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ABSTRACT
Spectre-BTB, also known as Spectre Variant 2, is often consid-
ered the most dangerous Spectre variant. While there are widely-
deployed software workarounds on x86, such as Retpoline, there
are no automated software workarounds for protecting generic
userspace applications on ARMv8. Moreover, hardware solutions
do not consider in-place mistraining or variants such as branch-
history injection (Spectre-BHI), also known as Spectre-BHB.

In this paper, we introduce Switchpoline, the first automated
Spectre-BTB and Spectre-BHB software workaround protecting
C and C++ userspace applications on ARMv8 against all variants
of Spectre-BTB and Spectre-BHB. The main security of Switch-
poline is that eliminating indirect branches eliminates attacks on
indirect branches. Switchpoline is based on a static compiler pass
and a dynamic just-in-time (JIT) compiler component that rewrite
indirect control-flow transfers into direct control-flow transfers.
Switchpoline successfully prevents Spectre-BTB and Spectre-BHB
in userspace applications with a negligible mean performance over-
head of 1.8% measured in the SPEC CPU 2017 benchmark. More-
over, unlike many x86-specific mitigations, Switchpoline is compat-
ible with existing orthogonal defenses, such as (hardware) CFI or
Spectre-PHTmitigations. Hence, Switchpoline is a practical generic
software mitigation on ARMv8.

CCS CONCEPTS
• Security and privacy → Side-channel analysis and counter-
measures.
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1 INTRODUCTION
Since the discovery of Spectre [30], there has been ongoing research
into solutions to mitigate this class of attacks. From early on, a
huge focus was on mitigating Spectre-BTB [17, 30], also known as
Spectre Variant 2. This variant is deemed especially dangerous, as
any indirect call can be exploited to change the control flow during
speculative execution arbitrarily. The original Spectre paper [30]
shows that such an indirect call in the kernel suffices to leakmemory
from a different userspace application, kernel memory from an
unprivileged application, and hypervisor memory from a VM.

Like research on transient-execution attacks [17], research on
defenses also primarily focuses on the x86 platform. For x86, ISA
extensions on most CPUs control certain aspects of speculative
execution [2, 25, 28]. These ISA extensions allow the kernel to flush
the branch predictor’s state and to enable high-privilege modes
where the predictor is not influenced by code running in lower
privileges [23]. As a software-only mitigation, Google introduced
Retpoline [49] to prevent Spectre-BTB attacks. Retpoline converts
indirect branches into returns, exploiting the design of the return
predictor on x86 [24, 49]. Retpoline is integrated into the LLVM
compiler framework to protect userspace applications [18] and the
Linux kernel [51]. JumpSwitches [4] improves the performance of
Retpolines by promoting some indirect calls to direct calls, relying
on Retpolines as fallback for branches that are not promoted.

While mitigations exist on x86 CPUs, they do not apply to
ARMv8, even though many Arm CPUs are also affected by Spec-
tre [9, 17, 30]. Although the attack surface is similar, no generic
software solution exists for ARMv8 [6]. There are only ad-hoc solu-
tions for the Linux kernel and firmware [6], which try to eliminate
indirect calls manually on a case-by-case basis or add fences af-
ter specific code patterns [8]. CSV2 [6], an ISA extension in the
form of a bitfield in a CPU register, allows changing the isolation
of the branch predictor. If enabled, CSV2 prevents lower-privilege
domains from influencing predictions of higher-privilege domains,
such as the kernel. However, CSV2 provides limited security guar-
antees. Indeed, Arm acknowledges that “the CSV2 hardware features
introduced to mitigate against Spectre v2 do not work against Spectre-
BHB” [7]. But also for Spectre-BTB, Arm admits that “there is no
generic mitigation available that applies to all Arm CPUs” [5]. Worse,
CSV2 is ineffective against in-place mistraining in Spectre-BTB. Yet
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we show that Spectre-BTB affects a wide range of ARMv8 CPUs,
even those not documented as vulnerable to Spectre-BTB [9], like
the Apple M1 processor. We develop a proof of concept (PoC) that
works on a wide range of CPUs, leaking up to 20 kB/s, which moti-
vates the need for better defenses.

In this paper, motivated by these findings, we propose a generic
open-source1 software-only defense for C/C++ programs dubbed
Switchpoline thatmitigates exploitation of Spectre-BTB and Spectre-
BHB. The high-level idea of Switchpoline is to replace indirect
control-flow transfers with direct ones. Intuitively, an attacker can-
not exploit indirect-branch mispredictions as required by Spectre-
BTB and Spectre-BHB if there are no indirect branches in the victim.
Using an LLVM compiler pass, we can statically reduce the possi-
ble targets of indirect control-flow transfers drastically. For such
statically-resolved targets, we emit direct control-flow transfers
in combination with comparisons laid out in an efficient manner.
While such static analysis works well for most applications – in fact,
all that we have evaluated – it does not guarantee completeness.
Hence, for these rare cases, we augment the compiled binaries with
a minimal just-in-time (JIT) compiler that emits a direct control-
flow transfer to the target destination. In line with mitigations on
x86, Switchpoline only requires recompilation of applications to se-
cure it against Spectre-BTB and Spectre-BHB attacks. Switchpoline
retains compatibility with dynamic linking. Switchpoline is also
compatible with CFI, which is not true for Retpoline on x86 [15].

Switchpoline is the first automated, software-based Spectre-BTB
and Spectre-BHB defense on Arm—and the only one that protects
userspace applications. To demonstrate that Switchpoline success-
fully eliminates indirect control-flow transfers, we apply Switch-
poline to lighttpd and the SPEC CPU 2017 benchmark, showing
no impact on their functionality, while no indirect control-flow
transfers remain in the protected binaries.

We also evaluate the performance of Switchpoline in terms of
one-time compile and runtime overhead. Based on the SPEC CPU
2017 benchmark, the one-time compile-time overhead is 1.6 s on
average, excluding some outliers.We evaluate the runtime overhead
using both micro and macro benchmarks. Our microbenchmarks
show an increase below 50% for an indirect control-flow transfer
with 450 possible branch targets and a mean decrease for control-
flow transfers with fewer than 54 targets. However, indirect control-
flow transfers with many possible targets are relatively rare in real-
world applications. Hence, the cost of Switchpoline is amortized
in typical applications. Our macro benchmark using SPEC CPU
2017 only shows an average overhead of 1.8 %. We also compare the
performance of Switchpoline with a jump/fence approach. The latter
is slower than Switchpoline even for branches with 1000 targets,
and it is unclear whether it suffices to mitigate Spectre-BTB.

Switchpoline is the first automated softwaremitigation onARMv8
that protects indirect control-flow transfers in userspace applica-
tions against Spectre-BTB and Spectre-BHB. Based on our security
and performance evaluation, we show that Switchpoline is indeed
a practical solution. Given the widespread deployment of ARMv8
devices, both in smartphones and with the Apple M1 also in lap-
tops, we deem such a solution necessary until sufficient hardware
mitigations are developed and deployed.

1Source code: github.com/cispa/Switchpoline

Contributions. The contributions of this paper are:
(1) We present a Spectre-BTB PoC implementation and demon-

strate that it can leak up to 20 kB/s on several ARMv8 devices,
motiving the need for a defense.

(2) We design Switchpoline, the first generic software-based
countermeasure that protects Arm userspace applications
against Spectre-BTB and Spectre-BHB.

(3) We show that Switchpoline is effective and only incurs an
average overhead of 1.8 % in macro benchmarks.

Outline. Section 2 provides background. Section 3 motivates
Switchpoline. Section 4 defines the threat model. Section 5 describes
Switchpoline’s design, and Section 6 evaluates its performance and
security. Section 7 discusses limitations. Section 8 concludes.

