
Specfuscator: Evaluating Branch Removal as a

Spectre Mitigation

Martin Schwarzl (@marv0x90), Claudio Canella, Daniel Gruss, Michael Schwarz

1st of March, 2021

Graz University of Technology



Motivation www.tugraz.at

• Explore a previously unexplored mitigation space against

Spectre attacks - branch removal

• Present Specfuscator, a solution based on a linearized

control-flow

• Evaluate Specfuscator on different set of use cases

1 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Motivation www.tugraz.at

• Explore a previously unexplored mitigation space against

Spectre attacks - branch removal

• Present Specfuscator, a solution based on a linearized

control-flow

• Evaluate Specfuscator on different set of use cases

1 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Motivation www.tugraz.at

• Explore a previously unexplored mitigation space against

Spectre attacks - branch removal

• Present Specfuscator, a solution based on a linearized

control-flow

• Evaluate Specfuscator on different set of use cases

1 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



CPU Cache www.tugraz.at

maccess(i);

maccess(i);

2 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



CPU Cache www.tugraz.at

maccess(i);

maccess(i);

Cache miss

2 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



CPU Cache www.tugraz.at

maccess(i);

maccess(i);

Cache miss
Request

2 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



CPU Cache www.tugraz.at

maccess(i);

maccess(i);

Cache miss
Request

Response

2 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



CPU Cache www.tugraz.at

i

maccess(i);

maccess(i);

Cache miss
Request

Response

2 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



CPU Cache www.tugraz.at

i

maccess(i);

maccess(i);

Cache miss

Cache hit

Request

Response

2 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



CPU Cache www.tugraz.at

i

maccess(i);

maccess(i);

Cache miss

Cache hit

Request

Response

DRAM access,

slow

2 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



CPU Cache www.tugraz.at

i

maccess(i);

maccess(i);

Cache miss

Cache hit

Request

Response

DRAM access,

slow

No DRAM access,

much faster

2 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Flush+Reload www.tugraz.at

3 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Flush+Reload www.tugraz.at

3 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Flush+Reload www.tugraz.at

3 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Flush+Reload www.tugraz.at

3 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Flush+Reload www.tugraz.at

3 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Flush+Reload www.tugraz.at

3 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Flush+Reload www.tugraz.at

3 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Flush+Reload www.tugraz.at

3 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Branch Prediction www.tugraz.at

• CPU tries to predict the future, . . .

• . . . based on what happened in the past

• Speculative execution of instructions

• Correct prediction, . . .

• . . . very fast

• otherwise: Discard results

4 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Branch Prediction www.tugraz.at

• CPU tries to predict the future, . . .

• . . . based on what happened in the past

• Speculative execution of instructions

• Correct prediction, . . .

• . . . very fast

• otherwise: Discard results

4 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Branch Prediction www.tugraz.at

• CPU tries to predict the future, . . .

• . . . based on what happened in the past

• Speculative execution of instructions

• Correct prediction, . . .

• . . . very fast

• otherwise: Discard results

4 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Branch Prediction www.tugraz.at

• CPU tries to predict the future, . . .

• . . . based on what happened in the past

• Speculative execution of instructions

• Correct prediction, . . .

• . . . very fast

• otherwise: Discard results

4 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Branch Prediction www.tugraz.at

• CPU tries to predict the future, . . .

• . . . based on what happened in the past

• Speculative execution of instructions

• Correct prediction, . . .

• . . . very fast

• otherwise: Discard results

4 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Branch Prediction www.tugraz.at

• CPU tries to predict the future, . . .

• . . . based on what happened in the past

• Speculative execution of instructions

• Correct prediction, . . .

• . . . very fast

• otherwise: Discard results

4 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre attacks www.tugraz.at

• Speculative execution is exploitable (Spectre attacks [Koc+19])

• Allow it to leak data

• Require a certain code snippet (gadget)

• Execution based on predictions from different

mechanisms(PHT,BTB,RSB,STL) [Koc+19; Can+19]

• Via different side channels (AVX, Port contention)

5 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre attacks www.tugraz.at

• Speculative execution is exploitable (Spectre attacks [Koc+19])

• Allow it to leak data

• Require a certain code snippet (gadget)

• Execution based on predictions from different

mechanisms(PHT,BTB,RSB,STL) [Koc+19; Can+19]

• Via different side channels (AVX, Port contention)

5 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre attacks www.tugraz.at

• Speculative execution is exploitable (Spectre attacks [Koc+19])

