
SGXJail: Defeating Enclave Malware via Confinement

Samuel Weiser, Luca Mayr, Michael Schwarz, Daniel Gruss
Graz University of Technology

Abstract
Trusted execution environments, such as Intel SGX, allow
executing enclaves shielded from the rest of the system. This
fosters new application scenarios not only in cloud settings
but also for securing various types of end-user applications.
However, with these technologies new threats emerged. Due
to the strong isolation guarantees of SGX, enclaves can effec-
tively hide malicious payload from antivirus software. Were
these scenarios already outlined years ago, we are evidencing
functional attacks in the recent past. Unfortunately, no reason-
able defense against enclave malware has been proposed.

In this work, we present the first practical defense mecha-
nism protecting against various types of enclave misbehavior.
By studying known and future attack vectors we identified
the root cause for the enclave malware threat as a too permis-
sive host interface for SGX enclaves, leading to a dangerous
asymmetry between enclaves and applications. To overcome
this asymmetry, we design SGXJail, an enclave compartmen-
talization mechanism making use of flexible memory access
policies. SGXJail effectively defeats a wide range of enclave
malware threats while at the same time being compatible with
existing enclave infrastructure. Our proof-of-concept software
implementation confirms the efficiency of SGXJail on com-
modity systems. We furthermore present slight extensions to
the SGX specification, which allow for even more efficient
enclave compartmentalization by leveraging Intel memory
protection keys. Apart from defeating enclave malware, SGX-
Jail enables new use cases beyond the original SGX threat
model. We envision SGXJail not only for site isolation in
modern browsers, i.e., confining different browser tabs but
also for third-party plugin or library management.

1 Introduction

Isolation is an essential element of modern computer systems.
Traditionally, the operating system was responsible for iso-
lating processes. With the emergence of various novel use
cases, further isolation became necessary. For instance, exe-
cuting untrusted JavaScript code demands isolation from the

browser via sandboxing. Also, mutually untrusted services in
the cloud, e.g., from different tenants, run in different contain-
ers or virtual machines. In any case, it is still necessary to trust
system administrators, operating systems, and hypervisors.

Intel addressed this problem with SGX. Intel SGX can
be used to isolate software modules via hardware protected
enclaves from a compromised or malicious administrator, op-
erating system, or hypervisor. The trust anchor in SGX is
only the processor. Even if any other system part is manipu-
lated or compromised, SGX maintains its security guarantees.
This enables new use cases, such as trusted cloud computing,
where tenants do not only distrust the other tenants, but also
the cloud provider and its hardware and software infrastruc-
ture [3, 17, 50]. A similar distrust also exists when protecting
copyrighted material [2] or cryptographic or security-critical
secrets [30, 35, 42] on a compromised user PC or server.

While isolation techniques such as SGX can be an excellent
tool for security, they can also be misused for hiding mali-
cious activity inside an enclave. In the recent past, we have
seen not only enclave malware exploiting side channels [54]
but also enclave ransomware and shellcode [38], however,
with the help of a colluding host application. Recent research
showed that enclaves can effectively hijack and impersonate
any benign host application [53], opening up enclaves for
various types of userspace malware. This confirms what re-
searchers already suspected years ago [13, 16, 48]. Having
witnessed first proof-of-concept attacks [38, 53], we can ex-
pect that more sophisticated and real-world attacks will appear
in the future. Hence, it is necessary to providently explore the
defense space, before real-world attacks are discovered.

Unfortunately, little is known about how to address this
emerging threat properly. While conventional programs can
be scanned for misbehavior by anti-virus technology, SGX
is a complete game changer when it comes to enclave anal-
ysis. On the one hand, SGX prevents runtime inspection of
enclaves. On the other hand, SGX allows lazy loading of ma-
licious enclave content at runtime. Thus, malware infection
can be completely decoupled from enclave distribution and
installation, which renders all static analysis techniques on

1

the enclave void. In other words, SGX is a viable alternative
to malware obfuscation and analysis evasion techniques. If
Intel chose to allow certified anti-virus software to inspect
enclaves, this would undermine essential security guarantees
and is in fundamental conflict with the very goal SGX has [48].
Others proposed to detect enclave malware via their I/O be-
havior [13, 16], which is prone to both false positives and
false negatives. Moreover, tracing and analyzing all enclave
I/O behavior is believed infeasible in practice [38]. Others
proposed to embed malware analysis code within the enclave
itself, which raises several questions regarding its practical-
ity [13]. Consequently,

“[...] the release and adoption of SGX-protected en-
claves is likely to require a completely new approach
to protecting our machines from the very malware
SGX was designed to prevent.” [16]

So far, no practical defense against enclave malware exists.
In this work, we propose the first practical defense mecha-

nism against enclave malware. To do so, we analyze enclave
primitives and their resulting attack vectors and identify the
root cause for the enclave malware threat as a too permissive
feature set available to enclaves, forcing applications to trust
any enclaves they host blindly. Consequently, a proper de-
fense mechanism should give applications means to confine
enclave operation to a clearly specified interface. To that end,
we propose SGXJail, a lightweight yet effective measure to
establish mutual distrust between enclaves and its host ap-
plication. SGXJail does so by confining enclave operation
to a clearly defined set of memory pages. This mitigates en-
tire classes of runtime attacks (ROP, JOP, DOP, etc.) from
the enclave to the host and enables reasoning about enclave
misbehavior purely based on the legitimate communication in-
terface. We instantiate SGXJail using process sandboxing and
syscall filters and demonstrate its efficiency. Furthermore, we
propose HSGXJail, a minimal hardware extension to the SGX
specification making use of Intel memory protection keys
to confine enclave execution, which is even more efficient.
(H)SGXJail is opt-in, works on unmodified enclaves and can
be easily integrated with the SGX software development kit1.

With SGXJail, we expand possible SGX use cases beyond
isolated execution. We envision modern software which is
additionally hardened using SGXJail against potentially mali-
cious or misbehaving third-party code. This is, for example,
vital for all software enabling third-party plugins and add-ons,
such as browsers, mail clients, or password managers.
Contributions. We summarize our contributions as follows.
1. We systematically break down the enclave malware threat

and identify a number of enclave malware primitives.
2. We devise SGXJail, the first practical defense against en-

clave malware.
3. We implement and evaluate SGXJail in software.
4. We propose highly efficient HSGXJail via minimal hard-

ware changes.
1The code is available at https://github.com/IAIK/sgxjail

E
nc

la
ve

ECALL FuncE

FuncA()

Return

...

Host application

FuncE()

OCALL FuncA

Return

FuncA()

// do syscall

Return

EENTER

EEXIT

EENTER

EEXIT

C
G

C
G

Figure 1: SGX enclaves are tightly integrated in a host
application. The application can invoke the enclave via
ECALLs while the enclave can perform OCALLs. En-
claves can only be entered via the EENTER instruction at
certain call gates (CG) and can only be left via EEXIT.

The rest of the paper is organized as follows. Section 2 pro-
vides background information. Section 3 describes the threat
model. Section 4 analyzes various enclave primitives and
attack vectors. Section 5 presents (H)SGXJail. Section 6 dis-
cusses related work. We summarize our discussion of enclave
malware in Section 7 and conclude in Section 8.

2 Background

In this section, we provide background on Intel SGX as well
as runtime attacks.

2.1 Intel SGX
Intel Software Guard Extensions (SGX) are an instruction-set
extension introduced with the Skylake microarchitecture [26].
SGX allows creating so-called enclaves running trusted code
isolated from the remaining system.

Enclaves are hosted by an ordinary application process.
Although the enclave and the host application reside in the
same virtual address space, the address range of the enclave
is inaccessible to the host application. Only the enclave itself
can access its memory while the hardware prevents any other
access to enclave memory. However, the enclave can access
the entire virtual address space of the host application, allow-
ing to share data between the enclave and the host application.
This asymmetry in access permissions fits the original threat
model of SGX but gives rise to enclave malware.

The host application is responsible for loading the enclave
into the current address space and providing an interface
through which the enclave communicates with the outer world.
The CPU measures the loading process to ensure the integrity
of the loaded enclave. The enclave is only executed if the
resulting measurement matches a developer-specified value.

Figure 1 shows the process of invoking an enclave. The
enclave defines secure functions denoted as ECALLs, which
the application can call with the EENTER instruction. Call
gates (CG) restrict enclave invocation to valid entry points.