2 BACKGROUND
This section provides background on transient execution, Spectre,
and existing Spectre mitigations.

2.1 Transient Execution
To prevent pipeline stalls, modern CPUs execute instructions out-
of-order and speculatively while retiring them in application or-
der. Out-of-order execution and speculative execution are both
instances of transient execution. Transiently-executed instructions,
so-called transient instructions [17, 30, 33], are executed but do not
have an architectural effect. If a transient instruction is erroneously
executed, e.g., due to a branch misprediction, its results are dis-
carded. Similarly, wrongly raised exceptions are not visible to the
application but only result in a pipeline flush. However, microar-
chitectural state changes, e.g., the cache state of a cache line, are
generally not reverted. Transient execution attacks rely on side
channels to reveal these microarchitectural state changes to the
architecture. There are two types of transient execution attacks:
Spectre-type attacks, which exploit mispredictions of control- or
data-flow [30], and Meltdown-type attacks, which exploit delayed
exception handling during out-of-order execution [33].

2.2 Spectre
Spectre [30] is a transient-execution attack exploiting speculative
execution due to mispredictions. Instructions following a mispre-
diction may perform unintended data accesses, e.g., out-of-bound
access to an array, and then encode the illegally accessed data into
a microarchitectural state. A side channel exposes this microarchi-
tectural state to the architecture, leaking data.

Spectre Variants. Spectre variants are classified based on the
targeted predictor [17]. The twomost prevalent variants are Spectre-
PHT and Spectre-BTB. Spectre-PHT exploits the pattern history ta-
ble that predicts whether a conditional branch is taken [17]. Spectre-
BTB exploits the branch target buffer (BTB) that predicts the desti-
nations of indirect branches. The mistraining can happen within the
same address space as the victim (same-address-space) or in a dif-
ferent address space (cross-address-space) using the same addresses
as the victim (in-place) or different addresses (out-of-place) [17].
Out-of-place mistraining relies on collisions in the predictor’s data
structure. The BTB only has a limited number of entries. Thus,
multiple branch instructions at different addresses map to the same
entry [30]. In modern CPUs, the global branch history indexes the
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1 br x8 ; mispredicted target is "gadget"
2 [...]
3 gadget:
4 ldr x10, [shared_array, x11] ; x11 is a secret value

Listing 1: A mispredicted branch executing a cache-based
Spectre gadget encoding a secret value into the cache state.

predictors data structure [52]. Spectre-BHB [11] injects a malicious
global branch history to create collisions in the predictor’s data
structure.

Spectre Gadgets. The instruction sequence which encodes data
into a microarchitectural state is called a Spectre gadget. Cache-
based Spectre gadgets are the most common, even though several
other types of Spectre gadgets exist [14, 31, 41, 50]. A simple cache-
based Spectre gadget is a memory access to a shared array, indexed
by the data to encode (cf. Listing 1). The memory access causes the
secret-dependent entry of the array to be cached. An attacker can
measure the access time to every entry of the shared array. The
access to the cached entry is the fastest, as it is served from the
cache. As the index of the cached entry is the encoded data, an
attacker infers the data.

2.3 Spectre Mitigations
Several software-based mitigations against Spectre attacks have
been proposed. These mitigations aim to prevent the exploitation
of Spectre on affected CPUs. Speculative load hardening [19] masks
pointers during speculative execution such that they are invalid in
mispredicted control flow, protecting against Spectre-PHT. On x86
CPUs, all branches can be removed, mitigating multiple Spectre
variants but usually with a high performance penalty [43]. This mit-
igation could also be applied to Arm CPUs. However, an overhead
of up to several orders of magnitude is not feasible for widespread
deployment. ConTExT [40] ensures that secrets cannot be accessed
during speculative execution. Although this approach prevents all
Spectre attacks, it requires a developer to identify secrets in the
application, which is not straightforward. Similarly, approaches
such as process isolation [39, 42] require secrets to be moved to dif-
ferent processes. Retpoline [49] transforms indirect branches into
return instructions to protect against Spectre-BTB on x86 CPUs.
According to Arm, Retpoline is not applicable to Arm CPUs [5].
JumpSwitches [4] improves the performance of Retpoline in x86
Linux kernels by promoting some indirect calls to direct calls instead
of replacing them with Retpoline constructs. While JumpSwitches
also replaces indirect branches with direct branches, JumpSwitches
only targets the Linux kernel and cannot protect userspace applica-
tions. With Retpoline, JumpSwitches has a safe fallback and does
not need to consider all indirect branches. JumpSwitches relies on
dynamic runtime profiling to determine which calls to promote and
what construct to use. Since Retpolines can branch to arbitrary ad-
dresses, JumpSwitches does not need to consider limited branches.
According to Arm [5], Retpoline is not applicable to Arm CPUs
because it relies on specifics in the microarchitecture that do not
apply to Arm CPUs. Hence, JumpSwitches is also not applicable to
Arm CPUs. Moreover, even on x86, Retpoline is not effective in all
scenarios [51]. Randpoline [15] uses trampolines to randomize the

Table 1: Leakage and error-rate of our Spectre-BTB PoC.

Device CPU Leakage Errors
[kB/s] [%]

ODROID-N2+ Cortex A73 13.46 0.16

Realme 3 Pro Kryo 360 19.83 0.02(Cortex A75)

Xiaomi Mi 9t Kryo 470 20.08 0.01(Cortex A76)
Apple Mac Mini Apple M1 11.01 6.73
Apple Mac Studio Apple M1 8.24 5.60

location of indirect branches in memory, making attacks more diffi-
cult. While Randpoline raises the bar for successful attacks, it does
not fully mitigate Spectre-BTB. The jmp/lfence mitigation used on
AMD CPUs turned out to suffer from race conditions, drastically
reducing its effectiveness [37]. To summarize, all these mitigations
only work on x86 or do not fully mitigate Spectre-BTB.

As hardware mitigation, CSV2 [6] prevents mistraining of the
branch predictor across security contexts or software contexts on
Arm. However, as we discuss in Section 3.2, the security guarantees
are limited. It is not available on all CPUs, does not mitigate mis-
training that does not cross security boundaries, and is ineffective
against Spectre-BHB [7].

3 MOTIVATION OF SWITCHPOLINE
To demonstrate the lack of protection of Arm user programs against
Spectre-BTB attacks, and therefore also Spectre-BHB attacks, we
implement a Spectre-BTB PoC for a wide range of ARMv8 devices.

3.1 Spectre-BTB PoC
Our Spectre PoC for ARMv8 CPUs is based on the source from
Hetterich and Schwarz [22]. The PoC emphasizes that Spectre-BTB
is even relevant if hardware countermeasures such as CSV2 [6] are
available or if the CPU is officially declared as being not susceptible
to Spectre-BTB. For the PoC, we rely on in-place same-address-
space mistraining [17], a variant that was already exploited in
browsers [30, 44, 45], and the cloud [42]. This type of Spectre is
hard to prevent, as no hardware security boundary is crossed during
the exploit. Thus, it is also out of scope for CSV2.

PoC Overview. We use the same branch instruction to poison
the BTB and to trigger speculative execution of the Spectre gad-
get. The victim contains an indirect branch caused by a function
pointer that calls a dummy function or a function containing a
Spectre gadget that leaks an array’s content, similar to the original
Spectre paper [30]. The PoC uses a cache-based bit-wise Spectre
gadget similar to related work [22, 41, 44]. The encoded entry is
transferred to the architectural level via Flush+Reload or Evict+
Reload, depending on the CPU support [22]. The PoC supports a
counter thread, the clock_gettime library function, and the system
counter (CNTVCT_EL0) for precise time measurement. The victim’s
code is summarized in Listing 7 (Appendix B).

