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Abstract—Trusted Execution Environments (TEEs) enabled research in scenarios with
highest-privileged attackers with precise control over system and microarchitecture. Insights
gained from such attacks facilitated the discovery of non-TEE attacks like Spectre and
Foreshadow from within virtual machines. Future research on microarchitectural attacks will
continue to draw motivation from TEE threat models.

Index Terms: C.1.5.j Support for security < C.1.5 Micro-architecture implementation
considerations < C.1 Processor Architectures < C Computer Systems Organization; K.6.5.e
Unauthorized access (hacking, phreaking) < K.6.5 Security and Protection < K.6 Management of
Computing and Information Systems < K Computing Milieux

Introduction

One of the key challenges of system security
is to run multiple mutually distrusting programs
simultaneously on shared hardware. In the modern
connected world with complex systems running
programs from various sources, this is more
relevant than ever. In particular, content providers
have a commercial interest in running software
on a system in a tamper-resistant way, a driving
factor behind the real-world deployment of Trusted
Execution Environments (TEEs). However, TEEs
have also been advertised as a key enabler for
trusted cloud computing. TEEs isolate a piece
of software from the rest of the system while
generally still utilizing the same system resources,
e.g., CPU cores and DRAM. They can be found
on most Intel and ARM systems today.

In this paper, we focus on Intel SGX, a
widespread commercial TEE implementation with
strong security guarantees. Following from the
aforementioned use cases, Intel SGX has an

interesting threat model allowing very powerful
attackers. Intel SGX allows physical attacks on off-
chip devices, e.g., reading or modifying DRAM, in
its threat model but also software-based attackers
with the highest possible privileges, e.g., malicious
operating systems or hypervisors. However, Intel
SGX does not protect against side-channel attacks
and, thus, enclaves should include side-channel
protection.

Building systems of layers requires the abstrac-
tion of the complexity of lower layers through
so-called architectural interfaces. As an abstrac-
tion, these interface definitions are inherently
incomplete. Microarchitectural attacks break secu-
rity assumptions on one layer by exploiting the
behavior of lower layers that were not part of
the interface definition, and are typically divided
into side-channel and fault attacks. Side-channel
attacks derive secrets from passively obtained
meta-information. Fault attacks induce errors in
computations or data on lower layers to bypass
security assumptions of higher layers.
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One important building block of all microar-
chitectural attacks is the interaction with the
microarchitecture. This can be the execution of
a single instruction, obtaining a timing source,
or setting up the microarchitecture in a certain
way. Traditionally, research on microarchitectural
attacks assumed unprivileged attackers in native
code, in a sandbox (e.g., browser), or on a
remote machine; or privileged attackers in a
virtual machine. In these scenarios, setting up and
interacting with the microarchitecture is usually
not trivial and consumes a substantial amount
of work. For instance, none of these adversaries
knows actual physical addresses and has to extract
this information, e.g., via side channels.

As we discuss in this paper, we observed
that TEE threat models fueled research on mi-
croarchitectural attacks in the past years. TEE
threat models allowed researchers to investigate
scenarios with highest-privileged attackers without
restrictions such as sandboxes or virtualization.
We show how this lead to novel insights on
microarchitectural attacks that back-propagated
to insights both in unprivileged scenarios as well
as sandboxes and virtual machines.

We overview a selection of publications pre-
senting attacks on SGX. We show how the
SGX scenario is used as a motivation and the
implications these works had on follow-up publi-
cations. We point out how SGX attack research
helped the discovery of Spectre, LVI, and other
unprivileged microarchitectural attacks. We argue
that the discovery that Foreshadow works from
within a virtual machine, which has tremendous
relevance for the entire cloud industry, was only
a consequence of the discovery of the regular
Foreshadow attack targeting SGX enclaves.

Finally, we point out blind spots, future di-
rections for microarchitectural attack research
following from recent works on SGX attacks, and
for SGX attack research.

Background
Before we discuss a selection of microarchitec-

tural attack research on TEEs, we provide back-
ground on microarchitectural attacks in general,
as well as a short introduction to Intel SGX.

Microarchitectural Attacks
Microarchitectural attacks exploit system be-

havior resulting from the microarchitectural im-
plementation, i.e., parts that are not specified
by the architecture definition. Microarchitectural
side-channel attacks exploit leakage of meta-
information to infer secrets, while fault attacks
induce errors into computations and exploit these
to obtain secret information or obtain, e.g., code
execution on the device.