• Allow it to leak data

• Require a certain code snippet (gadget)

• Execution based on predictions from different

mechanisms(PHT,BTB,RSB,STL) [Koc+19; Can+19]

• Via different side channels (AVX, Port contention)

5 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre attacks www.tugraz.at

• Speculative execution is exploitable (Spectre attacks [Koc+19])

• Allow it to leak data

• Require a certain code snippet (gadget)

• Execution based on predictions from different

mechanisms(PHT,BTB,RSB,STL) [Koc+19; Can+19]

• Via different side channels (AVX, Port contention)

5 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre attacks www.tugraz.at

• Speculative execution is exploitable (Spectre attacks [Koc+19])

• Allow it to leak data

• Require a certain code snippet (gadget)

• Execution based on predictions from different

mechanisms(PHT,BTB,RSB,STL) [Koc+19; Can+19]

• Via different side channels (AVX, Port contention)

5 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-PHT gadget www.tugraz.at

6 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

Lookup Table

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 0index = 0 if (index < 4)

lut[data[index]] {}

then else

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

Speculate

Lookup Table

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 0 if (index < 4)

lut[data[index]] {}

then else

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

ExecuteLookup Table

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

D

index = 0 if (index < 4)

lut[data[index]] {}

then else

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

ExecuteLookup Table

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

D

D

index = 0 if (index < 4)

lut[data[index]] {}

then else

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

ExecuteLookup Table

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

D

D

index = 0 if (index < 4)

lut[data[index]] {}

then else

D

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

Lookup Table

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 1index = 1 if (index < 4)

lut[data[index]] {}

then else

D

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateLookup Table

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 1 if (index < 4)

lut[data[index]] {}

then else

D

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateLookup Table

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

A

index = 1 if (index < 4)

lut[data[index]] {}

then else

D

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateLookup Table

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

A

A

index = 1 if (index < 4)

lut[data[index]] {}

then else

D

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateLookup Table

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

A

A

index = 1 if (index < 4)

lut[data[index]] {}

then else

A

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

ExecuteLookup Table

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 1 if (index < 4)

lut[data[index]] {}

then else

A

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateLookup Table

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 2index = 2 if (index < 4)

lut[data[index]] {}

then else

A

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateLookup Table

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

T

index = 2 if (index < 4)

lut[data[index]] {}

then else

A

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateLookup Table

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

T

T

index = 2 if (index < 4)

lut[data[index]] {}

then else

A

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateLookup Table

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

T

T

index = 2 if (index < 4)

lut[data[index]] {}

then else

T

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

ExecuteLookup Table

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 2 if (index < 4)

lut[data[index]] {}

then else

T

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateLookup Table

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 3index = 3 if (index < 4)

lut[data[index]] {}

then else

T

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateLookup Table

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

A

index = 3 if (index < 4)

lut[data[index]] {}

then else

T

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateLookup Table

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

A

A

index = 3 if (index < 4)

lut[data[index]] {}

then else

T

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateLookup Table

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

A

A

index = 3 if (index < 4)

lut[data[index]] {}

then else

A

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateExecuteLookup Table

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 3 if (index < 4)

lut[data[index]] {}

then else

A

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateLookup Table

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 4index = 4 if (index < 4)

lut[data[index]] {}

then else

A

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateLookup Table

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

K

index = 4 if (index < 4)

lut[data[index]] {}

then else

A

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateLookup Table

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

K K

index = 4 if (index < 4)

lut[data[index]] {}

then else

A

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateLookup Table

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

K K

index = 4 if (index < 4)

lut[data[index]] {}

then else

K

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

Execute

Lookup Table

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 4 if (index < 4)

lut[data[index]] {}

then else

K

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre mitigations www.tugraz.at

Application-Level

System-Level Hardware-Level

8 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre mitigations www.tugraz.at

Application-Level System-Level

Hardware-Level

8 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre mitigations www.tugraz.at

Application-Level System-Level Hardware-Level

8 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre mitigations www.tugraz.at

Application-Level System-Level Hardware-Level

8 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Placement of our work www.tugraz.at

More BranchesFewer Branches Baseline

Specfuscator

SpectreGuard
SLH
ConTExT

SafeSpec
STT

InvisiSpec

JumpSwitches

retpoline randpoline

Unexplored

9 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



M/o/Vfuscator www.tugraz.at

• mov instruction is turing-complete [Ste13]

