
Another Flip in the Row:

Bypassing Rowhammer Defenses and Making

Remote-Rowhammer Attacks Practical

Daniel Gruss, Moritz Lipp, Michael Schwarz

daniel.gruss@iaik.tugraz.at, moritz.lipp@iaik.tugraz.at,
michael.schwarz@iaik.tugraz.at

Abstract

The Rowhammer bug is an issue in most DRAM modules [15, 23]
which allows software to cause bit flips in DRAM cells, consequently ma-
nipulating data. Although only considered a reliability issue by DRAM
vendors, research has showed that a single bit flip can subvert the security
of an entire computer system.

In the introduction of the talk, we will outline the developments around
Rowhammer since its presentation at Black Hat USA 2015. We discuss
attacks [2, 3, 5, 8, 9, 11, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 27] and
defenses that researchers came up with. The defenses against Rowhammer
either try to prevent Rowhammer bit flips from occurring [1, 4, 7, 13, 15,
18], or at least ensure that Rowhammer attacks cannot exploit the bug
anymore [6, 10, 12, 26].

We will present a novel Rowhammer attack [11] that undermines all
existing assumptions on the requirements for such attacks. With one-
location hammering, we show that Rowhammer does not necessarily re-
quire to alternating accesses to two or more addresses. We explain that
modern CPUs rely on memory-controller policies that enables an attacker
to use this new hammering technique. Moreover, we introduce new build-
ing blocks for exploiting Rowhammer-like bit flips which circumvent all
currently proposed countermeasures. In addition to classical privilege
escalation attacks, we also demonstrate a new, easily mountable denial-
of-service attack which can be exploited in the cloud.

We will also show that despite all efforts, the Rowhammer bug is
still not prevented. We conclude that more research is required to fully
understand this bug to subsequently be able to design efficient and secure
countermeasures.

1 Overview

In this whitepaper we cover the topics of our talk and also provide technical
background. It consists of two parts.

The first part was published as a paper at the 39th IEEE Symposium on Se-
curity and Privacy 2018 with the title “Another Flip in the Wall of Rowhammer
Defenses” [11]. The paper first systematically analyzes all proposed Rowham-
mer defenses and groups them into different classes. Then it shows how an

attacker can bypass each defense class. Based on these insights, two attacks are
presented. A native privilege escalation attack, and a denial-of-service attack
in the cloud.

The second part is a pre-print of the paper “Nethammer: Inducing Rowham-
mer Faults through Network Requests” [17]. Rowhammer was assumed to be a
local attack. However, as we find, remote attacks, attacks without a single line
of attacker code on the system, are feasible. We performed such attacks and
evaluated what we can do with the bit flips we obtained. While not as easy
to exploit as bit flips in a local attack, bit flips do allow to perform persistent
and non-persistent denial-of-service attacks. Furthermore, they can even allow
attacks where data is maliciously modified by an attacker, enabling follow up
attacks.

The main takeaways of both the talk and the whitepaper are as follows.
1. None of the previously known defenses solve the Rowhammer problem

completely.
2. We need a better understanding of Rowhammer to find all attack variants

and be able to design good defenses.
3. Even systems that never run any attacker-controlled code can be attacked,

simply by flooding it with network packets.

References

[1] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren, and
T. Austin, “ANVIL: Software-based protection against next-generation
Rowhammer attacks,” ACM SIGPLAN Notices, vol. 51, no. 4, pp. 743–
755, 2016.

[2] S. Bhattacharya and D. Mukhopadhyay, “Curious Case of Rowhammer:
Flipping Secret Exponent Bits Using Timing Analysis,” in Conference on
Cryptographic Hardware and Embedded Systems (CHES), 2016.

[3] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup Est Machina:
Memory Deduplication as an Advanced Exploitation Vector,” in S&P, 2016.

[4] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, “CAn’t
touch this: Software-only mitigation against Rowhammer attacks targeting
kernel memory,” in USENIX Security Symposium, 2017.

[5] Y. Cheng, Z. Zhang, and S. Nepal, “Still hammerable and ex-
ploitable: on the effectiveness of software-only physical kernel isolation,”
arXiv:1802.07060, 2018.

[6] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of cache-
based side-channel attacks using hardware performance counters,” Cryp-
tology ePrint Archive, Report 2015/1034, 2015.

[7] J. Corbet, “Defending against Rowhammer in the kernel,” Oct. 2016.
[Online]. Available: https://lwn.net/Articles/704920/

[8] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand Pwning Unit: Ac-
celerating Microarchitectural Attacks with the GPU,” in IEEE S&P, 2018.

2

[9] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A Remote
Software-Induced Fault Attack in JavaScript,” in DIMVA, 2016.

[10] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+Flush: A Fast
and Stealthy Cache Attack,” in DIMVA, 2016.

[11] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell,
W. Schoechl, and Y. Yarom, “Another Flip in the Wall of Rowhammer
Defenses,” in S&P, 2018.

[12] N. Herath and A. Fogh, “These are Not Your Grand Daddys
CPU Performance Counters – CPU Hardware Performance Coun-
ters for Security,” in Black Hat Briefings, Aug. 2015. [Online].
Available: https://www.blackhat.com/docs/us-15/materials/us-15-
Herath-These-Are-Not-Your-Grand-Daddys-CPU-Performance-Counters-
CPU-Hardware-Performance-Counters-For-Security.pdf

[13] G. Irazoqui, T. Eisenbarth, and B. Sunar, “MASCAT: Stopping microar-
chitectural attacks before execution,” Cryptology ePrint Archive, Report
2016/1196, 2017.

[14] Y. Jang, J. Lee, S. Lee, and T. Kim, “Sgx-bomb: Locking down the pro-
cessor via rowhammer attack,” in SysTEX, 2017.

[15] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors,” in ISCA’14, 2014.

[16] M. Lanteigne, “How Rowhammer Could Be Used to Exploit Weak-
nesses in Computer Hardware,” Mar. 2016. [Online]. Available:
http://www.thirdio.com/rowhammer.pdf

[17] M. Lipp, M. T. Aga, M. Schwarz, D. Gruss, C. Maurice, L. Raab, and
L. Lamster, “Nethammer: Inducing rowhammer faults through network
requests,” arXiv:1711.08002, 2017.

[18] M. Payer, “HexPADS: a platform to detect “stealth” attacks,” in ESSoS’16,
2016.

[19] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA:
Exploiting DRAM Addressing for Cross-CPU Attacks,” in USENIX Secu-
rity Symposium, 2016.

[20] D. Poddebniak, J. Somorovsky, S. Schinzel, M. Lochter, and P. Rösler, “At-
tacking deterministic signature schemes using fault attacks,” in EuroS&P,
2018.

[21] R. Qiao and M. Seaborn, “A new approach for Rowhammer attacks,” in
International Symposium on Hardware Oriented Security and Trust, 2016.

[22] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos, “Flip
feng shui: Hammering a needle in the software stack,” in USENIX Security
Symposium, 2016.

3

[23] M. Seaborn and T. Dullien, “Exploiting the DRAM rowhammer bug to
gain kernel privileges,” in Black Hat Briefings, 2015.

[24] A. Tatar, R. Krishnan, E. Athanasopoulos, C. Giuffrida, H. Bos, and
K. Razavi, “Throwhammer: Rowhammer Attacks over the Network and
Defenses,” in USENIX ATC, 2018.

[25] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice,
G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Deterministic
Rowhammer Attacks on Mobile Platforms,” in CCS’16, 2016.

[26] V. van der Veen, M. Lindorfer, Y. Fratantonio, H. P. Pillai, G. Vigna,
C. Kruegel, H. Bos, and K. Razavi, “Guardion: Practical mitigation of
dma-based rowhammer attacks on arm,” in DIMVA, 2018.

[27] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One bit flips, one cloud
flops: Cross-vm row hammer attacks and privilege escalation,” in USENIX
Security Symposium, 2016.

4

Another Flip in the Wall of Rowhammer Defenses
Daniel Gruss1, Moritz Lipp1, Michael Schwarz1, Daniel Genkin2,

Jonas Juffinger1, Sioli O’Connell3, Wolfgang Schoechl1, and Yuval Yarom3,4

1 Graz University of Technology
2 University of Pennsylvania and University of Maryland

3 University of Adelaide
4 Data61

Abstract—The Rowhammer bug allows unauthorized modifica-
tion of bits in DRAM cells from unprivileged software, enabling
powerful privilege-escalation attacks. Sophisticated Rowhammer
countermeasures have been presented, aiming at mitigating the
Rowhammer bug or its exploitation. However, the state of the art
provides insufficient insight on the completeness of these defenses.

In this paper, we present novel Rowhammer attack and
exploitation primitives, showing that even a combination of all
defenses is ineffective. Our new attack technique, one-location
hammering, breaks previous assumptions on requirements for
triggering the Rowhammer bug, i.e., we do not hammer multiple
DRAM rows but only keep one DRAM row constantly open.
Our new exploitation technique, opcode flipping, bypasses recent
isolation mechanisms by flipping bits in a predictable and
targeted way in userspace binaries. We replace conspicuous
and memory-exhausting spraying and grooming techniques with
a novel reliable technique called memory waylaying. Memory
waylaying exploits system-level optimizations and a side channel
to coax the operating system into placing target pages at attacker-
chosen physical locations. Finally, we abuse Intel SGX to hide
the attack entirely from the user and the operating system,
making any inspection or detection of the attack infeasible.
Our Rowhammer enclave can be used for coordinated denial-
of-service attacks in the cloud and for privilege escalation on
personal computers. We demonstrate that our attacks evade all
previously proposed countermeasures for commodity systems.

I. INTRODUCTION

The Rowhammer bug is a hardware reliability issue in
which an attacker repeatedly accesses (hammers) DRAM
cells to cause unauthorized changes in physically adjacent
memory locations. Since its initial discovery as a security
issue [44], Rowhammer’s ability to defy abstraction barriers
between different security domains has been extensively used
for mounting devastating attacks on various systems. Examples
of previous attacks include privilege escalation, from native
environments [65], from within a browser’s sandbox [24],
and from within virtual machines running on third-party
compute clouds [70], mounting fault attacks on cryptographic
primitives [10, 59], and obtaining root privileges on mobile
phones [68]. Recognizing the apparent danger, these attacks
have sparked interest in developing effective and efficient
mitigation techniques. While existing hardware countermea-
sures such as using memory with error-correction codes (ECC-
RAM) appear to make Rowhammer attacks harder [44], ECC-
RAM is intended for server computers and is typically not
supported on consumer-grade machines.

Preprint of the work accepted at the 39th IEEE Symposium on Security
and Privacy 2018 (https://www.ieee-security.org/TC/SP2018/index.html).