A key ingredient to many of these attacks is
the measurement of the system state or behavior.
Since the microarchitecture is built to optimize
performance, CPUs also integrate functionality
to measure the performance of applications and,
hence, the system state or behavior.

Microarchitectural side-channel attacks typi-
cally rely on the existence of a microarchitectural
element with the following properties:
P1 It is shared between the attacker and victim

application.
P2 Its state changes based on the processed

data.
P3 The state can be inferred from (a combina-

tion of) side channels.
Fault attacks additionally require:
P4 The element can be faulted such that it

operates with corrupted data.
Microarchitectural attacks only affect appli-

cations that use the microarchitectural element.
Thus, if the attacker and victim application do not
use the same microarchitectural element (P1),
the attacker application cannot infer anything
about the victim application via the state of the
microarchitectural element.

Property P1 generally defines the scope of a
microarchitectural attack, as illustrated in Figure 1
for a modern Intel x86 CPU with SMT (simultane-
ous multithreading, also known as hyperthreading).
Some microarchitectural elements are private to
the CPU core (e.g., registers), shared among
hyperthreads (e.g., L1 caches), shared among all
CPU cores (e.g., some last-level caches), or even
shared among all CPUs (e.g., main memory) if
there are multiple CPUs on a mainboard. Thus,
the domain in which the element is shared defines
the domain in which the attacker can mount an
attack.

Some microarchitectural elements optimize the
performance of an application independently of the
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Figure 1. The multiple scopes of shared resources:
private per thread, shared among threads, shared
across cores, and global resources visible to the
entire system.

processed data, e.g., the hardware AES implemen-
tation AES-NI. However, many microarchitectural
elements implement performance optimizations
that depend on the processed data (P2). For
example, a data cache reduces the access latency
for recently used data, i.e., data the application
used before. For these elements, the current
internal state is influenced by previously processed
metadata and data, and observing the internal
states leaks information.

As microarchitectural elements usually do
not provide an interface to query their state, an
attacker can only observe the internal state via
side channels (P3). Many microarchitectural side-
channel attacks use timing as an information
source. That is, based on the execution time of
an operation, an attacker can infer information on
the internal state of a microarchitectural element.

Sometimes the timing cannot directly be mea-
sured, but an indirection is required to obtain
side-channel information. For example, an attacker
can infer information about the internal state of
a control-flow predicting mechanism, such as the
branch predictor, by observing the memory access
time of subsequent instructions.

For fault attacks, the crucial requirement is that
the targeted (shared) microarchitectural element
must be susceptible to faults (P4). These faults
may be persistent or temporary state changes (P2)
but have to be triggerable by an attacker. The
attacker also requires P1 to induce faults into
a microarchitectural element used by the victim
application and, hence, influence the victim’s
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Figure 2. In the SGX model, applications are split into
a trusted (enclave) and an untrusted (host) part. The
hardware prevents any access to the trusted part. The
only communication between enclave and host uses
predefined ecalls and ocalls.

operation. While P3 is not strictly necessary,
many fault attacks use side-channel information
to precisely induce faults subsequently.

Summarizing, for microarchitectural side-
channel attacks, an attacker relies on a microarchi-
tectural element typically fulfilling P1, P2, P3,
and for fault attacks also P4. Then, the observed
leakage or induced faults can be used to attack a
victim application or the system.

Intel SGX
Intel Software Guard Extension (SGX) is

an x86 instruction-set extension introduced in
2015 with the Intel Skylake microarchitecture
for isolating trusted code from regular untrusted
applications. Applications are split into a trusted
enclave part and an untrusted application part
(cf. Figure 2). The CPU fully isolates the trusted
enclave, and neither the application nor the op-
erating system can access the enclave’s memory.
Furthermore, to protect against bus-probing attacks
on the DRAM bus and cold-boot attacks, the
memory range used by SGX is encrypted via
transparent memory encryption.

The application and enclave can only commu-
nicate through a well-defined interface. Using the
eenter function, applications can call functions
provided by the enclave. The hardware prevents
any other attempt to access the enclave or the
enclave’s memory. In the attacker model of Intel
SGX, only the hardware is trusted. All software,
including the operating system, is assumed to be
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potentially compromised and, therefore, untrusted.
This is particularly important for the digital rights
management use case, but it is also helpful for
implementing confidential cloud computing where
customers do not even have to trust the cloud
provider.

