Side-Channel Lab I

Michael Schwarz

Security Week Graz 2019

Ty

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Covert channel

What is a covert channel?

e Two programs would like to communicate

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Covert channel

What is a covert channel?

e Two programs would like to communicate but are not allowed to do so

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Covert channel

What is a covert channel?

e Two programs would like to communicate but are not allowed to do so

e either because there is no communication channel...

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Covert channel

What is a covert channel?

e Two programs would like to communicate but are not allowed to do so

e either because there is no communication channel...
e ...or the channels are monitored and programs are stopped on
communication attempts

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Covert channel

What is a covert channel?

e Two programs would like to communicate but are not allowed to do so

e either because there is no communication channel...
e ...or the channels are monitored and programs are stopped on
communication attempts

e Use side channels and stay stealthy

Michael Schwarz — Security Week Graz 2019

Covert channel www.tugraz.at

Michael Schwarz — Security Week Graz 2019

Covert channel www.tugraz.at

Michael Schwarz — Security Week Graz 2019

State of the art www.tugraz.at

method raw capacity err. rate true capacity env.

F+F [Gru+16] 3968Kbps 0.840% 3690Kbps native
F+R [Gru+16] 2384Kbps 0.005% 2382Kbps native
E+R [Lip+16] 1141Kbps 1.100% 1041Kbps native
P+P [Mau+17] 601Kbps 0.000% 601Kbps native
P+P [Liut15] 600Kbps 1.000% 552Kbps virt

P+P [Mau+17] 362Kbps 0.000% 362Kbps native

n Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient)

www.tugraz.at

H @& Q@ T Mg

Sender

(0x44)
(0x45)
(0x46)
(0x47)
(0x48)
(0x49)

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x43

Cache Line on Page #0x49

Cache Line on Page #0x4A

Receiver

Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient)

www.tugraz.at

H @& Q@ T Mg

Sender

(0x44)
(0x45)
(0x46)
(0x47)
(0x48)
(0x49)

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Receiver

Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient)

www.tugraz.at

H @&-m Q T Mg

Sender

(0x44)
(0x45)
(0x46)
(0x47)
(0x48)
(0x49)

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Receiver

Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient)

www.tugraz.at

H @&-m Q T Mg

Sender

(0x44)
(0x45)
(0x46)
(0x47)—2y
(0x48)
(0x49)

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Receiver

Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient)

www.tugraz.at

H @& Q@ T Mg

Sender

(0x44)
(0x45)
(0x46)
(0x47)
(0x48)
(0x49)

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Receiver

Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient)

www.tugraz.at

H @& Q@ T Mg

Sender

(0x44)
(0x45)
(0x46)
(0x47)
(0x48)
(0x49)

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Receiver
measure ﬂ
) b4
measure} @
measure} @
measure} ﬂﬂ
measure} @
measure} @
measure f‘
) b4
measure ﬁ
E— x

Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient)

www.tugraz.at

H @& Q@ T Mg

Sender

(0x44)
(0x45)
(0x46)
(0x47)
(0x48)
(0x49)

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Receiver
measurey Ry
measurey PR
measurey PR
messirey R
meurey N G (0x47)

Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient)

www.tugraz.at

H @& Q@ T Mg

Sender

(0x44)
(0x45)
(0x46)
(0x47)
(0x48)
(0x49)

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Receiver

Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient)

www.tugraz.at

H =-m Q@ T [g

Sender

(0x44)
(0x45)
(0x46)
(0x47)
(0x48)
(0x49)

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Receiver

Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient)

www.tugraz.at

H =-m Q@ T [g

Sender

(0x44)
(0x45)
(0X46) reload }
(0x47)
(0x48)
(0x49)

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Receiver

Michael Schwarz — Security Week Graz 2019

Sending Data (easy but inefficient)

www.tugraz.at

H =-m Q@ T [g

Sender

(0x44)
(0x45)
(0x46)
(0x47)
(0x48)
(0x49)

Last-level cache

Cache Line on Page #0x43

Cache Line on Page #0x44

Cache Line on Page #0x45

Cache Line on Page #0x46

Cache Line on Page #0x47

Cache Line on Page #0x48

Cache Line on Page #0x49

Cache Line on Page #0x4A

Receiver
measurey Ry
measurey PR
measurey PR
Teuey N F(0x46)