Software-based mitigations, which can be implemented on
commodity systems, have also been proposed. These include
ad-hoc defense techniques such as doubling the RAM refresh
rates [44], removing unprivileged access to the pagemap
interface [45, 62, 65], and prohibiting the clflush instruc-
tion [65]. However, recent works have already bypassed these
countermeasures [6, 24, 68]. Other ad-hoc attempts, such as
disabling page deduplication by default [52, 60], only prevent
specific Rowhammer attacks exploiting these features [11, 59],
but not all Rowhammer attacks.

The research community proposed sophisticated defenses
which seemingly have solved the Rowhammer problem. Based
on the underlying primitives of these defenses, we introduce
a new systematic categorization into five defense classes:

• Static Analysis. Binary code is analyzed for specific
behavior, common in side-channel attacks, e.g., using high-
resolution timers or cache flush instructions [28, 35].
• Monitoring Performance Counters. Rowhammer relies

on frequent accesses to DRAM cells, e.g., using a Flush+
Reload loop. These frequent accesses are detected by moni-
toring CPU performance counters [6, 17, 25, 28, 35, 56, 75].
• Monitoring Memory Access Patterns. Rowhammer

causes unusual high-frequency memory access patterns to
two or more addresses in one DRAM bank. Rowhammer
can be stopped by detecting such access patterns [6, 18].
• Preventing Exhaustion-based Page Placement. Row-

hammer requires target pages to be on vulnerable memory
locations. All Rowhammer privilege escalation attacks so
far required memory exhaustion. Thus, preventing abuse of
memory exhaustion thwarts Rowhammer attacks [24, 68].
• Preventing Physical Proximity to Kernel Pages. As a

more complete solution, user and kernel memory cells are
physically isolated through the memory allocator, thwarting
all practical Rowhammer privilege-escalation attacks [12].

Notice that defenses in each class share the same assump-
tions, properties, and introduce the same form of protection.
Defenses from different classes complement each other. Thus,
given the extensive amount of research on Rowhammer coun-
termeasures, in this paper we ask the following question:

To what extent do the approaches above actually prevent
Rowhammer attacks? In particular, is it possible to success-
fully mount Rowhammer privilege-escalation attacks in the
presence of some (or even all) of the countermeasures above?

A. Our Results and Contributions

In this paper, we show that despite numerous works on
mitigating Rowhammer attacks, much remains to be done
to truly understand their effectiveness and how to mitigate
them. For this purpose, we introduce a new categorization for
Rowhammer defenses (which we already outlined above) as
a foundation for a systematic evaluation. Demonstrating the
insufficiency of existing mitigation techniques, we present a
novel Rowhammer attack and subsequent exploitation tech-
niques for privilege escalation which allows defeating the un-
derlying assumptions of all of the countermeasures mentioned
above. In particular, our attack is still applicable even in the
presence of all of the above countermeasures. We now describe
the four building blocks of our attack and how each building
block invalidates the assumptions of the defense classes.
Defeating Physical Kernel Isolation. The assumption of
physical kernel isolation is that Rowhammer-based privilege
escalation is only practical by flipping bits in kernel pages.
We void this assumption by introducing opcode flipping, a
technique for malicious and unauthorized modification of a
userspace program’s instructions by causing bit flips in its
opcodes. By applying this technique to sudo, we bypass
authentication checks and obtain root privileges.
Defeating Memory Access Pattern Analysis. All known
Rowhammer techniques require frequent alternating accesses
to two or more DRAM cells in the same DRAM bank. Con-
sequently, countermeasures detect when an attacker performs
such alternating accesses to two or more addresses in the same
DRAM bank. We present one-location hammering, a new type
of Rowhammer attack which only hammers one single address.
Since our attack only uses one memory address, it does not
require any knowledge of physical addresses and DRAM
mappings [38, 57, 70], allowing us to perform Rowhammer
attacks with even fewer requirements.
Page Placement Without Memory Exhaustion. Page dedu-
plication is usually disabled for security reasons [52, 60, 68]
as a response to page deduplication attacks [8, 22, 66], includ-
ing deduplication-based Rowhammer attacks [11, 59], Hence,
attacks can only use memory exhaustion [24, 65, 68, 70] to
surgically place a target page on a vulnerable physical memory
location. Consequently, countermeasures aim to prevent adver-
sarial memory exhaustion [24, 68]. We introduce memory way-
laying, a reliable technique exploiting the Operating System
(OS) page cache to influence the physical location of a target
page. Unlike previous techniques, memory waylaying does not
exhaust the system memory and does not cause out-of-memory
situations, i.e., the system remains stable and responsive.
Defeating Countermeasures based on Performance Coun-
ters and Static Analysis. SGX is an x86 instruction-set
extension to securely and confidentially run programs in iso-
lated environments, called enclaves, on potentially adversary-
controlled systems. Enclaves run with regular user privileges
and are further restricted for their own security and safety, e.g.,
no system calls. To protect against compromised or malicious
OSs and hardware, the memory of the enclave is encrypted

to prevent any modification or inspection of the enclave’s
memory contents, even by the OS’s kernel and hardware
components [19]. Furthermore, enclaves are excluded from the
CPU performance counters [64]. Hence, this approach defeats
countermeasures which rely on monitoring performance coun-
ters [6, 25, 28, 56] or on analyzing the application code or
instruction stream for Rowhammer attacks [28, 35].

B. Attack Scenarios

Our attacks apply to personal computers and cloud systems.
Hence, we demonstrate our attacks in both of these scenarios.
• Native Privilege Escalation Attack. Our Rowhammer

enclave can be used on personal computers to gain root
privileges on the system, even in the presence of all of the
defenses mentioned above.
• A Cloud Denial-of-Service Attack. Our Rowhammer

enclave can also be used in the cloud, to shut down a large
number of cloud machines in a coordinated way, i.e., a
“distributed” denial-of-service attack, by abusing Intel SGX
security mechanisms. When SGX detects an error in the
encrypted and integrity-checked memory region, it halts the
entire machine until a manual power cycle is performed. By
coordinating the error injection over multiple machines, an
attacker can potentially take down an entire cloud provider.

C. Paper Outline

Section II provides background. Section III introduces a
new categorization of Rowhammer defenses. Section IV de-
fines our attacker model. Section V overviews our attack
and its building blocks, which are detailed in Section VI
(opcode flipping), Section VII (one-location hammering), and
Section VIII (memory waylaying). Section IX evaluates our
attacks in practical scenarios. Section X discusses limitations
and additional observations. We conclude in Section XI.

II. BACKGROUND

In this section, we overview the Rowhammer bug and
defenses, discuss the prefetch side-channel attack which we
use in Section VIII, and provide background on Intel SGX.

A. The Rowhammer Bug

The increase in density and decrease in size of DRAM cells
leads to smaller capacitance of cells, allowing them to operate
using lower voltages and smaller charges. While these changes
have many advantages, such as an increase in DRAM capacity
and lower energy consumption, they also cause DRAM cells to
become more susceptible to disturbance errors and unintended
physical interactions between multiple cells. Such interactions
and disturbances often cause memory corruption, where the
bit-value of a DRAM cell is unintentionally flipped [54].

In 2014, Kim et al. [44] showed that such bit errors can be
caused in a DRAM row by rapidly accessing memory locations
in adjacent DRAM rows (also known as row hammering [29]).
To achieve these rapid DRAM accesses, data-caching mecha-
nisms need to be bypassed, either by flushing the cache, e.g.,
using clflush [44], cache eviction [1, 6, 24], or uncached

memory accesses [58]. We now describe different Rowhammer
techniques to obtain bit flips in the target row.

Single-sided hammering performs frequent memory ac-
cesses (hammering) to only one row which is adjacent to the
target row. In contrast, double-sided hammering hammers two
memory rows, one on each side of the target row. As the
two hammered rows must be on different sides of the target
row, double-sided hammering generally requires at least partial
knowledge of virtual-to-physical mappings while single-sided
hammering does not. Both hammering techniques produce
abnormal memory access patterns as they induce an enormous
number of row conflicts. Bit flips are highly reproducible:
Hammering the same offsets again yields the same bit flips.

Although the name single-sided hammering may suggest
that only a single memory location is hammered, Seaborn
and Dullien [65], who introduced this technique, hammer
8 memory locations simultaneously. On their systems, two
or more randomly selected addresses (i.e., no knowledge
of virtual-to-physical mappings is required) are in the same
DRAM bank in 61.4% of the cases. Hence, in fact, single-
sided hammering aims to hammer two memory locations in
the same bank, but not necessarily neighboring the victim row.

Not a privilege-escalation attack but an escape from the
NaCl sandbox was demonstrated by Seaborn and Dullien [65].
NaCl executes arbitrary generated code directly on the CPU
but sanitizes it using a blacklist, e.g., no system calls. To
bypass the sanitizer, the attacker generates and sprays unpriv-
ileged code over the entire memory and induces an unpre-
dictable random bit flip at an unpredictable random memory
location. With a low probability, the bit flip hits the operand
of an and instruction used to sanitize addresses used by the
sandboxed code. As the code can be read and executed by
the attacker, the attacker can verify whether the random bit
flip modified a random code location such pointers are not
fully sanitized, re-enabling traditional control-flow diversion
attacks. Bhattacharya and Mukhopadhyay [10] exploited ran-
dom Rowhammer bit flips in random memory locations to
produce faulty RSA signatures, to recover the secret key.

However, as bit flips are highly reliable, more deterministic
and reliable attacks have been mounted, including privilege-
escalation attacks, sandbox escapes, and compromise of cryp-
tographic keys were demonstrated using memory spraying [24,
65, 70], grooming [68], or page deduplication [11, 59].