Although SGX enclaves run native code, there
are several restrictions for enclaves to reduce the
attack surface. Enclave code cannot use any I/O
operations, including syscalls. Thus, any commu-
nication with the operating system is only possible
via the untrusted application as a proxy. Moreover,
a range of instructions is not supported as it could
either ease exploitation or would introduce implicit
trust on the operating system or hypervisor, such
as rdtsc. Hence, Intel SGX also has an impeding
effect on microarchitectural attacks.

The Intel SGX Threat Model
With TEEs, the threat model is different than

for most other systems. Intel SGX has a very small
trusted computing base (TCB), which consists only
of the CPU. Enclave memory is inaccessible to
other enclaves, user programs, and even the OS.
It is placed in a physically contiguous encrypted
and integrity-protected block in DRAM, the EPC
(enclave page cache). Hence, any hardware or
software component other than the CPU and
the enclave can be malicious. Thus, a highest-
privileged attacker is commonly assumed for
attacks.

Intel explicitly states that SGX provides no
protection against side-channel attacks but that
it is the enclave developer’s responsibility to
address side-channel attack concerns. However,
this introduces an asymmetry as the attacker now
has stronger capabilities (e.g., native host kernel
privileges) than the defender, running inside the
SGX enclave with regular user privileges. Hence,
applications that may be side-channel-secure in a
non-SGX scenario may be vulnerable in the SGX
scenario.

Attacks on Intel SGX
As SGX enclaves share the hardware with

the rest of the system, it is not surprising that
microarchitectural attacks can be mounted on
enclaves (P1). Although the CPU is considered
the TCB, Intel only consideres architecturally
visible changes in scope for protection. Hence,

the state of microarchitectural elements, such as
caches, is not considered as an attack vector for
enclaves. With the threat model in mind, we
provide an overview of privileged and unprivileged
microarchitectural attacks on Intel SGX. We
categorize the attacks into three distinct categories:
side-channel attacks, transient-execution attacks,
and fault attacks. Table 1 provides an overview
over all attacks discussed in this section.

Side-Channel Attacks
While side-channel attacks are the primary

attack vector to attack SGX enclaves, they do not
directly leak sensitive data. With a side-channel
attack, an attacker observes meta-information, e.g.,
memory-access patterns, and derives information
from that meta information. The meta-information
is observed through a microarchitectural element
shared between the trusted and untrusted part of
the enclave. We classify side-channel attacks on
SGX based on which shared microarchitectural
element is exploited.

Page-Table Attacks Page-table attacks target
the mechanism which translates virtual to physical
addresses, including the page-miss handler, page-
table walker, and TLB. While the memory used
by an enclave (EPC) is encrypted and can thus
not be observed, the corresponding page tables
to map EPC pages are set up by the (untrusted)
operating system, as this cannot be done solely
in hardware. The hardware only keeps track of
the meta data to ensure that one EPC page is not
mapped by multiple enclaves.

A consequence of this design is that a mali-
cious operating system can observe interactions of
an enclave with the virtual to physical address
translation. Xu et al. [20] exploited that the
operating system can simply unmap pages used
by the enclave and observe a page fault when the
enclave tries to access this page. Thus, by keeping
only the active code page mapped and all other
code pages of interest unmapped, an attacker can
infer the control flow on a page-size granularity.

Gyselinck et al. [6] demonstrated that a similar
attack can be mounted on 32-bit SGX enclaves
using x86 segmentation. By changing the segment
limits, an attacker can cause the enclave to fault
when trying to execute code that is outside of the
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Table 1. Microarchitectural attacks on Intel SGX can be categorized into side-channel attacks (SC), transient-execution
attacks (TE), and fault attacks (FA).