Michael Schwarz — Security Week Graz 2019

Time to code

Operating Systems 101

www.tugraz.at

Memory Isolation

@ Userspace

e/

Applications

Kernelspace

e Kernel is isolated from user space

Operating

System Memory

n Michael Schwarz — Security Week Graz 2019

Memory Isolation

www.tugraz.at

@ Userspace

e/

Applications

Kernelspace

Operating

System Memory

e Kernel is isolated from user space

e This isolation is a combination of
hardware and software

Michael Schwarz — Security Week Graz 2019

Memory Isolation

www.tugraz.at

@ Userspace

Operating

Applications System Memory

Kernelspace

e Kernel is isolated from user space

e This isolation is a combination of
hardware and software

e User applications cannot access
anything from the kernel

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

e CPU support virtual address spaces to isolate processes

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

e CPU support virtual address spaces to isolate processes

e Physical memory is organized in page frames

Michael Schwarz — Security Week Graz 2019

Paging www.tugraz.at

e CPU support virtual address spaces to isolate processes

e Physical memory is organized in page frames

e Virtual memory pages are mapped to page frames
using page tables

Michael Schwarz — Security Week Graz 2019

Address Translation on x86-64 Www.tugraz.at

PML4
CR3 PML4E 0
PML4E 1
: PDPT
3 PML4I
1 #: PDPTE 0
PML4E 511 PDP;TE L
R ZPDPTI Page Directory
: PDE 0
PDPTE 511 PD:E L
\PDE #PDI Page Table
. PTE 0
PDE 511 PT;E L
- 4 KiB Page
AN
s PTE :#PTI Byte 0
- Byte 1
PTE 511 -

Offset

PML4I (9 b) [PDPTI (9 b) [PDI (9 b) [PTI (9b) | Offset (12b) | Byte 4095

48-bit virtual address

n Michael Schwarz — Security Week Graz 2019

Address Translation on x86-64 Www.tugraz.at

PML4
CR3 PML4E 0
PML4E 1
: PDPT
3 PML4I
1 #: PDPTE 0
PML4E 511 PDP;TE L
R ZPDPTI Page Directory
: PDE 0
PDPTE 511 PD:E L
\PDE #PDI Page Table
. PTE 0
PDE 511 PT;E L
- 4 KiB Page
PTE :#PTI Byte 0
- Byte 1
PTE 511 -
Offset
PML4I (9 b) [PDPTI (9 b) [PDI (9 b) [PTI (9b) | Offset (12b) | Byte 4095

48-bit virtual address

n Michael Schwarz — Security Week Graz 2019

Page Table Entry www.tugraz.at

P [RWIUSIWTIUC| R|D|S |G Ignored

D ~

O
P

NToe |\|| hea
ageC MDE

u,
L
v

Ignored X

e User/Supervisor bit defines in which privilege level the page can be accessed

n Michael Schwarz — Security Week Graz 2019

Direct-physical map www.tugraz.at

0 max

Physical memory

User || Kernel

e Kernel is typically mapped into every address space

Michael Schwarz — Security Week Graz 2019

Direct-physical map www.tugraz.at

0 max

Physical memory

User || Kernel

e Kernel is typically mapped into every address space

e Entire physical memory is mapped in the kernel

Michael Schwarz — Security Week Graz 2019

Loading an address www.tugraz.at

Michael Schwarz — Security Week Graz 2019

Loading an address www.tugraz.at

R0

v

Michael Schwarz — Security Week Graz 2019

Loading an address www.tugraz.at

R0

v

Q (@

Michael Schwarz — Security Week Graz 2019

Loading an address www.tugraz.at

R0

v

Michael Schwarz — Security Week Graz 2019

Loading an address www.tugraz.at

R0

v

@

Michael Schwarz — Security Week Graz 2019

Loading an address www.tugraz.at

R0

v

@

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Architecture and Microarchitecture

e Instruction Set Architecture (ISA) is an abstract model of a
computer (x86, ARMv8, SPARC, ...)

