RISC-V Architecture Test SIG. https://github.com/riscv-

non-isa/riscv-arch-test

Mike Frysinger. 2024. vdso(7) — Linux manual page.

GCC Team. 2024. GCC 14 Release Series - Changes, New Features, and Fixes.

https://gcc.gnu.org/gec-14/changes.html Retrieved 2024-09-20.

Lukas Gerlach, Daniel Weber, Ruiyi Zhang, and Michael Schwarz. 2023. A Security

RISC: Microarchitectural Attacks on Hardware RISC-V CPUs. In S&P.

Moein Ghaniyoun, Kristin Barber, Yingian Zhang, and Radu Teodorescu. 2021.

Introspectre: A pre-silicon framework for discovery and analysis of transient

execution vulnerabilities. In ISCA.

=
=

—_
-

e
S Ak

=
=

=
&

[19

[20

[21]

[22]

https://nvd.nist.gov/vuln/detail/cve-2015-5307
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8104
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8104
https://nvd.nist.gov/vuln/detail/CVE-2018-12207
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-26339
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-26339
https://developer.arm.com/-/media/Arm Developer Community/PDF/System IP/System_Validation_at_ARM_Enabling_our_partners_to_build_better_systems.pdf?revision=a82b4e93-4118-4a3a-ba5f-70e38f6b4616&hash=88D9B7CF58BE13B124E43EE538D21F4D
https://developer.arm.com/-/media/Arm Developer Community/PDF/System IP/System_Validation_at_ARM_Enabling_our_partners_to_build_better_systems.pdf?revision=a82b4e93-4118-4a3a-ba5f-70e38f6b4616&hash=88D9B7CF58BE13B124E43EE538D21F4D
https://developer.arm.com/-/media/Arm Developer Community/PDF/System IP/System_Validation_at_ARM_Enabling_our_partners_to_build_better_systems.pdf?revision=a82b4e93-4118-4a3a-ba5f-70e38f6b4616&hash=88D9B7CF58BE13B124E43EE538D21F4D
https://developer.arm.com/-/media/Arm Developer Community/PDF/System IP/System_Validation_at_ARM_Enabling_our_partners_to_build_better_systems.pdf?revision=a82b4e93-4118-4a3a-ba5f-70e38f6b4616&hash=88D9B7CF58BE13B124E43EE538D21F4D
https://github.com/camel-cdr/rvv-bench
https://github.com/camel-cdr/rvv-bench
https://github.com/chipsalliance/riscv-dv
http://www.rcollins.org/ddj/May98/F00FBug.html
http://www.rcollins.org/ddj/May98/F00FBug.html
https://github.com/riscv/riscv-v-spec/releases/tag/0.7.1
https://github.com/riscv/riscv-v-spec/releases/tag/0.7.1
https://wiki.riscv.org/display/HOME/Ratified+Extensions
https://wiki.riscv.org/display/HOME/Ratified+Extensions
https://wiki.riscv.org/display/HOME/Recently+Ratified+Extensions
https://wiki.riscv.org/display/HOME/Recently+Ratified+Extensions
https://github.com/riscv/riscv-opcodes
https://github.com/riscv-non-isa/riscv-arch-test
https://github.com/riscv-non-isa/riscv-arch-test
https://gcc.gnu.org/gcc-14/changes.html

CCS 25, October 13-17, 2025, Taipei, Taiwan

[29]

[30]

[31]

[32]

[33

[34]

[35

[36]

[37

[38

[39]

[40]

[41

[42

[43]

[49]

(50

(51

[52]
[53
[54

[55]

[56

Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert Bos, and Kaveh Razavi.
2020. ABSynthe: Automatic Blackbox Side-channel Synthesis on Commodity
Microarchitectures. In NDSS.

Jana Hofmann, Emanuele Vannacci, Cédric Fournet, Boris Kopf, and Oleksii
Oleksenko. 2023. Speculation at Fault: Modeling and Testing Microarchitectural
Leakage of CPU Exceptions. In USENIX Security.