Attack Microarchitectural Element Type Attacker
LFB Cache DRAM Paging Branch Predictor ALU Unprivileged Privileged Cross-Enclave

Xu et al. [20] 3 SC 3
Schwarz et al. [13] 3 SC 3 3
Götzfried et al. [5] 3 SC 3
Moghimi et al. [11] 3 SC 3
Wang et al. [19] 3 3 3 SC 3 3
Van Bulck et al. [17] 3 3 SC 3
Lee et al. [9] 3 SC 3
Moghimi et al. [10] 3 SC 3 3
Dall et al. [3] 3 SC 3
Gyselinck et al. [6] 3 SC 3
Evtyushkin et al. [4] 3 SC 3 3

Van Bulck et al. [15] 3 3 TE 3 3 3
Chen et al. [2] 3 3 TE 3
Koruyeh et al. [8] 3 3 TE 3 3
Schwarz et al. [14] 3 3 TE 3 3
Van Schaik et al. [18] 3 3 TE 3 3
Van Bulck et al. [16] 3 3 3 TE 3 3

Murdock et al. [12] 3 FA 3
Kenjar et al. [7] 3 FA 3

segment limit, resulting in a spatial granularity of
one page, i.e., 4 kB.

Van Bulck et al. [17] and Wang et al. [19]
showed that by observing the access and dirty bit
in a page-table entry, an attacker can get the same
information as with page faults, however, in a more
stealthy way. Moreover, Van Bulck et al. [17]
showed that in addition to this architecturally
available information, an attacker can also mount
a cache attack, such as Flush+Reload or Flush+
Flush on a page-table entry, to infer the page-
access pattern of an enclave, resulting in a high-
resolution microarchitectural attack.

DRAM Attacks The DRAM is another mi-
croarchitectural element that can be abused for
microarchitectural side-channel attacks. DRAM
modules contain row buffers that act as caches
for the rows in the DRAM. Every read requires
the data to be copied from the destination row to
this buffer. As with CPU caches, accessing data
that is already in the row buffer results in faster
access times.

Wang et al. [19] demonstrated that the DRAM
side channel can also be leveraged to attack SGX
enclaves from concurrently running SGX enclaves.
All enclaves share the same physical range of
main memory, and thus potentially also the same
DRAM bank and row buffer. Hence, a malicious
enclave can use the DRAM side channel to spy
on memory access patterns of a concurrently
running enclave. The spatial granularity of this

attack depends on the actual DRAM configuration
and ranges from 512B to 8 kB. As the main
memory is typically shared among all CPUs (even
in separate sockets), DRAM-based attacks can be
mounted across CPUs, e.g., if there are multiple
CPUs on a mainboard.

Cache Attacks Cache attacks exploit the fun-
damental property of caches that data residing in
the cache can be accessed faster than data not
residing in the cache. There are different methods
of how an attacker can abuse this property to infer
whether a specific memory location resides in the
cache.

Cache attacks can be divided into three main
categories. For the first type of cache attacks
(Evict+Time), the attacker modifies the cache
state and monitors the runtime of the victim.
In the second type of cache attacks (Prime+
Probe), the attacker brings the cache into a
known state and monitors whether the victim
execution influenced this known state without
directly observing memory accesses of the victim.
In the third type of cache attacks (Flush+Reload),
the attacker measures cache-state changes directly
on memory, which is shared with the victim, e.g.,
shared libraries.

As SGX enclaves do not directly share any
memory with the remaining untrusted system,
Flush+Reload is not directly applicable to en-
claves, only to page tables. In contrast, Prime+
Probe attacks do not require any form of shared
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memory or access to the victim. Thus, they have
also been used to attack TEEs such as Intel SGX.
Götzfried et al. [5] and Moghimi et al. [11]
showed how a malicious operating system can
leverage Prime+Probe to leak secrets from SGX.
As the operating system is responsible for map-
ping the physical pages of the enclave, and
the cache set is determined by the physical
address, a malicious operating system can easily
monitor a cache set for changes caused by the
enclave execution. Schwarz et al. [13] also showed
that even an unprivileged attacker can mount a
Prime+Probe attack on an enclave. Furthermore,
Schwarz et al. [13] showed that a Prime+Probe
attack can be mounted from inside an SGX
enclave on the host. Schwarz et al. [13] and
Wang et al. [19] also demonstrated a cross-enclave
Prime+Probe attack.

In all these cases where Prime+Probe is
mounted on an enclave, an attacker can infer
memory-access patterns with a cache-set gran-
ularity of the last-level cache, i.e., typically 2 kB.
As the last-level cache on Intel CPUs is shared
between all CPU cores, Prime+Probe can be
mounted across cores.