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Architecture and Microarchitecture

e Instruction Set Architecture (ISA) is an abstract model of a
computer (x86, ARMv8, SPARC, ...)

e Serves as the interface between hardware and software

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Architecture and Microarchitecture

e Instruction Set Architecture (ISA) is an abstract model of a
computer (x86, ARMv8, SPARC, ...)

e Serves as the interface between hardware and software

e Microarchitecture is an actual implementation of the ISA

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Architecture and Microarchitecture

e Instruction Set Architecture (ISA) is an abstract model of a
computer (x86, ARMv8, SPARC, ...)

e Serves as the interface between hardware and software

e Microarchitecture is an actual implementation of the ISA

AMDIOU

AMD I ~—I
@ Y Z}N (lnsuie (llde
nihion < J Core 17 Xeon™

Michael Schwarz — Security Week Graz 2019

In-Order Execution

www.tugraz.at

e [nstructions are...

e fetched (IF) from the L1 Instruction
Cache

IF | ID | EX MEM WB
IF | ID | EX MEM WB
IF | ID | EX MEM WB
IF | ID | EX MEM WB
IF | ID | EX MEM WB

Michael Schwarz — Security Week Graz 2019

In-Order Execution

www.tugraz.at

MEM

WB

EX

MEM

WB

EX

MEM

WB

EX

MEM

WB

EX

MEM

WB

e [nstructions are...

e fetched (IF) from the L1 Instruction
Cache
e decoded (ID)

Michael Schwarz — Security Week Graz 2019

In-Order Execution

www.tugraz.at

e Instructions are...
e fetched (IF) from the L1 Instruction
Cache
e decoded (ID)
e executed (EX) by execution units

IF | ID | EX MEM WB
IF | ID | EX MEM WB
IF | ID | EX MEM WB
IF | ID | EX MEM WB
IF | ID | EX MEM WB

Michael Schwarz — Security Week Graz 2019

In-Order Execution

www.tugraz.at

MEM

WB

EX

MEM

WB

EX

MEM

WB

EX

MEM

WB

EX

MEM

WB

e [nstructions are...

e fetched (IF) from the L1 Instruction
Cache

e decoded (ID)

e executed (EX) by execution units

e Memory access is performed (MEM)

Michael Schwarz — Security Week Graz 2019

In-Order Execution

www.tugraz.at

e Instructions are...
e fetched (IF) from the L1 Instruction
Cache
e decoded (ID)
e executed (EX) by execution units

IF | ID | EX MEM WB
IF | ID | EX MEM WB
IF | ID | EX MEM WB
IF | ID | EX MEM WB
IF | ID | EX MEM WB

e Memory access is performed (MEM)

e Architectural register file is updated (WB)

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

In-Order Execution

e Instructions are executed in-order

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

In-Order Execution

e Instructions are executed in-order

e Pipeline stalls when stages are not ready

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

In-Order Execution

e Instructions are executed in-order
e Pipeline stalls when stages are not ready

e If data is not cached, we need to wait

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Out-of-order Execution

int width = 10, height = 5;
float diagonal = sqrt(width * width
+ height * height);

int area = width * height;

printf ("Area %d x %d = %d\n", width, height, area);

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Out-of-order Execution

Parallelize
S

int width = 10, height = 5;

+ height * height);
int area = width * height;

O
o~
Q
©
Q)c float diagonal = sqrt(width * width
Q
)]
Q

<printf("Area %d x %d = %d\n", width, height, area);

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Out-of-Order Execution

L1 Instruction Cache [k

Branch Instruction Fetch & PreDecode
2 Predictor
5 Instruction Queue
=
g P Cache 4-Way Decode
= Tor o Lo]