Results. We evaluate the PoC on 5ARMv8 devices: TheODROID-
N2+ with a Cortex A73 CPU, the Realme 3 Pro with a Kryo 360
CPU (based on the Cortex A75), the Xiaomi 9t with a Kryo 470
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CPU (based on the Cortex A76), the Apple Mac Mini with an Apple
M1 CPU, and the Apple Mac Studio with an Apple M1 Max CPU.
All devices except the Apple Mac Mini and the Apple Mac Studio
allow unprivileged flushing and provide accurate timing through
the clock_gettime library function. We rely on eviction and a dedi-
cated counter thread for the Apple Mac Mini and the Apple Mac
Studio. The PoC works on all devices and achieves leakage rates
beyond 8 kB/s (Table 1). The error rates for the two smartphones
and the single-board computer are below 0.1%, and the leakage
rate scales with CPU power. The leakage rate for the Apple Mac
Mini is 11.01 kB/s, and the error rate is higher at 6.73 %. The lower
rate is because we have to rely on eviction, which is slower and less
reliable than flushing, and a counter thread, which is susceptible to
noise. The same applies to the Apple Mac Studio, with a leakage
rate of 8.24 kB/s and an error rate of 5.60 %. Still, the results show
that unprivileged Spectre-BTB attacks are a threat, and mitigations
such as Switchpoline are necessary.

3.2 Applicability of Mitigations
As the software mitigations discussed in Section 2.3, such as Ret-
poline, do not apply to Arm, we focus on hardware mitigations in
this section. Arm introduced a barrier to prevent speculation (CSDB).
However, this instruction is a nop on older CPUs, like the Apple A10
Fusion, and introduces significant overhead on other devices like
the Apple M1. Thus, this barrier cannot be used universally as it
does not work on older devices. In our PoC, inserting a DSB barrier
before the mispredicted branch stops leakage on all devices. While
it is unclear whether this is sufficient to mitigate Spectre-BTB fully,
we still analyze the overhead in a micro-benchmark and compare
it to Switchpoline in Section 6.1.1. In our micro-benchmark, pro-
tecting indirect branches with barriers has an overhead of over
100% compared to unprotected indirect branches. In contrast, as
Figure 2 shows, Switchpoline improves performance by rewriting
indirect branches for calls with fewer than 54 possible targets. With
CSV2 [6], Arm introduced a hardware mitigation. Depending on
hardware support, CSV2 either mitigates mistraining across priv-
ilege boundaries (CSV2=1) or can even inhibit mistraining across
software contexts, i.e., processes (CSV2=2) [10]. Still, mistraining
that does not cross process boundaries (in-place mistraining [17]),
and Spectre-BHB are not mitigated by CSV2. Additionally, only
recent CPUs fully support CSV2. For browsers, Google proposes
mitigations for the JIT compiler and heavily relies on site isola-
tion [21]. However, approaches like site isolation do not apply to
general user applications and require additional deployment effort.
Thus, it is important to provide a mitigation such as Switchpoline
that works without special hardware support and protects user
applications against attacks that do not cross process boundaries
(Table 2).

4 ATTACKER MODEL
We base our attack model on the attacker model used in previous
Spectre attacks [17, 30].

Protected Targets. Switchpoline protects userspace applica-
tions on ARMv8 against an unprivileged attacker exploiting Spectre-
BTB [30]. For Switchpoline, all variants of Spectre-BTB are in scope,
i.e., same-address-space and cross-address-space target injection,

Table 2: Applicability of Spectre-BTBmitigations for Arm de-
vices. Google’s mitigations [21] prevent attacks from JITted
code in the browser. CPUs implementing CSV2 can protect
against mistraining across privilege levels. CPUs that report
CSV2=2 can prevent mistraining across software contexts.
Switchpoline protects user applications from any Spectre-
BTB attack, including Spectre-BHB.

Attacker
Target Userspace Browser Kernel

Native our work CSV2=2 CSV2(Different context) CSV2=2 (only BTB)

Native our work N/A manual
patches(Same context)

Browser Google’s Google’s CSV2mitigations mitigations

both in-place and out-of-place [17], and Spectre-BHB attacks. We
do not rely on Spectre-related hardware features, such as CSV2 [6],
as they are not implemented on all vulnerable CPUs and cannot pro-
tect user applications. Moreover, there is no OS or firmware support
required for Switchpoline. While Switchpoline does not mitigate
other Spectre variants, such as Spectre-PHT [30] or straight-line
speculation [8], it is compatible with other mitigations. For example,
the automated insert of speculation barriers (CSDB instructions) or
speculative load hardening [19] do not conflict with Switchpoline.

Protection Scope.When referring to indirect control-flow trans-
fers, we refer to forward transfers such as branches or calls in this
paper. Switchpoline does not protect indirect backward transfers
(return statements). While Spectre-BTB-style attacks using returns
were demonstrated on other platforms [51], no details or PoCs are
available for Arm. It is unclear whether this is a realistic attack
vector. Still, returns can be rewritten into indirect branches [27].
These rewritten branches can be protected using Switchpoline.

Attacker Capabilities. The attacker can execute unprivileged
native code on the system. Moreover, the attacker can enforce co-
location with the victim. We also assume that the attacker can share
memorywith the victim, e.g., using a shared library, or use any other
covert channel demonstrated in Spectre PoCs [14, 30–32, 41, 48].

Orthogonal Mitigations. Switchpoline is compatible with or-
thogonal mitigations deployed against memory safety vulnerabili-
ties, such as CFI, ASLR, stack canaries, and pointer authentication
for data pointers and other Spectre mitigations like Speculative
Load Hardening [19].

5 DESIGN OF SWITCHPOLINE
This section introduces the design of Switchpoline and its chal-
lenges (Section 5.1-Section 5.5), as well as implementation details
of our prototype (Section 5.6). The main idea of Switchpoline is
to eliminate all indirect branches at compile time, as illustrated
in Figure 1. Without indirect branches in the binary, the prereq-
uisite of Spectre-BTB, and thus also Spectre-BHB, is eliminated.
To eliminate branches, indirect branch locations are statically re-
solved and replaced by switches containing direct calls. As static
analysis is inherently incomplete, we introduce a combination of
over-approximation and a dynamic live-patching approach. As a



Switchpoline: A Software Mitigation for Spectre-BTB and Spectre-BHB on ARMv8 ASIA CCS ’24, July 1–5, 2024, Singapore

branch reg

t1, t2, t3, ?
t1
t2
t3
?

inject

Switchpoline

t1, t2, t3, ?

switch(reg):
t1: branch t1

t2: branch t2

t3: branch t3

?:

branch XXX

JIT

Figure 1: Switchpoline: Statically determine indirect branch
targets (t1, t2, t3) and rewrite them into a switch of direct
branches unaffected by Spectre-BTB. A small JIT emits direct
branches for call destinations not resolvable at compile time
(?). Only indirect branches (red circle) are prone to injected
targets for misspeculation (dotted arrow).

result, no indirect branches are present. Thus, Spectre-BTB and
Spectre-BHB are mitigated. Other Spectre variants, such as Spectre-
PHT [30] or Spectre-RSB [36], are out of scope for Switchpoline.
However, in line with other Spectre mitigations [15, 23, 49], we
only focus on one variant, as mitigations against other variants are
orthogonal. Moreover, Switchpoline aims to be compatible with
mitigations against other variants. Hence they can be used with
Switchpoline to protect against more Spectre variants.

5.1 Challenges
To be compatible with a wide range of applications, Switchpoline is
implemented directly in the compiler and does not rely on hardware
mechanisms. Still, while the idea of eliminating all branches sounds
straightforward, multiple challenges have to be overcome. This
section introduces the main challenges.

C1: Sources of Indirect Branches. Every indirect branch in-
struction reachable during execution can be mispredicted and thus
is a possible entry point for Spectre-BTB attacks. To fully mitigate
Spectre-BTB and Spectre-BHB, we must eliminate all those indi-
rect branches, namely all br and blr instructions. In a systematic
investigation, we found that compilers and linkers emit br and blr

instructions in four situations. To get programs free of indirect
branches, we must implement these situations without relying on
indirect branches: Indirect calls in C/C++, including virtual dispatch,
compiler-generated jump tables, PLT stubs for dynamic linking,
and raw assembly in the standard library.