Moghimi et al. [10] showed MemJam, an intra-
cache-line attack on enclaves that exploits perfor-
mance degradation caused by false dependencies
between memory reads and writes. MemJam [10]
has a spatial granularity of 4 bytes within a cache
line.

To prevent an attacker from leaking secrets
via cache attacks, an enclave has to ensure that
there are no secret dependent memory accesses,
not even within a cache line.

Predictors Modern CPUs use several predic-
tion mechanisms to avoid pipeline stalls. As
predictions are based on previously observed
data, an attacker can often infer information from
observing the predictions.

One prediction mechanism used for microarchi-
tectural attacks is the memory-aliasing prediction,
also known as memory disambiguation. This
prediction mechanism predicts whether a memory
load has to go to the memory or whether it can
consume a previous store. We discovered that the
forwarding of stores misses permission checks,
allowing to stealthily de-randomize the address
space of SGX enclaves.

Branch predictors have not only been used
for Spectre but also as side-channel attacks. Ev-
tyushkin et al. [4] and Lee et al. [9] exploited the
branch predictor to infer whether a branch is taken
or not taken inside an enclave. As a consequence,
any secret-dependent branch inside an enclave
leaks the corresponding secret.

Transient-execution Attacks
Transient-execution attacks are a class of

microarchitectural attacks exploiting out-of-order
and speculative execution of modern CPUs to leak
data. In contrast to side-channel attacks, transient-
execution attacks leak actual data and not meta
information. Transient-execution attacks rely on
computations, which were never intended in an
application’s control flow. Such computations by
transient instructions can be a result of mispre-
dictions in the control or data flow, or out-of-
order execution after an exception. While these
transient instructions are never committed to the
architectural state, they may show side effects in
the microarchitectural state. These side effects can
then be made visible in the architectural domain
using traditional side-channel attacks.

Meltdown-type Attacks Meltdown is a class
of transient-execution attacks exploiting transient
instructions caused by out-of-order execution after
an exception. On affected CPUs, memory loads
triggering an exception, such as a page fault, still
return data, which can be used in the transient
execution to encode it in a microarchitectural state.
After the exception is handled (or suppressed), an
attacker can again use a side channel to transfer
the microarchitectural state into the architectural
state.

The first Meltdown attack exploited the lazy
enforcement of the user-accessible permission
in the page table, i.e., the bit defining whether
a virtual address belongs to the kernel or user
space. While this original Meltdown attack leaks
kernel data, and through kernel mappings arbitrary
physical memory, it cannot leak values from SGX
enclaves. However, Van Bulck et al. [15] showed
Foreshadow, a Meltdown-type attack that exploits
the lazy enforcement of the present bit in the
page table, i.e., the bit defining whether a virtual
address is valid. With this attack, an attacker can
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leak arbitrary values from SGX enclaves, resulting
in a complete breach of confidentiality.

Subsequent works have shown that also other
types of exceptions can be exploited for Meltdown
type attacks [14]. Two of these attacks, Zom-
bieLoad [14] and RIDL [18], leak data from vari-
ous internal CPU buffers that are currently used
by the current CPU core. This also includes values
that are used within SGX enclaves. While these
attacks are not as targeted as Foreshadow [15],
they can even be mounted on machines with
hardware fixes for Foreshadow. Due to the strong
attacker model of SGX, an attacker can reliably
leak specific data from an enclave by using
enclave-execution frameworks that we discuss
later on.

Load Value Injection.
Load Value Injection (LVI) [16] is a transient-
execution attack that turns Meltdown around.
Instead of exploiting exceptions to leak data
from microarchitectural buffers, LVI induces an
exception in the victim application to transiently
inject data. The out-of-order execution within the
victim then continues with the attacker-controlled
injected data. LVI can, e.g., be used to hijack the
control flow in the victim to encode secrets inside
a microarchitectural element, which can later on
be recovered by the attacker.

As an attacker can arbitrarily change the
page tables for enclaves, inducing a fault for
any instruction loading data from memory is
straightforward. Hence, potentially all memory-
load operations inside SGX can be exploited to
transiently work with attacker-controlled data.