¥
Allocation Queue

EREREE Instructions are

Reorder buffer ‘

o o e e e fetched and decoded in the front-end

i Scheduler ‘

=118

Execution Engine
I
LU, FMA,

Execution Units

L1 Data Cache

STLB +

Memory

L2 Cache —

Michael Schwarz — Security Week Graz 2019

Out-of-Order Execution

L1 Instruction Cache [k
Branch Instruction Feich & PreDecode
2 Predictor
5 Instruction Queue
-]
u% OP Cache 4-Way Decode
e, luu l,w l.m l
2
Allocation Queue
3 3 3 k3
coB % Reorder buffer ‘
o =L Lo o Lo Jor e]
£l i Scheduler
= M7=
g e [0
§ :
B gl |2 3
7 <}
g% |E N
55 |3
% 5
& 2
Execution Units
.
£ [DTLB STLB T
g LI Data Cache [— |
= L2 Cache —

www.tugraz.at

Instructions are
e fetched and decoded in the front-end
e dispatched to the backend

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Out-of-Order Execution

L1 Instruction Cache [k

Branch Instruction Fetch & PreDecode
2 Predictor
5 Instruction Queue
=
= WOP Cache 4-Way Decode
= T Loor [oor [

¥
‘ Allocation Queue ‘

EREREE Instructions are

con j Reorder buffer 0

e e e e fetched and decoded in the front-end
2T .

s . e dispatched to the backend

ERIIHE g E

&k B & e processed by individual execution units

prid STLE t
Li Data Cache [— |

L2 Cache —

Memory

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Out-of-Order Execution

o
Instructions

Branch Instruction Fetch & PreDecode
Predictor

Instruction Queue

Frontend

e are executed out-of-order

4-Way Decode

HOP Cache

o8 % Reorder buffer ‘
O [i i
i Scheduler ‘

Store data <
AGU

2
5
=

Execution Engine
I

LU, FMA,

Lo vt e

Execution Units

prid STLE H
Li Data Cache [— |

L2 Cache —

Memory

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Out-of-Order Execution

o
Instructions

Branch Instruction Fetch & PreDecode

Predictor
Instruction Queue

o — e are executed out-of-order

s

\ Allcaion Quee | e wait until their dependencies are ready

Frontend

=118

Reorder buffer

i Scheduler ‘

Execution Engine
I
LU, FMA,

Execution Units

L1 Data Cache

STLB +

Memory

L2 Cache —

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Out-of-Order Execution

o
Instructions

Branch Instruction Fetch & PreDecode

Predictor
Instruction Queue

o — e are executed out-of-order

s

\ Allcaion Quee | e wait until their dependencies are ready

Frontend

=118

Reorder buffer

i Scheduler ‘

= instructions

e Later instructions might execute prior earlier

Execution Engine
I
LU, FMA,

Execution Units

L1 Data Cache

STLB +

Memory

L2 Cache —

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Out-of-Order Execution

o
Instructions

; [| =
; e lw"‘ti”{"jf - e are executed out-of-order

\ \\Q\\ | e wait until their dependencies are ready
- lRldbl" i — e Later instructions might execute prior earlier
;} A A— instructions
“ e retire in-order
a5E B E

Execution Units

L1 Data Cache

STLB +

Memory

L2 Cache —

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Out-of-Order Execution

o
Instructions

; [| =
; e lw"‘ti”{"jf - e are executed out-of-order

\ \\Q\\ | e wait until their dependencies are ready
- lRldbl" i — e Later instructions might execute prior earlier
;} A A— instructions
“ e retire in-order
a5E B E

e State becomes architecturally visible

Execution Units

L1 Data Cache

STLB +

Memory

L2 Cache —

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Out-of-Order Execution

==y

[el evwr— Instructions
5 Predictor Instruction Queue
; Lﬁ'ﬁfi."{“fﬁ . e are executed out-of-order

\ \\Q\\ \ e wait until their dependencies are ready
- lRldbl" i — e Later instructions might execute prior earlier
;:a A | instructions
~ 7 e retire in-order
il et | e State becomes architecturally visible
: | e Exceptions are checked during retirement
= e L2 Cache —

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Out-of-Order Execution

L

Instructions
2 Predictor
5 Instruction Queue
;o — e are executed out-of-order

\ e | e wait until their dependencies are ready

T — e Later instructions might execute prior earlier
S | instructions
- e retire in-order
Z58E

B | e State becomes architecturally visible
LT —— e Exceptions are checked during retirement
g Li Data Cache [— | o ||))

e Flush pipeline and recover state

Michael Schwarz — Security Week Graz 2019

The state does not become
but ...