2

https://github.com/IAIK/sgxjail

Enclaves can request OS services such as syscalls via so-
called OCALLs. To leave the enclave, an enclave can issue
the EEXIT instruction. Enclave developers need to specify the
ECALL/OCALL interface via a so-called Enclave Definition
Language (EDL). Each enclave is shipped with its own EDL
file. An EDL file roughly contains function signatures of the
enclave’s ECALLs and OCALLs, augmented with additional
security attributes (e.g., in, out). Intel provides developers
with an SDK [25] that automatically generates glue code from
the EDL file with appropriate parameter validation and buffer
copying inside the enclave.

SGX assumes that all non-enclave code (i.e., operating
system and host application) is untrusted. SGX provides no
means to protect applications from misbehaving enclaves.
Instead, an enclave can access all application memory and
divert control flow to arbitrary application code via EEXIT.

2.2 Runtime Attacks
While it is typically not possible to directly inject or modify
code at runtime, e.g., via a buffer overflow, an attacker can
often manipulate control data and thus change the control flow
of an application. By overwriting a code pointer, an attacker
can divert the control flow to existing code snippets, resulting
in so-called control-flow hijacking attacks. One of the most
generic and powerful attacks is return-oriented programming
(ROP) [55] which overwrites return addresses to create ar-
bitrary attack payloads. Similar attacks exist for overwriting
function pointers [5, 9, 10, 18, 32, 51] or signal handlers [6].

Some widely deployed techniques against code-reuse at-
tacks are address-space layout randomization (ASLR) [45],
stack canaries [14, 46] and shadow stacks [12]. While stronger
control-flow integrity (CFI) [1, 31] can eradicate control-flow
attacks, they leave data-only attacks [8, 28] unaddressed.

3 Threat Model

In this section, we first outline various application scenarios
of SGX and argue why the original SGX threat model does
not properly address enclave misbehavior. We then present
our extended SGX threat model addressing enclave malware.
Scenario A. In the near future, SGX technology will likely
permeate consumer systems and create diverse and many-
faceted trust relations. Multiple independent software ven-
dors (ISV) can use SGX for mutually protecting their pro-
prietary library code (e.g., multimedia codecs, classification
algorithms) or sensitive customer data (e.g., user passwords,
encryption keys or bitcoin wallets) inside third-party enclaves.
Applications can embed such third-party enclaves to leverage
their functionality.

In this scenario, an attacker develops innocent-looking en-
clave malware (e.g., disguised as browser plugins) and dis-
tributes it as a third-party enclave via existing software stores
or repositories. A user installs those third-party enclaves

alongside other applications. The attacker defers installation
of malicious payload to runtime via a generic loader [48].
Hence, neither the maintainers of software repositories nor
the user can detect this malware before it is actually triggered.

This might not only be invasive malware like ransomware,
bots, or rootkits. A malicious enclave can also stealthily col-
lect data about the user and host system without the user
knowing, and with plausible deniability for the developer. An
enclave developer can then monetize this data, e.g., by selling
it to advertising agencies.
Scenario B. As more software is moved into enclaves,
chances increase for exploitable vulnerabilities within en-
clave code. Enclaves are equipped with increasingly complex
software, such as fully-fledged TLS stacks [24]. Thus, it is
just a matter of time for bugs in the trusted code of enclaves,
enabling well-known memory corruption attacks [56] inside
enclaves. In fact, it has already been shown that enclaves
are prone to such attacks [33, 52, 60]. This can be used to
infiltrate trusted enclaves with a malicious payload.
A Holistic Threat Model. The original threat model of Intel
SGX considers all non-enclave code as untrusted, including
application code hosting enclaves (cf. Section 2). This model
might be well-suited from an enclave’s perspective. However,
it does not fit more advanced application scenarios outlined
before, leaving applications completely unprotected against
misbehaving third-party enclaves. This creates a dangerous
asymmetry, as also outlined by Schwarz et al. [53].

In this work, we introduce a more holistic threat model
which does not violate the original threat model of SGX but
augments it to explicitly address misbehaving enclaves. We
consider a commodity system running software from various
independent software vendors. On the one hand, third-party
library vendors protect their secret data (e.g., cryptographic
keys or intellectual property) inside enclaves. On the other
hand, application developers include third-party enclaves in
their applications for implementing various tasks. However,
they want some form of assurance that third-party enclaves are
well-behaving, for the reasons outlined before. While from
an enclave vendor’s perspective SGX provides strong protec-
tion against other enclaves as well as compromised systems,
application developers have no means to assure themselves
of proper behavior of (third-party) enclaves they use.

From a user’s perspective, the computer (including the op-
erating system and certain applications) are trusted. A mecha-
nism is needed to protect applications (and, subsequently the
computer) from potential enclave misbehavior, even if such
enclaves are fully controlled by a dedicated attacker (e.g.,
enclave malware). In particular, an application needs protec-
tion against any inspection or alteration of its state (memory,
CPU registers) by enclaves, apart from what it is exposing to
the enclave via the ECALL/OCALL interface. SGXJail does
not prevent API attacks, exploiting too permissive OCALLs
or badly designed interfaces (e.g., avoiding Iago attacks and
confused deputy attacks), which is a separate, yet important

3

Table 1: Enclave primitives leading to various attack vec-
tors on the host application.

Attack
Requirement Arbitrary

Read
Arbitrary
Write

Arbitrary
EEXIT

Information disclosure 3 7 7
Control-flow attacks (3) 3 (3)
Data-only attacks (3) 3 7

line of research, as we discuss later. Also, this work does not
focus on microarchitectural side channels, although SGXJail
prevents certain classes of side-channel attacks. Finally, the
CPU hardware is considered trusted.

4 Analyzing the Enclave Malware Threat

In this section, we analyze enclave primitives leading to differ-
ent attack vectors violating memory safety of the application.
This helps us design a proper defense mechanism and solve
the enclave malware threat at the level of memory safety, leav-
ing only high-level API attacks as a resort for the attacker, as
discussed at the end of this section.

4.1 Enclave Primitives
Intel SGX entrusts enclaves with powerful primitives leading
to different attacks violating memory safety, as depicted in
Table 1. We outline these primitives in the following.
Arbitrary read. An enclave can read arbitrary memory of
the host application. This is intended for exchanging data
between enclave and host. Furthermore, an enclave can use
hardware transactions to suppress exceptions stemming from
reading inaccessible memory [53], giving a powerful fault-
resistant arbitrary read primitive.
Arbitrary write. An enclave can write arbitrary writable
host memory, which is intended for data exchange. Further-
more, it can use hardware transactions to suppress excep-
tions while writing inaccessible or non-writable memory [53],
yielding a fault-resistant arbitrary write primitive.
Arbitrary EEXIT. An enclave can choose the precise code
location in the application where execution shall continue
after leaving enclave execution via the EEXIT instruction.
Moreover, the enclave has control over many CPU registers
immediately after an EEXIT, in particular the stack pointer,
which gives enclaves the possibility to configure the applica-
tion’s CPU state before resuming application execution.

4.2 Attack Vectors
Given the above primitives, a malicious enclave can mount
a broad range of attacks violating memory safety of the host
application. In the following, we cluster them into information
disclosure, control-flow attacks as well as data-only attacks
and give representative examples of these attacks. A detailed

overview of attacks violating memory safety was presented
by Szekeres et al. [56].

4.2.1 Information disclosure

A malicious enclave can use the arbitrary read primitive to
exfiltrate sensitive user data like cryptographic keys or pass-
words from the host application. Even if the application con-
tains no such user secrets, an enclave can disclose other sensi-
tive information, e.g., as used in various runtime protection
mechanisms. For example, an enclave can derandomize appli-
cation protection schemes like ASLR [45], stack canaries [14],
code randomization [44] or randomization-based control-flow
integrity schemes [31, 39]. The enclave can furthermore dis-
close the host application’s codebase and, subsequently, gen-
erate targeted exploitation payload like ROP chains on the fly.
Thus, information disclosure is a powerful tool often used for
subsequent exploitation.

4.2.2 Control-flow attacks

A malicious enclave can deliberately tamper with the appli-
cation’s control flow in several ways. For example, it can
directly corrupt code pointers, use rogue EEXITs and bypass
various mitigation mechanisms.
Code pointer corruption. An enclave can manipulate an
arbitrary code pointer of the host using the write primitive.
This can be, e.g., return addresses on the stack or virtual
function pointers on the heap. As soon as the application
fetches a corrupted code pointer, execution is diverted to an
attacker-chosen address. By carefully crafting a so-called
ROP chain (cf. Section 2) and diverting execution to it, the
attacker can gain arbitrary code execution with the privileges
of the application, allowing to execute arbitrary syscalls in
lieu of the application. To prepare a ROP chain, the enclave
scans the host application for ROP gadgets using the arbitrary
read primitive and writes the corresponding addresses on a
fake stack using the arbitrary write primitive [53].