• M/o/Vfuscator [Chr15] is a x86 32-bit mov-only compiler

(LCC)

• Compiled program is mov-only and the control-flow linearized

• Arithmetics performed via lookup-tables

• Low-performance solution i.e., Doom with one frame every 7

hours [Chr15]

10 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



M/o/Vfuscator www.tugraz.at

• mov instruction is turing-complete [Ste13]

• M/o/Vfuscator [Chr15] is a x86 32-bit mov-only compiler

(LCC)

• Compiled program is mov-only and the control-flow linearized

• Arithmetics performed via lookup-tables

• Low-performance solution i.e., Doom with one frame every 7

hours [Chr15]

10 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



M/o/Vfuscator www.tugraz.at

• mov instruction is turing-complete [Ste13]

• M/o/Vfuscator [Chr15] is a x86 32-bit mov-only compiler

(LCC)

• Compiled program is mov-only and the control-flow linearized

• Arithmetics performed via lookup-tables

• Low-performance solution i.e., Doom with one frame every 7

hours [Chr15]

10 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



M/o/Vfuscator www.tugraz.at

• mov instruction is turing-complete [Ste13]

• M/o/Vfuscator [Chr15] is a x86 32-bit mov-only compiler

(LCC)

• Compiled program is mov-only and the control-flow linearized

• Arithmetics performed via lookup-tables

• Low-performance solution i.e., Doom with one frame every 7

hours [Chr15]

10 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



M/o/Vfuscator www.tugraz.at

• mov instruction is turing-complete [Ste13]

• M/o/Vfuscator [Chr15] is a x86 32-bit mov-only compiler

(LCC)

• Compiled program is mov-only and the control-flow linearized

• Arithmetics performed via lookup-tables

• Low-performance solution i.e., Doom with one frame every 7

hours [Chr15]

10 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Linearized control-flow www.tugraz.at

BB1

BB2 BB3

BB4

BB1
BB2
BB3
BB4

Usual Control-Flow

Linearized Control-Flow

11 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Linearized control-flow www.tugraz.at

BB1

BB2 BB3

BB4

BB1
BB2
BB3
BB4

Usual Control-Flow

Linearized Control-Flow

11 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Linearized control-flow www.tugraz.at

BB1

BB2 BB3

BB4

BB1

BB2
BB3
BB4

Usual Control-Flow Linearized Control-Flow

11 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Linearized control-flow www.tugraz.at

BB1

BB2 BB3

BB4

BB1
BB2

BB3
BB4

Usual Control-Flow Linearized Control-Flow

11 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Linearized control-flow www.tugraz.at

BB1

BB2 BB3

BB4

BB1
BB2
BB3

BB4

Usual Control-Flow Linearized Control-Flow

11 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Linearized control-flow www.tugraz.at

BB1

BB2 BB3

BB4

BB1
BB2
BB3
BB4

Usual Control-Flow Linearized Control-Flow

11 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Linearized control-flow www.tugraz.at

BB1

BB2 BB3

BB4

BB1
BB2
BB3
BB4

Usual Control-Flow Linearized Control-Flow

11 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Branching in M/o/Vfuscator www.tugraz.at

• Internal calls:

• mov %eax,%cs at the end of the program triggers SIGILL

• target register is used and selected target is checked for each

block

• SIGILL handler is installed and program starts to begin

• Library calls:

• mov (0),%eax - Null Pointer Dereference

• SIGSEGV handler is installed and dispatcher to library function

is used

• stack needs to be prepared accordingly to calling convention

12 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Branching in M/o/Vfuscator www.tugraz.at

• Internal calls:

• mov %eax,%cs at the end of the program triggers SIGILL

• target register is used and selected target is checked for each

block

• SIGILL handler is installed and program starts to begin

• Library calls:

• mov (0),%eax - Null Pointer Dereference

• SIGSEGV handler is installed and dispatcher to library function

is used

• stack needs to be prepared accordingly to calling convention

12 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Branching in M/o/Vfuscator www.tugraz.at

• Internal calls:

• mov %eax,%cs at the end of the program triggers SIGILL

• target register is used and selected target is checked for each

block

• SIGILL handler is installed and program starts to begin

• Library calls:

• mov (0),%eax - Null Pointer Dereference

• SIGSEGV handler is installed and dispatcher to library function

is used

• stack needs to be prepared accordingly to calling convention

12 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Branching in M/o/Vfuscator www.tugraz.at

• Internal calls:

• mov %eax,%cs at the end of the program triggers SIGILL

• target register is used and selected target is checked for each

block

• SIGILL handler is installed and program starts to begin

• Library calls:

• mov (0),%eax - Null Pointer Dereference

• SIGSEGV handler is installed and dispatcher to library function

is used

• stack needs to be prepared accordingly to calling convention

12 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Branching in M/o/Vfuscator www.tugraz.at

• Internal calls:

• mov %eax,%cs at the end of the program triggers SIGILL

• target register is used and selected target is checked for each

block

• SIGILL handler is installed and program starts to begin

• Library calls:

• mov (0),%eax - Null Pointer Dereference

• SIGSEGV handler is installed and dispatcher to library function

is used

• stack needs to be prepared accordingly to calling convention

12 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Branching in M/o/Vfuscator www.tugraz.at

• Internal calls:

• mov %eax,%cs at the end of the program triggers SIGILL

• target register is used and selected target is checked for each

block

• SIGILL handler is installed and program starts to begin

• Library calls:

• mov (0),%eax - Null Pointer Dereference

• SIGSEGV handler is installed and dispatcher to library function

is used

• stack needs to be prepared accordingly to calling convention

12 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Branching in M/o/Vfuscator www.tugraz.at

• Internal calls:

• mov %eax,%cs at the end of the program triggers SIGILL

• target register is used and selected target is checked for each

block

• SIGILL handler is installed and program starts to begin

• Library calls:

• mov (0),%eax - Null Pointer Dereference

• SIGSEGV handler is installed and dispatcher to library function

is used

• stack needs to be prepared accordingly to calling convention

12 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Branching in M/o/Vfuscator www.tugraz.at

• Internal calls:

• mov %eax,%cs at the end of the program triggers SIGILL

• target register is used and selected target is checked for each

block

• SIGILL handler is installed and program starts to begin

• Library calls:

• mov (0),%eax - Null Pointer Dereference

• SIGSEGV handler is installed and dispatcher to library function

is used

• stack needs to be prepared accordingly to calling convention

12 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Branching in M/o/Vfuscator www.tugraz.at

EIP==Target MOV
ALU OP.

MOV

CMP
Set Target

Execution off
MOV
MOV
MOV
MOV

Execution on
MOV

JMP TOP

Target →

13 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Branching in M/o/Vfuscator www.tugraz.at

EIP==Target MOV
ALU OP.

MOV
CMP

Set Target

Execution off
MOV
MOV
MOV
MOV

Execution on
MOV

JMP TOP

Target →

13 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Branching in M/o/Vfuscator www.tugraz.at

EIP==Target MOV
ALU OP.

MOV
CMP

Set Target

Execution off
MOV
MOV
MOV
MOV

Execution on
MOV

JMP TOP

Target →

13 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Branching in M/o/Vfuscator www.tugraz.at

EIP==Target MOV
ALU OP.

MOV
CMP

Set Target

Execution off
MOV
MOV
MOV
MOV

Execution on
MOV

JMP TOP

Target →

13 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Branching in M/o/Vfuscator www.tugraz.at

EIP==Target MOV
ALU OP.

MOV
CMP

Set Target

Execution off

MOV
MOV
MOV
MOV

Execution on
MOV

JMP TOP

Target →

13 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Branching in M/o/Vfuscator www.tugraz.at

EIP==Target MOV
ALU OP.

MOV
CMP

Set Target

Execution off
MOV
MOV
MOV
MOV

Execution on
MOV

JMP TOP

Target →

13 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Specfuscator www.tugraz.at

• Based on M/o/Vfuscator but with optimizations:

• Instead of SIGILL at the end we use a direct jump

• Arithmetics are performed using the actual x86 instructions i.e.,

addl , subl etc.

• Strip the binary and remove all lookup tables to reduce the

binary size

• Exploit x86 addressing modes to save additional loads

• cmp instruction is used and the emulated cflags are set

14 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Specfuscator www.tugraz.at

• Based on M/o/Vfuscator but with optimizations:

• Instead of SIGILL at the end we use a direct jump

• Arithmetics are performed using the actual x86 instructions i.e.,

addl , subl etc.

• Strip the binary and remove all lookup tables to reduce the

binary size

• Exploit x86 addressing modes to save additional loads

• cmp instruction is used and the emulated cflags are set

14 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Specfuscator www.tugraz.at

• Based on M/o/Vfuscator but with optimizations:

• Instead of SIGILL at the end we use a direct jump

• Arithmetics are performed using the actual x86 instructions i.e.,

addl , subl etc.