The state does not become
but ...

www.tugraz.at

Getting started...

Michael Schwarz — Security Week Graz 2019

Gettil’lg Started e www.tugraz.at

e New code
(o
(o,
char data = ’S’; // a "secret" walue
//

(volatile charx) O0;
array [data * 4096] = 0;

Michael Schwarz — Security Week Graz 2019

Getting started...

www.tugraz.at

New code
char data = ’S’; // a "secret" walue
//

(volatile charx) O0;
array [data * 4096] = 0;

Luckily we know how to catch a segfault

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Getting started...

e New code

char data = ’S’; // a "secret" walue

/7
(volatile charx) O0;
array [data * 4096] = 0;

e Luckily we know how to catch a segfault

e Then check whether any part of array is cached

Michael Schwarz — Security Week Graz 2019

CheCking the array www.tugraz.at

R0

e Flush+Reload over all pages of the array
500

400 -
300 J{

0 50 100 150 200 250
Page

Access time
[cycles]

Michael Schwarz — Security Week Graz 2019

Time to code

Meltdown www.tugraz.at

e Add another layer of indirection to test

char data = *(charx*x) Oxffffffff81a000e0;
array [data * 4096] = 0;

Michael Schwarz — Security Week Graz 2019

Meltdown www.tugraz.at

e Add another layer of indirection to test

char data = *(charx*x) Oxffffffff81a000e0;
array [data * 4096] = 0;

Michael Schwarz — Security Week Graz 2019

WhiCh addl’ESS? www.tugraz.at

e Check /proc/kallsyms

sudo cat /proc/kallsyms | grep banner

Michael Schwarz — Security Week Graz 2019

WhiCh addl’ESS? www.tugraz.at

e Check /proc/kallsyms

sudo cat /proc/kallsyms | grep banner

e or check /proc/pid/pagemap and print address

printf ("target: %p\n",
libsc_get_physical_address (ctx, vaddr));

Michael Schwarz — Security Week Graz 2019

WhiCh addl’ESS? www.tugraz.at

e Check /proc/kallsyms

sudo cat /proc/kallsyms grep banner

e or check /proc/pid/pagemap and print address

printf ("target: %p\n",
libsc_get_physical_address (ctx, vaddr));

e or start at a random address and iterate

Michael Schwarz — Security Week Graz 2019

Time to code

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory }y &\

A|B

C|DE

FIGIH glyph[datal[index]]
IlJ|K

L M| N LILLLl
OlP|Q - =
U|VIW

X|Y|Z LR

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory \(\60 %‘e
AB
(C]D)]E Speculate
1 p
FIGIH glyph[datal[index]]
IJ|K
LL M| N LiLiLll
o|rPlQ - e
U|V|W
X|Y|Z I11iti

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory EXGCUWY @(9@

A|B

C|DE

FIGIH glyph[datal[index]]
IlJ|K

L M| N LILLLl
OlP|Q - =
U|VIW

X|Y|Z LR

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Exec“e)y &\
B

A

%EH glyph[datal[index]]
IlJ|K

L M| N LIiLll
OlP|Q - e
R|S|T — o
U|VIW - -
X|Y|Z LR

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory EX@CW}Y @(9@
B

A
% g IHI. .‘.&glyph [datal[index]]
IJ]K h
L M| N LIiLll
OlP|Q - e
R|S|T — o
U V W OO

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory }y &\

A|B

%g% glyph[datal[index]]
IlJ|K

L M| N LIiLll
OlP|Q - e
R|S|T — o
U|VIW

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'at)e/ @(9@

A|B

%(ﬂélﬁ glyph[datal[index]]
IlJ|K

L M| N LIiLll
OlP|Q - e
R|S|T — o
U|VIW

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'atf/ @(9@

A|B

CDIE glyph[datal[index]]
F|GH

IlJ|K

L MIN TRREN
orQ - =
R|S|T — o
UV W

X|\Y|Z

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'at)e/ @(9@

A

CDIE glyph[data[lndex]]
F|GH

IlJ|K

L MIN TRREN
orQ - =
R|S|T — o
UV W

X|\Y|Z

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'at)e/ @(9@

A
iy E glyph [data[index]]
F|G|H
IlJ|K
LIMIN LLpLll
o|rPlQ - =
R|S|T e, - o
U V W L
X|Y|Z

