Browser-based CPU Fingerprinting

Leon Trampert, Christian Rossow, and Michael Schwarz

CISPA Helmholtz Center for Information Security
Saarbrucken, Saarland, Germany
{leon.trampert,rossow,michael.schwarz}@cispa.de

Abstract. Mounting microarchitectural attacks, such as Spectre or Row-
hammer, is possible from browsers. However, to be realistically exploitable,
they require precise knowledge about microarchitectural properties. While
a native attacker can easily query many of these properties, the sand-

boxed environment in browsers prevents this. In this paper, we present

six side-channel-related benchmarks that reveal CPU properties, such as

cache sizes or cache associativities. Our benchmarks are implemented in

JavaScript and run in unmodified browsers on multiple platforms. Based

on a study with 834 participants using 297 different CPU models, we

show that we can infer microarchitectural properties with an accuracy

of up to 100%. Combining multiple properties also allows identifying

the CPU vendor with an accuracy of 97.5 %, and the microarchitecture

and CPU model each with an accuracy of above 60 %. The benchmarks

are unaffected by current side-channel and browser fingerprinting miti-

gations, and can thus be used for more targeted attacks and to increase

the entropy in browser fingerprinting.

Keywords: Microarchitecture - Fingerprinting - Side Channel - JavaScript

1 Introduction

Knowing the CPU of a target system, or its properties, may allow attackers to
craft severe tailored attacks. For example, research in recent years has revealed
multiple critical CPU vulnerabilities related to speculative and out-of-order exe-
cution [16, 20, 4, 32, 35, 40, 27]. These transient-execution attacks [16, 20, 4] lever-
age CPU-specific inner details to leak data in the same process or even across
security domains [4]. Likewise, Rowhammer [15] is a vulnerability in modern
DRAM that leverages knowledge of a CPU’s cache architecture to flip bits in
memory without accessing them. While such attacks are already a security risk
when mounted in native code, they reach the masses when successfully launched
in a browser. In fact, despite the limitations of the restricted browser environ-
ment, previous research mounted Rowhammer [11] and the transient-execution
attacks Spectre [16, 39, 37, 1], RIDL [32], and ZombieLoad [6] in the browser.
All these attacks have in common that they require knowledge of specific
properties of a CPU. However, attackers cannot easily obtain the CPU model
(or CPU properties) in a Web setting. Consequently, in contrast to native at-
tacks, browser-based attacks face several challenges. The sandboxed code ex-
ecution does not give the attacker full control over the instructions executed.

2 Trampert et al.

The JavaScript and WebAssembly code is just-in-time-compiled by the browser
engine to the instruction set architecture (ISA) of the particular CPU. It is
often difficult for an attacker to distinguish the noise naturally generated by
the operating system and other processes from the actual target data. This is
made more difficult because these attacks do not deliver any relevant data at
all on CPUs that are not vulnerable. Moreover, as side-channel leakage rates
for these browser-based implementations are often low, with typically a few bits
per second [32, 6], knowing whether the leaked values are actually sensitive data
is tedious. Identifying potential victims or even choosing the most effective at-
tack for a concrete target is thus valuable to an attacker. Likewise, a successful
Rowhammer attack requires knowledge of cache architecture and replacement
policies of the different cache levels, as implied by the CPU model or family.
Knowing these parameters simplifies generating code for memory accesses that
purposely miss the caches and can thus be used in a Rowhammer attack. All
these vital CPU properties can be trivially extracted from knowledge of the CPU
model in a native attack setting. However, lacking knowledge of the CPU model
from within the browser often complicates—if not even impedes—an attack.

In this paper, we explore if attackers can determine attack-relevant CPU
properties from within the browser. To this end, we present six benchmarks
designed to reveal CPU-specific properties and behaviors. Our benchmarks are
implemented in JavaScript and WebAssembly and run in unmodified browsers.
We target microarchitectural elements relevant to microarchitectural attacks,
including the cache and the TLB. In addition, they also reveal the number
of CPU cores and profile the performance of the CPU in single- and multi-
threaded scenarios. All these properties can be inferred reliably, even with state-
of-the-art mitigations enabled in Mozilla Firefox and Google Chrome. Moreover,
the benchmarks are independent of the operating system and instruction set
architecture. We optimize all benchmarks to work on x86 and ARMv8 CPUs,
including low-end devices such as smartphones.

To evaluate the efficacy of our benchmarks, we conduct a study over 834
participants to collect information from 297 CPU models in the wild. Based on
this data set, we achieve accuracies of up to 95 % for determining microarchi-
tectural properties such as the L1D size or associativity, or the used page size.
Moreover, when combining the microarchitectural properties, we can expand our
knowledge to predict the CPU vendor at 97 % accuracy and even identify the
exact CPU models and microarchitectures at about 65 % accuracy.

First, our results show that these benchmarks can be used to infer properties
useful for microarchitectural attacks. Second, by combining the benchmarks,
they can also be used for hardware fingerprinting, e.g., to track users across
websites. Hence, our benchmarks can augment state-of-the-art browser finger-
printing, which mainly focuses on the software side to enable web tracking [18§].
Our evaluation also shows that current browser-fingerprinting mitigations do
not impede the generation of our CPU fingerprints. We publish our data set and
benchmarks as open source.!

! https://github.com/CISPA/brouser-cpu-fingerprinting

Browser-based CPU Fingerprinting 3

Contribution To summarize, we make the following contributions.

1. We show 6 benchmarks to infer microarchitectural properties from the browser.

2. We evaluate our benchmarks on a set of 834 CPUs found in the wild, showing
an accuracy of up to 95 % for inferring microarchitectural properties.

3. We demonstrate that combining these properties can reliably detect CPU
vendors, models, and microarchitectures.

4. We show that fingerprinting mitigations do not prevent our benchmarks.

2 Background

A device fingerprint is information collected about the hardware or software of
a particular device, typically for the purpose of authentication or identification.