An enclave is by no means restricted to ROP attacks only.
Similar to ROP, it can craft jump-oriented programming (JOP)
attacks, loop-oriented programming (LOP) attacks, or call-
oriented programming (COP) by overwriting indirect function
pointers [5, 9, 10, 18, 32]. COOP attacks are also possible by
overwriting virtual function pointers in C++ applications [51]
or SROP attacks [6], faking a signal handler.
Rogue EEXIT. A malicious enclave can also mount control-
flow attacks without corrupting a single code pointer. By using
the arbitrary EEXIT primitive, the enclave can directly cor-
rupt the CPU state. For example, it can manipulate the stack-
pointer register to point to an attacker-crafted ROP chain. By
doing an EEXIT instruction towards an arbitrary ret instruc-
tion of the host, the enclave can immediately trigger the ROP
chain, leading to the same implications as for ROP.

4

Bypassing Defenses. Several defense mechanisms seek to
protect the application’s control flow. Stack canaries [14]
protect against linear buffer overflows overwriting return ad-
dresses on the stack. ASLR [45] hides code addresses via
randomization, while others randomize code itself [44], both
making the generation of ROP gadgets hard. More elaborate
mechanisms enforce control-flow integrity (CFI), arguably
at different granularity. CPI [31] hides code pointers in a
shadow stack2 while CCFI [39] encrypts code pointers. As
these mechanisms rely on randomization, they can be eas-
ily broken by the enclave via information disclosure. If CFI
metadata is involved, it can be easily corrupted using the
write primitive. Stronger hardware-enforced CFI schemes
like CET [27] are still unavailable on modern x86 CPUs, and
it is unclear to what extent they consider rogue EEXIT attacks.

4.2.3 Data-only attacks

Apart from control-flow attacks, enclaves can corrupt appli-
cation data other than code pointers or CFI metadata. For
example, they can corrupt loop counters, function arguments
or syscall arguments [8, 28] using the arbitrary read/write
primitives. Typically, data-only attacks are much more re-
stricted than control-flow attacks. For example, they can only
reuse code reachable in the normal control flow. Yet, data-
only attacks are agnostic to CFI protection schemes and can
even achieve Turing-complete computation in many cases by
chaining together valid execution paths [28].

4.3 API attacks
The previous attack vectors all violate memory safety of
the application by reading, writing and executing applica-
tion memory in an illegitimate way. It is clear that defeating
these attacks is paramount to protecting an application from
misbehaving enclaves. Only with such protections in place, it
makes sense to reason about the application’s security on the
API level. Obviously, SGXJail does not defend against too per-
missive OCALLs, e.g., giving an enclave the ability to access
arbitrary files. Yet, we need to ask to what extent an enclave
can attack its host application purely via the ECALL/OCALL
interface, that is, without relying on the above SGX attack
primitives. For example, an enclave can seek to attack the ap-
plication by crafting invalid API calls or returning malformed
data. For a successful attack, either the API itself needs to be
flawed, or the underlying implementation misses important
validation steps (e.g., confused deputy attacks [22] and Iago
attacks [11]). Since such API-based attacks are highly appli-
cation specific, they cannot be addressed by a generic defense
mechanism anticipated in this work. We discuss proper miti-
gation strategies in Section 7. Also, we do not address misuse
of computational power (e.g., for cryptocurrency mining).

2This corresponds to the weaker randomization scheme since the stronger
segment-based isolation is unavailable for 64-bit execution mode.

5 SGXJail

In this section, we present SGXJail, a novel mechanism to
protect host applications from untrusted (third-party) enclaves.
SGXJail defeats entire classes of attacks by prohibiting en-
clave primitives outlined in Section 4 at the discretion of the
host application. SGXJail can be implemented purely in user
space and relies on process isolation and syscall filters, similar
to other sandboxing techniques like Docker [40]. We eval-
uate SGXJail under different workloads to demonstrate its
efficiency. Finally, we show how SGXJail can also be imple-
mented via minimal changes to the SGX specifications and
corresponding hardware, which we call HSGXJail.

5.1 SGXJail via Software Confinement
SGXJail defeats enclave malware by breaking all three en-
clave primitives described in Section 4.1. SGXJail does so by
confining enclave operation to a strict set of memory pages.

Figure 2 illustrates the basic idea of SGXJail. To break
the arbitrary read and write primitives, we rely on the oper-
ating system’s ability to isolate processes.3 Namely, we run
potentially malicious or misbehaving enclaves in a separate
sandbox process which does not have access to the host ap-
plication’s memory. To still allow benign ECALL/OCALL
interaction, we establish shared memory between the sand-
box process and the host application to implement a form of
inter-process communication.

Even with the above process isolation in place, a mali-
cious enclave can perform an attack on the control flow of the
sandbox process to issue arbitrary syscalls on behalf of the
sandbox process. Such an attack can either be a rogue EEXIT
attack, or a code-reuse attack (e.g., ROP) through manipu-
lating the stack [53]. Breaking the primitives that allow an
attacker to change the control flow is not trivial. EEXIT can
jump to any executable page, and the target address cannot be
restricted. Similarly, if the enclave rewrites the saved return
address on the stack, the sandbox process cannot detect this
modification. A possible–but rather expensive solution–is to
mark all executable pages of the sandbox process (except
for trampoline code) as non-executable before entering the
enclave. When leaving the enclave, the sandbox immediately
traps to the kernel, which can then assess the legitimacy of
the address at which the sandbox process should resume and
remap the pages as executable. However, this requires fre-
quent and expensive page remapping by updating a majority
of the page tables of a process. Instead of trying to prevent an
attack from hijacking the control flow in the sandbox process,
we confine the damage of such a hijacked control flow. In par-
ticular, we restrict the syscall interface of the sandbox process
by using seccomp syscall filters [36] to whitelist only abso-

3Conforming with Intel’s and our extended SGX threat model, software-
based side-channel attacks circumventing such isolation, e.g., Meltdown [37]
or Rowhammer [29], are out of scope.

5

Host application

se
cc

om
p

Sandbox process

ECALL

OCALL
Third-party

Enclave

Dispatcher

ECALL OCALL

Dispatcher

Application
logic

ECALL OCALL

Shared Memory

Figure 2: With SGXJail, the enclave is isolated within a
separate sandbox process and can communicate with the
host application only via shared memory. Also, the en-
clave is confined using seccomp filters.

lutely necessary syscalls. Even if a malicious enclave gains
arbitrary code execution inside the sandbox process, it can no
longer perform malicious actions. In contrast to sandboxing
techniques like Docker isolating the entire system (e.g., via
cgroups), we only need to restrict a single user process for
which syscall filters are the appropriate choice.
Life Cycle. A complete SGXJail life cycle works as follows.
First, SGXJail creates a new process, the sandbox process.
The third-party enclave is then loaded within this sandbox pro-
cess. Moreover, SGXJail creates a shared memory between
host application and sandbox process and installs dispatchers
for routing all ECALLs and OCALLs through this shared
memory. Afterwards, SGXJail activates seccomp filters to
restrict the syscalls of the sandbox process to an absolute
minimum. Only syscalls required for the communication be-
tween application and sandbox process, as well as syscalls
required to terminate the sandbox process, are whitelisted.
After the initialization, the application can issue ECALLs and
receive OCALLs, as follows. The application dispatcher auto-
matically encapsulates ECALLs into messages and transfers
them via the shared memory to the sandbox process. ECALL
function arguments are copied from the host application to
the shared memory. The sandbox process dispatcher listens
for incoming messages, decapsulates arriving messages and
performs the actual ECALL towards the enclave. Results
are returned back to the application, again via message pass-
ing over shared memory. The application dispatcher finally
copies ECALL results from the shared memory to application
memory and hands over to the application. In the same way,
OCALLs are routed from the sandbox process through the
shared memory to the application host and vice versa. Upon
termination of the application, the sandbox process is simply
destroyed. Multiple enclaves are isolated via separate sandbox
processes with individual shared memory segments.
Compatibility. SGXJail is a transparent enclave confinement
mechanism. It does not require any changes to third-party en-
claves themselves, i.e., it is binary-compatible with existing
enclaves and their existing cryptographic signatures. Also, no
enclave source code needs to be available. Instead, SGXJail
is tightly integrated within the SGX SDK [25]. All glue code
for dispatching and redirecting ECALLs and OCALLs via

shared memory is automatically generated from an enclave’s
EDL file [25] which needs to be shipped together alongside
each pre-compiled third-party enclave. Also, code for instanti-
ating the sandbox process, the shared memory and activating
seccomp filters is provided by SGXJail. For SGXJail, only
the untrusted application code has to be recompiled under the
SGXJail toolchain.

