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• CPU tries to predict the future, . . .

• . . . based on what happened in the past

• Speculative execution of instructions

• Correct prediction, . . .

• . . . very fast

• otherwise: Discard results
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• Speculative execution is exploitable (Spectre attacks [Koc+19])

• Allow it to leak data

• Require a certain code snippet (gadget)

• Execution based on predictions from different

mechanisms(PHT,BTB,RSB,STL) [Koc+19; Can+19]

• Via different side channels (AVX, Port contention)
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M/o/Vfuscator www.tugraz.at

• mov instruction is turing-complete [Ste13]

• M/o/Vfuscator [Chr15] is a x86 32-bit mov-only compiler

(LCC)

• Compiled program is mov-only and the control-flow linearized

• Arithmetics performed via lookup-tables

• Low-performance solution i.e., Doom with one frame every 7

hours [Chr15]
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• Internal calls:

• mov %eax,%cs at the end of the program triggers SIGILL

• target register is used and selected target is checked for each

block

• SIGILL handler is installed and program starts to begin

• Library calls:

• mov (0),%eax - Null Pointer Dereference

• SIGSEGV handler is installed and dispatcher to library function

is used

• stack needs to be prepared accordingly to calling convention
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EIP==Target MOV
ALU OP.

MOV

CMP
Set Target

Execution off
MOV
MOV
MOV
MOV

Execution on
MOV

JMP TOP

Target →
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Specfuscator www.tugraz.at

• Based on M/o/Vfuscator but with optimizations:

• Instead of SIGILL at the end we use a direct jump

• Arithmetics are performed using the actual x86 instructions i.e.,

addl , subl etc.

• Strip the binary and remove all lookup tables to reduce the

binary size

• Exploit x86 addressing modes to save additional loads

• cmp instruction is used and the emulated cflags are set
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Specfuscator www.tugraz.at

• Specfuscator guarantees code free of Spectre gadgets by design

• We compiled each of the Spectre Pocs from Kocher

• As expected, the PoCs did not leak any data
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Flush+Reload in movfuscated code www.tugraz.at
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Performance Evaluation www.tugraz.at

• Choose a different set of test open-source programs

• Clang vs. Clang with lfences vs. LCC vs. M/o/Vfuscator vs.

Specfuscator

• We compare the runtime,compile time and binary size

and calculate the overhead factors
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Performance Evaluation: Runtime overhead factor www.tugraz.at

Test
program

M/o/
Vfu

sca
tor

Specfuscator
Clang

(fe
nces)

LCC
Clang

(baseline)

times times times times baseline

aes 424.17 221.53 1.31 1.17 1.13 ms

hello 1.10 1.11 1.00 1.04 0.89 ms

maze 310.03 88.98 1.10 1.13 0.97 ms

nqueens 319.84 234.46 1.99 4.99 1.89 ms

prime 980.27 161.59 1.93 0.96 1.65 ms

s2 46085.82 981.20 20.89 26.64 0.71 ms

sudoku 656.91 149.69 2.15 1.17 1.13 ms
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Performance Evaluation: Compile Time www.tugraz.at

Test
program

M/o/
Vfu

sca
tor

Specfuscator

Clang

(fe
nces)

LCC Clang

(baseline)

time size time size time size time size time size

aes 4.80 218.69 2.95 151.15 1.20 1.00 0.53 1.01 101.89 ms 33.21 kB

hello 2.23 388.28 1.86 279.18 1.07 1.01 0.71 0.89 38.36 ms 13.62 kB

maze 3.93 394.09 2.12 274.96 1.05 1.01 0.63 0.86 46.80 ms 13.82 kB

nqueens 2.39 386.75 2.05 278.22 1.17 1.01 0.75 0.88 40.19 ms 13.64 kB

prime 2.39 389.97 1.81 279.47 1.06 1.01 0.62 0.89 39.02 ms 13.64 kB

s2 2.87 395.22 1.89 279.72 1.00 1.01 0.78 0.89 39.34 ms 13.62 kB

sudoku 3.47 398.10 2.05 280.39 1.10 1.01 0.68 0.91 37.76 ms 14.00 kB
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Discussion www.tugraz.at

• We explored a new path to mitigate Spectre by removing

branches

• Specfuscator is the most radical solution

• The performance overhead heavily depends on the compiled

program (from factor 1.05 to 22k)

• There is space to research in this unexplored direction
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• Branch removal (Control-flow linearization) does mitigate

Spectre attacks

• Overhead varies depending on the program

• Branchless software might be considered as an alternative

mitigation
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