For an effective Spectre-BTB and Spectre-BHB mitigation, all
indirect branches that may be executed must be eliminated. Hence,
changing the compiler, the linker, and the standard library is neces-
sary to ensure that no executable indirect branch remains. Given
the different stages where Switchpoline has to apply the mitigation,
we have to deal with source code, intermediate representation, and
machine code.

C2: Target Set Computation. The set of possible targets must
be identified to rewrite indirect branches to direct branches at
compile time, This challenge is a well-known research problem,
especially for control-flow integrity (CFI) [1, 12]. The correctness
of CFI depends on correctly identifying indirect branch targets
at compile time. Any missed location leads to a program crash
at runtime, as this is considered a security violation. Similarly,
Switchpoline also needs to infer all possible branch targets. Like

CFI, over-approximating the set of targets leads to a larger attack
surface by increasing the number of possible targets on branch
mispredictions. However, missed targets do not lead to program
crashes but to a costly invocation of the JIT component. Hence, the
challenge is to identify a set of targets that is neither too large nor
too small to guarantee a low performance overhead and maximum
security guarantees for Switchpoline.

C3: Dynamic Code. Static analysis of branch destinations is in-
herently incomplete. While over-approximation of targets is widely
used to “hide” this problem, it still cannot guarantee functional cor-
rectness. For example, static analysis in CFI cannot handle functions
loaded at runtime. To ensure functional correctness, Switchpoline
must be able to expand target sets dynamically. Hence, Switchpo-
line must support adding targets from dynamically loaded libraries
and dealing with function pointers to dynamically generated code,
e.g., from a JIT compiler.

C4: Limited Direct Branches. In contrast to x86’s complex
instruction set with instructions ranging from 1 to 15 bytes [26],
the ARMv8 instruction set only supports 4 B instructions. While
this is not a problem for indirect calls, it severely limits direct calls.
Direct calls require the branch offset to be encoded in the opcode.
However, with the instruction’s limited size, it is impossible to
encode arbitrary 64 bit addresses into the instruction. As a result,
direct branches are limited to jumping ±128MB relative to the
current instruction pointer. Hence, Switchpoline has to avoid jumps
that are further than this offset, e.g., caused by dynamically-loaded
shared libraries or large code segments.

5.2 Sources of Indirect Branches (C1)
This section describes our approaches to eliminating all indirect
branches.

1 int f1(int x) { ... }
2 int f2(int x) { ... }
3 int f3(int x) { ... }
4 typedef int (*function_pointer)(int);
5 function_pointer fp = &f1; // or &f2 or &f3
6 fp(0); // indirect call

Listing 2: C code example with an indirect call.

5.2.1 Indirect Calls. The compiler requires an indirect branch in-
struction to generate assembly for indirect function calls. Listing 2
shows an example of an indirect call in C. Indirect calls have their
target, i.e., the address of the function’s first instruction, stored in
a function pointer. From the source code, we can infer the possible
legal values of a function pointer: Only the addresses of functions
are legal values, and only expressions such as &f1 generate function
pointers. By analyzing the entire source code, we can identify all
address-taken functions: functions whose address is used as a func-
tion pointer. We know all possible values for each function pointer,
and therefore, we know all possible targets for each indirect call:
the target set. This target set is an over-approximation of the actual
target set, but at the same time, misses targets that are not available
during the static analysis pass, e.g., dynamically-loaded libraries.

Indirect Call to Direct Call Conversion. For a naïve imple-
mentation, we can translate every indirect call into a series of direct
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8 // translated indirect call
9 if (fp == &f1) f1(0);
10 else if (fp == &f2) f2(0);
11 else if (fp == &f3) f3(0);

Listing 3: Source-level transformation of the example. The
indirect call is replaced by a series of direct calls.

9 switch (fp) {
10 case &f1: f1(0); break;
11 case &f2: f2(0); break;
12 case &f3: f3(0); break;
13 }

Listing 4: Pseudocode for the transformation idea: an efficient
switch replaces multiple comparisons.

calls by comparing the function pointer to each possible value and
calling the corresponding target function directly if the pointer
matches. Listing 3 shows an example of such a translation. How-
ever, this translation is highly inefficient, even if implemented in
the compiler. With such an implementation, the comparison time
increases linearly with the size of the target set.

Hence, to boost the performance of the direct-call selection, we
re-empower the compiler’s algorithms for switch-case statements.
Instead of a series of if-then-else, we use a single switch and a
case for each possible target function, as shown by the pseudocode
in Listing 4. The compiler’s backend uses various strategies to
convert this language construct to efficient assembly. Binary search
trees are most prominent, but bitset tests or direct comparisons are
also used if applicable. In particular, binary search trees reduce the
worst-case runtime from O(𝑛) to O(log𝑛).

Function Identifiers. While the general idea is straightforward,
engineering challenges must be solved. Function addresses are not
fixed during compile time and can vary between runs, e.g., if ASLR
is enabled. Thus, function addresses are unsuitable for compiler
algorithms that work on constant values, e.g., binary search trees.

To fix this, we use a property of function pointers: according to
the C standard, programmers can only use them in indirect calls and
comparisons with other function pointers. Accessing the memory
behind a function pointer is considered undefined behavior. Hence,
we can replace function pointers with arbitrary values if indirect
calls and comparisons do not break. Like TyPro [12], Switchpoline
assigns each address-taken function a constant integer, called the
function identifier, as shown in Listing 5. Whenever a function’s
address is taken, we use this constant instead. The switch state-
ments we generate for indirect calls use these constant identifiers
for their cases. Function pointer comparisons need no change be-
cause each function has only one unique identifier. We can use fast
and efficient switch-based assembly constructs with this change
to replace indirect calls. The first function identifier of a binary is
derived from a hash of the file name to avoid function-identifier
collisions with dynamically linked libraries. Since we use 64-bit
function identifiers, collisions are unlikely.

5.2.2 C++ Virtual Dispatch. C++ has an additional pattern that
requires indirect branches: inheritance and virtual dispatch. In C++,

1 int f1(int x) { ... } // ID 15
2 int f2(int x) { ... } // ID 16
3 int f3(int x) { ... } // ID 17
4 typedef int (*function_pointer)(int);
5 function_pointer fp = (function_pointer) 15;
6 // or 16 for f2, or 17 for f3
7
8 switch (fp) { // indirect call
9 case 15: f1(0); break;
10 case 16: f2(0); break;
11 case 17: f3(0); break;
12 }

Listing 5: Thefinal transformed example code, using function
IDs instead of function pointers.

“child” classes can inherit from one or more “parent” classes. Every
parent class method can also be called on a child class. If neces-
sary, the child class can override methods from its parent, replacing
them with their implementation. Overridable methods are called
virtual methods and are marked in the source code with the key-
word virtual. When a virtual method is invoked on a class instance
(virtual dispatch), the compiler does not know in advance if the
class instance is of parent or child type. Therefore, it cannot build a
static call to the original or overridden method. All real-world C++
compilers solve this problem using vtables (virtual function tables)
as specified in the Itanium C++ ABI [20]. Each class instance in
memory starts with a pointer to a vtable. The vtable contains point-
ers to all virtual methods a class implements, whether inherited
or overridden. The order of methods is similar in both parent and
child classes. When calling a virtual method on a class instance, the
compiler emits code that first loads the vtable pointer, then loads a
pointer to the virtual method implementation from the vtable, and
finally indirectly calls this pointer. There, the compiler introduces
indirect branches.

In theory, we can resolve these branches similar to C-style func-
tion pointers: replace all method addresses in the vtables with IDs
and replace all virtual dispatch with switches over the ID loaded
from vtables. Our type-based target set computation from Sec-
tion 5.3 can perfectly deal with C++ classes and method types.
However, NoVT [13] proposes a faster solution that we adapt, which
Listing 6 shows. We can replace the vtable pointers directly with
class IDs instead of filling the vtable with function IDs. We can
then dispatch virtual methods based on the class ID stored in an
instance without referencing an additional table. We save one ad-
ditional memory access and can empower the C++ type system to
drastically reduce the number of possible targets.