The installation of seccomp filters is independent of the
enclave itself. Since enclaves are not entitled to issue syscalls,
the selection of proper syscall filters solely depends on SGX-
Jail and does not affect compatibility with enclaves.

SGXJail enforces benign enclave communication to follow
the ECALL/OCALL interface specified in the enclave’s EDL
file. An enclave implementing other communication methods
(e.g., by directly accessing host memory) breaks as soon as
SGXJail is active. This is intentional, as enclave developers
are strongly encouraged to clearly define the enclave’s API
via ECALLs and OCALLs. In particular, SGXJail breaks un-
safe usage of ECALLs and OCALLs where enclave and host
application exchange and dereference raw, unchecked point-
ers rather than buffered data. For example, if one marks an
ECALL function parameter with the so-called user_check at-
tribute within the EDL file [25], the SDK passes this function
parameter without further checking and copying into the en-
clave. A quick code inspection revealed usage of user_check
in some Intel architectural enclaves and remote attestation
code, all for performance reasons. They could be updated to
avoid user_check at the cost of slight performance loss. To
yet support user_check, one would need to manually share
(i.e., map) host memory with the sandbox process to which an
enclave shall have unrestricted access. Also, host application
pointers passed to the enclave need to be translated to the
sandbox process due to ASLR. SGXJail could provide sim-
ple helper functions for sharing host memory and translating
pointers.

5.2 Implementation Details

For generating dispatcher code, we extend the edger8r
tool [25] accordingly. The sandbox dispatchers are generated
in the files Enclave_us.c|h, while the application dispatch-
ers are located in Enclave_u.c|h. An enclave always copies
arguments to enclave memory before processing it. Similarly,
our dispatcher code copies arguments to application mem-
ory before invoking an OCALL. This prevents TOCTOU
vulnerabilities such as double-fetch bugs [58] by design.

ECALLs and OCALLs are routed between application and
sandbox process via two distinct shared memory regions, one
for each direction. The dispatchers synchronize ECALL/O-
CALL interaction via shared semaphores. This has the advan-
tage that processes (application and sandbox) are consuming
no CPU time while waiting for the other communication part-
ner. For receiving OCALLs, the application installs a separate
listener thread that only gets active upon incoming OCALLs.

6

Selection of appropriate syscall filters is crucial for the
security of SGXJail, as a malicious enclave can directly ex-
ploit a lax configuration (e.g., via rogue EEXIT attacks). It
is favorable to restrict both the number of syscalls as well
as their complexity to reduce the attack surface given by the
whitelisted syscalls. This also has an impact on the type of
inter-process communication between sandbox and applica-
tion process. By choosing shared memory as communica-
tion channel, we do not require any syscall for the actual
communication, and only one syscall (futex) for synchro-
nization. In summary, we configure seccomp [36] to only
allow the syscalls futex necessary for semaphores as well
as exit_group for terminating the sandbox process. Thus,
the shared memory approach results in only one whitelisted
syscall in addition to the required exit_group syscall. Un-
less the implementation of these two syscalls is buggy, they
cannot cause a security violation when issued by a malicious
enclave.

The SGX SDK passes OCALL function arguments from
the enclave to the application via the application’s stack. The
enclave knows the application’s stack location via the stack
pointer (RSP register), which is preserved by the EENTER in-
struction. Hence, it can allocate a stack frame on the host stack
via a function called sgx_ocalloc and store any outgoing
OCALL arguments there. One can leverage this mechanism
for reducing SGXJail overhead, as follows. Currently, when
doing an OCALL, our sandbox dispatchers copy OCALL
arguments from the sandbox to the shared memory. By mod-
ifying RSP immediately before an EENTER to point to the
shared memory, one can instruct the enclave to write OCALL
arguments directly to the shared memory instead of the sand-
box application’s stack. When the enclave EEXITs, one can
simply restore the original sandbox stack (namely, RSP).

In our current implementation, the size of the shared mem-
ory is hard-coded to three pages for each direction. For ECAL-
L/OCALL arguments exceeding the shared memory, one can
dynamically resize the shared memory on demand. Although
multithreaded enclaves are currently not supported by our
prototype implementation, support can be easily added. This
is done by installing separate semaphores and shared buffers
for all enclave threads, which are enumerated in a public en-
clave XML configuration file. Also, support for nested calls
(OCALLs issuing ECALLs) can be added by adapting the
synchronization mechanism appropriately.

An interesting question arises whether SGXJail should be
integrated with the SGX SDK in a way that does not demand
recompilation of the application. Thus, system administrators
can globally enforce SGXJail by just installing corresponding
shared libraries. Since the enclave’s EDL file is public anyway
and will be distributed alongside third-party enclaves, the gen-
eration of dispatcher code is straight forward. Moreover, one
would need to hook the enclave API of the unmodified appli-
cation binary and inject dispatcher code, which can be done by
preloading SGX SDK libraries (in particular, sgx_urts.so).

Table 2: ECALL and OCALL latency in CPU cycles of
SGXJail compared to the unprotected Vanilla version.
The standard deviation is shown in braces.

Latency ECALL OCALL
Vanilla 15 624 (± 301) 13 438 (± 1046)
SGXJail 22 094 (± 814) 19 515 (± 1360)

5.3 Evaluation

SGXJail does not affect runtime performance of host applica-
tions or enclaves in isolation. That is, as long as no interaction
between enclave and application takes place, they can run
without performance loss. The only performance overhead
occurs when doing ECALLs and OCALLs due to the message
passing via shared memory and the necessary synchroniza-
tion between application and sandbox process. To evaluate
this effect, we first present microbenchmarks for bare metal
ECALL and OCALL latency, which are followed by mac-
robenchmarks on more representative workloads.
Test Setup. All evaluations are done on a commodity note-
book featuring an Intel i5-6200U CPU, a Samsung SM951
SSD and running Ubuntu 16.04 Desktop and SGX SDK ver-
sion 2.4. For the benchmarks, we disabled the screen as well
as network interfaces to reduce noise from screen redrawing
or external interrupts. Also, we fixed the CPU frequency to
its maximum (2.3 GHz) and pinned the benchmark to a single
core. The benchmarks include a warm-up phase.
Microbenchmarks. To measure the ECALL latency, we im-
plemented a simple ECALL and measured its execution time
from within the host application. That is, the ECALL latency
includes EENTER, EEXIT, all glue code for the enclave and
the host, as well as context switching and synchronization be-
tween application and sandbox for SGXJail. To measure the
OCALL latency, we, in addition, perform one simple OCALL
from within the ECALL and subtract the ECALL latency. We
repeated the measurement 500 times. The resulting latencies
are shown in Table 2. The raw ECALL latency increases from
15.6 ·103 cycles to 22.1 ·103 cycles while the OCALL latency
increases from 13.4 ·103 cycles to 19.5 ·103 cycles. Hence,
the absolute latency remains small. Since many practical
usage scenarios of SGX involve somewhat complex computa-
tions inside the enclave, the actual runtime overhead is much
lower than the pure ECALL/OCALL overhead.
Macrobenchmarks. Quantifying performance of enclaves
is highly application specific. Unfortunately, enclaves are not
widely deployed yet and standardized benchmarking suites are
unavailable to the best of our knowledge. A common approach
is to port existing programs to an enclave [61]. While this
sounds appealing, it tends to introduce many unnecessary
OCALLs to the standard library which well-designed enclaves
would not perform, e.g., the getpid syscall in openVPN [61].

Instead, we quantify the performance of SGXJail as fol-
lows. First, we benchmark a synthetic workload under dif-

7

ferent OCALL frequencies. The results of this benchmark
are generic and can be applied to any enclave for which the
OCALL frequency can be determined. Second, we benchmark
storage of sensitive enclave data to disk via the Intel protected
filesystem (PFS). The PFS is integrated within the SGX SDK
and is likely to be used by a vast number of enclaves.