Browser Fingerprinting For browser fingerprinting, a site uses a client-side script-
ing language to reveal characteristics of the browser, software, or hardware of a
system. The seminal work by Eckersley [7] investigated browser fingerprinting
using the information transmitted by HTTP, such as the User-Agent header, and
information accessible via the browser API exposed to client-side scripting lan-
guages. In the past, several browser-provided APIs [23], including the HTML5
Battery Status [24], WebGL and Canvas [19,22,5], or AudioContext API [§]
have been used to craft accurate fingerprints. Mowery et al. [21] exploit perfor-
mance differences of the different JavaScript engines used by different browsers
and the allowlist of the popular NoScript plugin. Schwarz et al. [33] presented
JavaScript Template Attacks, an automated framework to detect differences in
browser engines caused by the surrounding environment.

Browser-based CPU Fingerprinting Recent works also investigate hardware fin-
gerprinting of the CPU. Sanchez-Rola et al. [31] observe the accumulated ex-
ecution times of common functions, such as string manipulation functions or
cryptography functions from the HTML5 Cryptography API. This allows the
identification of a concrete CPU with adequate accuracy. Saito et al. [29] pro-
posed multiple side-channel related methods to infer the presence or absence
of different Intel CPU features, such as Advanced Encryption Standard New
Instructions (AES-NI) and Intel Turbo Boost Technology. Saito et al. [30] also
proposed algorithms to infer the presence or absence of Hyper-Threading Tech-
nology (HTT) and Streaming SIMD Extensions 2 (SSE2). With many of these
Intel-specific extensions and technologies omnipresent in modern Intel CPUs,
these algorithms generate few distinguishing features for modern Intel CPU mod-
els. Furthermore, the proposed features do not necessarily allow to distinguish
Intel CPUs from CPUs distributed by other manufacturers since other manufac-
turers provide their own functionally-equivalent technologies.

3 Methodology

In the following, we present 6 benchmarks to reveal information about the CPU.
The output is used to infer microarchitectural characteristics such as the cache

4 Trampert et al.

Core

LB 1D L2
L3

SB | DTLB | 1.2 TLB

Fig. 1: Parts of the CPU targeted by our benchmarks are highlighted in yellow.

size, which provides information for microarchitectural attacks. Furthermore, by
combining multiple benchmarks, we can generate CPU model fingerprints, an
extension of device fingerprints, that can reidentify a CPU model or, at the
minimum, the CPU vendor. These can be used, e.g., as additional entropy for
tracking users on the web. Figure 1 provides an overview of CPU parts that are
targeted by our benchmarks. In particular, we have a benchmark to determine
the number of cores, the sizes of the different data cache levels, the associativity
of the L1D cache, and the size of the L1D TLB. While not shown in Figure 1, we
additionally present benchmarks to determine the performance of a single core
and the page size.

3.1 Benchmarks

Our benchmarks are written in JavaScript and WebAssembly. The latter is used
whenever compiler optimizations could impair the functionality of a benchmark
or when highly-optimized instructions are required to ensure the highest level
of performance. We operate in a cross-origin-isolated environment that auto-
matically reenables features that have been disabled as a response to microar-
chitectural attacks, e.g., SharedArrayBuffer. Note that this is a server-side
setting that does not require any changes in the browser, i.e., benchmarks run
in unmodified off-the-shelf browsers if the user visits the attacker’s website. All
benchmarks, except the single-core performance and the cores benchmark, use
a SharedArrayBuffer-based timer [36,9].

Number of CPU Cores The number of CPU cores is typically a power of two,
though 6, 10, and 12 have also been prominent in recent years. Many modern
CPUs implement Simultaneous Multithreading (SMT) to effectively double the
number of threads that can run in parallel. The ability to distinguish actual
physical cores from virtual cores based on SMT further allows clustering of CPUs
by the number of physical or virtual cores. Both aspects have previously been
algorithmically examined for Intel CPUs by Saito et al. [29, 30]. While JavaScript
is a single-threaded language, Web Workers are a browser feature that allows
running scripts in the background without blocking the main UI thread. While
the browser API may feature the navigator.hardwareConcurrency read-only
property, this does not necessarily reflect the number of available cores.

Browser-based CPU Fingerprinting 5

Algorithm 1: Cache Size Benchmark
Input: sizes
Output: timestamps
N < 16 * 1024 % 1024
timestamps < ||
for size in sizes do
Prepare randomized circular linked list of size KB
head < head of linked list
startTime < getTimestamp()
for 1 upto N do
head <= head->next
end for
timeDifference < getTimestamp() — startTime
timestamps.insert (timeDifference)
end for

Our benchmark starts more workers than actual threads available, which
interferes with the effective multithreading of the workers. Some workers have to
operate sequentially, taking turns on a shared hardware thread or even waiting
for one worker to finish before starting. This, in turn, increases the average
execution time of each worker and the time it takes for all workers to finish. Each
iteration, we start N Web Workers that each perform the same independent task.
If we do not create more workers than hardware threads available, the execution
time of each worker is roughly the same. The time it takes all workers to finish
their task noticeably increases once the number of workers exceeds the number
of available hardware threads. In addition, we can also observe that once the
number of workers exceeds the number of available physical cores due to the
negative performance impact of microarchitectural components shared between
two co-located logical cores. The output of this benchmark is a list of timestamp
differences for all N from the set of even numbers up to 32.

Data Cache Sizes Since ARM CPUs often only feature two cache levels, while
x86 CPUs typically feature three, the number of cache levels allows distinguish-
ing ARM and x86 CPUs with relatively high accuracy. Furthermore, the L2
cache size allows determining the vendor of a recent x86 CPU, and the L3 size
allows distinguishing CPU models. This is particularly interesting since many
microarchitectural attacks are ISA-specific or even vendor-specific. The class of
MDS vulnerabilities [32, 35, 3], for example, only affects Intel CPUs.