Spectre-type Attacks Spectre is a class of
transient-execution attacks exploiting control- and
data-flow mispredictions of CPUs. By triggering
such a misprediction, Spectre attacks transiently
execute code to access data that is architecturally
accessible but never reached. Due to this execu-
tion path, Spectre attacks can potentially access
sensitive data of the application. Subsequently,
Spectre attacks encode the accessed data in the
microarchitectural state, e.g., in the cache. This
is done using a so-called Spectre gadget, which
has to be found in the transiently executed code
path. Similarly to return-oriented programming,
such gadgets are likely already in the victim

application and only have to be found by the
attacker. A naı̈ve Spectre gadget is as simple
as a secret-dependent array access, causing a
memory location corresponding to the accessed
data to be cached. An attacker can then rely
on traditional side-channel attacks to transfer the
microarchitectural state to the architectural state.

Spectre attacks have not only been shown on
regular applications, the kernel, and hypervisors,
but also on SGX enclaves. Koruyeh et al. [8]
presented Spectre-RSB, which exploits the predic-
tion of function returns. They showed that this is
not only applicable to regular application but also
SGX enclaves. Chen et al. [2] analyzed widespread
SDKs for enclave development and found multiple
exploitable Spectre gadgets for different Spectre
variants.

Spectre attacks on SGX enclaves show that
software mitigations against Spectre, such as
memory fences and retpoline, have to be applied
to enclaves as well. Otherwise, an attacker can
exploit Spectre attacks to break the confidentiality
of enclaves. While this is feasible for some Spectre
variants, some mitigations rely on the operating
system and can thus not easily be used inside
an enclave. Although it is possible to prevent
these variants in microcode (the CPU’s firmware),
the performance impacts on SGX would be non-
negligible.

Fault Attacks
Fault attacks try to manipulate computations to

divert control or data flow or directly manipulate
code or data. Rowhammer attacks are the most
prominent example of software-based fault attacks.
They exploit that a burst of accesses to a DRAM
cell can lead to bit flips in a physically adjacent
cell. Hence, the attacker may gain precise control
over the location of the bit flip. However, the EPC
region of SGX is securely encrypted and integrity-
protected. Consequently, Rowhammer attacks on
SGX memory can only lead to a failure of the
integrity check.

Two recent attacks called Plundervolt [12]
and V0LTpwn [7] overcome this limit by not
inducing faults in DRAM, but directly in the
CPU’s core, where the data is already decrypted
and not integrity protected anymore. It is based
on reducing the supply voltage of the CPU for
a very short time frame to a range where the
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CPU largely still operates correctly, but bit flips
occur for certain operations with a low probability.
Only when the attacker triggers many of these
operations in a victim computation inside an SGX
enclave, a bit flip occurs in the computed result,
e.g., enabling differential fault analysis.

Impact of TEE Threat Models on
Microarchitectural Attack Research

Trusted-execution environments had a signifi-
cant impact on microarchitectural attack research.
There have been many new attacks but also
frameworks to simplify attack research. There
are mainly two reasons why TEE threat models
had such an impact. First, as privileged attackers
are in the SGX threat model, it became possible
to analyze previously ignored elements and in-
teractions. Second, SGX is highly controllable
for privileged attackers, often simplifying the
first attack prototypes. Hence, we see SGX as
a stepping stone for non-SGX attacks impacting
everyone and not just SGX users.

Frameworks
Several attack frameworks leverage, within the

SGX threat model, arbitrary hardware features to
control the environment when running enclaves.
These frameworks focus on precise execution
control for the enclave, similar to single stepping
in a debugger. Well known examples are SGX-
Step1, PTEditor2, and MicroScope3. SGX-Step
allows an attacker to either advance one instruction
at a time (single stepping), or even transiently
execute one instruction arbitrarily often (zero
stepping [15]). MicroScope achieves a similar goal
using page faults.

While these frameworks were all developed to
research microarchitectural attacks on SGX, they
have also been used to analyze transient-execution
attacks in unrealistic non-SGX scenarios. More
precisely, as all frameworks required operating-
system privileges, they cannot be used for actual
attacks on user-space applications or the kernel.
While this limits their real-world use case to
attacks on SGX and hypervisors, they simplify the

1https://github.com/jovanbulck/sgx-step
2https://github.com/misc0110/PTEditor
3https://github.com/dskarlatos/MicroScope

task of prototyping attacks and testing whether
systems are affected by certain attacks.4

Privileged Attackers
Table 1 shows that many attacks on enclaves

assume or even require a privileged attacker,
e.g., to manipulate scheduling or page tables. A
highest-privileged attacker can minimize unrelated
influences, such as other running applications or
interrupts, but also repeating specific victim code
as often as required. As a result, attackers can get
fine-grained attack traces from enclave victims.