• Strip the binary and remove all lookup tables to reduce the

binary size

• Exploit x86 addressing modes to save additional loads

• cmp instruction is used and the emulated cflags are set

14 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Specfuscator www.tugraz.at

• Based on M/o/Vfuscator but with optimizations:

• Instead of SIGILL at the end we use a direct jump

• Arithmetics are performed using the actual x86 instructions i.e.,

addl , subl etc.

• Strip the binary and remove all lookup tables to reduce the

binary size

• Exploit x86 addressing modes to save additional loads

• cmp instruction is used and the emulated cflags are set

14 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Specfuscator www.tugraz.at

• Based on M/o/Vfuscator but with optimizations:

• Instead of SIGILL at the end we use a direct jump

• Arithmetics are performed using the actual x86 instructions i.e.,

addl , subl etc.

• Strip the binary and remove all lookup tables to reduce the

binary size

• Exploit x86 addressing modes to save additional loads

• cmp instruction is used and the emulated cflags are set

14 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Specfuscator www.tugraz.at

• Based on M/o/Vfuscator but with optimizations:

• Instead of SIGILL at the end we use a direct jump

• Arithmetics are performed using the actual x86 instructions i.e.,

addl , subl etc.

• Strip the binary and remove all lookup tables to reduce the

binary size

• Exploit x86 addressing modes to save additional loads

• cmp instruction is used and the emulated cflags are set

14 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Specfuscator www.tugraz.at

• Specfuscator guarantees code free of Spectre gadgets by design

• We compiled each of the Spectre Pocs from Kocher

• As expected, the PoCs did not leak any data

15 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Specfuscator www.tugraz.at

• Specfuscator guarantees code free of Spectre gadgets by design

• We compiled each of the Spectre Pocs from Kocher

• As expected, the PoCs did not leak any data

15 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Specfuscator www.tugraz.at

• Specfuscator guarantees code free of Spectre gadgets by design

• We compiled each of the Spectre Pocs from Kocher

• As expected, the PoCs did not leak any data

15 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Flush+Reload in movfuscated code www.tugraz.at

50 100 150 200 250 300 350 400 450 500

0

5

10

Time [CPU cycles]

A
m

ou
n

t
[%

]

Cache hit
Cache miss

16 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Performance Evaluation www.tugraz.at

• Choose a different set of test open-source programs

• Clang vs. Clang with lfences vs. LCC vs. M/o/Vfuscator vs.

Specfuscator

• We compare the runtime,compile time and binary size

and calculate the overhead factors

17 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Performance Evaluation www.tugraz.at

• Choose a different set of test open-source programs

• Clang vs. Clang with lfences vs. LCC vs. M/o/Vfuscator vs.

Specfuscator

• We compare the runtime,compile time and binary size

and calculate the overhead factors

17 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Performance Evaluation www.tugraz.at

• Choose a different set of test open-source programs

• Clang vs. Clang with lfences vs. LCC vs. M/o/Vfuscator vs.

Specfuscator

• We compare the runtime,compile time and binary size

and calculate the overhead factors

17 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Performance Evaluation www.tugraz.at

• Choose a different set of test open-source programs

• Clang vs. Clang with lfences vs. LCC vs. M/o/Vfuscator vs.

Specfuscator

• We compare the runtime,compile time and binary size

and calculate the overhead factors

17 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Performance Evaluation: Runtime overhead factor www.tugraz.at

Test
program

M/o/
Vfu

sca
tor

Specfuscator
Clang

(fe
nces)

LCC
Clang

(baseline)

times times times times baseline

aes 424.17 221.53 1.31 1.17 1.13 ms

hello 1.10 1.11 1.00 1.04 0.89 ms

maze 310.03 88.98 1.10 1.13 0.97 ms

nqueens 319.84 234.46 1.99 4.99 1.89 ms

prime 980.27 161.59 1.93 0.96 1.65 ms

s2 46085.82 981.20 20.89 26.64 0.71 ms

sudoku 656.91 149.69 2.15 1.17 1.13 ms

18 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Performance Evaluation: Compile Time www.tugraz.at

Test
program

M/o/
Vfu

sca
tor

Specfuscator

Clang

(fe
nces)