B. Rowhammer Defenses

Rowhammer defenses can be divided into three categories
based on their goal. The first category aims to detect Row-
hammer and, after detection, stop the corresponding processes.
The second category aims to neutralize Rowhammer bit flips
to prevent their exploitation. The third category aims to elim-
inate Rowhammer bugs. We now review previous works on
defending against Rowhammer attacks. We group the proposed
countermeasures using the above-mentioned three categories.
Rowhammer Detection Countermeasures. Static code a-
nalysis could be used to detect microarchitectural attacks in
binaries in a fully automated way, e.g., when tested before

loading them into an app store [35]. Several works detect on-
going attacks using hardware- and software-based performance
counters [17, 18, 25, 28, 56, 75]. Herath and Fogh [28] detect
attacks by monitoring suspicious cache activity of processes
using performance counters and then searching for clflush
instructions near the instruction pointer.
Rowhammer Neutralization Countermeasures. The sys-
tem’s memory allocator only places kernel pages near
userspace pages in near-out-of-memory situations. Hence,
modifying the allocator to prefer the out-of-memory situation
over the proximate placement of kernel and userspace pages,
effectively prevents memory exhaustion in turn of spraying
and grooming [24, 68]. This prevents known Rowhammer
attacks based on memory grooming or memory spraying, as
the target page cannot be evicted or placed anymore, i.e.,
neutralizes Rowhammer bit flips. Generalizing this, Brasser
et al. [12] presents G-CATT, an alternative memory allocator
that isolates user and kernelspace in physical memory ensuring
that the attacker cannot exploit bit flips in kernel memory, thus
neutralizing Rowhammer-induced bit flips. Disabling page
deduplication prevents Rowhammer attacks exploiting these
features [11, 52, 59, 60].
Rowhammer Elimination Countermeasures. ANVIL [6]
uses performance counters to detect and subsequently miti-
gate Rowhammer attacks. More specifically, ANVIL uses the
CPU’s performance counters in order to continuously monitor
the amount of cache misses. When the amount of cache
misses exceeds a predetermined threshold, ANVIL’s second
stage is initiated, logging the addresses of cache misses.
Finally, ANVIL mitigates Rowhammer effects by selectively
refreshing nearby memory rows. However, as refreshing a
row imposes some performance penalties, ANVIL avoids
having a large number of false positives by discarding all
logged cases that do have a significant amount of accesses
to at least two rows in the same memory bank. While this
optimization improves ANVIL’s performance, as we discuss
in Section III, it also prevents ANVIL from detecting one-
location hammering, thus facilitating our attack. Similarly to
ANVIL’s detection approach, Corbet [18] discusses halting the
CPU when cache-miss rates exceed a threshold, slowing down
not only Rowhammer attacks but the entire system.

Brasser et al. [12] also presented B-CATT, a bootloader
extension blacklisting vulnerable locations, thus, effectively
reducing the amount of usable memory, but fully eliminating
the Rowhammer bug. However, Kim et al. [44] observed
that this approach is not practical as it would block almost
the entire memory. We validated this observation and found
more than 95% of the memory would be blocked, on several
of our systems. Eliminating Rowhammer by blacklisting the
clflush instruction [65] was shown ineffective with cache-
eviction-based Rowhammer attacks [1, 6, 24].

Besides building more reliable chips or employing ECC
modules, Kim et al. [44] and Kim et al. [43] proposed
probabilistic methods to eliminate bit flips in hardware. Every
time a row is opened and closed, other adjacent or non-
adjacent rows are opened with a low probability. Thus, if a

Rowhammer attack opens and closes rows, statistically the
adjacent rows are refreshed as well and, thus, bit flips are
averted. The LPDDR4 standard [37] specifies two features to
eliminate the Rowhammer bug: Target Row Refresh (TRR)
enables the memory controller to refresh rows adjacent to a
certain row; Maximum Activation Count (MAC) specifies how
often a row can be activated before adjacent rows need to
be refreshed. Furthermore, Ghasempour et al. [21] presented
ARMOR, a cache storing frequently accessed rows in order
to reduce the number of row activations in the DRAM and,
thus, eliminating the Rowhammer bug.

Hence, all elimination-based defenses are either not practi-
cal or require hardware changes, making them not applicable
for commodity systems. Commodity systems should instead be
protected using detection- or neutralization-based approaches.

C. The Prefetch Side-Channel Attack

The prefetch side-channel attack was presented by Gruss
et al. [23] as a way to defeat address-space-layout randomiza-
tion. The timing difference induced by the prefetch instruction
depends on the state of various caches. Prefetch instructions
ignore privileges and permissions. Prefetch side-channel at-
tacks also exploit the OS design. In most OSs, every valid
memory location in a user process is mapped at least twice,
once in the user process virtual memory, and once in the direct-
physical mapping in the kernelspace. The prefetch address-
translation oracle exploits this direct-physical mapping to
determine whether an address in userspace maps to a specific
address in the direct-physical mapping. If the guess was
correct, the attacker learns the physical address of a userspace
virtual address. Hence, the attacker does not have to rely on OS
interfaces to obtain physical addresses for virtual addresses.

D. Intel SGX

Intel SGX is an x86 instruction-set extension for integrity
and confidentiality of code and data in untrusted environ-
ments [19]. For this purpose, SGX executes programs in so-
called secure enclaves which use protected areas of memory
that can only be accessed by the enclaves themselves. With
SGX implemented in the CPU, the enclave remains protected,
even if OS, hypervisor, and hardware have been compromised.
Furthermore, remote attestation allows validating the integrity
of the enclave by proving its correct loading.

Intel SGX explicitly protects against DRAM-based attacks,
e.g., cold-boot attacks, memory bus snooping, and memory-
tampering attacks, by cryptographically ensuring confidential-
ity, integrity, and freshness of data stored in the main memory.
Hence, it removes the DRAM from the trusted computing
base. The memory containing code and data of running
enclaves is a physically contiguous and encrypted block in
the DRAM, called EPC (enclave page cache) area, which is
protected from all non-enclave memory accesses using pro-
tection mechanisms implemented in the CPU. The encryption
by the Memory Encryption Engine (MEE) is transparent to
the processor’s cores [26]. The MEE utilizes a Merkle tree to
detect when the encrypted code and data stored in the DRAM

have been tampered with. The MEE provides freshness to the
integrity tags to mitigate replay attacks, i.e., replacing a new
encrypted page with an old encrypted page.

If an integrity or freshness error occurred, Intel SGX aborts
the execution of the memory fetch immediately, and the MEE
emits an error signal. Thus, the unverified data of the DRAM
will never be loaded into the last-level cache [26]. Moreover,
the MEE locks the memory controller, preventing any future
memory operations (potentially incurring data corruption),
causing the system to halt until it is rebooted.

E. Attacks on (and from) Secure Enclaves

While Intel does not claim to protect against side-channel
attacks that deduce information of collected power statistics,
performance statistics, branch statistics, or information on
pages accessed via page tables [4], several such attacks have
been demonstrated. Xu et al. [72] demonstrated a page fault
side-channel attack from a malicious OS to extract sensi-
tive information, e.g., text documents and images. Brasser
et al. [13] demonstrated a Prime+Probe cache side-channel
attack, extracting 70% of an RSA private key in an enclave.
Furthermore, Schwarz et al. [64] mounted a cache side-channel
attack from within an enclave to extract a full RSA private key
of a co-located enclave. Xiao et al. [71] mounted control-flow
inference attacks on recent SSL libraries running in secure
enclaves. Moghimi et al. [53] presented CacheZoom, a tool
that provides a high-resolution channel to track all memory
accesses of SGX enclaves to mount key recovery attacks.
Wang et al. [69] systematically analyzed side-channel threats
of SGX and identified 8 potential side-channel attack vectors.
However, Intel considers all of these attacks out of scope, due
to their side-channel nature.

Attacks that rely on shared memory (e.g., Flush+
Reload [73]) cannot be mounted, as enclave memory is in-
accessible for other enclaves, processes, and the OS. But as
DRAM rows are shared, Wang et al. [69] showed a cross-
enclave DRAMA attack (cf. [57]) on other enclaves.

In a concurrent and independent work, Jang et al. [36]
propose a denial-of-service attack running Rowhammer in
an SGX enclave. We compare their and our observations in
Section IX-A, where we describe a very similar attack.

III. CATEGORIZATION OF STATE-OF-THE-ART DEFENSES
FOR COMMODITY SYSTEMS

Discussing Rowhammer defenses based on their goal (de-
tection, neutralization, and elimination; cf. Section II-B), does
not allow a thorough analysis and comparison, as the primi-
tives of the different defenses in each category vary widely.
As we have seen in Section II-B, none of the elimination-
based defenses are practical or applicable to commodity sys-
tems. Hence, in this paper, we only focus on detection- and
neutralization-based defenses. In this section, we introduce a
novel systematic categorization for state-of-the-art defenses for
commodity systems.

In our evaluation of defenses we identified the following 5
defense classes which can be applied to commodity systems:

TABLE I: Rowhammer defenses for commodity systems.

Methodology
Defense M

A
SC

AT
[3

5]
C

hi
ap

pe
tta

et
al

. [
17

]
Zh

an
g

et
al

. [
75

]
H

er
at

h
an

d
Fo

gh
[2

8]
H

ex
PA

D
S

[5
6]

G
ru

ss
et

al
. [

25
]

A
N

V
IL

[6
]

C
or

be
t [

18
]

N
o

O
O

M
[2

4,
68

]
G

-C
AT

T
[1

2]
B

-C
AT

T
[1

2]
TR

R
[3

7]
M

A
C

[3
7]

PA
R

A
/C

R
A

/P
R

A
[4

3,
44

]

A
R

M
O

R
[2

1]
EC

C
/C

hi
pk

ill
[3

0,
44

]
R

ef
re

sh
R

at
e

[4
4]

DETECTION
Static Analysis

Performance Counters
Memory Access Pattern

NEUTRALIZATION
Physical Proximity
Memory Footprint

ELIMINATION
Bootloader

Hardware Modification
BIOS Update

Symbols indicate whether a defense is part of defense class (), optional
aspects of the defense are part of a defense class (), or a defense is not part
of a defense class ().

D1. Detection through static analysis.
D2. Detection through performance counter analysis.
D3. Detection through analysis of memory access patterns.
D4. Prevention by strictly avoiding physical proximity.
D5. Prevention by preventing conspicuous memory footprints.
Other defense classes (bootloader- or BIOS-update-based)
have already been shown to be ineffective (cf. Section II-B), or
cannot be applied to commodity systems (hardware modifica-
tions). Table I provides an overview of Rowhammer defenses
and the corresponding defense classes. We defer a discussion
of hardware-based defenses to Section X-B.