We frequently access memory and measure the latency. Over time, we increase
the size of the frequently-used memory. First, the used memory easily fits inside
the L1 cache, and we observe fast access times. Once the size approaches the
limit of the L1 cache, we statistically observe an increased number of L1 cache
misses, increasing the average memory latency. Likewise, the latency increases
again if the limit of the L2 and then the L3 is reached. This reveals each cache
level and their respective sizes. To eliminate the noise generated by the various

6 Trampert et al.

prefetchers, we rely on pointer chasing using a randomized linked list. Here,
each memory access determines the subsequent pointer to be dereferenced. This
generates a series of loads that each depend on the previous load, thus enforcing
serialization. We use a circular randomized linked list, where we perform a fixed
number of pointer advances (Algorithm 1). Over time, we increase the memory
allocated by the linked list. The output of the benchmark is a list of timestamp
differences that are sampled at different list sizes. We test 273 potential sizes
from 2 KB to 32 MB. To accurately determine L1 cache sizes, the granularity for
smaller sizes is finer than for larger sizes.

L1D Cache Associativity Most modern x86 CPUs have the L1D cache asso-
ciativity of 8 [14]. Thus, this feature allows us to recognize ARM CPUs where
the associativity differs. The general idea behind the algorithm is the same as for
determining the cache size. Instead of filling the cache, we now only aim to fill a
single cache set. To fill a cache set, we create a randomized circular linked list as
in Algorithm 1. By spacing the nodes of our linked list cache-size bytes apart, all
memory accesses map to the same cache set, as the cache size is always a multi-
ple of the cache associativity. As long as the accessed memory fits into the same
cache set, we observe repeated L1 cache hits. After exceeding the associativity,
the set can no longer accommodate all memory locations, and we thus observe
an increase in execution time due to an increase in L1 cache misses. The output
of the cache associativity benchmark is a list of timestamp differences sampled
at different linked list sizes. We test for associativities between 1 and 32.

L1D TLB Size CPUs usually have an L1 TLB that stores translations for 64x
4kB pages [14], with only older x86 (e.g., Intel Nehalem, 2008) and ARM CPUs
deviating from this value. Thus, this property allows distinguishing modern ARM
CPUs from modern x86 CPUs fairly accurately. The general idea behind the
algorithm is to fill the L1 TLB. We use Algorithm 1 but space the nodes of
our linked list at least page-size bytes apart. Hence, all memory accesses map
to different pages and thus require an address translation. While the number of
pages used by our linked list does not exceed the number of L1D TLB entries,
we observe relatively low execution times due to repeated L1D TLB hits. Once
this number is exceeded, we statistically observe more L1D TLB misses and thus
an increase in execution time. As almost all modern CPUs have a standard page
size of 4kB we hardcode this value to eliminate this error source. In our data
set, this hardcoded value only negatively affects this benchmark on the Apple
M1 chip, as it features a standard page size of 16 kB [12]. The output of the
L1D TLB size benchmark is a list of timestamp differences that are sampled at
different linked list sizes. We test for TLB sizes between 2 and 128 entries.

Single-Core Performance To estimate the single-core performance of the
CPU, we increment a counter for the duration of 1ms (measured using the
performance.now function). We repeat this step for a fixed number of itera-
tions and collect the counter’s value after each iteration. To better observe the

Browser-based CPU Fingerprinting 7

difference between boost and base frequency, we repeat this process three times
and wait for 100 ms between each time to reset the frequency.

Page Size The page size is usually determined by the processor architec-
ture [14], with a default of 4kB for x86 CPUs in laptops and desktops. In our
data set, only the Apple M1 has a different default page size of 16 kB. The use of
certain page sizes directly reveals the CPU family [14]. As the resolution of our
SharedArrayBuffer-based timer is high enough to differentiate cache hits and
misses, it also allows detecting page faults. Iterating the memory in 256 B strides
while measuring the access times detects page faults due to noticeably higher
execution times [11, 36]. We take the offsets of the 10 highest timing differences
and iterate these offsets in pairs. If the greatest common divisor of an offset pair
is greater than 1023 and a power of two, the greatest common divisor is added
to a list. This step eliminates the majority of outliers.

3.2 Data Set

Study To obtain a real-world data set for further investigation, we conduct a
voluntary study. We implement all benchmarks on a website that allows col-
lecting measurements from web clients. Before starting the execution of our
benchmarks, the participant is informed about and has to agree on the pur-
pose of the study. The collected data is then stored in our database. This data
only contains the output of the 6 benchmarks, the User-Agent value to deter-
mine the browser version and the self-reported CPU model string. It does not
suffice for the identification of a person or device as the k-anonymity (i.e., the
number of persons using a given CPU model in the global population) is suf-
ficiently large. In addition, we implemented strict access control and removed
all personally identifiable information. The participant is instructed to connect
a mobile device to a charger, to leave this tab running in the foreground and
to ensure a low system load during the study. This website was first presented
to professional computer scientists. During this phase of the study, we obtained
benchmark results from about 120 participants. To collect a representative set of
measurements, we use the crowdsourcing marketplace Amazon Mechanical Turk
(MTurk)? to distribute our study to a larger audience. The setup of the study
remains the same, except for the addition of a mechanism to ensure the study
is run in the foreground. This mechanism simply consists of a button, that has
to be pressed at least every 30s.

Structure The final data set consists of benchmark results from 834 partici-
pants featuring 297 different CPU models. Our set exclusively consists of CPUs
currently used in desktops and laptops, and two AWS Graviton CPUs. The ma-
jority of benchmarks are collected on Google Chrome version 91-93 and Firefox
version 89-91. Almost 75 % of the CPUs in the set are manufactured by Intel.

2 https://www.mturk. com/

8 Trampert et al.

The remaining quarter contains AMD CPUs and 21 ARM CPUs. 19 ARM CPUs
of our data set are recently released Apple M1 chips. Our data set reflects the
consumer market shares of x86 CPU vendors for the past few years. Optionally,
users could leave out certain parts of benchmarks requiring a large amount of
memory, such as the cache size benchmark for cache sizes larger than 1 MB if
they used a low-end device. Additionally, the collection of benchmark execution
times was introduced later in the study, such that they are not always available.
Thus, not all data set entries may be used in all scenarios. Each classification
only considers entries that feature the required benchmark results.