For our first benchmark, we observe that an enclave typi-
cally issues OCALLs to perform syscalls, e.g., writing to files.
Our benchmarked OCALL performs a close syscall on an in-
valid file descriptor. Such a fast syscall gives an upper bound
on the performance overhead since longer syscalls decrease
the influence of the OCALL overhead. We repeated each mea-
surement 100 times. The OCALL-to-enclave ratio (w.r.t. their
runtime) as well as the overhead of SGXJail compared to
unprotected Vanilla applications is given in Figure 3, whereas
the simple standard deviation is shown as the area under the
curves. We execute a fixed baseline workload inside the en-
clave, which corresponds to 2201.44 (± 25.67) ·106 cycles,
or 0.96 (± 0.011) s on our 2.3 GHz CPU. As this workload
runs within the enclave, we quantify it as enclave seconds, or
Esec. While we keep the enclave workload constant, we issue
OCALLs at different frequencies and measure the additional
OCALL work. This is shown as ratio on the left axis of Fig-
ure 3 and allows us to decouple the OCALL overhead from
the OCALL frequency, which we quantify as OCALLs/Esec.

One can see that the overhead of SGXJail is virtually non-
existent for low-frequency OCALLs, meaning that pure en-
clave execution is not impeded by SGXJail at all. Even for
10 000 OCALLs/Esec the overhead is below 3% and for a
large number of 50 000 OCALLs/Esec the overhead is only
around 11%. To put these numbers into perspective, Netflix
observed a maximum of 50 000 OCALLs/s across their sys-
tems [20]. For even higher OCALL frequencies the OCALL
workload starts to exceed the enclave workload in the vanilla
version already. With SGXJail, enclaves can issue up to
113 000 OCALLs/Esec before OCALL processing exceeds
actual enclave computations (ratio=1). For unprotected apps
this point is reached for 164 000 OCALLs/Esec. Such situ-
ations should be dealt with in practice by redesigning the
enclave API and reducing or removing unnecessary OCALLs.
Yet, SGXJail only introduces around 20% overhead even in
this extreme case.

Our first benchmark measures the raw OCALL perfor-
mance. However, this does not reflect the performance of
copying OCALL arguments between enclave and applica-
tion. To evaluate the maximum overhead of a real-world
scenario, we benchmark an enclave which only accesses
files via the Intel protected file system (PFS) library. PFS
is shipped with the SGX SDK and is intended for sealing
sensitive enclave data on the host file system for persisting
state across reboots. To resemble a worst-case scenario of
PFS, we implement and benchmark a single ECALL which
opens a new file (sgx_fopen_auto_key), writes a fixed-size
buffer (sgx_fwrite), and immediately closes the file again

101 102 103 104 105 106

0

2

4

6

8

10

OCALLs / Esec

R
at

io
of

O
C

A
L

L
vs

.
en

cl
av

e
w

or
kl

oa
d Vanilla

SGXJail

101 102 103 104 105 106

0

10

20

30

40

SG
X

Ja
il/

V
an

ill
a

in
%Overhead

Figure 3: Benchmark on unprotected (Vanilla) and hard-
ened (SGXJail) applications, plotted over different num-
bers of OCALLs per enclave second (Esec).

100 101 102 103 104 105 106

0.1

1

10

Payload size in bytes

R
un

tim
e

in
m

s

Vanilla
SGXJail

100 101 102 103 104 105 106

0

20

40

60

80

O
ve

rh
ea

d
in

%

Overhead

Figure 4: PFS runtime of SGXJail compared to unpro-
tected Vanilla enclaves for different payload sizes.

(sgx_fclose). We repeat the measurements 200 times. After
each run, we delete the file and synchronize the file system
to reliably capture the overhead of PFS. Figure 4 shows the
PFS performance for different payload sizes up to 1MB. The
runtime includes enclave as well as OCALL computation.
The simple standard deviation is shown as area around the
curves.

The maximum overhead for protecting PFS with SGXJail
is roughly around 20%. There is almost constant runtime
up to 2 kB payloads for SGXJail and the unprotected vanilla
enclave with a sudden increase at 4 kB payloads. The reason
is that the PFS library caches smaller chunks of data and
defers actual file writing to closing the file with sgx_fclose
with 8 OCALLs in total. When exceeding the internal buffer
of 3072 bytes, the PFS library flushes data to the file system
using 7 more OCALLs, resulting in the sudden increase of
the absolute runtimes for SGXJail and the vanilla enclave.

For larger payloads (4 kB and more), the overall overhead
does not increase but falls below 20%. This suggests that argu-
ment copying itself is not the bottleneck of PFS. We verified
this by manually removing argument copying in the sand-
box for the actual file write OCALL. Using 1 MB payloads,
the overhead dropped by roughly 3%. Rather than argument
copying, the runtime overhead of SGXJail is dominated by
the OCALL overhead since the PFS implementation chops

8

KA KE

C
G

Enclave

EEXIT
C

G

WRPKRU KE
CEENTER
WRPKRU KA|KE

Application
data Argument pages

E/OCALL
arguments

Figure 5: HSGXJail confines the enclave to pages marked
with memory protection key KE . Thus, the application
can protect its pages via a disjoint memory protection key
KA . ECALL/OCALL interaction is constrained to non-

enclave KE pages (dashed lines). Moreover, EEXIT can
only target a single exit point, namely the instruction fol-
lowing a CEENTER (a new confined EENTER instruction).

larger payloads into a sequence of smaller OCALLs. In fact,
for 1 MB payloads we observed 313 OCALLs in total.

We have shown that SGXJail does not impede pure en-
clave computation (0% overhead). For real-world workloads
up to 10 000 OCALLs/Esec, the overhead is below 3% (cf.
Figure 3). Even for uncommonly high OCALL frequencies
(100 000 OCALLs/Esec), the overhead of SGXJail is still be-
low 20%, whereas plain writing of protected files with high
OCALL interaction comes at only 20% overhead. To fur-
ther improve performance, SGXJail could use HotCalls for
faster enclave communication [61]. Alternatively, we propose
a lightweight hardware extension (HSGXJail) which provides
SGXJail isolation at virtually no overhead.
Memory overhead. SGXJail requires one additional process
for the sandbox. As for site isolation in browsers [47], this
incurs only a slight (constant) increase in used memory for
the sandbox and the shared memory used for communication.

5.4 HSGXJail via Hardware Confinement

In this section, we propose a more efficient defense mech-
anism via a minimal change to the SGX specification with
respect to Intel memory protection keys (MPK), i.e., disallow-
ing one MPK instruction in SGX.

To prevent an enclave from accessing host application mem-
ory, we propose a stricter page access policy. To that end,
HSGXJail introduces two extensions: first, data confinement
and second, control confinement. First, memory regions that
are not supposed to be used by the enclave shall be inacces-
sible to the enclave. Data confinement limits memory pages
an enclave can read or write, thus breaking the arbitrary read
and write primitives. Second, EEXIT shall be only allowed
on well-defined exit points. Control confinement prevents
the enclave from misusing EEXIT to jump to arbitrary host
application code, thus breaking the arbitrary EEXIT primitive.
Data Confinement with Intel Memory Protection Keys.
The central issue of enclave malware is an asymmetry in
the memory access policy, granting enclaves unrestricted

access to host-application memory. Data confinement uses
a recent protection mechanism called memory protection
keys (MPK) [26] to partition virtual memory into enclave-
accessible memory and protected application memory. If the
enclave attempts to access protected application memory, the
CPU raises a page fault. To prevent the enclave from reconfig-
uring MPK, HSGXJail disallows certain MPK instructions in
enclave execution mode. Similar to SGXJail (cf. Section 5.1),
we use this mechanism to confine enclave execution to a
narrow ECALL/OCALL interface, as shown in Figure 5.

Memory protection keys work as follows: they augment
page-based read, write and execute permissions with addi-
tional access policies. Each application page can be assigned
one particular memory protection key. This protection key is
stored directly in the corresponding page table entry (PTE).
By assigning different protection keys to different pages, MPK
allows to partition virtual memory pages into 16 disjoint pro-
tection domains. The PKRU CPU register controls which
access policy is applied to those protection domains. For each
of the 16 protection keys, PKRU allows to selectively disable
write and read access for the current execution thread. The
PKRU register can be updated via the unprivileged WRPKRU in-
struction, enabling frequent switching of protection domains
within the application. Since each CPU thread maintains its
own local PKRU register, MPK supports multithreading.

For HSGXJail, we partition the application into protection
key KA comprising all application pages and KE , covering
enclave memory as well as argument pages, as shown in Fig-
ure 5. Immediately before entering an enclave, the application
configures PKRU to confine memory accesses to the enclave
only (WRPKRU KE). During enclave operation, the enclave can
only access argument pages for ECALL/OCALL arguments.
After leaving the enclave, the application re-enables full ac-
cess to the application itself (KA) as well as the argument
pages (KE) via WRPKRU KA|KE.

