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Abstract. Modern CPU architectures offer strong isolation guarantees
towards user applications in the form of enclaves. However, Intel’s threat
model for SGX assumes fully trusted enclaves and there doubt about
how realistic this is. In particular, it is unclear to what extent enclave
malware could harm a system. In this work, we practically demonstrate
the first enclave malware which fully and stealthily impersonates its host
application. Together with poorly-deployed application isolation on per-
sonal computers, such malware can not only steal or encrypt documents
for extortion but also act on the user’s behalf, e.g., send phishing emails
or mount denial-of-service attacks. Our SGX-ROP attack uses new TSX-
based memory-disclosure primitive and a write-anything-anywhere prim-
itive to construct a code-reuse attack from within an enclave which is
then inadvertently executed by the host application. With SGX-ROP,
we bypass ASLR, stack canaries, and address sanitizer. We demonstrate
that instead of protecting users from harm, SGX currently poses a se-
curity threat, facilitating so-called super-malware with ready-to-hit ex-
ploits. With our results, we demystify the enclave malware threat and
lay ground for future research on defenses against enclave malware.
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1 Introduction

Software isolation is a long-standing challenge in system security, especially if
parts of the system are considered vulnerable, compromised, or malicious [24].
Recent isolated-execution technology such as Intel SGX [23] can shield software
modules via hardware protected enclaves even from privileged kernel malware.
Thus, SGX has been advertised as key enabler of trusted cloud computing, where
customers can solely rely on the CPU hardware for protecting their intellectual
property and data against curious or malicious cloud providers [47]. Another
use case for SGX is protecting copyrighted material from piracy [5, 40] (DRM).
Also, enclaves are explored for various other use cases, such as crypto ledgers [39],
wallets [39], password managers [58] and messengers [36]. With the upcoming
SGXv2 [23], Intel opens their technology for the open-source community, allow-
ing to bypass Intel’s strict enclave signing policy via their own key infrastructure.

However, there is a flip side to the bright future of isolated-execution technol-
ogy painted by both the industry and community. Any isolation technology might
also be maliciously misused. For instance, virtual machine extensions have been
used to hide rootkits [29, 37] and exploit CPU bugs [60]. Researchers have warned



that enclave malware likely causes problems for today’s anti-virus (AV) tech-
nology [14, 17, 46]. The strong confidentiality and integrity guarantees of SGX
fundamentally prohibit malware inspection and analysis, when running such mal-
ware within an enclave. Moreover, there is a potential threat of next-generation
ransomware [34] which securely keeps encryption keys inside the enclave and, if
implemented correctly, prevents ransomware recovery tools. Although there are
few defenses proposed against potential enclave malware, such as analyzing en-
claves before loading [14] or inspecting their I/O behavior [14, 17], they seem too
premature to be practical [34]. Unfortunately, there exist no practical defenses
against enclave malware, partly due to the lack of a proper understanding and
evaluation of enclave malware.

(Im-)Practicality of Enclave Malware. Is enclave malware impractical any-
way due to the strict enclave launch process [26], preventing suspicious enclave
code from getting launch permission? It is not, for at least four reasons: First,
adversaries would only distribute a benign-looking loader enclave, receiving and
decrypting malicious payloads at runtime [34, 46]. Second, Intel does not inspect
and sign individual enclaves but rather white-lists signature keys to be used at
the discretion of enclave developers for signing arbitrary enclaves [26]. Enclave
developers might intentionally add malware to their legitimate enclaves, e.g., to
support their DRM actitivies as Sony did in the early 2000s with their rootkit on
millions of CDs [45]. In fact, we have a report from a student who independently
of us found that it is easy to go through Intel’s process to obtain such sign-
ing keys. Third, the flexible launch control feature of SGXv2 allows bypassing
Intel as intermediary in the enclave launch process [23]. Fourth, by infiltrating
the development infrastructure of any enclave vendor, be it via targeted attacks
or nation state regulations, malware could be piggy-backed on their benign en-
claves. Hence, there are multiple ways to make enclave malware pass the launch
process, with different levels of sophistication.

Impact of Enclave Malware. Researchers have practically demonstrated en-
clave spyware stealing confidential information via side channels [48]. Apart from
side-channel attacks, Costan et al. [14] correctly argues that enclaves cannot do
more harm to a system than an ordinary application process. Yet, malware typ-
ically performs malicious actions from within an ordinary application process.
As an example, Marschalek [34] demonstrated enclave malware which requires
support of the host application to perform its malicious actions (i.e., ransomware
and shellcode). No prior work has practically demonstrated enclave malware at-
tacking a benign host application that does not collude with the enclave. Hence,
researchers believe that limitations in the SGX enclave execution mode severely
restricts enclave malware in practice: “Everyone’s first reaction when hearing
this, is ‘OMG bad guys will use it to create super malware! ’. But it shouldn’t be
that scary, because: Enclave programs are severely limited compared to normal
programs: they cannot issue syscalls nor can they perform I/O operations di-
rectly.” [4] Consequently, an enclave is believed to be limited by what its hosting
application allows it to do: “analyzing an application can tell you a lot about
what an enclave can do to a system, mitigating the fear of a ‘protected malicious



code running inside an enclave’.” [1] At first glance, these statements seem rea-
sonable, since syscalls are an essential ingredient for malware and enclaves can
only issue syscalls through their host application. For example, Marschalek [34]
implemented enclave malware via a dedicated syscall proxy inside the host ap-
plication to forward malicious enclave actions to the system.