3.3 Classification

The outputs of our benchmarks are mostly a collection of measurements, not
single values. Hence, we rely on machine learning algorithms to perform the
actual classification of the different CPU properties. We also use the combination
of properties to further detect CPU vendors, models, and microarchitectures.

Algorithms We use three supervised learning classifiers as implemented by the
scikit-learn [26] Python module. In particular, we use the KNeighborsClassifier
(KNN), sSvC, and the MLPClassifier (MLP). These classifiers were chosen as
they showcase varying levels of complexity, after experimenting with a variety of
popular readily-available classifiers. Simple thresholds and statistical methods
did not lead to adequate results, we suspect the high levels of noise to be re-
sponsible for this, and are thus not discussed further. Each classification scenario
may use a different balanced subset of our data set for testing and training to
give equal priority to all classes. We detail this balancing further in the following
sections. All subsets consist of labeled samples. A labeled sample uses the results
of one or more benchmarks as features. As the output of a benchmark is a list
of timestamps or timestamp differences, the list directly represents the list of
features. If multiple benchmarks are used, their results are concatenated. The
label can be the vendor, microarchitecture, model, or property.

Property Classification To evaluate our benchmarks for their ability to dis-
criminate between the different instances of targeted CPU features, we introduce
property classifiers. These classifiers are each trained based on data from a single
CPU property, such as the number of threads. Each property classifier is trained
and tested only using the results of the benchmark designed to reveal information
about this property. It is important to note that the distribution of properties is
rarely balanced, as the dataset tends to feature recent CPU models, and vendors
often reuse established parts of the microarchitecture. To counteract this bias,
our property classifiers operate on balanced subsets of the dataset.

In addition to specific properties, we can also use a combination of proper-
ties. While single properties might not be unique, a combination of properties
reduces the set of possible CPU models with such a combination. Hence, by
combining multiple properties, we can infer higher-level information, such as the
CPU vendor, microarchitecture, and model, as described next.

Browser-based CPU Fingerprinting 9

Vendor Classification For the classification by CPU vendor, we use the results
of the cache-size benchmark and the TLB-size benchmark. We first examine the
capability of distinguishing two vendors producing CPUs of the same ISA. Since
the vast majority of our data set consists of x86 CPUs, we aim to distinguish
CPUs manufactured by Intel from CPUs manufactured by AMD. As our data set
generally features more Intel CPUs, we use a balanced subset of it for training
and evaluating the machine learning algorithms. The subset features data of 165
Intel and 165 AMD CPUs.

Secondly, we extend the classes to include all vendors present in our data
set. As the data set does not contain a large variety of ARM CPU vendors,
we decided not to distinguish between specific ARM manufacturers but rather
regard the ARM ISA as a group. The balanced subset used includes 21 AMD
CPUs, 21 ARM CPUs, and 21 Intel CPUs.

Microarchitecture Classification The second-coarsest clustering of CPUs
is based on their microarchitecture. The subset used for training and testing
contains 16 different microarchitectures as classes. Each class contains at least
17 and a maximum of 25 samples to keep the influence of the imbalance as small
as possible without reducing the size of our set drastically. The final set contains
the data of 368 CPUs. For this classification, we again use the results of the
cache-size benchmark and the TLB-size benchmark and also add the results of
the cores and cache-associativity benchmark.

As many microarchitectures are, however, based on the same base microarchi-
tecture and thus indistinguishable by our benchmarks, we also classify microar-
chitectures by their base microarchitecture. A prominent example is the Skylake
base architecture by Intel, on which eight microarchitectures (e.g., Kaby Lake
and Comet Lake) from 2015 to 2020 are based. We consider 10 different groups
with 18 to 22 samples each, with a total of 211 different CPUs.

Model Classification We prepare multiple subsets of our data set to investi-
gate the performance of inferring the specific CPU model using machine learning.
The first subset features 18 different CPU models with at least 7 and a maximum
of 9 samples each. In total, the resulting set contains the data of 153 different
CPUs, thus only using about 22 % of the data set suitable for this classification.
Here we use the results of different benchmarks for training and testing. The first
approach uses the results of the cache-size benchmark, the cache-associativity
benchmark, the TLB-size benchmark, and the cores benchmark.

The second approach uses the execution time of each benchmark as a fea-
ture. Here we use a slightly different subset of our data set, as the capturing
of execution times per benchmark was only introduced later in our study. Each
class of the set has at least 7 samples with a maximum of 9 samples from 14
different CPU models. In total, the set contains data of 114 different CPUs.

10 Trampert et al.

3.4 Classification Evaluation

In each classification scenario, we perform a Grid Search on 75 % of the corre-
sponding data set for each of the three classifiers. This process uses a K-Fold
with & = 5. Finally, the best-performing classifier is evaluated on the held-out
test set with the best-performing hyperparameter configuration.

4 Evaluation

In this section, we present the metrics achieved by different classification algo-
rithms for the scenarios presented in Section 3.3. The metrics show the ability of
our benchmarks to fingerprint CPU vendors, microarchitectures, CPU models,
and certain CPU properties (e.g., L1-cache size). We evaluate the efficiency of
our current implementation by analyzing the benchmark execution times.

4.1 Classification

We compare the classification algorithm achieving the best accuracy to the best-
performing DummyClassifier (DC). The dummy classifier uses the most-frequent
or the uniform strategy. The most-frequent strategy predicts the most-frequent
element of the training set. The uniform strategy chooses a random label.