To prevent the enclave from manipulating MPK by re-
configuring the PKRU register, HSGXJail demands a slight
modification to the SGX specification. Whenever HSGXJail
is active, the WRPKRU instruction is disallowed for the enclave
and raises an invalid opcode exception instead. This change
should be easily adaptable via a microcode update to the CPU.

HSGXJail poses no limit on the number of applications
using third-party enclaves, however, the number of enclaves
within a single application is restricted. Since MPK supports
up to 16 different protection domains, HSGXJail can natively
secure applications utilizing up to 15 distinct enclaves. Note
that one protection domain is needed for the application itself.
To support more enclaves per application, one can follow var-
ious approaches: First, in many cases enclaves provide simple
functionality, e.g., ECALLs without OCALLs, or OCALLs
for issuing syscalls but not towards other enclaves. In these
cases, enclaves are never called in an interleaved way and
thus, are never concurrently active. Hence, the application can
safely share the same argument pages and also the same pro-

9

tection key among those enclaves. This increases the number
of supported enclaves by the degree of enclaves which are not
interleaved with other enclaves. Second, memory protection
keys can be dynamically updated and scheduled among dif-
ferent enclaves. While this supports an arbitrary large number
of enclaves per application, it incurs additional performance
penalty in updating protection keys in the PTEs.
Control Confinement. Whenever leaving enclave execution
(via ECALLs and OCALLs), the enclave jumps into the host
application via an EEXIT instruction. However, since the en-
clave can freely choose the jump target of EEXIT, a variety of
code-reuse attacks become possible (cf. Section 4).

Data confinement already limits an enclave’s read and write
access by means of MPK. While MPK protects data accesses,
it does not prevent fetching code from other protection do-
mains. This design choice is intentional to enable application
code to update protection domains without accidentally re-
moving access to its own code. Hence, data confinement does
nothing to protect an application from rogue EEXITs.

To break the arbitrary EEXIT primitive, HSGXJail restricts
EEXIT to a single valid exit point. In particular, EEXIT can
only target the instruction immediately following a so-called
CEENTER instruction. This exit point is similar to the enclave
entry points used to protect an enclave from malicious applica-
tions, both of which are shown as call gates (CG) in Figure 5.

Control confinement can be easily implemented via small
changes to SGX. We propose to extend the semantics of
EENTER via a novel confined CEENTER instruction. From the
enclave’s perspective, CEENTER behaves exactly as EENTER.
EENTER already stores the exit point (i.e., the address of the
instruction immediately following EENTER) in register RCX.
However, SGX leaves it up to the enclave to store this exit
point and later on pass it to EEXIT. In contrast, our CEENTER
instruction additionally stores the exit point in a protected,
thread-local CPU register called OEXIT which is inaccessible
to the enclave. To make use of this exit point, we propose
to adapt the semantics of the EEXIT instruction, as follows:
Instead of jumping to a target provided by the enclave via reg-
ister RBX, our EEXIT ignores RBX and instead directly jumps
to the address stored in the protected OEXIT register. Both,
CEENTER and EEXIT can be implemented in CPU microcode.
Compatibility. To be fully compatible with existing enclave
software, we activate HSGXJail only on demand. If the appli-
cation issues a normal EENTER instruction, HSGXJail is inac-
tive and SGX behaves as usual. When entering the enclave via
our new confined CEENTER instruction, HSGXJail is active
until EEXIT. Moreover, HSGXJail’s slim design is fully com-
patible with advanced SGX features such as multithreading,
dynamic memory management and virtualization [26]. Avail-
ability of HSGXJail can be indicated via a model-specific
register.
Software Considerations. HSGXJail protects applications
from existing, unmodified third-party enclaves. HSGXJail can
be integrated entirely within the SGX SDK [25], thus being

fully transparent to existing application code. This allows to
use HSGXJail by recompiling applications, without the need
to rewrite any application code.

To use HSGXJail, the SDK needs the following slight adap-
tations. First, the SDK replaces EENTER with CEENTER in the
untrusted urts library. The urts library already uses a sin-
gle exit point, which is the address immediately following
EENTER. The corresponding trusted trts library belonging
to the enclave performs EEXIT only towards this single exit
point. Since our modified EEXIT instruction enforces the same
exit point, it does not change the behavior of benign enclaves.
No changes to the trts library are required. Benign enclaves
compiled under the original trts library work out of the box.

For data confinement, the SGX SDK needs to establish
enclave-accessible argument pages reflecting the ECALL/O-
CALL interface and configure memory protection keys ac-
cordingly. By default, all application code runs with protec-
tion key zero. Thus, the SDK assigns protection keys starting
with one to all enclave pages as well as the corresponding ar-
gument pages. Similar to the software-only variant, SGXJail,
the SDK can do this once when loading a new enclave.

When doing an ECALL, the SDK additionally copies all
input arguments from application memory to an enclave-
accessible argument page. In the same way, the SGX copies
back any output arguments from the argument page to appli-
cation memory at the end of an ECALL. The same applies to
OCALLs. While argument copying causes some overhead, it
is deemed necessary to generically prevent TOCTOU attacks
and guarantee the security of the application. For the same
reason, the enclave copies untrusted application arguments to
enclave memory before operating on it.

Before entering the enclave, the SDK saves all necessary
CPU registers in application memory, clears sensitive con-
tent from the registers and configures the application’s stack
pointer RSP to point to one of the argument pages. Configur-
ing RSP in that way causes the enclave to read and write any
OCALL arguments directly from/to the argument page, which
is enclave-accessible, without additional copying overhead.
After leaving the enclave, the SDK restores the application’s
CPU registers, including the stack pointer.

Performance Estimates. The only functionally necessary
change for HSGXJail is disallowing the WRPKRU instruction on
CEENTER, which can be easily implemented in the CPU. The
microcode changes we propose to CEENTER and EEXIT for
control confinement are minimal and only comprise register
operations rather than memory accesses, resulting in negli-
gible performance overhead. Second, data confinement via
MPK requires no change and shows the same performance as
for MPK without HSGXJail. Hence, it is reasonable to expect
a negligible overhead of HSGXJail in every aspect, far lower
than the overhead of the software-based SGXJail variant.

10

6 Related Work

Defense by Detection. Researchers proposed to detect en-
clave malware by monitoring their I/O behavior [13, 16].
However, this is believed to be infeasible in practice [38].
Others proposed analyzing enclave code before actually run-
ning it [13], which is not feasible for generic loaders. Generic
loaders can remotely fetch arbitrary malicious code at runtime.
Refusing such generic loaders would annihilate all use cases
for protecting intellectual property. Instead, Costan et al. [13]
proposed to force generic loader enclaves to embed malware
analysis code within the enclave. However, it is unclear how
effective this technique is in detecting malicious code. It also
raises the question who decides which analysis code to embed
and to ensure the analysis code does not leak enclave secrets.
Also, analysis code cannot be easily updated, and enclaves
without analysis code cannot be executed without risk.
Defense by Prevention. While applying control-flow in-
tegrity (CFI) to the host application sounds appealing, it
does not close all attack vectors outlined in Section 4. Al-
though hardware-assisted CFI can prevent some control-flow
attacks [27], they are not yet available and might miss rogue
EEXIT attacks. Software CFI schemes like [31, 39] can sim-
ply be bypassed by leaking secrets and corrupting CFI meta-
data via the arbitrary read and write primitives. Moreover, no
CFI scheme can prevent data-only attacks.

Readactor [15], Heisenbyte [57], and NEAR [62] severely
limit the arbitrary read primitive necessary for many attacks by
forcing page faults when trying to access sensitive code. How-
ever, they have significantly larger overhead than SGXJail,
and blind ROP attacks might still be possible [4]. Ryoan [23]
executes malicious enclaves inside a software sandbox using
software fault isolation (SFI). However, Ryoan demands re-
compilation of the enclave with SFI, which cannot be applied
in our setting. Also, Ryoan severely restricts the enclave life
cycle to a single stateless invocation, which is incompatible
to generic third-party enclaves.

7 Discussion

Since the very first blog post in 2013 [48], the enclave mal-
ware threat has been discussed at a high level but was mostly
disregarded by the research community. With recent attacks
showing powerful and practical enclave malware, research on
proper defense mechanisms becomes pressing.

In this work, we identified three enclave primitives, namely
arbitrary memory reads, writes and EEXITs, which lie at the
heart of the enclave malware threat by exposing an application
to a variety of runtime attacks originating from misbehaving
enclaves. Although these primitives help support different
SGX programming models, they not only give rise to enclave
malware but they are unnecessary in practice, as enclaves
ought to strictly comply with the defined ECALL/OCALL
interface. In particular, the enclave runtime services offered by

the SGX SDK demand precise EDL specification of the data
exchanged, and bypassing this specification is considered bad
practice. Moreover, the SDK uses only a single enclave exit
point, from which all ECALLs and OCALLs are dispatched.