To this end, we extract information about C++ classes, their in-
heritance, their virtual methods, and their memory layout from
the source code. We compute the inheritance graph of all classes
in an application and assign a unique identifier to each class. This
information allows us to build switches over direct calls for virtual
dispatch locations. Each time a virtual method is called on a class
instance, we first load the identifier from memory, which is stored
in the position that contained the vtable pointer before our changes.
Then, we emit a switch over this value. We start traversing the
inheritance graph at the class denoted by the dispatch’s static type,
e.g., the type of the instance as written in the source code. We
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1 class Parent {
2 virtual void f() { ... }
3 };
4 class Child : public Parent {
5 void f() override { ... }
6 };
7
8 // virtual dispatch
9 Parent *instance = ...;
10 instance->f();
11 [...]

(a) C++ virtual dispatching example with insecure indirect calls.

1 class Parent { // ID 1
2 virtual void f() { ... }
3 };
4 class Child : public Parent { // ID 2
5 void f() override { ... }
6 };
7
8 // virtual dispatch
9 Parent *instance = ...;
10 switch (instance->_id) {
11 case 1: Parent::f(instance); break;
12 case 2: Child::f((Child*) instance); break;
13 }

(b) Same example after transformation, without indirect calls.

Listing 6: C++ virtual dispatch before and after the transformation that rewrites indirect calls into switch constructs.

traverse the initial class and all classes that inherit from it. For each
traversed class, we build a case with its ID. In the case body, we
directly call that instance’s inherited or overridden method imple-
mentation. We further track the memory layout of each inheritance
and adjust class references if necessary.

Finally, we have collected all possible methods for a virtual dis-
patch in our switch. The target sets for virtual dispatch are minimal
and complete concerning inheritance, thus solving C2. We also
expect better performance than the naive approach. If many classes
inherit the same method, we can join the case bodies, and the back-
end uses efficient bitset tests to target the correct method. The
target sets of C-style function pointers are not affected because we
can exclude C++ methods, avoiding performance penalties.

Replacing vtables does not only affect virtual dispatch: some
class memory layouts require virtual offsets, which are stored in
the vtable, too. Moreover, runtime type information (RTTI) features,
such as exceptions, require additional information like the class
name, which is also referenced by a pointer in the vtable. We re-
place all these usages with additional switches. We traverse the
inheritance graph and generate cases that return each class’s cor-
responding virtual offset or type information. Replacing vtables is
still good for performance, as shown by NoVT [13], which reports
a slight performance boost for a similar methodology on x86.

C++ has its own language feature along the lines of function
pointers—method pointers. A method pointer is a reference to a
possibly virtual method of a base class. When the program calls a
method pointer on an instance, the corresponding, possibly over-
ridden method of the instance’s class is invoked. Despite replacing
vtables with identifiers, indirect branches remain in code, han-
dling method pointers. In the Itanium ABI [20], method pointers
in memory are either a function pointer to a non-virtual method
implementation or the vtable index of a virtual method. The code
that invokes a method pointer either calls the function pointer di-
rectly or reads the method pointer from the vtable first. We change
this process in two steps: First, when a method pointer is taken, we
always store a function pointer—of a newly generated dispatcher
function that contains only a C++ switch case invoking the taken
method as outlined above. This step already fixes method point-
ers; they no longer rely on vtables. Second, we mark this function
pointer as address-taken and let the C indirect call removal pass
from Section 5.2 process it. We replace it with an additional switch

similar to all normal C functions. To summarize, a method pointer
invocation is handled by up to two switch-case constructs. The first
switch branches over the concrete method pointer; it calls either a
non-virtual method or a second switch. The second switch branches
over the class ID of the underlying class instance and calls a virtual
method. We can implement all C++ language constructs without
indirect branches with this extension.

5.2.3 Compiler-Generated Jump Tables. Compilers can introduce
indirect branches as part of jump tables, even if not explicitly writ-
ten by a programmer. The compiler generates jump tables mainly
for larger switch case constructs in C. With jump tables, a switch
can be implemented in a short construct, with execution time in-
dependent of the number of cases. Assuming x0 holds the address
reference to the pre-generated jump table and x1 is the already
bounds-checked value to switch over, the assembly of a switch can
be ldr x0, [x0, x1, lsl #3] ; br x0. The second instruction is
an indirect branch that is vulnerable to Spectre-BTB. We modify
Clang’s code generation backend never to emit jump tables. Instead,
Clang now uses direct comparisons, binary trees, bitset tests, or
combinations of these constructs. While these constructs are still
pretty efficient, they might have a slight performance penalty —
particularly for switches with many cases.

5.2.4 PLT Stubs for Dynamic Linking. Compilers rely heavily on
indirect branches to make dynamic linking possible. Each shared
object, including the program itself, contains two special sections:
The global offset table (GOT) and the procedure linkage table (PLT).
The GOT contains one entry for each imported symbol. The dy-
namic loader fills this entry with the symbol’s address, e.g., the
function’s address. The PLT contains one executable entry for each
imported function that loads the address from GOT and tail-calls it.
On Arm, each PLT entry ends with a vulnerable br instruction. We
rewrite GOT usages to omit indirect branches.

In most cases, function pointers from the GOT are used in PLT
entries. With Switchpoline, each module rewrites its PLT entries
at runtime after the GOT is populated with a direct branch to the
address from the GOT.Musl libc does not use lazy binding; therefore,
it populates the GOT directly after loading the modules.

5.2.5 Raw Assembly. After removing compiler-generated indirect
branch instructions (Section 5.2 C1), branches explicitly written by
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a programmer remain—either in inline assembly or assembly files
linked to the final program. The problem has no generic solution
because assembly is harder to analyze than higher-level languages.
However, this problem is rare: few to no userspace applications use
hand-written indirect branches. We only detect three branches in
the musl C standard library. Even all other low-level libraries, such
as compiler-rt, libcxxabi, and libunwind are free of indirect branch
instructions. Switchpoline provides utilities to the programmer to
find and remove indirect branches from assembly code. First, we pro-
vide a script that disassembles generated binaries and reports any
remaining indirect branches with their locations. Second, Switchpo-
line can generate dispatcher functions that assembly code can call
instead of an indirect branch. With these techniques, we patch three
locations in musl libc to remove indirect branches and ship these
patches with our library environment described in Section 5.6. For
example, musl’s __clone assembly implementation calls a function
using blr x1. We replace this instruction with bl __switchpoline

_handler_clone, containing a generated switch of possible argu-
ments of clone. The C function-pointer type of x1 is inferred from
the C declaration of __clone, and the target set of the handler is
computed accordingly. If targets of programmer-written indirect
branches are not C functions or cannot be determined at compile
time, the JIT compiler (Section 5.4) generates direct branches on
the fly. With our 3 one-line patches, Switchpoline builds all sources
without indirect branches.

5.3 Target Set Computation (C2)
Switchpoline has to know the possible targets of each indirect
call to build appropriate switches, the so-called target sets. Over-
approximating the set of possible target functions is fine but might
come with a performance penalty. Under-approximating the target
requires the JIT and also comes with a performance penalty.

We start with the set of all address-taken functions, which con-
tains all possible functions for all indirect calls, an over-approximation.
We refine this set based on the number of function arguments and
function types. We filter the target set for an indirect call by the
number of arguments. A function with 𝑛 parameters can only be in
the target set of indirect calls with exactly 𝑛 arguments. A variadic
function with 𝑛 declared parameters can only be in the target set of
indirect calls with at least 𝑛 arguments (Section 6.5.2.2 (2) and (6)
of the C standard [29]). A similar condition for target set computa-
tion is used in IFCC [47], where an evaluation of large real-world
programs shows that this condition is applicable.