In non-TEE threat models, attackers typically
do not run at the highest privileges in the system,
i.e., higher than that of the victim. Hence, with the
strong threat model of TEEs, it became possible
to analyze microarchitectural effects, which can
only be observed by a highest-privileged attacker.
This includes, e.g., the manipulation of interrupts,
page tables, model-specific registers, or voltage.

TEE threat models made it possible to publish
insights on these microarchitectural elements and
interactions. Without a strong attacker model
as provided by SGX, it is hard to justify why
such an analysis is relevant for security research.
However, the insights gained from privileged
microarchitectural attacks are not only applicable
to attacks on SGX. In fact, some of them turned
out to be a stepping stone for other attacks with
a much broader impact.

Stepping Stone
The SGX threat model motivated research

on branch predictors [4, 9]. In these attacks,
a privileged attacker observes the influence of
branches inside an enclave on branch-predictor
states. Mounting these attacks required a good
understanding of the microarchitectural internals
of branch predictors. Hence, these attacks first
required reverse engineering of branch predictors,
leading to valuable insights into how branch
predictors work. These insights have subsequently
been used in Spectre attacks in a non-TEE use
case. The impact of Spectre outside of TEEs can
be seen in the tremendous performance impacts
caused by the deployed mitigations. Depending on
the exact Spectre variant, performance overheads
between 5% and 74.8% per mitigated variant are
measured in real-world software.

4https://github.com/IAIK/transientfail
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Similarly, the Foreshadow attack [15] targeted
SGX enclaves. For this attack, an attacker has
to map an enclave page and clear the present
bit in the according page-table entry. A faulting
access to this mapping leads to data leakage in the
transient domain, similar to Meltdown. At first,
this attack only made sense in the context of TEE
threat models, where an attacker has full control
over a native host page-table entry. A subsequent
analysis of the root cause of Foreshadow showed
that Foreshadow also works from within virtual
machines, attacking co-located virtual machines
and the hypervisor. While not apparent at first
glance, an attacker inside a malicious virtual
machine also has control of page-table entries.
However, this extremely powerful attack from
within virtual machines would have likely not been
discovered without the original Foreshadow attack
on SGX. Foreshadow forced cloud providers to
either disable hyperthreading, or provide both
hyperthreads, i.e., the entire CPU core, to the
same virtual machine. This basically halved the
number of possible small virtual machines, which,
before Foreshadow, used only one hyperthread.
Additionally, the required patches lead to another
performance impact of a few percent, according
to Phoronix.5

LVI [16] was also first analyzed on SGX,
as SGX allows to easily induce faults into the
victim application by modifying page-table entries.
Especially one variant, LVI-NULL, is reliably
exploitable when targeting SGX but considered
infeasible in a non-SGX scenario. However, from
the main insight that hardware patches for Melt-
down simply replace the leaked values with 0,
Canella et al. [1] developed a method to break
the randomization of the kernel image from
unprivileged code, and even from the browser.
Preventing the attack requires more changes to
the memory system of operating systems, which
also incurs a small performance overhead.

Another widely used building block that
emerged from research on microarchitectural at-
tacks on SGX is the method for getting high-
resolution timestamps in the absence of a high-
precision timer. As SGX does not provide access
to the high-resolution timer, the first microarchi-

5https://www.phoronix.com/scan.php?page=article&item=l1tf-
foreshadow-xeon&num=1

tectural attack from within SGX [13] presented
a highly optimized timing primitive based on
multithreading. This timing primitive was later
used not only for attacks from within SGX but
also in other scenarios where no high-resolution
timer is available, e.g., on AMD CPUs and in
browsers.

Spectre, Foreshadow, and LVI are entirely
new attacks from the class of transient-execution
attacks. Both attacks heavily relied on research
initially focussing on microarchitectural attacks
on TEEs. Moreover, certain primitives developed
specifically for SGX have later on been used as
building blocks for attacks not targeting enclaves.
Hence, we can expect more attacks not targeting
enclaves, originating from the insights gained by
research on microarchitectural attacks on TEEs.