Property Classification Table 1 shows the accuracies the best-performing
classification algorithms achieve when classifying properties such as the L1 cache
size. Especially accurate are the classifiers for the L1D cache size, L2 cache size,
and the L1D cache associativity. The L1 and L2 cache sizes can be classified
with an accuracy of above 95% each. The L3 cache size classification achieves
an accuracy of slightly more than 60 %. This is most likely because the last-level
caches are usually shared and exhibit greater noise generated by the system. The
accuracy of the L1D cache associativity classification is close to 94 %.

Although the cores benchmark is also negatively affected by the system noise,
the SVC classifier achieves an accuracy of almost 75 % when classifying the num-
ber of threads. Mispredictions are often just off by two, indicating the system
noise to be responsible for most of them. The same benchmark results are ad-
ditionally used for the SMT and HTT availability classification. As HT'T is the
proprietary SMT implementation of Intel, the data set used for this classification
is restricted to Intel CPUs. Here, the best-performing classifiers achieve accu-
racies of 69.5% and 84.2%. Increasing the maximum number of workers used
by the cores benchmark should yield better results but would also drastically
increase the execution time for CPUs featuring a low number of cores.

Finally, the boost-technology availability of a CPU can be classified with
an accuracy of 72.7% by the SVC classifier. The result is most likely negatively
affected by external factors discussed in Section 5.2, as well as system noise.

The page size does not require a classifier, as the algorithm directly outputs
the correct page size. The correct page size was inferred in 151 out of 158 test
cases, resulting in an accuracy of 95.5 %.

Browser-based CPU Fingerprinting 11

Table 1: Property classification results

Property Classifier Accuracy macro-F1 Test Set Size (|77))
L1 Cache Size MLP 1.000 1.000 34
L2 Cache Size SVC 0.965 0.966 29
L3 Cache Size SVC 0.629 0.629 62
L1D Cache Asso. KNN 0.937 0.955 16
Number of Threads SVC 0.741 0.661 62
HTT Availability = MLP 0.842 0.842 70
SMT Availability SVC 0.695 0.695 105
Boost Availability SVC 0.727 0.723 33

Table 2: AMD vs. Intel classification results

Accuracy macro-F |T|

DC 0.481 0.479
MLP 0.975 0.975

83

Vendor Classification For the combined properties, we first evaluate the ca-
pabilities to distinguish CPU vendors, specifically AMD and Intel. When dis-
tinguishing these vendors, the random dummy classifier achieves accuracies of
around 50 % as the data set is balanced. In this scenario, the MLPClassifier
achieves the highest accuracy at 97.5 %, as shown in Table 2.

The vendor classification most likely shows these results due to the observable
differences in L2 cache sizes (512kB for AMD, 256 kB for Intel). This effect also
translates to ARM CPUs. Most ARM CPUs do not feature an L3 cache and
share a large L2 cache among all cores. As most ARM CPUs in our data set are
Apple M1, they are also distinguishable due to their large TLBs [14,12]. Here,
the accuracy is 100 % with a small test set containing 15 samples.

Microarchitecture Classification The microarchitecture classification to eval-
uate the microarchitecture fingerprinting capabilities of our benchmarks is not
performed on a fully-balanced set. The randomly operating dummy classifier
achieves an accuracy of 4.2 %, while the KNN classifier achieves an accuracy of
65.6 %. The results are listed in Table 3.

12 Trampert et al.

Table 3: Microarchitecture classification results

Accuracy macro-Fi |T)| Accuracy macro-Fi [T
DC 0.041 0.043 96 DC 0.074 0.077 54
KNN 0.656 0.640 MLP 0.925 0.888
(a) not grouped (b) grouped by base microarchitecture

The classification struggles to differentiate microarchitectures that do not
differ in their L1 cache associativity or their L1 cache, L2 cache, or L1 TLB sizes.
The Coffee Lake, Comet Lake, and Whiskey Lake microarchitectures by Intel are,
for example, often confused with each other. They do not differ in their cache or
TLB hierarchies, as all three are based on the Skylake microarchitecture, which
makes it impossible to distinguish them based on these features. While there
are smaller differences, they are not addressed by our benchmarks. Grouping all
microarchitectures by their base microarchitecture, the classification yields an
accuracy of 92.5%. The results of this classification are listed in Table 3.

Model Classification For the CPU model fingerprinting, we use the results of
our benchmarks and compare them to benchmark execution times. The bench-
mark execution times basically compress the benchmark results into one number.
Using the same benchmarks as used for the microarchitecture classification, the
SVC classifier achieves an accuracy of 58.9%. Here, the dummy classifier only
achieves an accuracy of about 10 %. The resulting metrics are shown in Table 4.
Many CPU models do not differ in their cache or TLB hierarchy, with the only
exception being the shared LLC, as its size usually depends on the number of
cores. Should the number of cores also be the same, the ability to distinguish
such CPU models is often comparable to guessing at random.

Table 4: Model classification results

Accuracy macro-F |T| Accuracy macro-F1 |T|
Dummy 0.102 0.074 39 Dummy 0.033 0.020 30
sSve 0.589 0.590 SvC 0.700 0.568

(a) using benchmark results (b) using execution times

This is further supported by a small-scale experiment. Here, a classifier is
evaluated to distinguish an Intel Core i5-8250U from an Intel Core i7-8550U.

Browser-based CPU Fingerprinting 13

These two CPU models feature the same microarchitecture and the same num-
ber of cores. They only differ in their frequencies, with the Core i7 model having
a slightly higher base and boost clock. The best-performing classifier does not
outperform the random dummy classifier. In contrast, running the same exper-
iment using two CPUs that differ by at least one microarchitectural property
yields an accuracy of 100 %. For example, the Ryzen 5 2600 has an 8 MB L3,
while the Ryzen 5 3600 has a 16 MB L3. They also differ slightly in their fre-
quency. Note that both classifiers were only evaluated on test sets of size 8. This
indicates that the used benchmarks do not contain much information about the
performance of the CPU and only accurately profile their respective microarchi-
tectural property. The classification using benchmark results can identify CPU
models with unique properties. In our data set, this applies to the Apple M1
chip. A classification algorithm can distinguish this CPU model from all others
in our set with 100 % accuracy due to the unique TLB and page size.