In the following, we briefly describe the assumptions and
implications for each of the defense classes, as well as an
exhaustive list of defenses for each class.
Static Analysis. The underlying assumption of defenses based
on static analysis (D1) is that the attack (binary) code can
be accessed. This defense class is especially interesting for
offline analysis, e.g., before adding software to an app store.
If the detection works, the user cannot be attacked anymore.
Static analysis is used by Irazoqui et al. [35] in MASCAT, an
automated static code analysis tool to detect microarchitectural
attacks on a large scale. Herath and Fogh [28] proposed to
suspend programs with high cache miss rates and analyze
instructions near the instruction pointer.
Performance Counter Monitoring. The underlying assump-
tions of defenses based on performance counter analysis (D2)
are that the performance counters are available and that they
include operations of the attacker program. A typical param-
eter for Rowhammer detection is the number of cache hits
and cache misses. Detecting Rowhammer at runtime leaves
a theoretical chance of missing an attack. If the detection
works, attacks are stopped before they can exploit a bit
flip. The use of performance counters is the basis of several
defenses [25, 28, 56]. The underlying Flush+Reload loop of
Rowhammer is also detected by cache attack defenses [17, 75].
Memory Access Patterns Monitoring. The underlying
assumptions of defenses based on memory access patterns
(D3) are that Rowhammer attacks require a large number of

cache misses on one row, and a large cumulative number of
accesses on other rows in the same DRAM bank. Assuming
this, Rowhammer attacks can be detected and stopped before
they cause bit flips [6, 18]. ANVIL [6] detects Rowhammer
in two stages: First, it monitors the last-level cache miss ratio.
Next, if the cache miss ratio exceeds a threshold, ANVIL
uses Intel PEBS to monitor the addresses of cache misses and
distinguish Rowhammer attacks from legitimate work loads.
For every candidate row, “other row access samples from the
same DRAM bank” are checked (cf. Section 3.3 in [6]). Only
if there are enough accesses to other rows of the same bank,
an attack is detected and victim rows are refreshed [6].
Preventing Physical Proximity. The underlying assumption
of defenses based on preventing physical proximity (D4) is that
Rowhammer attacks need to flip bits in page tables or other
kernel pages to take over the system. A memory allocator can
prevent physical proximity of user pages and kernel pages.
G-CATT [12] is the only published defense in this class. G-
CATT isolates kernel pages from user pages by leaving a gap
in physical memory. If the isolation works, the user cannot
take over the kernel and the system anymore.
Memory Footprints. The underlying assumptions of defenses
based on prohibiting conspicuous memory footprints (D5) are
that Rowhammer attacks need to allocate large amounts of
memory to scan for bit flips and almost exhaust the entire
memory to surgically place a page in a specific physical
location to trigger and exploit a Rowhammer bit flip. While
the memory consumption of the attacker can already raise
suspicion, both spraying [24, 65] and grooming [68] easily
exhaust the entire memory in a way that gets the attacker
process killed by the OS. The memory allocator by default
already avoids placing kernel pages near userspace pages,
and it only deviates from this behavior in near-out-of-memory
situations. Not deviating from the default behavior to prevent
adversarial memory exhaustion was mentioned in Rowhammer
attack papers [24, 68]. If the memory allocator prevents
adversarial memory exhaustion, an attacker cannot force target
pages to specific memory locations anymore.

IV. ATTACKER MODEL

Our attacker model makes the following fundamental as-
sumptions about the hardware, the OS, installed defense
mechanisms, and attacker capabilities:
Hardware. The installed DRAM modules are susceptible
to Rowhammer bit flips and no dedicated hardware-based
Rowhammer defense mechanisms are in place.
Operating System. The OS is up-to-date and fully patched,
and no known software vulnerabilities exist that an attacker
could exploit to elevate privileges.
Defenses. The system is protected with state-of-the-art Row-
hammer defenses. Specifically, at least one defense from each
defense class is deployed, including static analysis [35], hard-
ware performance counters [6, 17, 25, 28, 56, 75], memory
access pattern analysis [6], physical proximity prevention [12],
and prevention of near-out-of-memory situations [24, 68].

TABLE II: How the different defense classes are bypassed.

Bypass
Defense Class St

at
ic

A
na

ly
si

s

Pe
rf

or
m

an
ce

C
ou

nt
er

s

M
em

or
y

A
cc

es
s

Pa
tte

rn

Ph
ys

ic
al

Pr
ox

im
ity

M
em

or
y

fo
ot

pr
in

t

Intel SGX
One-location hammering

Opcode flipping
Memory waylaying

Defense class defeated

Attacker Capabilities. We assume that an attacker can start
an arbitrary unprivileged user program and that the attacker
can launch an SGX enclave, which is also unprivileged.

V. HIGH-LEVEL VIEW OF THE ATTACKS

In this section, we provide a high-level overview of the
attack primitives we develop for our privilege-escalation attack
in native environments and our denial-of-service attack in
cloud environments, despite the presence of defenses from all
defense classes from Section IV. Table II summarizes how we
defeat every single defense class.

To defeat defense class D1 (static analysis), we run our
attack inside an SGX enclave. Code in enclaves cannot be
read or inspected, as the processor prevents all accesses to the
enclave memory. By encrypting the code and only decrypting
it after the enclave is launched, a developer can hide arbitrary
code within SGX enclaves. Consequently, MASCAT [35] is
incapable of detecting any microarchitectural or Rowhammer
attack we perform inside the enclave. Furthermore, the instruc-
tion stream cannot be searched for clflush instructions [28].

Defense class D2 (performance counters) is also defeated
by running the attack inside an SGX enclave because the
processor does not include SGX activity in process-specific
performance counters for security reasons [31]. Confirming
this, Schwarz et al. [64] observed that performance counters
are not influenced by cache attacks running in SGX enclaves.
Hence, performance counters do not detect our attack.
One-location Hammering. To defeat defense class D3 (mem-
ory access patterns), we introduce a new attack primitive,
which we call one-location hammering. As older systems used
an “open-page” memory controller policy where a memory
row is kept open and buffered until the next memory row
is accessed, double-sided and single-sided hammering cause
frequent activations of rows by inducing cache misses on
different rows of the same bank [44]. Recently, however,
modern systems employ more sophisticated memory controller
policies, preemptively closing rows earlier than necessary, to
optimize performance (cf. Appendix C). We conjecture that
this change in policy creates a previously unknown Rowham-
mer effect, which we exploit with one-location hammering.

With one-location hammering, the attacker only runs a
Flush+Reload loop on a single memory address at the maxi-
mum frequency. This continuously re-opens the same DRAM
row, whenever the memory controller closes the row. We

observed that one-location hammering drains enough charge
from the DRAM cells to induce bit flips. As one-location
hammering does not access different rows in the same bank,
D3 defenses, such as the second stage of ANVIL [6], do not
detect the ongoing attack (cf. Section III). We describe one-
location hammering in detail in Section VII.
Opcode Flipping. To defeat defense class D4 (physical
memory isolation), we introduce another new attack primitive,
opcode flipping. All previous Rowhammer privilege-escalation
attacks induced bit flips in carefully crafted page tables. If
the page table modification is successful, the attacker gains
unrestricted read and write access to the physical memory,
which is equivalent to having kernel privileges [24, 65, 68, 70].

With opcode flipping, we propose a novel way to exploit
bit flips. In the x86 instruction set, bit flips in opcodes yield
other, in most cases, valid opcodes. We show that with only a
single targeted bit flip in an instruction, we can alter a (setuid)
binary, e.g., sudo, to provide an unprivileged process with
root privileges. As this is a bit flip in a user page, it breaks the
underlying assumption of defense class D4, i.e., G-CATT [12].

Previous attacks on unprivileged code [65] (cf. Section II-A
for a detailed discussion) bypassed sandbox code sanitization
by flipping bits in a bitmask used in a logical and in attacker-
sprayed code. In contrast to their work, we identify potential
target bit flips in any opcode in a shared binary or library,
modifying opcodes and the instruction stream. Consequently,
we illegitimately obtain root privileges by bypassing authen-
tication checks. We detail opcode flipping in Section VI.
Memory Waylaying. To defeat defense class D5 (memory
footprints), we introduce a novel alternative to memory spray-
ing and grooming, called memory waylaying. Rowhammer
attacks modify pages in a predictable way by placing them
in physical memory locations where a known bit flips occur.
There are two techniques to achieve this: With spraying the
attacker fills the entire memory with copies of the generated
data structure; with grooming the attacker allocates the data
structure to exploit in the exactly right moment. Both methods
require exhausting the entire memory and are easily detectable
by monitoring memory consumption. Memory waylaying per-
forms replacement-aware page cache eviction, using only
page cache pages. These pages are not visible in the system
memory utilization as they can be evicted any time and hence,
are considered as available memory. Consequently, memory
waylaying never causes the system to run out of memory.

We observed that page cache pages, after being discarded
from DRAM, are loaded to a new random physical location
upon access, on both Linux and Windows. Through continuous
eviction, the page is eventually placed on a vulnerable phys-
ical location. Memory waylaying leverages the prefetch side-
channel to detect when data in virtual memory is placed on a
specific physical location. By doing so, memory waylaying
consumes a negligible amount of time and memory while
waiting for the target page to be loaded to the target physical
location. Hence, it is difficult to detect. Once the data is located
at the desired position, the attacker hits it with the Rowhammer

bit flip and exploits the modified binary to gain root privileges.
We describe memory waylaying in detail in Section VIII.

VI. OPCODE FLIPPING

In this section, we describe opcode flipping, a generic
technique for exploiting bit flips in cached copies of binary
files. All previous generic Rowhammer privilege-escalation
attacks (i.e., obtaining root privileges) induced bit flips in the
page number field of an attacker-generated page table, in order
to change the memory page reference by some page table
entry. Seaborn and Dullien [65] (cf. Section II-A for a detailed
discussion) bypassed sandbox code sanitization by flipping bits
in a bitmask used in a logical and in attacker-sprayed code.

In contrast to previous work, we identify potential target bit
flips in any opcode in a shared binary or library, modifying
opcodes and the instruction stream. In contrast to previous
Rowhammer attacks based on memory spraying, the binary
pages we attack cannot be sprayed and only exist a single
time in the entire memory. In order to find suitable bit
flips in system binaries, we used the following methodology.
First, we manually define ranges within in the binary for
which bits could be flipped. We then automatically test every
single bit flip in these ranges, grouping the modified binaries
by the result of their corresponding execution. Finally we
manually analyze the results, looking for devastating outcomes
(such a obtaining root permissions without knowing the root
password) and target these bits via our Rowhammer attack.

Opcode flipping exploits that bit flips in opcodes can yield
other, yet valid, opcodes. These opcodes are often very similar
to the original opcode but have different, possibly inverted,
semantics. One prerequisite of opcode flipping is the ability
to flip a bit of a target binary page with surgical precision. For
now, we assume that the attacker can cause such a precise bit
flip and discuss the effect of such bit flips, before we show in
Section VIII how a file can be placed in memory accordingly.
Opcode Flipping Case Study. To illustrate opcode flipping
we consider the example of a single bit flip in the x86 opcode
JE = 0x74 (jump if equal). A single bit flip in this opcode
can yield the opcodes JNE = 0x75 (jump if not equal),
JBE = 0x76 (jump if below or equal), JO = 0x70 (jump
if overflow), JL = 0x7C (jump if lower), PUSHQ = 0x54
(push quad word), XORB = 0x34 (xor byte), HLT = 0xF4
(halt), and the prefix 0x64. Only 21 out of 255 two-byte
sequences starting with the prefix 0x64 are illegal opcodes.

Similarly, flips in TEST instructions preceding a conditional
jump have the same effect. For example, with a single bit flip,
the instruction TEST EAX,EAX, which sets the zero flag if
EAX is zero, can be transformed to XCHG EAX,EAX, which
never modifies the zero flag. Tests and conditional jumps are
used in virtually all computer programs, and they control the
decision logic of the programs. Therefore, we focus on flips
in these instructions. As we show, bit flips in such instructions
are sufficient to achieve our goals.
Exploitable Opcodes in Real-World Binaries. To exploit
opcode flipping for privilege escalation, we target userspace
applications with the setuid bit set, which are run as root.