In this work, we expand the research on enclave malware by presenting
stronger enclave malware attacks. As we show, enclave malware can overcome
the SGX limitations. To that end, we develop a prototype enclave which actively
attacks its benign host application in a stealthy way. We devise novel techniques
for enclaves probing their host application’s memory via Intel TSX. We find that
enclave malware can effectively bypass any host application interface via code-
reuse attacks, which we dub SGX-ROP. Thus, the attacker can invoke arbitrary
system calls in lieu of the host process and gain arbitrary code execution. This
shows that enclaves can escape their limited SGX execution environment and
bypass any communication interface prescribed by their host.

We identify the core problem of research on enclave malware in a vagueness
about the underlying threat model, which we seek to clarify in this work. Intel’s
SGX threat model only considers fully trusted enclaves running on an untrusted
host, which fits many scenarios like [3, 9, 51, 57]. However, the asymmetry in
this threat model ignores many other real-world scenarios, where enclaves might
not be unconditionally trustworthy. In particular, while the (third-party) enclave
vendor might consider its own enclave trustworthy, the user or the application
developer that use a third-party enclave both have all rights not to trust the
enclave. To address this asymmetry, we introduce a new threat model which
specifically considers untrusted enclaves. This allows to reason about attacks
from within enclaves, such as, e.g., enclave malware, and to identify scenarios
under which potential enclave malware becomes decisive.
Contributions. We summarize our contributions as follows.
1. We introduce a new threat model which considers malicious enclaves.
2. We discover novel and stealthy TSX memory probing primitives.
3. We present SGX-ROP, a practical technique for enclave malware to perform

malicious operations, e.g., on the system level, without collaboration from
the host application.
The rest of the paper is organized as follows. Section 2 provides background.

Section 3 describes our threat model. Section 4 overviews our attack. Section 5
shows how to locate gadgets, and Section 6 shows how to use them. Section 7
evaluates our attack. Section 8 provides a discussion. Section 9 concludes.

2 Background

In this section, we overview address spaces, Intel SGX, TSX as well as control-
flow attacks and trigger-based malware.
Virtual Address Space. Modern operating systems rely on virtual memory
as an abstraction layer to the actual physical memory. Virtual memory forms
the basis for process isolation between user applications and towards the kernel.
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Fig. 1: In the SGX model, applications consist of an untrusted host
application and a trusted enclave. The hardware prevents any direct
access to the enclave code or data. The untrusted part uses the EENTER

instruction to call enclave functions that are exposed by the enclave.

Permissions are set on a granularity of pages, which are usually 4 KB. Permissions
include readable, writable, executable, and user accessible. On modern x86-64
CPUs, the usable virtual address space is 248 bytes, divided into user space and
kernel space, with 247 bytes each. Within the user space of an application, the
entire binary, as well as all shared libraries used by the application, are mapped.

Intel SGX. Intel SGX is an instruction-set extension for protecting trusted
code, introduced with the Skylake microarchitecture [23]. Applications are split
into untrusted and trusted code, where the latter is executed within an enclave.
The threat model of SGX assumes that the enclave environment, i.e., operating
system and all normal application code, might be compromised or malicious and
cannot be trusted. Hence, the CPU guarantees that enclave memory cannot be
accessed from any other part of the system, except for the code running inside the
enclave. Enclaves can therefore safely run sensitive computations, even if the op-
erating system is compromised by malware. Still, memory-safety violations [31],
race conditions [59], or side channels [8, 48] might lead to exploitation.

The integrity of an enclave is ensured in hardware by measuring the enclave
loading process and comparing the result with the reference value specified by
the enclave developer. Once loaded, the application can invoke enclaves only
at defined entry points. After the enclave finishes execution, the result of the
computation, and the control flow, is handed back to the calling application.
Figure 1 illustrates the process of invoking a trusted function inside an enclave.

Enclave memory is mapped in the virtual address space of its host appli-
cation. To allow data sharing between the enclave and host application, the
enclave is given full access to the entire address space of the host application.
This protection is not symmetric and gives rise to enclave malware.

Hardware Transactional Memory. Hardware transactional memory at-
tempts to optimize synchronization primitives with hardware support. The hard-
ware provides instructions to create so-called transactions. Any memory access
performed within the transaction is not visible to the outside until the trans-
action is successfully completed, thus providing atomicity for memory accesses.
However, if there is a conflict within the transaction, the transaction aborts and
all changes done within the transaction are rolled back, i.e., the previous state



is restored. A conflict can be the concurrent modification of a data value by
another thread, or an exception, e.g., a segmentation fault.

Intel TSX is an instruction-set extension implementing transactional memory
by leveraging the CPU cache. TSX works on a cache line granularity, which is
usually 64 B. The CPU keeps track of a so-called read and write set. If a cache
line is read or written inside the transaction, it is automatically added to the read
or write set, respectively. Concurrent modifications to data in a read or write set
from different threads cause a transaction to abort. The size of the read set, i.e.,
all memory locations read inside a transaction, appears to be limited by the size
of the L3 cache, and the size of the write set, i.e., all memory locations modified
inside a transaction, appears to be limited by the size of the L1 cache [33].