Ted Hong, Yanjing Li, Sung-Boem Park, Diana Mui, David Lin, Ziyad Abdel
Kaleq, Nagib Hakim, Helia Naeimi, Donald S Gardner, and Subhasish Mitra. 2010.
QED: Quick error detection tests for effective post-silicon validation. In IEEE
International Test Conference.

Yao Hsiao, Nikos Nikoleris, Artem Khyzha, Dominic P Mulligan, Gustavo Petri,
Christopher W Fletcher, and Caroline Trippel. 2024. RTLZMpPATH: Multi-
{PATH Synthesis with Applications to Hardware Security Verification. In MICRO.
Jaewon Hur, Suhwan Song, Sunwoo Kim, and Byoungyoung Lee. 2022. Specdoc-
tor: Differential fuzz testing to find transient execution vulnerabilities. In ACM
SIGSAC Conference on Computer and Communications Security.

Jaewon Hur, Suhwan Song, Dongup Kwon, Eunjin Baek, Jangwoo Kim, and
Byoungyoung Lee. 2021. Difuzzrtl: Differential fuzz testing to find cpu bugs. In
S&P.

RISC-V International. 2024. Spike RISC-V ISA Simulator. https://github.com/riscv-
software-src/riscv-isa-sim

Muhui Jiang, Tianyi Xu, Yajin Zhou, Yufeng Hu, Ming Zhong, Lei Wu, Xiapu Luo,
and Kui Ren. 2022. EXAMINER: Automatically locating inconsistent instructions
between real devices and CPU emulators for ARM. In ASPLOS.

joopdehoop. 2023. Firmware update for ’'Chinese’ F133 head unit.
https://www.reddit.com/r/CarAV/comments/18ivjsg/firmware_update_
for_chinese_f133_head_unit/

Nursultan Kabylkas, Tommy Thorn, Shreesha Srinath, Polychronis Xekalakis,
and Jose Renau. 2021. Effective processor verification with logic fuzzer enhanced
co-simulation. In MICRO.

Rahul Kande, Addison Crump, Garrett Persyn, Patrick Jauernig, Ahmad-Reza
Sadeghi, Aakash Tyagi, and Jeyavijayan Rajendran. 2022. TheHuzz: Instruction
Fuzzing of Processors Using Golden-Reference Models for Finding Software-
Exploitable Vulnerabilities. In USENIX Security Symposium.

Kelly Le. 2024. Alibaba’s Damo Academy plans to launch latest version of
its XuanTie RISC-V processor this year. https://www.scmp.com/tech/big-
tech/article/3255830/alibabas-damo-academy-plans-launch-latest-version-its-
xuantie-risc-v-processor-year Retrieved 2024-09-10.

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
S&P.

Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffe-Hellman, RSA,
DSS, and Other Systems. In CRYPTO.

Kevin Laeufer, Vighnesh Iyer, David Biancolin, Jonathan Bachrach, Borivoje
Nikoli¢, and Koushik Sen. 2023. Simulator independent coverage for RTL hard-
ware languages. In ASPLOS.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In USENIX Security.

William M McKeeman. 1998. Differential testing for software. (1998).

Milk-V. 2023. Milk-V Pioneer. https://milkv.io/pioneer

Daniel Moghimi, Moritz Lipp, Berk Sunar, and Michael Schwarz. 2020. Medusa:
Microarchitectural Data Leakage via Automated Attack Synthesis. In USENIX
Security Symposium.

Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss, and
Frank Piessens. 2020. Plundervolt: Software-based Fault Injection Attacks against
Intel SGX. In S&P.

Nahmsuk Oh, Philip P Shirvani, and Edward] McCluskey. 2002. Error detection
by duplicated instructions in super-scalar processors. In IEEE Transactions on
Reliability.

Oleksii Oleksenko, Christof Fetzer, Boris Kopf, and Mark Silberstein. 2022. Revi-
zor: Testing black-box CPUs against speculation contracts. In ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems.

Oleksii Oleksenko, Marco Guarnieri, Boris Kopf, and Mark Silberstein. 2023. Hide
and Seek with Spectres: Efficient discovery of speculative information leaks with
random testing. In IEEE S&P.