Based on these observations, we proposed (H)SGXJail to
confine enclave primitives to the narrow interface specified
by the EDL. This applies the principle of least privileges [49]
also to enclaves and closes a entire class of runtime attacks,
including information disclosure, control-flow attacks, as well
as data-only attacks. Even more, by automatically copying
ECALL/OCALL arguments from and to application memory,
(H)SGXJail prevents double-fetch bugs [58] by design.

Furthermore, SGXJail paves the way for reasoning about
application security based on application code only (i.e., with-
out trusting any enclave code), and the ECALL/OCALL in-
terface in particular. While SGXJail defeats a entire class of
runtime attacks, it cannot solve the problem of too permis-
sive host interfaces, e.g., a syscall proxy [38] which allows
executing arbitrary syscalls. Further research on designing
and validating ECALL/OCALL interfaces is needed to avoid
API-level attacks via too permissive OCALLs or confused
deputy [22] and Iago attacks [11]. In general, one has to
consider enclave-to-host communication not as asymmetric
(cf. the kernel’s syscall interface) but as part of a mutually
distrusted API where both communication parties distrust
each other. Mutual distrust is an integral part of designing se-
cure web APIs. Since enclave malware raises similar threats
as web applications, we also see some overlap in defense
strategies [43]. In special, input validation or sanitization [43,
Section V5] can help prevent Iago-style attacks while veri-
fication of the logical execution flow [43, Section V11] can
prevent confused deputy attacks.
Closing Side Channels. Several side-channel attacks
mounted against benign SGX enclaves have been shown [7,
19, 34, 41, 59, 63]. Moreover, malicious enclaves themselves
can mount side-channel attacks [21, 53, 54]. Although not
the primary focus of this work, SGXJail prevents a variety of
side-channel attacks that rely on accessing host application
memory, e.g., Flush+Reload on shared host libraries used by
the host application from within enclaves, Prime+Probe using
host application arrays [54], Rowhammer attacks from within
enclaves [21] as well as TSX-based address probing [53].

8 Conclusion

While designed to increase the security of a computing sys-
tem, secure enclave technology such as Intel SGX might also
be misused for shielding malware inside enclaves. However,
research on potential enclave malware is still in its beginnings,
and practical defense mechanisms are virtually non-existent.

In this work, we identified the root cause of enclave mal-
ware as an insufficient enclave-to-host isolation and proposed
(H)SGXJail as a generic defense against a wide range of en-
clave malware threats. (H)SGXJail enforces mutual isolation

11

between host applications and enclaves, thus protecting appli-
cations from potentially misbehaving or malicious third-party
enclaves. SGXJail is an efficient and transparent software
defense, running third-party enclaves in an isolated sandbox.
Our proof-of-concept implementation shows zero overhead
for pure enclave computation and less than 3% for realistic
workloads. SGXJail is tightly integrated within the SGX SDK
and can be used out of the box. Furthermore, we propose
SGXJail directly in hardware. Our HSGXJail mechanism pro-
vides enclave confinement by means of Intel MPK with slim
extensions to the SGX specification at virtually no cost. We
believe HSGXJail should be immediately rolled out via a mi-
crocode update to SGX-enabled CPUs to proactively enable
our SGX malware defense. However, support for MPK is still
rare. Although some server CPUs support MPK [64], it is
unclear when x86-based desktop CPUs catch up.

Apart from defending against enclave malware,
(H)SGXJail opens up new use cases for Intel SGX
and similar isolation technologies. For example, we envision
that (H)SGXJail can be used as lightweight and secure
sandboxing mechanism for browser site isolation or plugin
management, where third-party code has proven to be both,
potentially malicious and potentially security critical.

Acknowledgements

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No 681402). This work has been supported by the Austrian
Research Promotion Agency (FFG) via the K-project DeSS-
net, which is funded in the context of COMET – Competence
Centers for Excellent Technologies by BMVIT, BMWFW,
Styria and Carinthia. Additional funding was provided by a
generous gift from Intel. Any opinions, findings, and conclu-
sions or recommendations expressed in this paper are those
of the authors and do not necessarily reflect the views of the
funding parties.

References

[1] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay
Ligatti. Control-flow integrity. In CCS, 2005.

[2] Erick Bauman and Zhiqiang Lin. A case for protecting
computer games with SGX. In Workshop on System
Software for Trusted Execution, 2016.

[3] Andrew Baumann, Marcus Peinado, and Galen Hunt.
Shielding applications from an untrusted cloud with
haven. ACM Transactions on Computer Systems, 2015.

[4] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David
Mazières, and Dan Boneh. Hacking blind. In S&P,
2014.

[5] Tyler K. Bletsch, Xuxian Jiang, Vincent W. Freeh, and
Zhenkai Liang. Jump-oriented programming: a new
class of code-reuse attack. In AsiaCCS, 2011.

[6] Erik Bosman and Herbert Bos. Framing signals - A
return to portable shellcode. In S&P, 2014.

[7] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko,
Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza
Sadeghi. Software Grand Exposure: SGX Cache At-
tacks Are Practical. In WOOT, 2017.

[8] Nicholas Carlini, Antonio Barresi, Mathias Payer, David
Wagner, and Thomas R Gross. Control-flow bend-
ing: On the effectiveness of control-flow integrity. In
USENIX Security, 2015.

[9] Nicholas Carlini and David A. Wagner. ROP is still
dangerous: Breaking modern defenses. In USENIX
Security, 2014.

[10] Stephen Checkoway, Lucas Davi, Alexandra
Dmitrienko, Ahmad-Reza Sadeghi, Hovav Shacham,
and Marcel Winandy. Return-oriented programming
without returns. In CCS, 2010.

[11] Stephen Checkoway and Hovav Shacham. Iago attacks:
why the system call API is a bad untrusted RPC interface.
In ASPLOS, 2013.

[12] Tzi-cker Chiueh and Fu-Hau Hsu. Rad: A compile-time
solution to buffer overflow attacks. In International
Conference on Distributed Computing Systems, 2001.

[13] Victor Costan and Srinivas Devadas. Intel SGX ex-
plained. 2016.

[14] Crispan Cowan, Calton Pu, Dave Maier, Jonathan
Walpole, Peat Bakke, Steve Beattie, Aaron Grier, Perry
Wagle, Qian Zhang, and Heather Hinton. Stackguard:
Automatic adaptive detection and prevention of buffer-
overflow attacks. In USENIX Security, 1998.

[15] Stephen Crane, Christopher Liebchen, Andrei Homescu,
Lucas Davi, Per Larsen, Ahmad-Reza Sadeghi, Stefan
Brunthaler, and Michael Franz. Readactor: Practical
code randomization resilient to memory disclosure. In
S&P, 2015.

[16] Shaun Davenport and Richard Ford. SGX: the good, the
bad and the downright ugly, January 2014. URL: https:
//www.virusbulletin.com/virusbulletin/2014/
01/sgx-good-bad-and-downright-ugly.

[17] Anders T Gjerdrum, Robert Pettersen, Håvard D Jo-
hansen, and Dag Johansen. Performance of trusted com-
puting in cloud infrastructures with intel sgx. In Inter-
national Conference on Cloud Computing and Services
Science, 2017.

12

https://www.virusbulletin.com/virusbulletin/2014/01/sgx-good-bad-and-downright-ugly
https://www.virusbulletin.com/virusbulletin/2014/01/sgx-good-bad-and-downright-ugly
https://www.virusbulletin.com/virusbulletin/2014/01/sgx-good-bad-and-downright-ugly

[18] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and
Georgios Portokalidis. Out of control: Overcoming
control-flow integrity. In S&P, 2014.

[19] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel,
and Tilo Müller. Cache Attacks on Intel SGX. In Eu-
roSec, 2017.

[20] Daniel Gruss, Dave Hansen, and Brendan Gregg. Kernel
isolation: From an academic idea to an efficient patch
for every computer. USENIX ;login, 2018.

[21] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel
Genkin, Jonas Juffinger, Sioli O’Connell, Wolfgang
Schoechl, and Yuval Yarom. Another Flip in the Wall
of Rowhammer Defenses. In S&P, 2018.

[22] Norman Hardy. The confused deputy (or why capa-
bilities might have been invented). Operating Systems
Review, 22(4):36–38, 1988.