Transactional memory was described as a potential security feature, e.g., by
Liu et al. [33] to detect rootkits, and by Guan et al. [21] to protect cryptographic
keys when memory bus and DRAM are untrusted. Kuvaiskii et al. [30] showed
that TSX can be leveraged to detect hardware faults and revert the system
state in such a case. TSX also opens new attack vectors, e.g., by Jang et al. [27]
abusing the timing of suppressed exceptions to break KASLR.

Control-Flow Attacks. Modern CPUs prevent code-injection attacks by mark-
ing writable pages as non-executable [23]. Thus, an attacker has to resort to
code-reuse attacks. Shacham et al. [49] presented return-oriented programming
(ROP), which abuses the stack pointer to control the instruction pointer. For
this purpose, addresses of gadgets, i.e., very short code fragments ending with a
ret instruction are injected into the stack. Whenever executing ret, the CPU
pops the next gadget address from the stack and continues execution at this
gadget. Stitching together multiple gadgets enables arbitrary code execution.

A mitigation against these attacks present in modern operating systems is
to randomize the virtual address space. Address space layout randomization
(ASLR) [41] ensures that all regions of the binary are at random locations every
time the binary is executed. Thus, gadget addresses are unpredictable, and an at-
tacker cannot reliably reference gadgets anymore. Assuming no information leak
and a large enough entropy, ROP attacks become infeasible, as addresses can-
not be guessed [54, 55]. Furthermore, some techniques are deployed against such
attacks, e.g., stack canaries [15, 42], shadow stacks [13], stack-pivot defenses [61].

Trigger-based Malware. With increasing connectivity between computer sys-
tems in the past decades, malware evolved into a significant security threat.
There is a market for malware with various targets [12, 20]. In many cases, mal-
ware remains in an inactive state, until a specific time [16] or a remote command
triggers activation [2, 50]. This decorrelates attack from infection and enables
synchronized attacks as well as targeted attacks (e.g., activating the malware
only on certain target systems).

The entry point for malware is often a vulnerability, whose exploitation (e.g.,
via a control-flow attack) enables malicious operations on the target device.
While userspace malware then typically misuses lax privilege management of
commodity operating systems to access user documents or impersonate user
action, more sophisticated malware seeks to elevate privileges even further.



Exploits can rely on an undisclosed vulnerability [12, 19], making it very dif-
ficult to mitigate attacks. For certain actors, there is an interest in keeping such
zero-day exploits undisclosed for a long time [22]. As a consequence, modern
malware is obfuscated to remain stealthy [62], e.g., via code obfuscation [50], or
steganography [2]. However, a thorough malware analysis may revert obfusca-
tion [28] and expose the underlying vulnerability.

Concurrent to our work, Borello et al. [7] also proposed to use ROP chains
to hide trigger-based malware. Also closely related to our work, is the use of
Intel’s TPM to cloak malware [18]. However, due to the different design goals,
the TPM is more powerful than an SGX enclave.

3 Threat Model

In this section, we show limitations of the SGX threat model regarding malicious
enclaves and present our threat model considering enclave malware.

3.1 Intel’s SGX Threat Model

In Intel’s SGX threat model, the entire environment, including all non-enclave
code is untrusted (cf. Section 2). Such a threat model is primarily useful for
cloud computing with sensitive data if a customer does not fully trust the cloud
provider, and for protection of intellectual property (e.g., DRM), secret data or
even legacy applications inside containers [3, 9, 51, 57]. With SGX, developers
can use enclaves without the risk of exposing sensitive enclave data.

However, this model provides no means to protect other software, apart from
enclaves themselves. In particular, applications hosting enclaves are not pro-
tected against the enclaves they load. Furthermore, enclaves cannot be inspected
if they choose to hide their code, e.g., using a generic loader. This asymmetry
may foster enclave malware, as SGX can be abused as a protection mechanism
in addition to obfuscation and analysis evasion techniques. One could argue
that host applications themselves could be protected using additional enclaves.
However, this is not always feasible and even impossible for certain code. Some
reasons for keeping application code outside enclaves are the restricted feature
set of enclaves (e.g., no syscalls), expensive encrypted enclave-to-enclave com-
munication, and an increased porting effort. Hence, there are many practical
scenarios, as we illustrate in which a host application might be threatened by
an enclave, which are not covered by Intel’s threat model.

3.2 Our Threat Model Considering Enclave Malware

Victim. In our threat model, we assume that a user operates a computing
device which is the target of an attacker. The user might be a private person, an
employee or a system administrator in a company. From the user’s perspective,
the system (including the operating system) is considered trusted and shall be



protected against malware from third-party software. The device has state-of-
the-art anti-malware or anti-virus software installed for this purpose. This applies
to virtually all Windows systems today, as Windows 10 comes with integrated
anti-virus software. The user executes a benign application which depends on a
potentially malicious (third-party) enclave. The benign host application commu-
nicates with the enclave through a tight interface (e.g., a single ECALL). This
interface, if adhered to, would not allow the enclave to attack the application.
Furthermore, we assume that the host application is well-written and free of
software vulnerabilities. Also, the application incorporates some state-of-the-art
defenses against runtime attacks such as ASLR and stack canaries.