The model classification using only the vector of execution times, i.e., the
execution time of each benchmark, achieves an accuracy of 70 % with the best-
performing SVC classifier. The results of this classification are listed in Table 4.
It is also important to note that the data sets used in both experiments are not
identical. As the collection of execution times was only introduced later in our
study, the second experiment contains different CPU models and may contain
fewer samples for some classes.

The execution time of a benchmark is a compression of the benchmark results
for non-constant-time benchmarks. For example, in the L1 cache-associativity
benchmark, we observe lower execution times in iterations that do not exceed the
associativity. However, a low execution time of this benchmark can indicate at
least one of two things. The execution time could have been generated by a high-
performance CPU or high L1 cache associativity, or a combination. Ultimately,
the execution time of a benchmark thus is a compression of the benchmark results
and the performance of the CPU, enabling the feature to be used to distinguish
microarchitectural properties and performance.

A combined approach using benchmark results and their execution times
performs similarly to the approach only using the execution times. Here, the
best-performing SVC achieves an accuracy of 60 %. We assume that the combi-
nation scales better to data sets containing more classes, as the compression of
benchmark results and performance may lead to confusion.

4.2 Efficiency

The runtime of our benchmarks depends largely on the performance of the CPU
that is being profiled. In addition, as discussed in Section 4.1, it also depends
on the properties of the CPU (e.g., L1 cache size). On a fast CPU (e.g., AMD
Ryzen 9 5900X), the total runtime amounts to about 1.1 min, while slower CPUs
(e.g., Intel Core2 Duo P8600) in our tests sometimes take more than 6.5 min to
finish. The median of all total runtimes is slightly over 2 min. Figure 2 shows a
box plot of the execution times per benchmark in seconds. Note that this plot
does not show outliers to improve the readability.

—_
W~

Trampert et al.

=
s 100 B
B=
e}
=1
2 50
= [-
=
(o}
]
& ‘%L' L
0 % 3 | | —
12 X 2@ 2@ @ S
2% i 6&04‘ »° & @\»ﬁ ! r&o‘&&\ 00‘8
< 0! 2 N
B @) s
pe $©
o*° \e’oo

&o®

Fig. 2: Benchmark execution times box plot. Unused benchmarks are grayed out.

The single-core performance benchmark has a constant execution time of
about 1.75s, which rarely varies due to the scheduler. As shown by the box plot,
the execution times of the page and TLB size benchmark almost always stay
below 20s each. The median of both benchmarks, however, is below 10s. The
cache associativity benchmark has a median value of about 20s, with almost all
execution times being in the range of 10s to 50s. As the runtime of the cores
benchmark largely depends on the number of available threads, the execution
times of this benchmark vary in the range from 5s to 60s. The execution time
of CPUs with more than 8 available threads is generally below the median time
of 20 s. Our benchmark with the highest median execution time is the cache-size
benchmark with a median value of about 60s. The maximum value is slightly
more than 120s. Its current implementation dominates the overall runtime.

The runtime of our benchmarks can, however, still be reduced, especially
since they currently implement exhaustive search. For the cache size benchmark,
it might, e.g., be possible to implement a binary search. Similarly, the number
of cores benchmark could implement an early-abort mechanism to reduce the
runtime drastically. In many cases, the number of iterations could also be reduced
by a large margin without sacrificing discriminative power. It is not uncommon
for users leave a tab open for more than 10 minutes (e.g., in case of streaming
portals, or online games). Furthermore, our benchmarks may be interrupted and
resumed later to circumvent the issue of running in the background.

4.3 Noise Resilience

To evaluate our benchmarks for noise resilience, we collect a small dataset using
four different CPUs where each CPU is sampled in 7 different noise scenarios. The
first scenario is a baseline, where no additional noise is added to the environment.
We consider CPU noise by using the stress-ng® tool to run 1, 2, or 4 CPU
stressors. Separately, we consider memory noise by running 1, 2, or 4 Virtual
Memory stressors. Here, each stressor uses 10 % of free memory.

3 https://wiki.ubuntu.com/Kernel/Reference/stress-ng

Browser-based CPU Fingerprinting 15

The collected dataset is then used as a test set for the property classifiers
trained as described in Section 3.4. Since the size of the dataset is small, we
cannot draw any certain conclusions. However, the accuracies indicate that all
benchmarks except for the cores benchmark and the large sizes for the cache size
benchmark are largely unaffected by noise. Property classifiers using the output
of the cores benchmark or output of the cache size benchmark targetted at cache
sizes that exceed the L2 cache thus perform noticeably worse under noise. This
also explains the performance of the L3 cache size and the Number of Cores
classifier, which perform slightly worse than other property classifiers.

5 Discussion

5.1 Use for Microarchitectural Properties

Many microarchitectural attacks have implicit assumptions about the underlying
microarchitecture. For example, page-deduplication attacks in the browser [10,
2,6| assume a page size of 4kB. While this was common when the attacks were
published, new (micro-)architectures, such as the Apple M1, have different de-
fault page sizes, such as 16 kB. Assuming a page size that is too small breaks the
attack. Hence, our page-size benchmark reenables this attack on the M1. Simi-
larly, some attacks rely on initial assumptions about the microarchitecture, e.g.,
the page size [43,36], the cache associativity and cache size for cache eviction
sets [42], the L1 associativity for evicting L1 sets [39], or the number of CPU
cores when optimizing MDS attacks [28]. With our benchmarks, these values can
be inferred in the browser with a high accuracy, improving such attacks.

In addition to improving microarchitectural attacks, the information about
the CPU can be used for browser fingerprints. The advantage over software
properties is the long-term stability of hardware fingerprints, as users do not
upgrade hardware that often. While the CPU as single property is not very
unique, it can help linking less stable fingerprints [41]. Moreover, as there is
no dependency on a specific browser API, our CPU fingerprints are difficult to
mitigate without impacting the usability of websites (cf. Section 5.3).