Tavis Ormandy. 2023. Reptar. https://lock.cmpxchg8b.com/reptar.html

Tavis Ormandy. 2023. Zenbleed. https://lock.cmpxchg8b.com/zenbleed.html
Shisong Qin, Chao Zhang, Kaixiang Chen, and Zheming Li. 2021. iDEV: Exploring
and exploiting semantic deviations in ARM instruction processing. In ISSTA.
Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu. 2019. VoltJockey:
Breaking SGX by Software-Controlled Voltage-Induced Hardware Faults. In
AsianHOST.

Scaleway. 2024. The world’s first RISC-V servers available in the cloud. https:
//labs.scaleway.com/en/em-rv1/

14

Thomas et al.

[57

Tobias Scharnowski, Nils Bars, Moritz Schloegel, Eric Gustafson, Marius Muench,
Giovanni Vigna, Christopher Kruegel, Thorsten Holz, and Ali Abbasi. 2022. Fuz-
zware: Using Precise MMIO Modeling for Effective Firmware Fuzzing. In USENIX
Security.

[58] Mark Seaborn. 2015. Exploiting the DRAM rowhammer bug to gain kernel

privileges. http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-

rowhammer-bug-to-gain.html Retrieved on June 26, 2015.

Kostya Serebryany, Maxim Lifantsev, Konstantin Shtoyk, Doug Kwan, and Peter

Hochschild. 2021. Silifuzz: Fuzzing cpus by proxy. arXiv:2110.11519 (2021).

[60] Agam Shah. 2023. China Deploys Massive RISC-V Server in Commercial
Cloud. https://www.hpcwire.com/2023/11/08/china-deploys-massive-risc-v-
server-in-commercial-cloud/

[61] SiFive. 2021. https://starfivetech.com/uploads/u54_core_complex_manual_21G1.
pdf

[62] SiFive. 2022. HF105 Datasheet. https://sifive.cdn.prismic.io/sifive/d0556df9-55c6-
47a8-b0f2-4b1521546543_hifive-unmatched-datasheet.pdf

[63] SiFive. 2024. HF106 Datasheet. https://www.sifive.com/document-file/hifive-
premier-p550-datasheet

[64] Sipeed. 2021. Sipeed Wiki. https://wiki.sipeed.com/en/index.html

[65] Sipeed. 2022. RISC-V 64bit chip (C910) run Android 10. https://twitter.com/
SipeedIO/status/1457529282134089734

[66] Sipeed. 2023. Lichee Console 4A. https://sipeed.com/licheepi4a

[67] Flavien Solt, Katharina Ceesay-Seitz, and Kaveh Razavi. 2024. Cascade: CPU
Fuzzing via Intricate Program Generation. In USENIX Security.

[68] SpacemiT. 2024. SpacemiT Key Stone K1. https://www.spacemit.com/en/key-
stone-k1/

[69] Fredrik Strupe and Rakesh Kumar. 2020. Uncovering hidden instructions in
Armv8-A implementations. In HASP.

[70] T-Head. 2021. openC910. https://github.com/T-head-Semi/openc910

1] T-Head. 2022. C906. https://www.t-head.cn/product/c906

2] T-Head. 2022. T-Head Extension Spec. https://github.com/T-head-Semi/thead-

extension-spec

[73] Fabian Thomas, Michael Torres, Daniel Moghimi, and Michael Schwarz. 2025.
ExfilState: Automated Discovery of Timer-Free Cache Side Channels on ARM
CPUs. In CCS.

[74] M Caner Tol, Kemal Derya, and Berk Sunar. 2025. pRL: Discovering Tran-
sient Execution Vulnerabilities Using Reinforcement Learning. arXiv preprint
arXiv:2502.14307 (2025).

[75] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikei, Frank

Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.

2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient

Out-of-Order Execution. In USENIX Security.

Zilong Wang, Gideon Mohr, Klaus von Gleissenthall, Jan Reineke, and Marco

Guarnieri. 2023. Specification and verification of side-channel security for open-

source processors via leakage contracts. In CCS.