Attacker. The attacker controls the enclave used by the host application, which
we denote as the malicious enclave. The attacker seeks to escape the enclave and
gain arbitrary code execution with host privileges. Also, the attacker wants to
achieve plausible deniability until he chooses to trigger the actual exploitation,
i.e., the exploit should be undetectable until executed. This decouples infec-
tion from exploitation and allows the attacker to mount large-scale synchronous
attacks (e.g., botnets, ransomware) or target individuals. To that purpose, the
attacker encloses malware in the enclave in a way that prevents inspection by any
other party. This can be done by receiving and decrypting a malicious payload
inside the enclave at runtime via a generic loader [46], for example.

While the attacker can run most unprivileged instructions inside the enclave,
SGX not only prevents enclaves from executing privileged instructions but also
syscalls, among others [23, 24]. Moreover, enclaves can only execute their own
code. An attempt to execute code of its host application (e.g., by using jmp,
or call), results in a general protection fault, and, thus, termination of the
enclave [24]. Thus, a successful attack must bypass these restrictions. Finally,
we assume that the attacker does not exploit potential hardware bugs in the
SGX implementation (e.g., CVE-2017-5691).

Scenarios. We consider three scenarios, two with a criminal actor and one
with a surveillance state agency [10, 20]. In the first scenario, a criminal actor
provides, e.g., a computer game requiring to run a DRM enclave, or a messenger
app requiring to run an enclave for security mechanisms [36]. In the second, a
criminal actor provides an enclave that provides an interesting feature, e.g., a
special decoder, and can be included as a third-party enclave. These scenarios
are realistic, given that Sony intentionally shipped malware on millions of CDs
installing rootkits throughout the early 2000s [45]. In the last scenario, it may
be an app the state endorses to use, e.g., an app for legally binding digital
signatures which are issued by an enclave, or legal interactions with authorities.
Also, in some countries, state agencies might be able to force enclave vendors to
sign malicious enclaves on their behalf via appropriate legislation, e.g., replacing
equivalent benign enclaves. In any case, the externally controlled enclave might
perform unwanted actions such as espionage or hijacking of the user’s computer.
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4 Attack Overview

In this section, we outline how enclave malware can successfully attack a system
using novel methods we discover. In particular, we show how enclave malware can
evade all restrictions SGX poses on enclave execution. This allows the enclave to
run arbitrary code disguised as the host process, similar to process hollowing [32],
which is often used by malware. In fact, one can conceal existing user-space
malware inside an SGX enclave, e.g., ransomware.
Restricted Enclave Environment. In contrast to most traditional malware,
a malicious enclave has to act blindly. SGX prevents enclaves from directly exe-
cuting syscalls (cf. Section 3), an essential ingredient for user-space malware, and
mandates the host application with this task. Also, the memory layout of the
host application as well as its code base might be unknown to the enclave. Note
that one enclave can be loaded by different host applications. Enclaves only have
knowledge of the ECALL/OCALL interface through which they communicate
with the host. Hence, the malicious enclave needs to assemble an attack without
knowledge of the host application memory and without executing syscalls.
Novel Fault-Resistant Primitives. To overcome these restrictions, we lever-
age TSX and SGX to construct a fault-resistant read primitive as well as a fault-
resistant write-anything-anywhere primitive. While the read primitive helps in
scanning host memory, the write primitive identifies writable memory which we
denote as a cave. Those primitives are fault resistant in the sense that the en-
clave can safely probe both mapped and unmapped memory without triggering
exception behavior that would abort the enclave. By combining both primitives,
the attacker can mount a code-reuse attack (i.e., ROP) on the host application,
which we call SGX-ROP.
SGX-ROP. The actual SGX-ROP attack is performed in four steps, as depicted
in Figure 2. In step 1 , the malicious enclave uses the read primitive to scan
the host application for usable ROP gadgets. In step 2 , the enclave identifies
writable memory caves via the write primitive and injects arbitrary malicious
payload into those caves. In step 3 , the enclave constructs a ROP chain from
the gadgets identified in 1 and injects it into the application stack. Then, the
enclave returns execution to the host application and the attack waits to be
activated. When the application hits the ROP chain on the stack, the actual



exploitation starts (step 4 ). The ROP chain runs with host privileges and can
issue arbitrary system calls. While this is already sufficient for many attacks, we
go one step further and execute arbitrary attack code in the host application
by marking the cave (cf. step 2 ) as executable and invoking the code stored
in the cave. After exploitation, the cave can eliminate any traces in the host
application and continue normal program execution.

SGX-ROP works without the necessity of a software bug in the host applica-
tion. The write primitive further allows to even bypass some anti-control-flow-
diversion techniques (cf. Section 2) as any writable data can be modified. This
includes ASLR, stack canaries, and address sanitizer, which we all bypass with
our attack (cf. Section 7.3).