On Ubuntu 17.04, there are 16 setuid binaries owned by
root, all being potential targets for privilege escalation using
a bit flip. We analyzed one of the most prominent targets
for privilege escalation, the sudo binary and sudoers.so
shared library (henceforth sudo binary).

We identified two regions in the sudo binary in which a
bit flip can be exploited. First, the check whether the user is
allowed to use sudo, i.e., if the user is in the sudoers file.
Second, the check whether the entered password is correct. In
this work, we focus on the latter.

We located 29 different offsets in the binary where a bit
flip breaks the password verification logic. All identified bit
flips affect the test or the conditional jump of the password-
verification location. Successful attacks on the conditional
jump change the condition so that it treats an incorrect pass-
word as if it was correct. Attacks on the test instruction result
in different operations which ensure that the zero flag is clear,
either by clearing it, e.g., ADD AL,0xC0, or by maintaining
the previous, clear, value. We provide a list with offsets and
their effect on the opcode at this position, in Appendix A.

As shown in the following section, bit flip positions in
memory are uniformly distributed, allowing exploitation of any
of the 29 offsets in the sudo binary to gain root privileges.

VII. ONE-LOCATION ROWHAMMER

In this section, we describe the hammering technique we
use to induce bit flips. We assume that the attacker already
knows exploitable bit offsets in binaries and only searches
for memory locations where these bit offsets can be flipped
through Rowhammer. We propose one-location Rowhammer
as a novel alternative technique based on previously unknown
Rowhammer effects. The scanning is performed from within
the enclave and hence, cannot be observed through perfor-
mance counters, source-code analysis or binary analysis.

Previous work described two different hammering tech-
niques, double-sided hammering, and single-sided hammering,
as described in more detail in Section II-A.

One-location hammering truly hammers only one memory
location, i.e., the attacker does not directly induce row conflicts
but only re-opens one row permanently. The core of one-
location hammering is a Flush+Reload loop hammering a
single randomly chosen address, voiding the assumptions of
defense class D3. Both, one-location hammering and single-
sided hammering are oblivious to virtual-to-physical address
mappings. Hence, we can also apply both hammering tech-
niques if physical address mappings are not available.

We studied the distribution of bit flips over 4 kB-aligned
memory regions, i.e., pages, as this alignment can be ob-
tained through our memory waylaying technique described in
Section VIII. We performed our analysis on a Skylake i7-
6700K with two 8GB Crucial DDR4-2133 DIMMs. We tested
each technique for eight hours and scanned for bit flips after
each hammering attempt (i.e., after 5 000 000 rounds of Flush+
Reload on two or one address, respectively). Each hammering
attempt hammers random memory locations (randomly-chosen
offsets on more than 100 000 randomly-chosen 4 kB pages).

(a) Double-sided (b) Single-sided (c) One-location

Fig. 1: Flippable bit offsets over 4 kB-aligned memory regions
for different hammering techniques. Bit flips from 0 to 1 (blue)
and bit flips from 1 to 0 (red) may occur at any bit offset.

Figure 1 shows the distribution of bit flip offsets accumulated
over 4 kB-aligned memory regions for double-sided hammer-
ing, single-sided hammering, and one-location hammering. We
observe that 25 223 out of 32 768 bit offsets (77.0%) can be
flipped using double-sided hammering on at least one 4 kB-
offset. 51.7% of the bit flips were from 0 to 1.

Single-sided hammering does not induce more bit flips than
double-sided hammering. However, regarding bit offsets, we
observe an even slightly more uniform distribution for single-
sided hammering, with 25 722 bit offsets (78.5%). 54.1% of
the bit flips were from 0 to 1.

One-location hammering only flipped 11 969 out of 32 768
bit offsets (36.5%) on at least one 4 kB-offset. 51.6% of the
bit flips were from 0 to 1. This is worse than double-sided
hammering and single-sided hammering. Still, our results show
for the first time, that one-location hammering drains sufficient
charge from the DRAM cells to induce bit flips.

We validated our results by reproducing them in a short
series of tests on a Haswell i7-4790 with two Kingston DDR3-
1600 DIMMs. We observe bit flips for all hammering tech-
niques, including one-location hammering. On an Ivy Bridge
i5-3230M with two Samsung DDR3-1600 SO-DIMMs we
observe a significantly higher number of bit flips for double-
sided hammering than for single-sided hammering, while bit
flips from one-location hammering were rare and not reliably
reproducible. Our measurements indicate that this machine
uses an open-page memory controller policy, as opposed to
the more efficient policies used on the other two systems (cf.
Appendix C). However, bit flips from 0 to 1 and from 1 to 0
have approximately the same probability on all three systems.

Our data shows that the bit flips over pages generally follow
a uniform distribution if a significant amount of memory is
tested. As our attacker aims at finding bit flips for specific
offsets on 4 kB pages, the runtime of the bit flip templating
phase depends on the number of exploitable bit flip offsets.
In case of the 29 bit offsets we found in sudo, the expected
runtime on our Skylake system is less than 17 minutes per
target bit flip for double-sided hammering, and less than
19 minutes for single-sided hammering. With one-location
hammering the expected runtime increases to 56 minutes until
a target bit flip is found. Hence, one-location hammering is
3.3 times slower in finding the target bit flip than comparable
hammering methods. If evasion of defense class D3 is a goal,
a slow-down factor of 3.3 is practical.

Deciding to run the stealthy templating longer than nec-
essary, i.e., searching for more than one bit flip, reduces the
runtime of the waylaying phase (cf. Section VIII) significantly,
as the attacker learns more addresses suitable for the attack.

The templating only keeps the CPU core of the enclave
busy but causes no other system utilization, i.e., it does not
exhaust memory, as we rely on the memory allocation of our
waylaying technique, that we present in the following section.

VIII. MEMORY WAYLAYING

The attacker knows which bit offsets in pages of binaries to
target to obtain root privileges, and how to hammer physical
memory locations to obtain a bit flip at the right bit offset. The
remaining problem is the inherent challenge of Rowhammer:
Placing the target page at a physical location where the
required bit flip can be induced. The known approaches to
solve this challenge are spraying, i.e., filling the entire memory
with copies of the page, or grooming, i.e., allocating the target
page in exactly the right moment [74]. However, the page
cache keeps every binary page only once in memory. Linux
prioritizes keeping binary pages in memory upon eviction.
Hence, spraying is not applicable in our attack and grooming
would require out-of-memory situations to force eviction of
the binary page. In this section, we present memory waylay-
ing, a reliable approach to solving the challenge of memory
placement. It is a generic stealthy alternative to spraying and
grooming, relying on a prediction oracle to determine whether
a target page is at the right physical memory location.

In Section VIII-A, we show how the prefetch side-channel
attack [23] can be leveraged as an oracle. In Section VIII-B,
we present a technique to evict a target page from the page
cache, forcing relocation at the next access. In Section VIII-C,
we describe how the prefetch attack and the page cache
eviction are combined to the stealthy memory waylaying. We
also present a fast variant, called memory chasing, which
sacrifices stealth for speed, with no sacrifice of reliability.

A. Prefetch-based Prediction Oracle

In our memory waylaying attack, the attacker monitors page
placement to detect mapping of one of the offsets in binaries
and shared libraries to one of the target memory locations. We
use the prefetch address-translation oracle [23] to perform this
monitoring. The oracle exploits the direct-physical mapping in
the Linux kernelspace. The prefetch address-translation oracle
provides an attacker with the information whether two virtual
addresses map to the same physical address, even in the
presence of address-space layout randomization.

The address-translation oracle consists of two steps, a se-
quence of prefetch instructions and a Flush+Reload attack, to
measure the effect of the prefetch. While the attack is prone to
false negatives due to ignored prefetch instructions, the Flush+
Reload attack at its core has virtually no false positives [73],
i.e., there is no cache hit if the address was not actually
cached. While both steps can generally be executed in SGX
enclaves, performing a Flush+Reload attack requires highly
accurate timing measurements. On SGX2, rdtsc is available

within enclaves. On SGX1, Schwarz et al. [64] demonstrated
that accurate timing can be obtained by using counting threads
and Wang et al. [69] mirrored rdtsc into the enclave. Our
experiments with both approaches show that we can use either
to obtain sufficiently accurate timing inside enclaves.

The address-translation oracle is first used in our attack to
determine offsets in the direct-physical map with exploitable
bit flips. It is then used a second time, to continuously monitor
the set of target addresses during the memory waylaying.
When an address match is detected, the next step of the attack
is triggered, i.e., hitting the target page with Rowhammer.

Our prefetch address-translation oracle, which we optimized
for stability, experienced no false positives over a time frame
of 3737 seconds and a true positive every 4.5 seconds, i.e.,
the expected value for the true positive rate is 50% when
measuring for 4.5 seconds. When optimized for performance
we can achieve the same performance as Gruss et al. [23], i.e.,
an expected measurement time of less than 50 milliseconds per
address without false positives, but with a higher false negative
rate. The search for the physical addresses is combined into
one prefetch side-channel attack, i.e., one prefetch operation
and as many Flush+Reload loops as page translations the
attacker wants to find. Hence, the runtime does not increase
significantly with the number of addresses, but only linearly
in the amount of system memory.

B. Page Cache Eviction

Both on Windows and Linux, files are cached page-wise in
the file page cache upon the first access to the corresponding
page. Any subsequent access to a page of a file is directly
served from the page cache. Thus, one prerequisite for memory
waylaying is a technique to deterministically evict a page of a
file from the page cache. Eviction ensures that any subsequent
access to the file cannot be served from the page cache
anymore, and the file is mapped to a new physical location.

Any unprivileged process could evict data from the page
cache by simply allocating a large amount of memory, such
that page cache pages must be evicted. This is similar to
the memory exhaustion techniques in previous Rowhammer
attacks and risks system crashes due to out of memory
situations [24, 65, 68]. We examined the behavior of the page
cache replacement algorithm to find a more reliable way to
trigger eviction. While Linux provides privileged interfaces
to do so, we need an approach which works without any
privileges and from within enclaves, i.e., only with regular
memory accesses.

A fundamental observation we made is that the replacement
algorithm of the Linux page cache prioritizes eviction of non-
executable pages over executable pages. However, it does
evict executable pages when filling the page cache with read-
only executable pages. On Windows, executable and non-
executable file-backed pages can be used equally. This forms
a basic primitive that allows us to efficiently and reliably
evict a selected page from the page cache. Because the
page cache only uses otherwise unused memory pages, the
technique does not result in memory pressure and avoids the

40 50 60 70 80 90 100

200

400

600

O
O

M

Memory Usage [%]

#
C

as
es Eviction

Exhaustion
Before Attack

Fig. 2: Our replacement-aware page cache eviction only leads
to negligible memory increase, whereas existing techniques
are close to an out-of-memory situation.

unresponsiveness and out-of-memory situations that memory
exhaustion causes [24, 65, 68].