[23] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter,
and Emmett Witchel. Ryoan: A distributed sandbox for
untrusted computation on secret data. In Usenix OSDI,
2016.

[24] Intel. Intel Software Guard Extensions SSL. URL:
https://github.com/intel/intel-sgx-ssl.

[25] Intel. Intel Software Guard Extensions SDK for Linux
OS Developer Reference, May 2016. Rev 1.5.

[26] Intel. Intel R© 64 and IA-32 Architectures Software
Developer′s Manual, Volume 3 (3A, 3B & 3C): System
Programming Guide. (325384), 2016.

[27] Intel. Control-flow Enforcement Technology Preview,
June 2017. Revision 2.0.

[28] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger,
and Mathias Payer. Block oriented programming: Au-
tomating data-only attacks. In CCS, 2018.

[29] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin,
Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad
Lai, and Onur Mutlu. Flipping bits in memory with-
out accessing them: An experimental study of DRAM
disturbance errors. In ISCA, 2014.

[30] Klaudia Krawiecka, Arseny Kurnikov, Andrew Paverd,
Mohammad Mannan, and N Asokan. Protecting web
passwords from rogue servers using trusted execution
environments. arXiv:1709.01261, 2017.

[31] Volodymyr Kuznetsov, László Szekeres, Mathias Payer,
George Candea, R Sekar, and Dawn Song. Code-Pointer
Integrity. In OSDI, 2014.

[32] Bingchen Lan, Yan Li, Hao Sun, Chao Su, Yao Liu,
and Qingkai Zeng. Loop-oriented programming: a new
code reuse attack to bypass modern defenses. In IEEE
Trustcom/BigDataSE/ISPA, 2015.

[33] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun
Kwak, Yeseul Choi, Changho Choi, Taesoo Kim, Mar-
cus Peinado, and Brent Byunghoon Kang. Hacking in
darkness: Return-oriented programming against secure
enclaves. In USENIX Security, 2017.

[34] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim,
Hyesoon Kim, and Marcus Peinado. Inferring fine-
grained control flow inside SGX enclaves with branch
shadowing. In USENIX Security Symposium, 2017.

[35] Xueping Liang, Sachin Shetty, Deepak Tosh, Charles
Kamhoua, Kevin Kwiat, and Laurent Njilla. Provchain:
A blockchain-based data provenance architecture in
cloud environment with enhanced privacy and availabil-
ity. In International Symposium on Cluster, Cloud and
Grid Computing, 2017.

[36] Linux kernel. SECure COMPuting with fil-
ters, 2017. URL: https://www.kernel.org/doc/
Documentation/prctl/seccomp_filter.txt.

[37] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading Kernel Mem-
ory from User Space. In USENIX Security Symposium,
2018.

[38] Marion Marschalek. The Wolf In SGX Clothing. Blue-
hat IL, January 2018.

[39] Ali José Mashtizadeh, Andrea Bittau, Dan Boneh, and
David Mazières. CCFI: cryptographically enforced con-
trol flow integrity. In CCS, 2015.

[40] Dirk Merkel. Docker: lightweight linux containers for
consistent development and deployment. Linux Journal,
2014.

[41] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisen-
barth. Cachezoom: How sgx amplifies the power of
cache attacks. In CHES, 2017.

[42] Nicolas Bacca. Soft launching ledger SGX enclave,
2017. URL: https://www.ledger.fr/2017/05/22/
soft-launching-ledger-sgx-enclave/.

[43] OWASP. OWASP application security verification stan-
dard 4.0, 2019.

[44] Vasilis Pappas, Michalis Polychronakis, and Angelos D.
Keromytis. Smashing the gadgets: Hindering return-
oriented programming using in-place code randomiza-
tion. In S&P, 2012.

13

https://github.com/intel/intel-sgx-ssl
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.ledger.fr/2017/05/22/soft-launching-ledger-sgx-enclave/
https://www.ledger.fr/2017/05/22/soft-launching-ledger-sgx-enclave/

[45] PaX Team. Address space layout randomization
(ASLR), 2003. URL: http://pax.grsecurity.net/
docs/aslr.txt.

[46] PaX Team. Rap: Rip rop. Hackers to Hackers Confer-
ence, 2015.

[47] Charlie Reis. Mitigating spectre with site
isolation in chrome, 2018. URL: https:
//security.googleblog.com/2018/07/
mitigating-spectre-with-site-isolation.
html.

[48] Joanna Rutkowska. Thoughts on Intel’s upcoming Soft-
ware Guard Extensions (Part 2), 2013. URL: http:
//theinvisiblethings.blogspot.com/2013/09/.

[49] Jerome H. Saltzer and Michael D. Schroeder. The pro-
tection of information in computer systems. Proceed-
ings of the IEEE, 63(9):1278–1308, 1975.

[50] Felix Schuster, Manuel Costa, Cédric Fournet, Christos
Gkantsidis, Marcus Peinado, Gloria Mainar-Ruiz, and
Mark Russinovich. VC3: trustworthy data analytics in
the cloud using SGX. In S&P, 2015.

[51] Felix Schuster, Thomas Tendyck, Christopher Liebchen,
Lucas Davi, Ahmad-Reza Sadeghi, and Thorsten Holz.
Counterfeit object-oriented programming: On the diffi-
culty of preventing code reuse attacks in C++ applica-
tions. In S&P, 2015.

[52] Michael Schwarz, Daniel Gruss, Moritz Lipp, Clémen-
tine Maurice, Thomas Schuster, Anders Fogh, and Ste-
fan Mangard. Automated Detection, Exploitation, and
Elimination of Double-Fetch Bugs using Modern CPU
Features. AsiaCCS, 2018.

[53] Michael Schwarz, Samuel Weiser, and Daniel Gruss.
Practical enclave malware with Intel SGX. In DIMVA,
2019.

[54] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clé-
mentine Maurice, and Stefan Mangard. Malware Guard

Extension: Using SGX to Conceal Cache Attacks. In
DIMVA, 2017.

[55] Hovav Shacham. The geometry of innocent flesh on
the bone: Return-into-libc without function calls (on the
x86). In CCS, 2007.

[56] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn
Song. SoK: Eternal War in Memory. In S&P, 2013.

[57] Adrian Tang, Simha Sethumadhavan, and Salvatore
Stolfo. Heisenbyte: Thwarting memory disclosure at-
tacks using destructive code reads. In CCS, 2015.

[58] Pengfei Wang, Kai Lu, Gen Li, and Xu Zhou. A survey
of the double-fetch vulnerabilities. Concurrency and
Computation: Practice and Experience, 30(6), 2018.

[59] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian
Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu
Tang, and Carl A Gunter. Leaky cauldron on the dark
land: Understanding memory side-channel hazards in
SGX. In CCS, 2017.

[60] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and
Rüdiger Kapitza. Asyncshock: Exploiting synchronisa-
tion bugs in Intel SGX enclaves. In ESORICS, 2016.

[61] Ofir Weisse, Valeria Bertacco, and Todd M. Austin. Re-
gaining lost cycles with hotcalls: A fast interface for
SGX secure enclaves. In ISCA, 2017.

[62] Jan Werner, George Baltas, Rob Dallara, Nathan Ot-
terness, Kevin Z Snow, Fabian Monrose, and Michalis
Polychronakis. No-execute-after-read: Preventing code
disclosure in commodity software. In AsiaCCS, 2016.

[63] Y. Xu, W. Cui, and M. Peinado. Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Op-
erating Systems. In S&P, May 2015.

[64] Mingwei Zhang. XOM-Switch, 2019. URL: https:
//github.com/intel/xom-switch.

14

http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
https://security.googleblog.com/2018/07/mitigating-spectre-with-site-isolation.html
https://security.googleblog.com/2018/07/mitigating-spectre-with-site-isolation.html
https://security.googleblog.com/2018/07/mitigating-spectre-with-site-isolation.html
https://security.googleblog.com/2018/07/mitigating-spectre-with-site-isolation.html
http://theinvisiblethings.blogspot.com/2013/09/
http://theinvisiblethings.blogspot.com/2013/09/
https://github.com/intel/xom-switch
https://github.com/intel/xom-switch

	Introduction
	Background
	Intel SGX
	Runtime Attacks

	Threat Model
	Analyzing the Enclave Malware Threat
	Enclave Primitives
	Attack Vectors
	Information disclosure
	Control-flow attacks
	Data-only attacks

	API attacks

	SGXJail
	SGXJail via Software Confinement
	Implementation Details
	Evaluation
	HSGXJail via Hardware Confinement

	Related Work
	Discussion
	Conclusion