5 Locating Code Gadgets

In this section, we show how an enclave attacker can stealthily scan its host ap-
plication for ROP gadgets. The attacker does not need any a-priori knowledge
about the host application memory layout. We first discuss why existing mem-
ory scanning techniques are not applicable. Next, we show how to use TSX to
construct a novel fault-resistant memory disclosure primitive. Finally, we lever-
age this primitive to discover accessible code pages of the host application and
subsequently leak the host application binary. This enables an attacker to search
for ROP gadgets to construct the actual attack (cf. Section 6).

5.1 Problem Statement

The malicious enclave wants to scan host application memory to craft an SGX-
ROP attack. Luckily for the attacker, the SGX memory protection is asymmetric.
That is, SGX prevents non-enclave code from accessing enclave memory, while
an enclave can access the entire memory of the host application as they run in
the same virtual address space. Thus, the enclave naturally has a read primitive.
However, the enclave might not know anything about the host application’s
memory layout (e.g., which pages are mapped, or their content), apart from the
ECALL/OCALL interface. The enclave cannot query the operating system for
the host memory mapping (e.g., via /proc/pid/maps), as system calls cannot
be performed from within an enclave. The enclave could naively try to read
arbitrary host memory. However, if the accessed memory is not accessible, i.e.,
the virtual address is invalid for the application, this raises an exception and
terminate enclave execution. Hence, it is a challenge to obtain host address-
space information stealthily from within an enclave. To remain stealthy and
avoid detection, the enclave needs a fault-resistant memory disclosure primitive.
Even with blind ROP [6], fault resistance may be necessary as pages are mapped
on demand, and pagefaults would give away the ongoing attack. Achieving
Fault Resistance. For normal applications, fault resistance can be achieved by
installing a user-space signal handler (on Linux) or structured exception handling
(on Windows). Upon an invalid memory access, the operating system delegates



exception handling to the registered handler. Again, this is not possible from
within an enclave. Instead, we resemble this approach via TSX.

5.2 TSX-based Address Probing

We present a novel fault-resistant read primitive called TAP (TSX-based Ad-
dress Probing).1 In contrast to previous work, our attack is not a timing at-
tack [27], i.e., we solely exploit the TSX error codes. TAP uses TSX to deter-
mine whether a virtual address is accessible by the current process (i.e., mapped
and user accessible) or not. TAP exploits a side effect of TSX: When wrapping
a memory access inside a TSX transaction, all potential access faults are caught
by TSX instead of throwing an exception. Accessing an invalid memory loca-
tion only aborts the transaction, but does not terminate the application. Thus,
TSX allows to safely access any address within a transaction, without the risk of
crashing the enclave. The resulting memory-disclosure primitive is extremely ro-
bust, as it automatically prevents reading of invalid memory locations. This has
the advantage that an attacker does not require any knowledge of the memory
layout, i.e., which addresses are accessible. TAP probes an address as follows.
We wrap a single read instruction to this address inside a TSX transaction.

Accessible Address. If the accessed address is user-accessible, the transaction
likely completes successfully. In rare cases it might fail due to external influences,
such as interrupts (e.g., scheduling), cache eviction, or a concurrent modification
of the accessed value. In these cases, TSX returns an error code indicating that
the failure was only temporary and we can simply restart the transaction.

Inaccessible Address. If the address is inaccessible, TSX suppresses the ex-
ception [23] (i.e., the operating system is not notified) and aborts the transaction.
The user code receives an error code and can handle the transaction abort. Al-
though the error code does not indicate the precise abort reason, it is distinct
from temporary failures that suggest a retry. Thus, we can deduce that the ac-
cessed address is either not mapped, or it is inaccessible from user space (e.g.,
kernel memory). Both reasons imply that the malicious enclave cannot read from
the address. Thus, a further distinction is not necessary.

TAP is Stealthy. Although TSX can suppress exceptions from trapping to
the operating system, TSX operation could be traced using hardware perfor-
mance counters. However, when running in enclave mode, most hardware per-
formance counters are not updated [25, 48]. We verified that especially none of
the TSX-related performance counters are updated in enclave mode. Thus, run-
ning TSX-based Address Probing (TAP) in enclave mode is entirely invisible
to the operating system. Note that this primitive can also be used in regular
exploits for “egg hunting”, i.e., scanning the address space for injected shell-
code [35, 43]. As it does not rely on any syscalls, it can neither be detected nor
prevented by simply blocking the syscalls typically used for egg hunting.

1 The implementation can be found at https://github.com/IAIK/sgxrop.

https://github.com/IAIK/sgxrop


5.3 Address-Space Exploration

To mount a code-reuse attack, an attacker requires code gadgets to craft a chain
of such gadgets. To collect enough gadgets, the enclave explores the host applica-
tion’s address space by means of TAP. Instead of applying TAP to every probed
address, it suffices to probe a single address per page. This reveals whether the
page is accessible to the enclave and allows the enclave to scan this entire page
for gadgets via ordinary memory read instructions.

To detect gadgets, the attacker could scan the entire virtual address space,
which takes approximately 45 minutes (Intel i7-6700K). To speed up the scan-
ning, the attacker can apply JIT-ROP [52] to start scanning from a few known
pointers. For example, the malicious enclave knows the host code address to
which the ECALL is supposed to return. Also, the stack pointer to the host ap-
plication stack is visible to the enclave. By scanning the host stack, the enclave
can infer further valid code locations, e.g., due to saved return addresses. Thus,
TAP can be used for the starting point of JIT-ROP, and to make JIT-ROP more
resistant, as a wrongly inferred destination address does not crash the enclave.