We further refine our target sets using a type-based approach.
The C standard states in 6.5.2.2 (6) that the function’s parameters
must be “compatible” with the argument types of an indirect call,
and (9) requires the same for the return type. The C standard details
compatible types in 6.2.7. However, real-world software sometimes
uses incompatible types in indirect calls, for example, pointers and
long. We thus relax the “compatible” types requirement to “assign-
able” types (C standard 6.5.16.1) and ignore type qualifiers. This
condition is broad enough to cover all combinations of types that
might occur in existing software. To this end, we use the following
rules to check parameter and argument types. A pair of two types
is valid if both types are (1) pointer type (ignoring the pointee), (2)
integer type (ignoring width and sign), (3) floating-point types, (4)

void, or (5) pointer, integer, or composite type and have the same
size (in bits). According to these rules, a function is a valid target for
an indirect call if all its parameters match the call’s argument types
and the function’s return type matches the indirect call’s return
type. These rules can over-approximate the possible target sets but
do not under-approximate them. Two types not following these
rules inherently trigger differences in typical calling conventions,
producing errors even in other, unmodified compilers.

We can evaluate both conditions on LLVM’s intermediate rep-
resentation without information from the frontend. The checks
are fast and can be performed in little additional compilation time.
Relying on the C standard avoids under-approximation of target
sets and introduces no errors, while the computed target sets are
smaller than related work [47] and guarantee compatibility.

5.4 Dynamic Code (C3)
Our static target-set analysis cannot take code loaded at runtime
into account, resulting in two cases to consider at runtime. First,
function identifiers can be passed between protected dynamically
linked libraries. However, other libraries are not aware of foreign
identifiers. These identifiers are not part of the statically computed
target set at a call site outside the library. Secondly, function point-
ers to dynamically generated code can be passed to protected code.
When called, such a pointer would not be part of the statically
computed target set.

The JIT component. A small JIT component handles both
of these problems. This component can expand the target set of
call sites at runtime. To do so, the default cases of switches invoke
a global dispatching sled. This sled is a dynamically expandable
switch statement, which invokes the JIT component in the default
case. Whenever the switch for a call site does not contain the des-
tination, the global dispatching sled is invoked. If the destination
is part of this sled, the global dispatching sled invokes the correct
destination with a direct branch. Otherwise, the JIT component is
invoked, adding a case for the missing target.

Handling function identifiers. Instead of adding one case per
function identifier to the global dispatching sled, one case handling
all function identifiers is added on library loading. This case checks
whether the function identifier to invoke is in the range of function
identifiers of the library. If so, it invokes a special all_id_handler
function generated during library compilation. The all_id_handler
is a compiler-generated switch over all address-taken functions in
the library. We handle C++ virtual dispatch similarly.

Handling function pointers. To handle function pointers,
the default case of the global dispatching sled is set up to save the
current execution state and invoke the JIT component. The JIT
component adds a direct branch instruction to the target guarded
by an equality check to the global dispatcher sled. After patching,
the execution state is restored, and the global dispatcher sled is
executed again. This time, the target of the function pointer is
contained in the sled, and the correct function is invoked. While
handling function pointers in the JIT component is required for
correctness, this case rarely occurs in programs.

Limitations. The goal of our Switchpoline JIT implementation
is to keep it as simple as possible. Thus, the global dispatching sled
contains a chain of if statements. Hence, the execution time of
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the sled grows linearly with the number of cases in the sled. The
performance could be optimized to grow logarithmically with the
number of functions using binary trees. In our implementation, we
do not consider multithreading. Thus, the patching of the global
dispatching sled is not thread-safe. This causes no issues in practice
since we never need the JIT component during runtime for func-
tion pointers in any of the evaluated applications, and the loading
of libraries happens sequentially at program startup. Our global
dispatching sled also has a hardcoded maximum size. However, all
of these limitations are artifacts of our implementation and not
limitations of the approach. They do not break any of the programs
we test and could be removed with some additional engineering
effort. Only the limitation of a maximum branch distance remains.
If a function pointer too far from the global dispatching sled is
invoked, it is impossible to encode the branch offset into a direct
branch instruction. In this case, the program is terminated.

5.5 Limited Direct Branches (C4)
By default, Linux maps libraries at high addresses, such as
0x7f0000000000, while position-independent programs are mapped
at lower addresses, such as 0x550000000000. The distance between
libraries and the program is too large for a direct branch in ARMv8,
which can jump at most ±128MB. We thus change musl’s dynamic
loader to map libraries to the 128MB memory region before the
program. With this change, all loaded code is within the range of
direct branches. Using position-independent executables ensures
the Linux loader maps the program to a sufficiently large address
(not 0x400000) to gain memory space for a program’s libraries. PIC
in libraries ensures they can be shared, although they might be
mapped to different virtual addresses per program. The libraries
thereby also “inherit” the ASLR’ed addresses of the main program.

What remains is code loaded by the kernel, namely the dynamic
loader itself and the libc, which is the same file for musl. To this
end, we build a new, small dynamic loader without dependency on
the libc, which initiates the program loading process. This small
loader maps musl libc to an address near the program image. Then,
it transfers control to musl’s dynamic loader. Musl’s loader initial-
izes the program and loads its dependencies as usual. This control
transfer is out of range for simple direct branches. We solve this
case with a signal handler that modifies the application’s context.
Consequently, the kernel sets the program counter to the desired
value. The overhead of this signal is negligible because it happens
only once during program startup. Our additional dynamic loader
is free of indirect branches. Each generated program contains a
reference to the new dynamic loader. Linux can thus invoke the
correct loader for protected and unprotected programs.

5.6 Implementation Details
Our compilation toolchain is based on Clang/LLVM 10 [12, 13]. We
use link-time optimization (LTO) in all components so that source
code is compiled to LLVM’s intermediate representation (IR). We
compile against an environment containing musl libc [38], LLVM’s
compiler-rt [34], and LLVM’s libc++ [35], including its support
libraries libc++abi and libunwind. All libraries are compiled with
the Switchpoline compiler and support static and dynamic linking
to protected applications. We choose these libraries because they

are compatible with Clang (which, for example, glibc is not). LTO
reduces the additional binary size of the final application: uncalled
functions from the standard libraries can be detected and removed
during linking. We include our JIT compiler into the musl libc. We
add the runtime PLT rewriter to the compiled code if that code
generates a PLT section.

We do not change the compilation of C files to IR. When compil-
ing C++ files, we store additional language information from Clang
in the generated object file as metadata. We run our transformations
at link time within LLVM’s linker lld. In this step, we see all appli-
cation code in IR form and fully know all C++ classes, including
any statically-linked libraries. We pull the necessary information
about address-taken functions and their parameters from IR; the
type-matching algorithm runs on LLVM IR types. We generate our
switches as LLVM’s switch instructions. The subsequent LLVM
passes optimize them, and LLVM’s backend converts them to as-
sembly. In particular, LLVM can remove switch instructions if only
one target is possible, and LLVM can inline targets of rewritten
indirect calls. Also, LLVM might use additional information: After
transformation, all possible callers of a function are known, and op-
timizations such as argument promotion or dead code elimination
can be more efficient.

Another optimization to reduce the application size is to move
the generated switch into a new dispatcher function whenever the
same target set is used in multiple calls. We set the threshold at
least five calls. Instead of generating the same switch over and over,
we call this dispatcher function. When a program contains many
indirect calls and switches get larger, this optimization saves space
without any significant performance drop.

6 EVALUATION
This section evaluates Switchpoline. In Section 6.1, we evaluate
the performance of Switchpoline using microbenchmarks, SPEC
CPU 2017 as a macro benchmark, and lighttpd as a real-world
application. In Section 6.2, we evaluate the security of Switchpoline,
showing that Switchpoline-compiled applications do not contain
indirect control-flow transfers, preventing Spectre-BTB and Spectre-
BHB exploitation.