[77] Andrew Waterman and Krste Asanovi¢. 2019. The RISC-V Instruction Set Manual,
Vol. I: Unprivileged ISA, Version 20191213.

[78] Andrew Waterman, Krste Asanovi¢, and John Hauser. 2021. The RISC-V Instruc-
tion Set Manual Volume II: Privileged Architecture, Document Version 20211203.

[79] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste Asanovi¢. 2015.

The RISC-V compressed instruction set manual, version 1.7. EECS Department,

University of California, Berkeley (2015).

Daniel Weber, Ahmad Ibrahim, Hamed Nemati, Michael Schwarz, and Christian

Rossow. 2021. Osiris: Automated Discovery of Microarchitectural Side Channels.

In USENIX Security.

Xcalibyte. 2022. Roma Laptop Pre-order. https://xcalibyte.com.cn/en/roma-

preorder/

Jinyan Xu, Yiyuan Liu, Sirui He, Haoran Lin, Yajin Zhou, and Cong Wang. 2023.

MorFuzz: Fuzzing processor via runtime instruction morphing enhanced syn-

chronizable co-simulation. In USENIX Security.

Ruiyi Zhang, Lukas Gerlach, Daniel Weber, Lorenz Hetterich, Youheng Lii, An-

dreas Kogler, and Michael Schwarz. 2024. CacheWarp: Software-based Fault

Injection using Selective State Reset. In USENIX Security.

o
20,

[76

(80

[81

(82

[83

A C906 CPU-halting Instructions

Listing 4 lists other broken XTheadMemIdx instructions on the C906,
any of which can replace th.1lbib in Listing 2 to halt the CPU.

B Cascade Bug Rediscovery

Table 4 shows bug discovery statistics for RISCOVER, with weighted
generation speedups and estimated time to bug.

https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-isa-sim
https://www.reddit.com/r/CarAV/comments/18ivjsg/firmware_update_for_chinese_f133_head_unit/
https://www.reddit.com/r/CarAV/comments/18ivjsg/firmware_update_for_chinese_f133_head_unit/
https://www.scmp.com/tech/big-tech/article/3255830/alibabas-damo-academy-plans-launch-latest-version-its-xuantie-risc-v-processor-year
https://www.scmp.com/tech/big-tech/article/3255830/alibabas-damo-academy-plans-launch-latest-version-its-xuantie-risc-v-processor-year
https://www.scmp.com/tech/big-tech/article/3255830/alibabas-damo-academy-plans-launch-latest-version-its-xuantie-risc-v-processor-year
https://milkv.io/pioneer
https://lock.cmpxchg8b.com/reptar.html
https://lock.cmpxchg8b.com/zenbleed.html
https://labs.scaleway.com/en/em-rv1/
https://labs.scaleway.com/en/em-rv1/
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://www.hpcwire.com/2023/11/08/china-deploys-massive-risc-v-server-in-commercial-cloud/
https://www.hpcwire.com/2023/11/08/china-deploys-massive-risc-v-server-in-commercial-cloud/
https://starfivetech.com/uploads/u54_core_complex_manual_21G1.pdf
https://starfivetech.com/uploads/u54_core_complex_manual_21G1.pdf
https://sifive.cdn.prismic.io/sifive/d0556df9-55c6-47a8-b0f2-4b1521546543_hifive-unmatched-datasheet.pdf
https://sifive.cdn.prismic.io/sifive/d0556df9-55c6-47a8-b0f2-4b1521546543_hifive-unmatched-datasheet.pdf
https://www.sifive.com/document-file/hifive-premier-p550-datasheet
https://www.sifive.com/document-file/hifive-premier-p550-datasheet
https://wiki.sipeed.com/en/index.html
https://twitter.com/SipeedIO/status/1457529282134089734
https://twitter.com/SipeedIO/status/1457529282134089734
https://sipeed.com/licheepi4a
https://www.spacemit.com/en/key-stone-k1/
https://www.spacemit.com/en/key-stone-k1/
https://github.com/T-head-Semi/openc910
https://www.t-head.cn/product/c906
https://github.com/T-head-Semi/thead-extension-spec
https://github.com/T-head-Semi/thead-extension-spec
https://xcalibyte.com.cn/en/roma-preorder/
https://xcalibyte.com.cn/en/roma-preorder/

RISCovER: Automatic Discovery of User-exploitable Architectural Security Vulnerabilities in Closed-Source RISC-V CPUs

CCS 25, October 13-17, 2025, Taipei, Taiwan

Table 4: We report statistics on bugs found and rediscovered by RISCovER. We record the number of instructions needed until
the first trigger, the theoretical runtime on the slowest CPU, the C906, and the speedup of weighted sequence generation.