Although JIT-ROP is fast, the disadvantage is that it is complex and only
finds a fraction of usable executable pages [52]. With TAP, an attacker can
choose the tradeoff between code coverage (i.e., amount of discovered gadgets)
and runtime of the gadget discovery. The most simple and complete approach
approach is to linearly search through the entire virtual address space. To reduce
the runtime of 45 minutes, an attacker can decide to use JIT-ROP for every
mapped page instead of continuing to iterate through the address space.

After the address-space exploration, an attacker knows code pages which are
usable to construct a ROP chain.

6 Escaping Enclaves with SGX-ROP

In this section, we present a novel way to mount a code-reuse attack from within
SGX enclaves. We exploit the fact that SGX insufficiently isolates host applica-
tions from enclaves. In particular, we show that the shared virtual address space
between host application and enclave, in combination with our address-space
exploration (cf. Section 5), allows an attacker to mount a code-reuse attack on
the application. Subsequently, the attacker gains arbitrary code execution within
the host application, even if it is well-written and bug-free.

We discuss challenges in mounting the attack, and present solutions for all
challenges. Moreover, we show how to construct a novel fault-resistant write
primitive using TSX which allows an attacker to store additional shellcode.

6.1 Problem Statement

The attacker wants to gain arbitrary code execution, which is typically achieved
by loading attack code to a data page and then executing it. However, this
requires syscalls to make the injected code executable. To mount the attack, the



attacker first needs to escape the restricted enclave execution environment and
bypass the host interface in order to execute syscalls. Until now it was unclear
whether and how this could be achieved in practice. We show how to use SGX-
ROP for that purpose. To inject an SGX-ROP chain (or arbitrary code) into the
host application, the attacker requires knowledge about which memory locations
are writable. Similar to before (Section 5), this demands a fault-resistant method
to detect writable memory pages. Lastly, the attacker wants to remain stealthy
and not perturb normal program execution. In particular, the malicious enclave
shall always perform benign operations it is supposed to do and shall return to
its host application via the intended interface. Also, after finishing the SGX-ROP
attack, program execution shall continue normally.

6.2 Diverting the Control Flow

Towards SGX-ROP. In traditional code-reuse attacks, an attacker has to
exploit a software bug (e.g., a buffer overflow) to get control over the instruc-
tion pointer. However, due to the shared address space of the host application
and the enclave, an attacker can access arbitrary host memory. Thus, the at-
tacker implicitly has a write-anything-anywhere primitive, allowing to directly
overwrite instruction pointers, e.g., stored on the stack. Since the attacker knows
the precise location of the host stack, he can easily locate a saved instruction
pointer on the host stack and prepare a code-reuse attack by replacing it with
a ROP chain. However, a code-reuse attack requires certain values to be on the
current stack, e.g., multiple return addresses and possibly function arguments.
Overwriting a larger part on the application stack might lead to data corruption
and unexpected behavior of the host application. This would prevent recovering
normal operation after the attack. Moreover, in contrast to traditional control-
flow hijacking attacks, an SGX-ROP attacker does not only want to manipulate
the control flow but also completely restore the original control flow after the
attack to preserve functionality and remain stealthy.

Summing up, an SGX-ROP attacker cannot rely on any free or unused space
on the current stack frame. Hence, the attacker requires a temporary stack frame
to store the values required for the attack code.
Stealthy fake stack frames. We present a technique to store the SGX-ROP
chain on a temporary fake stack which is an extension to stack pivoting [44].
The fake stack frame is located somewhere in unused writable memory, thus
preserving stack data of the original program. First, the attacker copies the
saved instruction pointer and saved base pointer to the fake stack frame. Then,
the attacker replaces the saved instruction pointer with the address of a function
epilogue gadget, i.e., leave; ret, and the saved base pointer with the address
of the fake stack frame. With the pivot gadget, the stack is switched to the
new fake stack frame. However, in contrast to a normal stack pivot, preservering
the old values allows the attacker to resume with the normal control flow when
returning from the fake stack. Figure 3 illustrates the stealthy stack pivoting
process. The injected stack frame contains a ROP chain which is used as attack
code and continues normal execution after the ROP chain was executed.
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Fig. 3: To divert the control flow without interfering with legitimate
stack frames, the attacker injects a new stack frame. The new stack
frame can be used for arbitrary code-reuse attacks without leaving
any traces in stack frames of other functions.

If the compiler saves the base pointer on a function call, a fake stack frame
can be placed between any two stack frames, not only after the current function.
Thus, attack code can be executed delayed, i.e., not directly after the enclave
returns to the host application, but at any later point where a function returns.