For both approaches, memory exhaustion and replacement-
aware page cache eviction, the amount of data which has to
be accessed is at most the total amount of main memory in
the system. To evaluate how much memory has to be allocated
for the eviction to be successful, we use the Linux mincore
function. The mincore function tells whether a given page is
in the page cache. An attacker could also use this function to
optimize the page cache eviction during an attack, i.e., abort
the replacement-aware page cache eviction as soon as the page
to be evicted is not in the page cache anymore. However, this
is a trade-off between stealth and performance, as the OS can
monitor calls to the mincore function.

We evaluated our replacement-aware page cache eviction
on an Intel Core i5-6200U with 12GB of main memory. For
the experiment, we kept the system at an typical workload,
namely a browser, a mail client, and a music player were
running during the experiment. Figure 2 compares traditional
memory exhaustion with our replacement-aware page cache
eviction to evict a specific page (in our experiment a page
of the sudo binary) from the page cache. Our replacement-
aware page cache eviction only incurs a slight increase of
used memory, whereas the exhaustion-based technique is close
to an out-of-memory situation. In 0.78% of our exhaustion
tests, the test program was even terminated by the OS due
to excessive memory usage. In contrast, our replacement-
aware page cache eviction never leads to an out-of-memory
situation. On average, for our replacement-aware page cache
eviction, it was sufficient to access 5544MB of data to evict
the target page of the sudo binary from the page cache. The
replacement-aware page cache eviction takes on average 2.68
seconds. For higher workloads, an attacker has to access even
less data to evict a specific page from the page cache, as the
size of the page cache decreases with the memory usage of
active applications. On Windows, the page cache eviction takes
on average 10.10 seconds, as we cannot rely on the Linux
mincore function to abort the eviction process.

C. Positioning Memory Pages

We combine the prefetch translation oracle (cf. Sec-
tion VIII-A) and the replacement-aware page cache eviction
(cf. Section VIII-B) to maneuver a target page on one of
the physical locations with a bit flip (cf. Section VII). As an
extension to memory waylaying, which is slow but stealthy,
we also propose memory chasing, a faster non-stealthy variant.

B
X

(a) Start

X

(b) Our Eviction

B

X

(c) Access
Binary

B

X

(d) Repeat: Evict
+ Access

B

X

(e) Repeat: Evict
+ Access

BX

(f) Stop if target
reached

Fig. 3: Memory waylaying. In step (a) some pages are free
(). Our eviction (b) allocates all free pages for the page cache
(), but leaves occupied pages () untouched. Repeating the
eviction, the target page B (B) is relocated, but the occupied
memory remains the same. Eventually, B is placed on the
target physical location X (X) as illustrated (f).

1

Fig. 4: Distribution of placements of a page in the physical
memory of our test system (12GB). Each square represents
4MB. Hatched (red) areas are unavailable to the system
(e.g., graphics memory). The darker (blue) an area, the more
physical pages were in this area. Even a small number of
relocations covers most of the physical memory.

Both memory waylaying and memory chasing, leverage
the prefetch translation oracle to test whether our exploitable
page is at the correct (i.e., vulnerable) physical page. As the
physical page usually does not change often (i.e., only if there
is high memory pressure or the system is rebooted), memory
waylaying periodically evicts the page cache. On a subsequent
access to the target page, the access cannot be served from the
page cache anymore, and a new physical page is allocated and
mapped. This procedure works the same way on Windows and
Linux, as illustrated in Figure 3.

We evaluate the distribution of physical page numbers used
for a specific binary page on one of our test systems, an
Intel Core i5 with 12GB of main memory. We repeated the
memory waylaying process 57 000 times, i.e., the binary page
was relocated 57 000 times. Out of these 57 000 relocations,
we found 46 720 unique physical page numbers, i.e., the
probability of maneuvering the binary to a physical location
where it was already is only 18% after 57 000 tries. Figure 4
visualizes the distribution of the 57 000 relocations in physical
memory. We observe that even the small number of relocations
we tested (i.e., 1.8% of all pages) covered most of the physical
memory, with the exception of occupied memory regions.
Thus, eventually the target binary page is placed at a physical
memory location where the intended bit flip can be induced.

The advantage of memory waylaying over conventional
techniques, such as grooming or spraying, is that it is stealthy,
as it does not exhaust the memory. The OS page cache is
designed to occupy any unused page in the system. Most
pages are rarely accessed, but it is still more efficient to keep
them in memory than to reload them from the disk. Memory

waylaying exploits this design, and as a consequence, it has
no impact on memory utilization and only negligible impact
on the overall system performance, as the page cache simply
keeps a different set of pages in the otherwise unused memory.
In Section IX-B, we detail the runtime of the waylaying phase
in a practical example.

The disadvantage of memory waylaying is that the runtime
can vary widely, from a few hours up to a few days, until the
target page is placed on the correct physical location. As a
faster solution, we propose memory chasing, an adaption of
memory waylaying which sacrifices stealth for speed. Instead
of waiting for the target page to be placed on a different
physical page, we actively “chase” the binary in physical
memory until it is at the correct physical page. Memory
chasing runs outside of the enclave as it has a stronger
interaction with userspace library functions. To change the
physical page of a target binary, memory chasing exploits the
copy-on-write effect of fork as follows:
1) mmap the binary as private and writable.
2) Fork the current process.
3) In the child process, write to the mapped binary. This

ensures that the page is copied to a new physical page.
4) Kill the parent process to release the old physical page.
5) Repeat until the page is at the intended physical location

(check using the prefetch translation oracle)
Although the binary content is now at the correct physical

location, the page cache still holds the first version of the
binary page, as the current page is dirty (i.e., modified). Thus,
we have to trick the kernel into replacing the old binary page
with the current one. We do this by evicting the page cache as
described in Section VIII-B. This removes the old (cached)
binary page from the page cache. After the page cache is
evicted, we unmap the current binary page and immediately
map it again, however, this time with read-only and execute
permissions. This ensures that the freed physical page is used
to cache the binary in the page cache.

Memory chasing is considerably faster than memory way-
laying, as the page cache has to be evicted only once. Moving
the physical page with memory chasing takes on average
only 36.7 µs, whereas memory waylaying requires 2.68 s. On
Windows, we could not test memory chasing as there is
no equivalent to the fork function. With 10.10 s, memory
waylaying requires slightly more time on Windows. However,
both techniques have the advantage of not exhausting the
memory in contrast to memory spraying and grooming. One
disadvantage of memory chasing is the large number of fork
system calls, occupying one CPU core. Therefore, depending
on how stealthy the attack must be, the attacker chooses which
of the two primitives to use for reliable page cache eviction.
In Section IX-B, we detail the runtime of memory chasing in
a practical example.

IX. EVALUATION OF ATTACKS IN NATIVE AND CLOUD
ENVIRONMENTS

In this section, we summarize our attacks and evaluate them
in practical scenarios. We first consider a cloud scenario with

a simple attack, where an attacker is able to run our attack in
virtual machines on multiple cloud servers. We then consider a
local scenario with our full attack, where an attacker is able to
run our attack on personal computers and performs a privilege-
escalation attack. We detail the procedural steps of the attacks
as well as the corresponding runtime.

A. Abusing SGX for Denial-of-Service Attacks in the Cloud

Cloud servers are typically less susceptible to Rowhammer
bit flips due to the presence of ECC, double refresh rates,
and slower DRAM modules [57]. In the cloud scenario, the
attacker uses our attack to identify vulnerable servers and take
these servers down in a coordinated and distributed attack, i.e.,
a denial-of-service attack. In this attack, we do not aim for
privilege escalation and hence, neither perform opcode flipping
nor memory waylaying. The attacker runs an unprivileged
SGX enclave to evade defense classes D1 and D2.

If, as discussed in Section II-D, an attacker induces bit flips
in the encrypted memory area (EPC) of SGX, the CPU locks
the memory controller (potentially incurring data corruption),
causing the system to halt until it is rebooted manually. Note
that only a tiny fraction of 4 kB pages are adjacent to the
128MB EPC memory area. For instance, on a system with
16GB dual-channel dual-rank DDR4 memory, only 256 pages
(0.006% of all pages) are in an adjacent DRAM row. As
different allocation mechanisms are used to allocate EPC
pages and normal world pages, the attacker cannot accidentally
hammer EPC addresses. Hence, it is extremely unlikely to
accidentally flip a bit in the EPC memory region.

Many cloud providers use KVM [27] or Xen [7] to run
multiple virtual machines of different tenants in parallel on
the same physical hardware. To expose SGX features to virtual
machines, Intel published the necessary kernel patches [32, 33,
34]. Recently, Microsoft [51] introduced Azure confidential
computing that enables developers to use SGX in their cloud.

Our “distributed” denial-of-service attack consists of two
phases, seek and destroy:
• Seek. The attacker launches the attack enclave on many

hosts in the cloud (i.e., “distributed”), and templates the
DRAM for possible bit flips. The runtime of this phase is
in the range of multiple hours. As the position of bit flips
is uniformly distributed, an attacker learns from any bit flip
while templating, that the DRAM very likely also vulnerable
to bit flips in the EPC region used by SGX.
• Destroy. The attacker shuts down every vulnerable ma-

chine found in phase 1, by simultaneously triggering bit
flips in EPC memory. The runtime of this phase is in the
range of seconds to minutes.
Besides ethical considerations on performing this exper-

iment on a public cloud provider, we also found that no
public cloud provider offers SGX support. Microsoft’s Azure
confidential computing [51] can only be used as an early access
program, that we have not been granted access to. Instead, we
performed the first part of our experiment on a dual CPU
server system with two Intel Haswell-EP Xeon E5-2630 v3,
a setup commonly found in public clouds. We equipped the

system with two Crucial DDR4-2133 DIMMs known to be
susceptible to Rowhammer bit flips. Our experiments showed
that due to the significantly lower clock frequency (60–76%
of the clock frequency of an Intel Skylake i7-6700K) and
the by-default doubled refresh rate, bit flips are much rarer.
Specifically, we observed only 3 bit flips in an 8 hour test.
However, this is sufficient for our denial-of-service attack.

In the second phase, our Rowhammer enclave starts to
simultaneously hammer DRAM rows in the EPC on all
hosts. By triggering a bit flip within this memory region, the
machine locks the memory controller (potentially incurring
data corruption) and causes the system to halt until reboot.

As our Intel Haswell-EP system does not support Intel
SGX, we performed the second part of our practical analysis
on an Intel Skylake i7-6700K. We verified that we are able
to reproducibly crash the system within 10 seconds when
hammering DRAM rows used by the EPC, as Intel SGX
locked down the memory controller, halting the system and
forcing us to power off the system manually. We observed
that occasionally, after powering on the system again, the
system did not boot beyond the BIOS for several minutes.
After powering the system off and on again another time, the
system regularly booted again.