Cascade Bug ID Bug Description Triggered Instr. Needed Weighted Instr. Needed Weighted Speedup
V1 Non-deterministic conversion from single-precision float to int 35 (~ 1.92 ms) 31 (= 1.70 ms) 12.9%
V2 fmin with one NaN does not always return the other operand 667 (~ 36.66 ms) 579 (~ 31.82 ms) 15.2%
V3 Conversion from double to float may pollute the mantissa 143 (= 7.86 ms) 123 (~ 6.76 ms) 16.3%
V4 Dependent arithmetic/muldiv FPU operations may yield incorrect results 3782 (~ 207.87 ms) 2836 (~ 155.88 ms) 33.4%
V5 Equal registers may be considered distinct by fle.s and feq.s 234 (~ 12.86 ms) 194 (x 10.66 ms) 20.6%
V6 flt.s may return 1 when operands are equal 978 (~ 53.75 ms) 846 (~ 46.50 ms) 15.6%
v7 Under some microarchitectural conditions, square root may be imprecise 68 (~ 3.74 ms) 61 (~ 3.35 ms) 11.5%
V8 Single-precision muldiv followed by conversion may pollute the mantissa 14196 (~ 780.26 ms) 12713 (= 698.75 ms) 11.7%
V9 Dependent arithmetic/muldiv operations may cause largely wrong output 2388 (~ 131.25 ms) 1667 (~ 91.62 ms) 43.3%
V12 Hang on speculatively executed compressed FPU instructions X - - -
Vi4 Some register comparisons are still incorrect despite a partial fix 12 (~ 0.66 ms) 11 (= 0.60 ms) 9.1%
P6 Spurious exception when decoding fence instructions 44 (~ 2.42 ms) 52 (~ 2.86 ms) -15.4%
K1 RaWaW double-hazard may cause a wrong register value to be forwarded 105 (~ 5.77 ms) 84 (~ 4.62 ms) 25.0%
K5 Incorrect decode logic for fence and fence.i 67 (~ 3.68 ms) 82 (~ 4.51 ms) -18.3%
C1 Double-precision multiplications yield wrong sign when rounding down 138 (~ 7.58 ms) 219 (= 12.04 ms) -37.0%
C2 Single-precision floating-point operations may treat NaNs as zeros 1323 (~ 72.72 ms) 1317 (= 72.39 ms) 0.5%
C3 Division by NAN incorrectly sets NX and NV fflags 609 (~ 33.47 ms) 555 (~ 30.50 ms) 9.7%
C4 The inexact (NX) flag not set in case of overflow or underflow 12 (~ 0.66 ms) 11 (= 0.60 ms) 9.1%
C5 Division of zero by zero incorrectly sets the DZ flag 14203 (~ 780.64 ms) 13428 (~ 738.05 ms) 5.8%
Cé Plus and Minus infinity microarchitectural structures are inverted 21272 (~ 1169.18 ms) 20268 (~ 1113.99 ms) 5.0%
C7 Infinities are not rounded properly and stick to infinity 40572 (~ 2229.97 ms) 41818 (~ 2298.45 ms) -3.0%
C10 Under some microarchitectural circumstances, wrong NAN conversion 2435 (~ 133.84 ms) 2131 (~ 117.13 ms) 14.3%
B1 Static rounding is ignored for fdiv.s and fsqrt.s 71 (= 3.90 ms) 60 (~ 3.30 ms) 18.3%
- GhostWrite 38 (~ 2.09 ms) 39 (~ 2.14 ms) -2.6%
- C906 halting sequence 470496 (~ 25859.95 ms) 354672 (~ 19493.90 ms) 32.7%
Cco1e th.lbib th.lbia th.lwia th.ldia th.lwib th.lhia th.1ldib
signum: OK th.lhib th.lwuib th.lbuib th.lbuia th.lhuia th.lwuia th.lhuib
#
€906 s . . .
signum: STGSEGY Listing 4: List of instructions from the XTheadMemIdx exten-
si_addr: 0x8000000000000000 sion that can be used in Listing 2 to halt the C906 CPU.
si_pc: 0xe100178
si_code: ox1
instr_seq: [vsel024.v] BN PicoRV32 NN VexRiscy EEE CVA6 [C906
regs: gp: 0x8000000000000000 I Kronos [Rocket [BOOM [C910
€
[
Listing 3: Reproducer that hints at GhostWrite. The C910 3 10
executes the vector-store instruction, while the C906 faults. N
§ 1014
Y
%
Table 5: Tested RISC-V boards With CPUs fI'OITl 3 vendors. w 1 10 100 1,000 10,000 100,000
Number of fuzzing instructions per program (program length)
ID Board Model CPU Vendor Ext. Memory OS Kernel BN PicORV32 EEE VexRiscy HEE CVA6 [C906
A BeagleV Fire US4 SiFive - 1.5GB Ubuntu23.04 6.133 B Kronos [Rocket [BOOM [€910
B StarFive VisionFive2 U74 SiFive - 8 GB Ubuntu 22.04.1 6.5.0 ﬁ 102
C HiFive Premier P550 P550 SiFive - 16 GB FUSDK 6.6.21 Z
i 0
D Sipeed Nezha T, % 1GB Debian 13 5.14.0 E 10
E Lichee RV Dock C906 T-Head +,% 512MB Debian 11 5.4.61 =
F Lichee RV Dock +,% 512MB Debian 12 5.14.0 1 10 100 1,000 10,000 100,000
Number of fuzzing instructions per program (program length)
G CanMV-K230 C908 T-Head t 512MB Debian 13 5.10.4
H BeagleV Ahead . % 4GB Ubuntu 23.04 5.10.113 . . .
I LicheePidA Co10 THeag T3 8GB Debian12 510.113 Figure 5: Raw executed instructions per second (top) and Cas-
.) -Hea) .
J LicheePidA T.% 16GB NixOS 5.10.113 cade fuzzing throughput (bottom) for openC906 and C910.
K Milk-V Meles T, % 8 GB Debian 12 5.10.113
L Banana Pi BPI-F3 X60 SpacemiT v 4GB Armbian 6.1.15