SGX-ROP evades a variety of ROP defense mechanisms. For example, stack
canaries do not protect against SGX-ROP, since our fake stack frame bypasses
the stack smashing detection. For software-based shadow stacks without write
protection [13, 53], the attacker can perform SGX-ROP on the shadow stack as
well. The write-anything-anywhere primitive can also be leveraged to break CFI
policies [11], hardware-assisted CFI extensions [56], and stack-pivot defenses [61].
Gaining arbitrary code execution. With SGX-ROP, an attacker can stitch
ROP gadgets together to execute syscalls in the host application. To gain ar-
bitrary code execution, the enclave can inject attacker payload on a writable
page and then use the ROP chain to instruct the operating system to bypass
execution prevention (i.e., the non-executable bit). On Linux, this can be done
with a single mprotect syscall.

6.3 Detecting Writable Memory Locations

For SGX-ROP, the attacker requires unused, writable host memory to inject a
fake stack frame as well as arbitrary attack payload. The enclave cannot allo-
cate host application memory for that purpose but instead attempts to misuse
existing host memory. However, as before, the attacker initially does not know
the memory layout of its host application. In this section, we present CLAW
(Checking Located Addresses for Writability), a combination of two TSX side
effects to detect whether an arbitrary memory location is writable. This can be
used to build a fault-resistant write primitive.

CLAW first leverages TAP to detect whether a virtual address is present, as
shown in Figure 4.1 Then, CLAW utilizes TSX to test whether this page is also
writable. To do so, we encapsulate a write instruction to the page of interest
within a TSX transaction and explicitly abort the transaction after the write.



TAPRead addr

Unmapped Mapped

Write to addr + xabort()

TSX fail
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Read-only Writable

TSX fail TSX abort

Fig. 4: CLAW exploits that memory writes in TSX are only visible to
the outside of a transaction if it succeeds, and that TSX distinguishes
between implicit and explicit aborts. Thus, the return value of TSX
after writing to an address and explicitly aborting determines whether
the memory location is writable without changing it.

Based on the return value of the transaction, we can deduce whether the page
is writable. If the return value indicates an explicit abort, the write would have
succeeded but was aborted by our explicit abort. In this case, we can deduce that
the page is writable. If the page is read-only, the transaction fails with an error
distinct from an explicit abort. The return value indicates that the transaction
would never succeed, as the page is not writable. By observing those two error
codes, one can distinguish read-only from writable pages, as shown in Figure 4.

A property of CLAW is that it is stealthy. Since all memory writes within
a transaction are only committed to memory if the transaction succeeds, our
explicit abort ensures that memory remains unmodified. Also, as with TAP,
CLAW neither causes any exceptions to the operating system nor can it be seen
in hardware performance counters.
Fault-resistant write-anything-anywhere primitive. With CLAW, build-
ing a fault-resistant write primitive is straightforward. Before writing to a page,
CLAW is leveraged to test whether the page is writable. Then, the content can
be safely written to the page.
Host Infection. Both the fake stack frame as well as placing arbitrary attack
payload (e.g., a shellcode) require an unused writable memory location in the
host application, which we denote as data cave. After finishing address space
exploration (Section 5.3), the malicious enclave uses CLAW to test whether the
found pages are writable. Again, probing a single address with CLAW suffices
to test whether the entire page is writable. Moreover, the enclave needs to know
whether it can safely use writable pages as data caves without destroying appli-
cation data. We consider empty pages (i.e., they only contain ‘0’s) as safe. Note
that the ROP chain and possible shellcode should always be zeroed-out after
execution to obscure the traces of the attack.

7 Attack Evaluation

In this section, we evaluate TAP and CLAW, and show that TAP can also be
used in traditional exploits for egg hunting. We scan Graphene-SGX [57] (an
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Fig. 5: The virtual memory layout of a simple program on Linux
(x86 64) as provided by /proc/<pid>/maps (top) and reconstructed us-
ing TAP+CLAW (bottom).

SGX wrapper library) for data caves and ROP gadgets and also scan the SGX
SDK for ROP gadgets. Finally, we present a simple proof-of-concept exploit. All
evaluations were performed on an Intel i7-6700K with 16 GB of memory.

7.1 TAP+CLAW

We used the combination TAP+CLAW to scan the virtual memory of a process
and also distinguish writable from read-only pages. Figure 5 shows the memory
map of a process recovered with TAP+CLAW (bottom), compared with the
ground truth directly obtained from the procfs file system (top). The procfs
file system shows more areas (shaded), as it also includes pages which are not
mapped in memory, but only defined in the binary. All mapped pages were
correctly identified using TAP, and also the distinction between read-only and
writable pages using CLAW was always correct.

Both TAP and CLAW are very fast, taking only the time of a cache read or
write (around 330 cycles for an uncached memory access on our test machine)
plus the overhead for a TSX transaction, which we measured as 30 cycles. Scan-
ning the entire virtual address space takes 45 min, resulting in a probing rate
of 48.5 GB/s. To estimate the runtime of TAP and CLAW on real-world appli-
cations, we evaluted both primitives on the 97 GNU Core Utilities with ASLR
enabled. We linearly explored the binary starting from one known address (sim-
ilarly to JIT-ROP [52]). On average, TAP located all pages of the application
within 73.5 ms. This time can be reduced further, as an attacker can stop probing
as soon as all required gadgets are found.