LCC Clang

(baseline)

time size time size time size time size time size

aes 4.80 218.69 2.95 151.15 1.20 1.00 0.53 1.01 101.89 ms 33.21 kB

hello 2.23 388.28 1.86 279.18 1.07 1.01 0.71 0.89 38.36 ms 13.62 kB

maze 3.93 394.09 2.12 274.96 1.05 1.01 0.63 0.86 46.80 ms 13.82 kB

nqueens 2.39 386.75 2.05 278.22 1.17 1.01 0.75 0.88 40.19 ms 13.64 kB

prime 2.39 389.97 1.81 279.47 1.06 1.01 0.62 0.89 39.02 ms 13.64 kB

s2 2.87 395.22 1.89 279.72 1.00 1.01 0.78 0.89 39.34 ms 13.62 kB

sudoku 3.47 398.10 2.05 280.39 1.10 1.01 0.68 0.91 37.76 ms 14.00 kB

19 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Discussion www.tugraz.at

• We explored a new path to mitigate Spectre by removing

branches

• Specfuscator is the most radical solution

• The performance overhead heavily depends on the compiled

program (from factor 1.05 to 22k)

• There is space to research in this unexplored direction

20 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Discussion www.tugraz.at

• We explored a new path to mitigate Spectre by removing

branches

• Specfuscator is the most radical solution

• The performance overhead heavily depends on the compiled

program (from factor 1.05 to 22k)

• There is space to research in this unexplored direction

20 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Discussion www.tugraz.at

• We explored a new path to mitigate Spectre by removing

branches

• Specfuscator is the most radical solution

• The performance overhead heavily depends on the compiled

program (from factor 1.05 to 22k)

• There is space to research in this unexplored direction

20 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Discussion www.tugraz.at

• We explored a new path to mitigate Spectre by removing

branches

• Specfuscator is the most radical solution

• The performance overhead heavily depends on the compiled

program (from factor 1.05 to 22k)

• There is space to research in this unexplored direction

20 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Discussion www.tugraz.at

• We explored a new path to mitigate Spectre by removing

branches

• Specfuscator is the most radical solution

• The performance overhead heavily depends on the compiled

program (from factor 1.05 to 22k)

• There is space to research in this unexplored direction

20 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Conclusion www.tugraz.at

• Branch removal (Control-flow linearization) does mitigate

Spectre attacks

• Overhead varies depending on the program

• Branchless software might be considered as an alternative

mitigation

21 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Conclusion www.tugraz.at

• Branch removal (Control-flow linearization) does mitigate

Spectre attacks

• Overhead varies depending on the program

• Branchless software might be considered as an alternative

mitigation

21 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Conclusion www.tugraz.at

• Branch removal (Control-flow linearization) does mitigate

Spectre attacks

• Overhead varies depending on the program

• Branchless software might be considered as an alternative

mitigation

21 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Conclusion www.tugraz.at

• Branch removal (Control-flow linearization) does mitigate

Spectre attacks

• Overhead varies depending on the program

• Branchless software might be considered as an alternative

mitigation

21 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Specfuscator: Evaluating Branch Removal as a

Spectre Mitigation

Martin Schwarzl (@marv0x90), Thomas Schuster, Michael Schwarz, Daniel Gruss

1st of March, 2021

Graz University of Technology



References

C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,

F. Piessens, D. Evtyushkin, and D. Gruss. A Systematic Evaluation of Transient

Execution Attacks and Defenses. In: USENIX Security Symposium. Extended

classification tree and PoCs at https://transient.fail/. 2019.

Christopher Domas. M/o/Vfuscator. 2015. url:

https://github.com/xoreaxeaxeax/movfuscator.

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,

M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. Spectre Attacks:

Exploiting Speculative Execution. In: S&P. 2019.

Stephen Dolan. mov is Turing-complete. 2013. url:

https://drwho.virtadpt.net/files/mov.pdf.

22 M. Schwarzl (@marv0x90), T. Schuster, M. Schwarz, D. Gruss

https://github.com/xoreaxeaxeax/movfuscator
https://drwho.virtadpt.net/files/mov.pdf


Acknowledgments www.tugraz.at

This project has received funding from the European Research Council (ERC) under

the European Union’s Horizon 2020 research and innovation program (grant agreement

No 681402). Funding was provided by generous gifts from Cloudflare, from Intel, and

from ARM. Any opinions, findings, and conclusions or recommendations expressed in

this paper are those of the authors and do not necessarily reflect the views of the

funding parties.

23 M. Schwarzl (@marv0x90), T. Schuster, M. Schwarz, D. Gruss


	References