D Details on Used Boards
Table 5 lists the boards and CPUs we used for evaluating RISCOVER.

T zfh, XTheadMemIdx 3 XTheadVec

C GhostWrite Sample Reproducer E Cascade Fuzzing Throughput Evaluation

Listing 3 shows an example of a GhostWrite reproducer file. Figure 5 shows Cascade throughput on openC910 and C906.

15

	Abstract
	1 Introduction
	2 Background
	2.1 RISC-V
	2.2 CPU Vulnerabilities
	2.3 CPU Fuzzing

	3 Methodology
	3.1 Idea
	3.2 Challenges
	3.3 Fuzzing Targets

	4 RISCover Framework
	4.1 Design
	4.2 Client
	4.3 Server

	5 Evaluation
	5.1 Fuzzing Performance
	5.2 Findings
	5.3 Time to Bug
	5.4 Comparison to RTL Fuzzer Cascade
	5.5 Sequence Generation Evaluation

	6 GhostWrite: Writing Physical Memory
	6.1 Analysis
	6.2 Exploiting GhostWrite

	7 CPU-Halting Instruction Sequences
	7.1 Analysis
	7.2 Bug Reproduction in Simulator
	7.3 Case Study

	8 Mitigations
	9 Related Work
	10 Discussion
	11 Conclusion
	References
	A C906 CPU-halting Instructions
	B Cascade Bug Rediscovery
	C GhostWrite Sample Reproducer
	D Details on Used Boards
	E Cascade Fuzzing Throughput Evaluation