6.1 Performance Evaluation
This section evaluates the performance of Switchpoline using mi-
crobenchmarks (Section 6.1.1 to Section 6.1.3) aswell asmacrobench-
marks (Section 6.1.4) and lighttpd as real-world application (Sec-
tion 6.1.5). The benchmarks show that the performance overhead of
Switchpoline is similar to state-of-the-art x86 software mitigations.
All benchmarks run on an Apple Mac Studio with an Apple M1
Max chip and 32GB of memory. We use Asahi Linux with kernel
5.19. Benchmarks are pinned to a reserved P-core to reduce noise.

6.1.1 Micro Benchmark: Qualitative Analysis. As a micro bench-
mark, we evaluate the pure performance overhead of Switchpoline.
We measure the time for indirect control-flow transfers with a stati-
cally known number of targets from 1 to 1000. In our benchmark, a
single indirect branch calls all targets, each target at least 500 times.
We repeat this 100 times and report the median. The branch can
be a C-style function pointer call or a C++ virtual method call. We
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Figure 2: Overhead of Switchpoline-protected indirect calls
compared to unprotected branches and branches protected
with CSDB/DSB barriers. Switchpoline is fastest up to 54 targets.
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Figure 3: Overhead of Switchpoline-protected virtual dis-
patch. Switchpoline improves the performance up to 57 pos-
sible targets.

also measure the time it takes to call a function pointer that needs
to be added by the JIT component.

Figure 2 compares the runtime of Switchpoline-protected calls
to standard indirect branches depending on the number of possible
branch targets. For unprotected indirect branches, the number of
possible targets is irrelevant. We measure a mostly flat line. With
Switchpoline, the execution time of the transformed branch grows
roughly logarithmic with the number of possible targets. In this
benchmark, Switchpoline outperforms unprotected indirect calls
if there are fewer than 54 possible targets. Even for branches with
as many as 450 possible targets, the overhead is below 50%. We
observe a similar pattern for C++ virtual method calls (Figure 3).
Here, Switchpoline outperforms unprotected indirect calls for fewer
than 57 targets. Figure 2 also evaluates a jump/fence approach with
different memory barriers. While unclear whether this fully miti-
gates Spectre-BTB, it also comes with a much higher overhead than
Switchpoline of at least 110 %.

6.1.2 Micro Benchmark: Quantitative Analysis. For a quantitative
micro benchmark, we analyze the 16 SPEC applications for the
number of targets of indirect branches. In total, these 16 applications
contain 24 396 branches that Switchpoline converts. Only 7 out of 16
benchmarks have branches with more than 100 targets: perlbench
(max 389), gcc (1353), parest (138), povray (159), omnetpp (402),
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Figure 4: Cumulative distribution function of the number of
branch targets for indirect calls and virtual dispatch in all
analyzed SPEC CPU 2017 applications.

xalancbmk (155), and blender (10 164). Figure 4 shows a cumulative
distribution function plot of the number of branch targets. Most
C-style function pointer calls (61%) have fewer than 280 possible
targets. C++ virtual dispatch has fewer targets than function pointer
calls. 87 % of C++ virtual dispatches have fewer than 10 targets.

Comparing the target-set distribution with the results from Sec-
tion 6.1.1, we see that 35 % of all C calls have at most 54 targets and,
thus, should outperform indirect calls. For C++, 97 % of all virtual
calls have at most 57 targets and should outperform the reference.

6.1.3 Micro Benchmark: Dynamic Overhead.
Dynamic Linking. Switchpoline with dynamic linking intro-

duces additional computation at program startup due to the dy-
namic loader and the PLT rewriter. When measuring the time be-
tween program invocation and the start of the main function, we
measured zero difference: It takes 24.7 µs to start a minimal program
before and after protection with Switchpoline. Rewriting the PLT
is fast: Rewriting the PLT for 1000 imported functions on startup
takes 3.7 µs. Using the rewritten PLTs does not have overhead—in
fact, the rewritten PLT entries should be faster because they can
omit the memory access to the GOT.

JIT Patching. On the M1 Mac Studio, the JIT component needs
5 µs to emit code for an unknown target. Subsequent calls to the
same target do not invoke the JIT component. Thus, the overhead
is only present the first time an unknown target is called.

6.1.4 Macro Benchmark SPEC CPU 2017. For SPEC CPU 2017, we
run all C and C++ programs and omit Fortran programs. Bench-
marks are repeated 5 times and show an average standard deviation
of 0.1 %. We benchmark Switchpoline with static and dynamic link-
ing. The baseline is an unmodified Clang 10 in the same setup,
including musl libc and libc++. Compiler flags are -O3 and LTO.
The SPEC CPU benchmark also has the side effect that the func-
tional correctness of Switchpoline is tested.

Functional Correctness. Two of the 16 benchmarks have non-
trivial incompatibilities with musl libc and libc++. First, the bench-
mark gcc crashes when built with the unmodified reference com-
piler; we omit it from further evaluation. Second, the benchmark
parest is unstable with static linking and the reference compiler;
we use it with dynamic linking only. All remaining benchmarks
complete successfully with Switchpoline enabled. Switchpoline
does not impair the functional correctness of any tested program.
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Figure 5: Runtime of SPEC CPU 2017 benchmarks. From left
to right: Reference with static linking, Switchpoline with
static linking, reference with dynamic linking, and Switch-
poline with dynamic linking.
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Figure 6: SPECCPU 2017 build time relative to reference with
static linking. Same ordering as in Figure 5.

Runtime. The runtime of SPECCPU 2017 benchmarks is graphed
in Figure 5. With static linking, we measure a maximum overhead
of 26 % for Switchpoline in the povray benchmark compared to the
reference compiler. With dynamic linking, the same benchmark
records the highest overhead of 19 %. In some cases, Switchpoline
improves performance with both static and dynamic linking. mcf
runs 8.7% faster with Switchpoline. On average, we measure an
overhead of 1.8 % for Switchpoline with static and dynamic linking.
In summary, Switchpoline adds an overhead of −8.7 %–26 %.

Build Time. In most cases, Switchpoline does not introduce
a noticeable slowdown in the build process (Figure 6). Except for
the following three outliers, the compilation time increased by less
than 10 s: omnetpp (38 s → 50 s), xalancbmkr (56 s → 71 s), and
blender (455 s→ 700 s). Excluding those outliers, the compilation
time increased by 1.6 s on average.

Binary Size. Figure 7 shows program sizes before and after
Switchpoline protection. We measure differences of −3% to 33%.
We record the biggest size increase for lbmwith static linking (33 %).
On the other hand, Switchpoline with dynamic linking decreases
the size of leela by 3 %. On average, SPEC 2017 benchmarks are 6 %
larger with dynamic linking and 14 % larger with static linking.
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Figure 7: Size of SPEC CPU 2017 binaries relative to reference
with static linking. Same ordering as in Figure 5.

18 B 1 KB 1 MB
Size

0

5

Re
qu

es
ts
[1
0k
/s
]

Figure 8: Throughput of lighttpd for different file sizes. Same
ordering as in Figure 5.

6.1.5 Real-World Application: Lighttpd. We choose lighttpd (ver-
sion 1.4.59) as a real-world application which we benchmark using
the Apache HTTP server benchmarking tool (ab). Like the SPEC
CPU 2017 benchmarks, we compile lighttpd with Switchpoline
and an unmodified compiler as reference, once with static and once
with dynamic linking. We configure lighttpd to serve three files
of sizes: 18 B, 1 kB, and 1MB. We use ab with 5 concurrent connec-
tions to send 100 000 requests. These measurements are repeated
200 times. All measurements for requests per second and request
latency are within error of the reference (Figure 8), i.e., we do not
see any relevant overhead for Switchpoline.

6.2 Security Evaluation
The security of Switchpoline is based on eliminating all indirect
branches. This section evaluates if this property holds and whether
attacks are prevented. Moreover, we argue that Switchpoline does
not undermine other mitigations.