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory EX@CW}Y @(9@

A|B

%(ﬂélﬁ glyph[data[index]]
IlJ|K

L M| N LIiLll
OlP|Q - e
R|S|T — o
U|VIW

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'at)e/ @(9@

A|B

%(ﬂélﬁ glyph[datal[index]]
IlJ|K

L M| N LIiLll
OlP|Q - e
R|S|T — o
U|VIW

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'atf/ @(9@

A|B

CDIE glyph[datal[index]]
F|GH

IlJ|K

L MIN TRREN
orQ - =
R|S|T — o
UV W

X|\Y|Z

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory pec“'at)e/ &\

A|B

CDIE glyph[datal[index]]
F|GH

IlJ|K

L MIN TRREN
orQ - =
R|S|T — o
UV W

X|\Y|Z

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory pec“'at)e/ &\

A|B
C|D|E
F |G H
IJ|K
L M|N
Oo|P|Q
R|S|T
U VW
X|Y|Z

glyph[datal[index]]

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory EX@CW}Y @(9@

A|B

%(ﬂélﬁ glyph[data[index]]
IlJ|K

L M| N LIiLll
OlP|Q - e
R|S|T — o
U|VIW

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'at)e/ @(9@

A|B

%(ﬂélﬁ glyph[datal[index]]
IlJ|K

L M| N LIiLll
OlP|Q - e
R|S|T — o
U|VIW

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'atf/ @(9@

A|B

CDIE glyph[datal[index]]
F|GH

IlJ|K

L MIN TRREN
orQ - =
R|S|T — o
UV W

X|\Y|Z

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'at)e/ @(9@

A

CDIE glyph[data[lndex]]
F|GH

IlJ|K

L MIN TRREN
orQ - =
R|S|T — o
UV W

X|\Y|Z

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'at)e/ @(9@

A
iy E glyph [data[index]]
F|G|H
IlJ|K
LIMIN LLpLll
o|rPlQ - =
R|S|T e, - o
U V W L
X|Y|Z

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory EX@CW}Y @(9@

A|B

%(ﬂélﬁ glyph[data[index]]
IlJ|K

L M| N LIiLll
OlP|Q - e
R|S|T — o
U|VIW

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'at)e/ @(9@

A|B

%(ﬂélﬁ glyph[datal[index]]
IlJ|K

L M| N LIiLll
OlP|Q - e
R|S|T — o
U|VIW

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'at)e/

A|B

CDIE glyph[datal[index]]
F|GH

17K R -
L MIN TRREN
orQ -
R|IS|T -

UV W

X|\Y|Z

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'at)e/

A|B

CDIE glyph[datal[index]]
F|GH

17K R -
L MIN TRREN
orQ -
R|IS|T -

UV W

X|\Y|Z

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory Spec“'at)e/

glyph[datal[index]]

[p—

MEEIEEEEE
R EEGEIE
NEEIEREC EEE

Michael Schwarz — Security Week Graz 2019

Spectre-PHT (aka Spectre Variant 1) www.tugraz.at

if (index <

Shared Memory \(\60 %‘e

A|B

% (]g]E:i glyph[data[index]] Brecute

IlJ|K

L M| N LILLLl

orQ - -

RIS|T — .