Egg Hunting. We also evaluated TAP as a novel method for egg hunting
in regular (non-enclave) attacks, i.e., scanning the address space for injected
shellcode [35, 43]. State-of-the-art egg hunters for Linux [35, 38] rely on syscalls
(e.g., access) which report whether one of the parameters is a valid address.
However, issuing a syscall requires the syscall instruction as well as setting
up the required parameters. Thus, such egg hunters are usually larger than 30
bytes [35]. Nemeth et al. [38] argued that egg hunters with fault prevention
cannot be smaller. However, our TAP egg hunter is only 16 bytes in size,1 i.e.,
the smallest egg hunter with fault prevention. With 360 cycles per address, it
is also significantly faster (by a factor of 4.8) than egg hunters leveraging the
access syscall (1730 cycles per address).



7.2 Code-reuse Gadgets and Data Caves in SGX Frameworks

To evaluate the viability of a code-reuse attack using a fake stack frame (cf.
Section 6.2), we inspected Graphene-SGX for data caves (cf. Section 6.3) and
ROP gadgets. We chose Graphene-SGX, as it is open source2, actively main-
tained, and designed to run unmodified binaries within SGX [57]. Furthermore,
we also analyzed the Intel SGX SDK for ROP gadgets, as it is the most common
framework for SGX applications.

Our simple attack enclave used TAP+CLAW to find code pages and data
caves. We successfully detected all mapped pages of the host application, and
also distinguished between writable and read-only pages.
Data Caves. With CLAW, we were able to detect which pages are not only
present but also writable. For the writable pages, we further analyzed whether
they contain only ‘0’s and are thus data caves. We found 16 594 data caves in
Graphene-SGX, which took on average 45.5 ms. This amounts to around 64.8 MB
of memory which can be used by an attacker. Such data caves also exist in the
Intel SGX SDK. Thus, even highly complex malware such as zero-day exploits
can be stored there. For traditional shellcode, a one-page data cave is already
sufficient, as such a shellcode fits within a few bytes.
Gadgets. Data caves allow storing arbitrary code to the memory. An attacker
requires a ROP chain which makes the data caves executable, e.g., the mprotect
syscall on Linux. This syscall can be called using a ROP chain consisting of only 4
gadgets: POP RDI, POP RSI, POP RAX, and SYSCALL. We analyzed the code pages
of Graphene-SGX identified using TAP (cf. Section 5.3). We found all gadgets
required to call mprotect in multiple pages of Graphene-SGX, e.g., in the binary
(pal-linux), math library (libm), GNU C library (libc) and GNU linker (ld).

Furthermore, 3 out of the 4 gadgets are not only in one of the core libraries
of Graphene-SGX (libsysdb), but also in the Intel SGX SDK itself (libsgx urts).
The fourth gadget (SYSCALL) to build a complete chain can, e.g., be found in the
virtual syscall page, which is mapped in every process on modern Linux systems,
or in the libc.

7.3 Full Exploit

Our proof-of-concept exploit consists of a benign application hosting a malicious
enclave. We use the most restricted enclave interface possible: the enclave may
not use any OCALLs. After entering the enclave via any ECALL, the enclave
uses TAP and CLAW to find and inject code and data into a data cave. Using
TAP, the enclave detects host binary pages and builds a ROP chain which creates
a new file (in a real attack, the enclave would encrypt existing files) and displays
a ransom message. We divert the control flow (cf. Section 6.2) to let the host
application execute the ROP chain, and immediately continue normal execution.

Our host application uses ASLR, stack canaries, and address sanitizer. The
host application does not provide any addresses to the enclave which can be used
as a starting point. Still, the end-to-end exploit1 takes on average only 20.8 s.

2 https://github.com/oscarlab/graphene

https://github.com/oscarlab/graphene


8 Discussion

SGX-ROP surpasses traditional ROP attacks, as the enclave isolation works only
in one direction, i.e., the enclave is protected from the host application, but
not vice-versa. A write-anything-anywhere primitive is sufficient to break even
extremely strict CFI policies [11] and hardware-assisted control-flow integrity
extensions [56]. In contrast to regular ROP attacks, we do not require a memory
safety violation. Also, the Intel SGX SDK yields enough ROP gadgets and data
caves to gain arbitrary code execution. Hence, SGX-ROP is always possible on
current applications if, inadvertently, a malicious enclave is embedded.

With SGX-ROP, porting malware to SGX becomes trivial, thus intensifying
the threat of enclave malware. Moreover, hiding malware in an SGX enclave
give attackers plausible deniability and stealthiness until they choose to launch
the attack. This is particularly relevant for trigger-based malware that embeds
a zero-day exploit, but also to provide plausible deniability for legal or political
reasons, e.g., for a state actor [10, 20]. Possible scenarios range from synchronized
large-scale denial-of-service attacks to targeted attacks on individuals.

9 Conclusion

We practically demonstrated the first enclave malware which fully and stealthily
impersonates its host application. Our attack uses new TSX-based techniques:
a memory-disclosure primitive and a write-anything-anywhere primitive. With
SGX-ROP, we bypassed ASLR, stack canaries, and address sanitizer, to run ROP
gadgets in the host context enabling practical enclave malware. We conclude that
instead of protecting users from harm, SGX currently poses a security threat,
facilitating so-called super-malware with ready-to-hit exploits. Our results lay
ground for future research on more realistic trust relationships between enclave
and non-enclave software, as well as the mitigation of enclave malware.
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