Compatibility with Orthogonal Mitigations. While Switch-
poline only targets Spectre-BTB and Spectre-BHB, it is fully com-
patible with other mitigations, targeting both Spectre attacks [17]
and traditional memory-corruption attacks [46]. Intuitively, Switch-
poline converts Spectre-BTB gadgets that can be mistrained to
speculatively jump to code at any location into Spectre-PHT gad-
gets that can only be mistrained to speculatively call any function
in the computed target set, significantly reducing the number of
available gadgets. While reducing call targets already improves
security, the remaining Spectre-PHT gadgets can be mitigated au-
tomatically using orthogonal mitigations such as Speculative load



ASIA CCS ’24, July 1–5, 2024, Singapore Markus Bauer, Lorenz Hetterich, Christian Rossow, and Michael Schwarz

hardening (-mspeculative-load-hardening or selectively for individ-
ual functions). Similarly, memory barriers could be inserted at the
beginning of functions to stop speculative execution on mispre-
dictions. In contrast to Retpoline, Switchpoline is fully compatible
with backward-edge CFI mechanisms, such as shadow stacks [16],
as it does not modify return addresses. Moreover, Switchpoline can
be combined with orthogonal defenses against memory corruption
vulnerabilities, e.g., stack canaries, Pointer Authentication Codes
(PAC) for data pointers, and ASLR. These mitigations do not affect
or need indirect branches. Hence, they do not interfere with Switch-
poline. Switchpoline impacts ASLR as libraries are mapped close to
the executable’s code to ensure code is within ±128MB (cf. C4).

Security Argument. Intuitively, an attacker cannot inject a
branch target into indirect branches if an application does not
contain indirect branches. To verify that our compiler mitigations
remove all indirect branches, we disassemble all SPEC benchmarks,
standard libraries, including the dynamic loader, and custom test
programs. No program contained indirect branch instructions (br
or blr) anymore. Hence, we conclude that all checked programs
are no longer vulnerable to Spectre-BTB. Spectre-BHB attacks are
mitigated as they also rely on indirect branch mispredictions.

7 DISCUSSION & LIMITATIONS
Code Size. While we can reduce the distance between code of li-
braries and the executable by fixing the memory layout as described
in Section 5.5, a limit of 128MB for the total size of the code seg-
ment remains. To evaluate the impact of this limitation, we analyze
the first 1000 most frequently installed Debian packages available
for ARMv8 according to the Debian popularity contest [3]. Within
those, we find 5178 unique binaries. To give an upper bound on
their code segment size if Switchpoline were applied, we recursively
resolved all library dependencies and calculated the sum of all code
segment sizes. We conclude that only 133 (2.57 %) of the analyzed
binaries exceeded the limit of 128MB, 57 (42.86%) of which are
from the kdepim-addons package. Most binaries exceeding the lim-
itation are GUI applications (e.g., krita, obs-studio, or shotwell).
With static linking, unreachable code can likely be eliminated, and
even more binaries fit the limitation. Thus, Switchpoline can be
applied to most applications without nearly hitting this limitation.
While this limit affects our implementation of Switchpoline, it is not
a fundamental limitation of the idea behind Switchpoline: Proxy
direct branch instructions can be added between the dispatcher and
branch target if the distance is too large.

Linking with Unprotected Libraries. Switchpoline can link
an application with unprotected dynamic libraries. However, while
linking with unprotected libraries is possible, such libraries likely
contain indirect branches. Such indirect branches in unprotected
libraries re-enable Spectre-BTB attacks. Hence, the security guaran-
tees of Switchpoline are weakened when linking with unprotected
libraries. Moreover, there are unhandled corner cases when linking
with unprotected libraries. While function pointers from the unpro-
tected library can be called in the protected library due to the JIT,
passing function pointers to an unprotected library is not currently
supported. Function identifier numbers replace function pointers
in protected code. These identifiers are not valid addresses in the
unprotected library. Thus, unprotected code is not able to call these

identifiers and crashes. A more advanced implementation could
use the JIT to translate function identifiers to function pointers be-
fore passing them to an unprotected library. Similarly, passing C++
objects with virtual methods between unprotected and protected
code may crash for the same reason.

JIT Compilation. Switchpoline is a compile-time mitigation,
so it cannot protect indirect branches that do not exist at compile-
time. Hence, if an application creates indirect branches at runtime,
either by just-in-time compiling code or by dynamically loading
unprotected code, Switchpoline is circumvented. However, it is fair
to shift the responsibility for protecting the runtime-generated code
to the developer in such a case. As shown in this paper, Switchpoline
can be implemented purely in the compiler. Hence, JIT compilers, as
used in, e.g., browsers, could also implement Switchpoline to protect
the emitted code against Spectre-BTB and Spectre-BHB attacks. For
this paper, we do not implement Switchpoline in a browser, as this
is an enormous engineering task, which requires understanding
the JIT compiler and re-implementing everything for this compiler
architecture. Given that our proof-of-code implementation already
required around 5000 lines of code, even though it could reuse many
parts of previous work [13], we consider such an implementation
out of scope for demonstrating the viability of Switchpoline.

Other uses of the BTB. Switchpoline mitigates Spectre-BTB
on indirect branches. Cases where other instructions use the BTB
as a predictor are not handled in our current PoC implementation.
For example, our implementation does not eliminate returns to
harden against possible Spectre-BTB-like variants that target the
return stack buffer, as it is unclear whether they form a possible
attack vector on Arm devices. However, this is not a limitation of
our approach. It is principally possible to rewrite returns as indirect
branches [27] and eliminate them using Switchpoline.

Applicability to other Architectures. This paper focuses
on ARMv8, as it lacks generic software-based mitigations against
Spectre-BTB and Spectre-BHB. However, our approach is not lim-
ited to this architecture. Other Arm architectures, e.g., ARMv9 and
ARMv7, are compatible with Switchpoline but might require minor
changes for the JIT. On ARMv7, the direct branch offset is further
limited to the range ±32MB. Switchpoline can generally also be
used on x86. With recent discoveries that x86 software defenses
might be incomplete [51], Switchpoline can be a viable alternative.

8 CONCLUSION
Many Arm CPUs in devices the worldwide are affected by Spectre-
BTB and Spectre-BHB. With no simple compiler-based mitigation
for userspace applications, they can only be secured individually
and with high effort. We change this by introducing Switchpoline,
the first automated Spectre-BTB software workaround protecting
userspace applications on ARMv8. Switchpoline rewrites indirect
control-flow transfers into direct control-flow transfers, fully mit-
igating any Spectre-BTB and Spectre-BHB vulnerability in C or
C++ code with a simple recompilation. We show that the runtime
overhead of Switchpoline-protected applications is negligible, with
an average of 1.8% measured with SPEC CPU 2017. By provid-
ing a Spectre-BTB PoC that leaks up to 20 kB/s and works on all
tested ARMv8 devices, we stress that Switchpoline should be widely
adopted to prevent exploitation of Spectre-BTB on ARMv8 devices.
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APPENDIX
A AVAILABILITY
The source code of Switchpoline alongside benchmarks is available
under github.com/cispa/Switchpoline.

B SPECTRE-BTB POC

1 void (**attack)(int); // indirect branch target
2 char *array2; // shared array
3 char *secret; // private array
4
5 void secret_fun(int offset) {
6 int shift = (offset % OFFSETS_PER_BYTE) * BITS;
7 size_t idx = offset / OFFSETS_PER_BYTE;
8 memory_access(&array2[
9 ((secret[idx] >> shift) & (VALUES - 1)) * ENTRY_SIZE
10 ]);
11 }
12
13 void dummy_fun(int offset){}
14
15 void victim(void(**func)(int), int offset) {
16 (*func)(offset);
17 }

Listing 7: Victim Code of our Spectre-BTB PoC

Listing 7 shows the relevant part of our Spectre-BTB PoC. The
vulnerable branch is emitted for the function pointer called in the
victim function (passed as func). While architecturally executing
dummy_fun, the indirect branch can be mistrained to speculatively
execute secret_fun instead. The secret_fun accesses the secret

array at the given offset, and encodes the speculatively accessed
data into the cache state of array array2.

https://github.com/cispa/Switchpoline
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