Our results show that SGX introduces a significant security
risk for cloud providers, allowing an attacker to cause hard-
to-trace denial-of-service attacks and coordinated simultane-
ous take-down of multiple cloud servers, e.g., in the Azure
confidential computing cloud [51]. As the attack hurts the
availability and reliability of the cloud provider, it is especially
interesting for parties with conflicting economic interests.

While the same attack could also be applied to a large num-
ber of personal computers, it is unclear how an attacker would
profit from denial-of-service attacks on personal computers,
especially in the face of the full privilege-escalation attack we
detail in the next subsection.

In a concurrent independent work, Jang et al. [36] propose
a similar attack, making the same observations as we did:
the system reset does not work properly following bit flips in
SGX; any bit flip in the 128MB region causes the system
to halt, making the attack easier than other Rowhammer
attacks; all detection mechanisms are bypassed by hiding the
Rowhammer code inside an enclave; and that just locking
down the processor in case of a bit flip might not be the
best defense scheme. As a defense, they propose that future
work should investigate whether there are non-process-specific
performance counters which allow detection of suspicious
activity in SGX enclaves.

B. Abusing SGX to Hide Privilege-Escalation Attacks

Personal computers are more susceptible to Rowhammer bit
flips, as they usually are not equipped with ECC-RAM. In this
scenario, the attacker uses our full attack for privilege escala-
tion from a regular unprivileged process to root privileges. The
crucial building blocks of this attack are opcode flipping and
memory waylaying. The attacker runs an unprivileged SGX
enclave to evade defense classes D1 and D2.

TABLE III: Optimal parameters and runtime of the attack.

Method Bitflips Templating Waylaying Total

Double-sided, waylaying 91 26.1h 69.4h 95.5h
Single-sided, waylaying 87 27.5h 70.6h 98.1h
One-location, waylaying 50 47.3h 90.5h 137.8h

Double-sided, chasing 1 0.7h 43.7h 44.4h
Single-sided, chasing 1 0.7h 43.7h 44.4h
One-location, chasing 1 1.3h 44.0h 45.4h

In our example attack, we apply opcode flipping (cf. Sec-
tion VI) to exploit bit flips in opcodes in the sudo binary
of an up-to-date Ubuntu distribution. Bit flips at some offsets
in the binary (Section VI) cause a skipping of authentication
checks and, thus, provide us with root privileges.

The local attack requires two preparation steps:
• Offline Preparation. The attacker determines which bit

flip offsets in standard system executable binaries and shared
libraries are exploitable. This step is repeated for a large
number of binaries and shared libraries of different distri-
butions and versions. The result of the offline preparation
is a database of files, versions, and bit flip offsets (cf.
Section VI). In this phase, we identified 29 exploitable bit
offsets in sudo.
• Online Preparation. The attacker verifies that the binary

and library versions on the target systems are in the database.
This is very likely the case if the victim uses a default
installation of a popular Linux distribution, e.g., Ubuntu,
as all binaries and libraries are pre-compiled and hence,
identical on virtually every installation.

After the preparation steps are completed, the attacker contin-
ues with the main attack, consisting of four phases:
• Templating phase. Our Rowhammer enclave templates

memory for bit flips. This is done via single-sided ham-
mering or one-location hammering (cf. Section VII), which
both are oblivious to physical addresses and hence, perfectly
suited to be run in our Rowhammer enclave. To defeat
defense class D3, the attacker can use one-location hammer-
ing. The memory is allocated via memory-mapped files (cf.
Section VIII), causing no significant increase in the resident
memory and, thus, avoiding out-of-memory situations.
The runtime of the templating phase and the waylaying
phase pose an optimization problem (see Appendix B).
Table III shows the optimal solution for our scenario, e.g.,
the runtime with one-location hammering is 47.3 hours
if followed by waylaying, and 1.3 hours if followed by
memory chasing. Interruptions during this time frame are
no problem, as the attacker tests independent memory lo-
cations and does not lose data over interruptions. During
the templating, the enclave occupies one CPU core, which
is visible to the OS but which could also be explained
by completely benign enclave operations. The result of the
templating phase is a list of physical pages with bit flips
matching those from the preparation phase.
• Waylaying phase. Our Rowhammer enclave uses a side

channel to wait until one of the vulnerable target binary or
library pages is placed on one of the exploitable memory

locations (cf. Section VIII). The prefetch-based prediction
oracle tells us when the page has been loaded at the correct
position. Next, then we flip the bit in the opcode using one-
location hammering in the hammering phase.
The runtime of the waylaying phase depends on the number
of bit flips found in the templating phase. Table III shows the
optimal solution for our scenario, e.g., the runtime with one-
location hammering is 90.5 hours for memory waylaying
and 44.0 hours for memory chasing. The result of the
waylaying phase is that a target binary page is placed on
the right physical page to trigger a predictable bit flip.
• Hammering phase. The hammering phase only takes

a few milliseconds, as it only induces the predictable bit
flip on the target page using Rowhammer. The attacker can
verify whether a bit was flipped by reading the content of
the binary page. Thus, the result of the hammering phase
is an unauthorized modification of the target binary, i.e., in
our case a malicious sudo binary.
• Exploitation phase. As the binary page in memory

now contains the modified opcodes, the privilege check in
the target binary, i.e., sudo, is circumvented. Hence, the
attacker simply runs the attacked binary and, thus, obtains
root privileges. Consequently, the exploitation phase also has
a negligible runtime.

We performed all attack steps on an i7-6700K, showing that
the attack can be mounted in practice. Furthermore, we vali-
dated the templating on two other systems, an i5-3230M with
Samsung DDR3-1600 memory, and an i7-4790 with Kingston
DDR3-1600 memory. We also validated the waylaying phase
by running it for several days as a background process on
a second machine (an i5-6200U), confirming that the user
does not notice any attack activity and that it does not cause
any system crashes. To eliminate traces or avoid potential
instabilities due to the binary modifications, an attacker can
restore the unmodified binary page by simply evicting the
page cache once more. Upon the next access, the unmodified
version is reloaded from the disk.

Our attack shows that existing countermeasures for com-
modity systems are incomplete and fundamental assumptions
need to be refined to design effective countermeasures.

X. DISCUSSION

In this section, we discuss limitations of our approach and
additional observations we made while conducting our study.

A. Limitations

One limitation of our work is that an attacker in the native
attack scenario likely needs to get a Rowhammer enclave
signed by a signing entity, e.g., Intel or a BIOS vendor, to
be able to launch the enclave. While this sounds like a solid
solution to prevent Rowhammer attacks through enclaves in
practice, investigations on a very similar setting show that
this is not the case [15]. It is very well possible to slip
malware into app stores [15]. Furthermore, most works on
applications of SGX suggest that it can be used to keep
the code and data secret from any third party [5, 49, 63].

Especially for secure cloud computation it is not plausible
to run only signed enclaves, i.e., a cloud provider will run
non-signed user enclaves. This would allow an attacker to run
our attack as well. Consequently, a different solution must be
found to prevent Rowhammer attacks through SGX enclaves.

Although far more stealthy than spraying and grooming,
memory waylaying is still observable by the OS. The OS
could prevent allocating too many page cache pages in a sin-
gle process. However, high memory requirements could also
be perfectly reasonable, e.g., trusted video processing [47],
operations on large encrypted database files [14, 42, 55, 63].
Hence, it is unclear whether memory allocation patterns alone
are enough to give away a Rowhammer attack. There is no
further interaction between the enclave and the non-enclave
sides that could be monitored to detect the attack. Finally,
future software defenses may still prevent our attack, e.g., by
checking the integrity of binaries and terminating processes
when an integrity check fails.

SGX enclaves should only be run if they are signed by
Intel or a trusted partner. If Intel or one of the trusted partners
do not thoroughly review the code before singing it, our
attack might slip through the signing process. However, as
this enclave signing process has not yet been deployed, it is
unclear whether such a code review would actually happen.
Perhaps more devastating is that fact that users and businesses
can deliberately run non-signed enclaves. In fact, Microsoft al-
ready does this on the Azure confidential computing cloud [51].
Hence, it is unclear whether a signing process would pose any
limitation for our attack.

Currently, in our opcode flipping technique, the identifica-
tion of target bit flip locations in binaries requires some manual
work. That is, manually defining a range where bit flips should
be tested and manually selecting the groups of successful
execution results. While this is certainly feasible for a small
number of binaries, fully automating this process would allow
a complete analysis of the attack surface. Similarly, compilers
could generate code which guarantees that an attacker requires
at least N bit flips to successfully manipulate the control flow,
i.e., N is a security parameter (cf. [9, 16]). We consider this
an interesting direction of future work, not only for research
on Rowhammer attacks but also on fault attacks in general.

B. Rowhammer mitigations in hardware

While it might be possible to design a practical software-
based Rowhammer countermeasure, the results of our paper
indicate that this is difficult, since not all variants of trig-
gering the Rowhammer bug are known. Furthermore, future
Rowhammer defenses should also be designed with related
fault attacks in mind [40, 46]. We now discuss proposed and
existing countermeasures implemented that require hardware
modifications, but tackle the problem at its root.

ECC RAM can detect and correct 1-bit errors and, thus,
deal with single bit flips caused by the Rowhammer attack.
Furthermore, IBM’s Chipkill error correction [30] allows to
successfully recover from 3-bit errors. However, uncorrectable
multi-bit flips can be exploitable [2, 3, 48] or can result in a

denial-of-service attack similar as described in Section IX-A
depending on how the OS responds to the error. While
only modern AMD Ryzen processors support ECC RAM in
consumer hardware, Intel restricts its support to server CPUs,
thus, making it unavailable in commodity systems.

While the LPDDR4 [37] implements TRR and MAC,
van der Veen [67] still reported bit flips on a Google Pixel
phone with 4GB LPDDR4 memory. Doubling the refresh rate
has been shown to be insufficient [6, 44] and a further increase
would incur a too high performance penalty [44].

Meaney et al. [50] introduced a redundant array of indepen-
dent memory (RAIM) system as a feature of IBM’s zEnterprise
servers, which is basically the memory-equivalent for RAID
systems for hard disks. For an uncorrectable error, an attacker
would have to induce multiple bit flips in different rows of
different modules, making Rowhammer attacks infeasible.

Kim et al. [44] and Kim et al. [43] proposed to eliminate
bit flips in hardware by probabilistically opening adjacent or
non-adjacent rows, whenever a row is opened or closed. As
ongoing Rowhammer attacks open and close a certain row
repeatedly, the vulnerable adjacent rows would be refreshed
before bit flips occur. Their approaches are possible solutions
to mitigate Rowhammer attacks in future hardware.