We believe that our benchmarks also translate to newly released CPU models,
as long as their respective features fall within the addressed ranges. Otherwise the
ranges of our benchmarks would have to be adjusted and our respective property
classifiers would have to be retrained. The model may have to be included in the
training of the vendor and microarchitecture classifiers. In addition, the model
must be included in the training for the model classification.

5.2 Limitations

Data Set The data set used for our evaluation is fairly small as we could not
rely on any existing data set. Especially the number of samples per class is low
for the model classification. The same problem also affects property classifiers
with dominating classes. Since the data was collected using a study involving

16 Trampert et al.

the manual reporting of the CPU model, we cannot guarantee the correctness
of all reported CPU models. In some cases, the labels used for our algorithms
might contain wrong information. This is due to the fact that this large data
set containing almost 300 different CPU models was collected manually using
information from cpu-world* and the official vendor information.

Runtime Influences While different browsers use different JavaScript engines,
we do not see a significant negative impact of that in our results. Even though
Chrome provides timestamps with a lower resolution than Firefox, the bench-
marks work well in both browsers. We cannot enforce a low system usage, such
that some data might be very noisy due to demanding background tasks. Simi-
larly, running the benchmarks on a mobile device running on battery interferes
with power-saving mechanisms. Furthermore, we do not consider non-default
CPU settings, such as deactivation of features (e.g., HT'T), manual overclocking,
and undervolting. Lastly, we do not perform any hyperparameter optimization
of our classification algorithms and instead mostly use default parameter values.
We leave this optimization to future work.

5.3 Mitigations

As our benchmarks only measure timing effects of microarchitectural elements
and the performance of the CPU, it is difficult to mitigate them fully.

Disabling JavaScript The simplest solution to stop attacks involving client-side
scripts is to disable the execution of all scripts. While this approach completely
mitigates all of our benchmarks, it also disrupts benign functionality using scripts
and thus is often not an option. Moreover, recent work [38| shows that limited
microarchitectural attacks are possible without code execution.

Disabling Features Our benchmarks rely on shared memory and high-resolution
timers. Disabling these features does, in fact, mitigate our current implemen-
tation. The benchmarks used by our classification algorithms, however, do not
necessarily require these features. By aggregating timing differences instead of
measuring single event timings, everything can be implemented using the timers
with reduced precision. Some benchmarks profiling multi-threaded scenarios re-
quire the Web Worker API. Disabling this feature would fully mitigate the core
benchmark and associated classifications.

Adding Randomness Another possible mitigation is to add random noise to the
JavaScript engine (e.g., random memory prefetches, instruction reordering, low-
resolution timer) [17,34]. This does, however, not fully mitigate benchmarks
but only adds noise, resulting in worse classification results. We observe that
our benchmarks are largely unaffected by a slower SharedArrayBuffer, buffer
ASLR, array preloading, and message delay.

4 https://www.cpu-world.com/index.html

Browser-based CPU Fingerprinting 17

Detection Another countermeasure is to detect the benchmarks on the system
or the browser level using, e.g., performance counters [13,25,44]. Future work
has to evaluate if these approaches can be used to detect browser-based attacks.

6 Conclusion

We presented 6 JavaScript and WebAssembly benchmarks with a total median
runtime of just over 2min designed to reveal different CPU properties. The
individual benchmarks allow determining their respective target properties with
high accuracies of up to 100 %. As a result, microarchitectural attacks from the
browser can be better tailored to the specific CPU. Moreover, the results of
these benchmarks can be combined to accurately infer the vendor of a CPU, the
microarchitecture, or the CPU model. Our benchmarks allow the identification
of the vendor of a CPU with accuracies above 97 %. Moreover, current browser
mitigations do not prevent our benchmarks. Hence, this information can also
improve state-of-the-art browser fingerprinting techniques.

7 Acknowledgments

We would like to thank all participants of our study. This work has been sup-
ported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) — 491039149. We further thank the Saarbriicken Graduate School of
Computer Science for their funding and support.

References

1. Agarwal, A., O’Connell, S., Kim, J., Yehezkel, S., Genkin, D., Ronen, E., Yarom,
Y.: Spook.js: Attacking chrome strict site isolation via speculative execution (2022)

2. Bosman, E., Razavi, K., Bos, H., Giuffrida, C.: Dedup Est Machina: Memory Dedu-
plication as an Advanced Exploitation Vector. In: S&P (2016)

3. Canella, C., Genkin, D., Giner, L., Gruss, D., Lipp, M., Minkin, M., Moghimi, D.,
Piessens, F., Schwarz, M., Sunar, B., Van Bulck, J., Yarom, Y.: Fallout: Leaking
Data on Meltdown-resistant CPUs. In: CCS (2019)

4. Canella, C., Van Bulck, J., Schwarz, M., Lipp, M., von Berg, B., Ortner, P.,
Piessens, F., Evtyushkin, D., Gruss, D.: A Systematic Evaluation of Transient Ex-
ecution Attacks and Defenses. In: USENIX Security Symposium (2019), extended
classification tree and PoCs at https://transient.fail/.

5. Cao, Y., Li, S., Wijmans, E.: Browser Fingerprinting via OS and Hardware Level
Features. In: NDSS (2017)

6. Easdon, C., Schwarz, M., Schwarzl, M., Gruss, D.: Rapid Prototyping for Microar-
chitectural Attacks. In: USENIX Security (2022)

7. Eckersley, P.: How unique is your web browser? In: PETS (2010)

8. Englehardt, S., Narayanan, A.: Online tracking: A 1-million-site measurement and
analysis. In: CCS (2016)

9. Gras, B., Razavi, K.: ASLR on the Line: Practical Cache Attacks on the MMU.
In: NDSS (2017)

18

10.
11.
12.
13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

Trampert et al.