Consequences for TEEs and Enclave
Development

The past and ongoing stream of research shows
that developing secure enclaves is substantially
more difficult than developing a secure application.
The main reason is the more powerful attacker that
is assumed in the SGX threat model owing to the
ambitious goals of SGX. In the current situation,
enclave developers ideally are also experts on
microarchitectural attacks and familiar with a
frequently extended state of the art. While, e.g.,
Intel published guidelines for developing side-
channel resilient software6, we believe that future
research should develop techniques to simplify the
development of secure enclaves and remove this
burden from developers. This is not only relevant
for the microarchitectural attacks we described but
also for various other problems and vulnerabilities
around SGX, e.g., attacks exploiting information
leakage through architectural interfaces, as well as
CPU bugs that expose parts of the SGX memory
to untrusted software.

One feature that makes it particularly chal-
lenging to maintain the SGX security guaran-
tees is hyperthreading. Hyperthreading assigns
instruction streams from multiple independent
workloads dynamically to the same set of exe-
cution units of a core. This inherently introduces
timing side channels revealing whether an ex-

6https://software.intel.com/security-software-guidance/
insights/guidelines-mitigating-timing-side-channels-against-
cryptographic-implementations
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ecution unit is occupied. But also the sharing
of these microarchitectural resources introduces
problems as hyperthreads may transiently pick up
incorrect data. As a consequence to the risks of
hyperthreading, enclave developers even have the
possibility to prevent enclaves from executing if
hyperthreading is enabled. More static partitioning,
as implemented for the store buffer, appears to
be more secure. As of today, hyperthreading is
essential for the cloud to the point that it can-
not be disabled, disabling hyperthreading shows
average performance losses between 0% and
30% according to Red Hat.7 Consequently, future
research should develop techniques to support
secure hyperthreading.

In addition to securing existing TEEs, there
are academic proposals for different TEEs, e.g.,
Sanctum and Keystone. While only demonstrated
for RISC-V CPUs, they show that TEEs can be
designed with stronger protection against some of
the attacks shown in Table 1, especially page-table
attacks.

Conclusion
We discussed a selection of state-of-the-art

microarchitectural attacks on SGX and analyzed
how they influenced the general landscape of
microarchitectural attacks. The SGX threat model
often simplifies the initial analysis of attack
vectors and microarchitectural effects. We showed
that as a result, attacks on TEEs are often the
foundation for more sophisticated attacks not
targeting TEEs. We highlighted how SGX attack
research, relevant to a smaller group of SGX
users, was a stepping stone for non-SGX attacks
impacting everyone, leading to widely deployed
countermeasures. In particular, we highlighted
how research on branch predictors in the SGX
threat scenario helped to discover Spectre, a much
broader issue of modern computer systems. Even
more clearly, we argue that the discovery that the
Foreshadow attack works from within a virtual ma-
chine, leaking any data across isolation boundaries
on cloud computers, was a direct consequence of
the research on the regular Foreshadow attack on
SGX enclaves. Both Spectre and Foreshadow had
a significant real-world impact in many aspects.
These examples, amongst others, show that it is

7https://access.redhat.com/security/vulnerabilities/L1TF-perf

important to continue research with strong attacker
models, like the one of SGX, as insights will
propagate back and then have a real-world impact
outside of TEEs, impacting a much larger number
of users.
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Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos,
and Cristiano Giuffrida. RIDL: Rogue in-flight data load. In
S&P, 2019.

19. Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang,
XiaoFeng Wang, Vincent Bindschaedler, Haixu Tang, and
Carl A Gunter. Leaky cauldron on the dark land: Under-
standing memory side-channel hazards in SGX. In CCS,
2017.

20. Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side channels for
untrusted operating systems. In S&P, 2015.

11


	Introduction
	Background
	Microarchitectural Attacks
	Intel SGX

	The Intel SGX Threat Model
	Attacks on Intel SGX
	Side-Channel Attacks
	Page-Table Attacks
	DRAM Attacks
	Cache Attacks
	Predictors

	Transient-execution Attacks
	Meltdown-type Attacks
	Spectre-type Attacks

	Fault Attacks

	Impact of TEE Threat Models on Microarchitectural Attack Research
	Frameworks
	Privileged Attackers
	Stepping Stone

	Consequences for TEEs and Enclave Development
	Conclusion