UV W

Michael Schwarz — Security Week Graz 2019

Spectre ROOt Cause www.tugraz.at

operation #n

>

time

Michael Schwarz — Security Week Graz 2019

Spectre ROOt Cause www.tugraz.at

operation #n

prediction

>

time

Michael Schwarz — Security Week Graz 2019

Spectre ROOt Cause www.tugraz.at

operation #n

prediction

predict
CF/DF

> operation #n-+2

>

time

Michael Schwarz — Security Week Graz 2019

Spectre ROOt Cause www.tugraz.at

operation #n

prediction

predict
CF/DF

> operation #n+2

possibly
architectural 1 transient execution

>

time

Michael Schwarz — Security Week Graz 2019

Spectre ROOt Cause www.tugraz.at

operation #n |5
prediction

predict
CF/DF

> operation #n+2

possibly
architectural 1 transient execution

>

time

Michael Schwarz — Security Week Graz 2019

Spectre ROOt Cause www.tugraz.at

: g
operation #n |3 Gicly el
= on wrong
prediction
. g
prediction 3
T

predict
CF/DF

> operation #n+2

possibly
architectural 1 transient execution

>

time

Michael Schwarz — Security Week Graz 2019

Spectre ROOt Cause www.tugraz.at

>

. Y
Operatlon #n "q'} flush pipeline
= on wrong
prediction
.o v
prediction &=
B & i 1
_E Q 1 1
o : ! o
o Ob—{ operation #n+2: |z
possibly : i
architectural ! transient execution !
]

time

Michael Schwarz — Security Week Graz 2019

Spectre ROOt Cause www.tugraz.at

A e Many predictors in modern CPUs

Michael Schwarz — Security Week Graz 2019

Spectre ROOt Cause www.tugraz.at

A e Many predictors in modern CPUs

4 b e Branch taken/not taken (PHT)

Vv

Michael Schwarz — Security Week Graz 2019

Spectre ROOt Cause www.tugraz.at

A e Many predictors in modern CPUs
e Branch taken/not taken (PHT)
4 @ b e Call/Jump destination (BTB)

Vv

Michael Schwarz — Security Week Graz 2019

Spectre ROOt Cause www.tugraz.at

A e Many predictors in modern CPUs

e Branch taken/not taken (PHT)
4 @ b e Call/Jump destination (BTB)

e Function return destination (RSB)

Michael Schwarz — Security Week Graz 2019

Spectre ROOt Cause www.tugraz.at

A e Many predictors in modern CPUs

e Branch taken/not taken (PHT)
4 b Call/Jump destination (BTB)
Function return destination (RSB)
Load matches previous store (STL)

<G

Michael Schwarz — Security Week Graz 2019

Spectre ROOt Cause www.tugraz.at

A e Many predictors in modern CPUs

e Branch taken/not taken (PHT)
4 b Call/Jump destination (BTB)
Function return destination (RSB)
V Load matches previous store (STL)

e Most are even shared among processes

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Spectre Mistraining

Victim
same address space/ Victim
in place branch

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Spectre Mistraining

Victim
same address space/ Congruent
out of place branch

§|s

iz

23
same address space/ Victim
in place branch

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Spectre Mistraining

Victim
same address space/ Congruent
out of place branch

§|s

iz

23
same address space/ Victim
in place branch

‘ Shared Branch Prediction State

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Spectre Mistraining

Victim Attacker

same address space/ Congruent
out of place branch

§|s

e

23
same address space/ Victim
in place branch

‘ Shared Branch Prediction State

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Spectre Mistraining

Victim Attacker

same address space/ Congruent
out of place branch

§|8

5|2

23
same address space/ Victim Shadow cross address space/
in place branch branch in place

‘ Shared Branch Prediction State

Michael Schwarz — Security Week Graz 2019

www.tugraz.at

Spectre Mistraining

Victim Attacker

same address space/ Congruent Congruent cross address space/
out of place branch branch out of place

g5 gl5

e 5|2

23 38
same address space/ Victim Shadow cross address space/
in place branch branch in place

Shared Branch Prediction State

Michael Schwarz — Security Week Graz 2019

Time to code

Side-Channel Lab I

Michael Schwarz

Security Week Graz 2019

Ty

Michael Schwarz — Security Week Graz 2019

D. Gruss, C. Maurice, K. Wagner, and S. Mangard. Flush+Flush: A Fast
and Stealthy Cache Attack. In: DIMVA. 2016.

M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard.

ARMageddon: Cache Attacks on Mobile Devices. In: USENIX Security
Symposium. 2016.

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-Level Cache
Side-Channel Attacks are Practical. In: S&P. 2015.

C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss,
C. Alberto Boano, S. Mangard, and K. Rémer. Hello from the Other Side:
SSH over Robust Cache Covert Channels in the Cloud. In: NDSS. 2017.

	References