Gruss, D., Bidner, D., Mangard, S.: Practical Memory Deduplication Attacks in
Sandboxed JavaScript. In: ESORICS (2015)

Gruss, D., Maurice, C., Mangard, S.: Rowhammer.js: A Remote Software-Induced
Fault Attack in JavaScript. In: DIMVA (2016)

Handley, M.: M1 Exploration - v0.70 (2021)

Herath, N., Fogh, A.: These are Not Your Grand Daddys CPU Performance Coun-
ters — CPU Hardware Performance Counters for Security. In: Black Hat Briefings
(2015)

Intel: Intel 64 and IA-32 Architectures Optimization Reference Manual (2019)
Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J.H., Lee, D., Wilkerson, C., Lai, K.,
Mutlu, O.: Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors. In: ISCA (2014)

Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M.,
Lipp, M., Mangard, S., Prescher, T., Schwarz, M., Yarom, Y.: Spectre Attacks:
Exploiting Speculative Execution. In: S&P (2019)

Kohlbrenner, D., Shacham, H.: Trusted browsers for uncertain times. In: USENIX
Security Symposium (2016)

Laperdrix, P., Bielova, N., Baudry, B., Avoine, G.: Browser fingerprinting: A survey.
In: ACM Transactions on the Web (2020)

Laperdrix, P., Rudametkin, W., Baudry, B.: Beauty and the beast: Diverting mod-
ern web browsers to build unique browser fingerprints. In: S&P (2016)

Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn, J.,
Mangard, S., Kocher, P., Genkin, D., Yarom, Y., Hamburg, M.: Meltdown: Reading
Kernel Memory from User Space. In: USENIX Security Symposium (2018)
Mowery, K., Bogenreif, D., Yilek, S., Shacham, H.: Fingerprinting information in
JavaScript implementations. In: W2SP (2011)

Mowery, K., Shacham, H.: Pixel Perfect: Fingerprinting Canvas in HTML5. In:
W2SP (2012)

Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, C., Piessens, F., Vigna, G.:
Cookieless monster: Exploring the ecosystem of web-based device fingerprinting.
In: Security and privacy (SP) (2013)

Olejnik, L., Englehardt, S., Narayanan, A.: Battery Status Not Included: Assessing
Privacy in Web Standards. In: Workshop on Privacy Engineering (IWPE) (2017)
Payer, M.: HexPADS: a platform to detect “stealth” attacks. In: ESSoS (2016)
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research (2011)

Ragab, H., Milburn, A., Razavi, K., Bos, H., Giuffrida, C.: CrossTalk: Speculative
Data Leaks Across Cores Are Real. In: S&P (2021)

Rottger, S.: Escaping the Chrome Sandbox with RIDL (2020), https:
//googleprojectzero.blogspot.com/2020/02/escaping-chrome-sandbox-
with-ridl.html

Saito, T., Yasuda, K., Ishikawa, T., Hosoi, R., Takahashi, K., Chen, Y., Zalasinski,
M.: Estimating cpu features by browser fingerprinting. In: International Conference
on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS) (2016)
Saito, T., Yasuda, K., Tanabe, K., Takahashi, K.: Web browser tampering: In-
specting CPU features from side-channel information. In: International Conference
on Broad-Band Wireless Computing, Communication and Applications, BWCCA
(2017)

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Browser-based CPU Fingerprinting 19

Sanchez-Rola, 1., Santos, 1., Balzarotti, D.: Clock around the clock: Time-based
device fingerprinting. In: CCS (2018)

van Schaik, S., Milburn, A., Osterlund, S., Frigo, P., Maisuradze, G., Razavi, K.,
Bos, H., Giuffrida, C.: RIDL: Rogue In-flight Data Load. In: S&P (2019)
Schwarz, M., Lackner, F., Gruss, D.: JavaScript Template Attacks: Automatically
Inferring Host Information for Targeted Exploits. In: NDSS (2019)

Schwarz, M., Lipp, M., Gruss, D.: JavaScript Zero: Real JavaScript and Zero Side-
Channel Attacks. In: NDSS (2018)

Schwarz, M., Lipp, M., Moghimi, D., Van Bulck, J., Stecklina, J., Prescher, T.,
Gruss, D.: ZombieLoad: Cross-Privilege-Boundary Data Sampling. In: CCS (2019)
Schwarz, M., Maurice, C., Gruss, D., Mangard, S.: Fantastic Timers and Where
to Find Them: High-Resolution Microarchitectural Attacks in JavaScript. In: FC
(2017)

Schwarzl, M., Borrello, P., Kogler, A., Varda, K., Schuster, T., Gruss, D., Schwarz,
M.: Dynamic process isolation. arXiv:2110.04751 (2021)

Shusterman, A., Agarwal, A., O’Connell, S., Genkin, D., Oren, Y., Yarom, Y.:
Prime+Probe 1, JavaScript 0: Overcoming Browser-based Side-Channel Defenses.
In: USENIX Security Symposium (2021)

Stephen Rottger and Artur Janc: A Spectre proof-of-concept for a Spectre-proof
web (2021), https://security.googleblog.com/2021/03/a-spectre-proof-of-
concept-for-spectre.html

Van Bulck, J., Moghimi, D., Schwarz, M., Lipp, M., Minkin, M., Genkin, D., Yuval,
Y., Sunar, B., Gruss, D., Piessens, F.: LVI: Hijacking Transient Execution through
Microarchitectural Load Value Injection. In: S&P (2020)

Vastel, A., Laperdrix, P., Rudametkin, W., Rouvoy, R.: Fp-stalker: Tracking
browser fingerprint evolutions. In: S&P (2018)

Vila, P., Kopf, B., Morales, J.: Theory and Practice of Finding Eviction Sets. In:
S&P (2019)

VUSec: RIDL test suite and exploits (GitHub) (2020), https://github.com/
vusec/ridl

Wang, H., Sayadi, H., Sasan, A., Rafatirad, S., Homayoun, H.: Hybrid-shield: Accu-
rate and efficient cross-layer countermeasure for run-time detection and mitigation
of cache-based side-channel attacks. In: ICCAD (2020)