C. Design of SGX

Intel SGX aims at protecting code from untrusted third
parties. Indeed, we see that it perfectly hides our attack
from different defense mechanisms. While this is intentional
behavior and shows that SGX works, the question arises
how to cope with harmful code within SGX enclaves, which
eventually will happen in the wild.

A more discerning problem of SGX is that it halts the
entire system, e.g., a cloud system. This is a powerful tool
for attackers regardless of whether they run in the normal
world or within an SGX enclave. Taking down entire clouds,
possibly in a coordinated and distributed way, poses a security
risk. Instead of halting the system, it would be less dangerous
for the provider to only stop the running enclaves and return
corresponding error codes to the host application. A similar
design change was also proposed by Jang et al. [36].

XI. CONCLUSION

In this paper, we showed that even a combination of all
state-of-the-art Rowhammer defenses does not prevent Row-
hammer attacks. Our novel attack and exploitation primitives
systematically undermine the assumptions of all defenses.
With one-location hammering, we showed that previous as-
sumptions on how the Rowhammer bug can be triggered are
invalid and keeping only one DRAM row constantly open is
sufficient to induce bit flips. With a slow-down factor of only
3.3, it is still on par with previous (now mitigated) techniques.
With opcode flipping, we bypass all memory layout-based
defenses by flipping bits in a predictable and targeted way
in the userspace sudo binary. We present 29 bit offsets,
each allowing an attacker to obtain root privileges in practice.
With memory waylaying, we present a reliable technique

to replace conspicuous and unstable memory spraying and
grooming techniques. Coaxing the OS into relocating any
binary page takes 2.68 s with our stealth-optimized variant,
and only 36.7 µs with our speed-optimized variant. Finally,
we leveraged Intel SGX to hide the full privilege-escalation
attack, making any inspection or detection of the attack infea-
sible. Consequently, our attack evades all previously proposed
countermeasures for commodity systems.

ACKNOWLEDGMENTS

We would like to thank our anonymous reviewers and
Mark Seaborn for their valuable feedback as well as Thomas
Schuster for help with some experiments. This work has been
supported by the Austrian Research Promotion Agency (FFG)
via the K-project DeSSnet, which is funded in the context of
COMET – Competence Centers for Excellent Technologies
by BMVIT, BMWFW, Styria and Carinthia. This project has
received funding from the European Union’s Horizon 2020
research and innovation programme under European Research
Council (ERC) grant agreement No 681402 and under grant
agreement No 644052 (HECTOR). Yuval Yarom performed
part of this work as a visiting scholar at the University of
Pennsylvania, supported by an Endeavour Research Fellow-
ship from the Australian Department of Education and Train-
ing. Daniel Genkin was supported by NSF awards #1514261
and #1652259, financial assistance award 70NANB15H328
from the U.S. Department of Commerce, National Institute of
Standards and Technology, the 2017-2018 Rothschild Postdoc-
toral Fellowship, and the Defense Advanced Research Project
Agency (DARPA) under Contract #FA8650-16-C-7622.

REFERENCES

[1] M. T. Aga, Z. B. Aweke, and T. Austin, “When good
protections go bad: Exploiting anti-DoS measures to
accelerate Rowhammer attacks,” in International Sym-
posium on Hardware Oriented Security and Trust, 2017.

[2] B. Aichinger, “DDR memory errors caused by Row
Hammer,” in HPEC, 2015.

[3] ——, “Row Hammer Failures in DDR Memory,” in
memcon, 2015.

[4] I. Anati, F. McKeen, S. Gueron, H. Huang, S. Johnson,
R. Leslie-Hurd, H. Patil, C. V. Rozas, and H. Shafi, “Intel
Software Guard Extensions (Intel SGX),” 2015, Tutorial
Slides presented at ICSA.

[5] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin,
C. Priebe, J. Lind, D. Muthukumaran, D. O′Keeffe, M. L.
Stillwell et al., “SCONE: Secure Linux containers with
Intel SGX,” in OSDI, 2016.

[6] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks,
Y. Oren, and T. Austin, “ANVIL: Software-based protec-
tion against next-generation Rowhammer attacks,” ACM
SIGPLAN Notices, vol. 51, no. 4, pp. 743–755, 2016.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen
and the Art of Virtualization,” ACM SIGOPS Operating
Systems Review, vol. 37, no. 5, pp. 164–177, 2003.

[8] A. Barresi, K. Razavi, M. Payer, and T. R. Gross, “CAIN:
silently breaking ASLR in the cloud,” in Usenix WOOT,
2015.

[9] T. Barry, D. Couroussé, and B. Robisson, “Compila-
tion of a countermeasure against instruction-skip fault
attacks,” in Workshop on Cryptography and Security in
Computing Systems, 2016.

[10] S. Bhattacharya and D. Mukhopadhyay, “Curious Case
of Rowhammer: Flipping Secret Exponent Bits Using
Timing Analysis,” in CHES, 2016.

[11] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup
Est Machina: Memory Deduplication as an Advanced
Exploitation Vector,” in S&P, 2016.

[12] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R.
Sadeghi, “CAn’t touch this: Software-only mitigation
against Rowhammer attacks targeting kernel memory,”
in USENIX Security Symposium, 2017.

[13] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen,
S. Capkun, and A.-R. Sadeghi, “Software grand expo-
sure: SGX cache attacks are practical,” in Usenix WOOT,
2017.

[14] H. Brekalo, R. Strackx, and F. Piessens, “Mitigating pass-
word database breaches with Intel SGX,” in Workshop on
System Software for Trusted Execution, 2016.

[15] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang,
W. Zou, and P. Liu, “Finding unknown malice in 10
seconds: Mass vetting for new threats at the Google-Play
scale.” in USENIX Security Symposium, 2015.

[16] Z. Chen, J. Shen, A. Nicolau, A. Veidenbaum, N. F.
Ghalaty, and R. Cammarota, “CAMFAS: A compiler
approach to mitigate fault attacks via enhanced SIMDiza-
tion,” in Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), 2017.

[17] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time
detection of cache-based side-channel attacks using hard-
ware performance counters,” Cryptology ePrint Archive,
Report 2015/1034, 2015.

[18] J. Corbet, “Defending against Rowhammer in the
kernel,” Oct. 2016. [Online]. Available: https://lwn.net/
Articles/704920/

[19] V. Costan and S. Devadas, “Intel SGX explained,” Cryp-
tology ePrint Archive, Report 2016/086, 2016.

[20] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and
O. Mutlu, “Memory power management via dynamic
voltage/frequency scaling,” in ACM International Con-
ference on Autonomic Computing, 2011.

[21] M. Ghasempour, M. Lujan, and J. Garside,
“ARMOR: A Run-time Memory Hot-Row Detector,”
2015. [Online]. Available: http://apt.cs.manchester.ac.uk/
projects/ARMOR/RowHammer

[22] D. Gruss, D. Bidner, and S. Mangard, “Practical mem-
ory deduplication attacks in sandboxed JavaScript,” in
ESORICS, 2015.

[23] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard,
“Prefetch Side-Channel Attacks: Bypassing SMAP and
Kernel ASLR,” in CCS, 2016.

[24] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js:
A Remote Software-Induced Fault Attack in JavaScript,”
in DIMVA, 2016.

[25] D. Gruss, C. Maurice, K. Wagner, and S. Mangard,
“Flush+Flush: A Fast and Stealthy Cache Attack,” in
DIMVA, 2016.

[26] S. Gueron, “A memory encryption engine suitable for
general purpose processors,” Cryptology ePrint Archive,
Report 2016/204, 2016.

[27] I. Habib, “Virtualization with KVM,” Linux J., vol. 2008,
no. 166, Feb. 2008.

[28] N. Herath and A. Fogh, “These are Not Your Grand
Daddys CPU Performance Counters – CPU Hardware
Performance Counters for Security,” in Black Hat Brief-
ings, 2015.

[29] R.-F. Huang, H.-Y. Yang, M. C.-T. Chao, and S.-C.
Lin, “Alternate hammering test for application-specific
DRAMs and an industrial case study,” in Annual Design
Automation Conference (DAC), 2012.

[30] IBM, “IBM Chipkill Memory: Advanced ECC Memory
for the IBM Netfinity 7000 M10,” 2019.

[31] Intel Corporation, “Intel Software Guard Extensions
(Intel SGX),” 2016, retrieved on November 7, 2016.
[Online]. Available: https://software.intel.com/en-us/sgx

[32] ——, “kvm-sgx,” 2017. [Online]. Available: https:
//github.com/01org/kvm-sgx

[33] ——, “qemu-sgx,” 2017. [Online]. Available: https:
//github.com/01org/qemu-sgx

[34] ——, “xen-sgx,” 2017. [Online]. Available: https:
//github.com/01org/xen-sgx

[35] G. Irazoqui, T. Eisenbarth, and B. Sunar, “MASCAT:
Stopping microarchitectural attacks before execution,”
Cryptology ePrint Archive, Report 2016/1196, 2017.

[36] Y. Jang, J. Lee, S. Lee, and T. Kim, “SGX-Bomb:
Locking down the processor via Rowhammer attack,” in
SysTEX, 2017.

[37] Jedec Solid State Technology Association, “Low Power
Double Data Rate 4,” 2017. [Online]. Available: http:
//www.jedec.org/standards-documents/docs/jesd209-4b

[38] M. Jung, C. C. Rheinländer, C. Weis, and N. Wehn,
“Reverse engineering of DRAMs: Row hammer with
crosshair,” in International Symposium on Memory Sys-
tems, 2016.

[39] O. D. Kahn and J. R. Wilcox, “Method for dynamically
adjusting a memory page closing policy,” Sep. 28 2004,
uS Patent 6,799,241.

[40] N. Karimi, A. K. Kanuparthi, X. Wang, O. Sinanoglu,
and R. Karri, “Magic: Malicious aging in circuits/cores,”
ACM Transactions on Architecture and Code Optimiza-
tion (TACO), vol. 12, no. 1, 2015.

[41] D. Kaseridis, J. Stuecheli, and L. K. John, “Minimalist
open-page: A DRAM page-mode scheduling policy for
the many-core era,” in International Symposium on Mi-
croarchitecture (MICRO), 2011.

[42] F. Kerschbaum and A.-R. Sadeghi, “HardIDX: Practical
and secure index with SGX,” in Data and Applications

Security and Privacy XXXI: 31st Annual IFIP WG 11.3
Conference, DBSec 2017, vol. 10359, 2017, p. 386.

[43] D.-H. Kim, P. J. Nair, and M. K. Qureshi, “Architectural
support for mitigating row hammering in DRAM memo-
ries,” IEEE Computer Architecture Letters, vol. 14, no. 1,
pp. 9–12, 2015.

[44] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,
C. Wilkerson, K. Lai, and O. Mutlu, “Flipping bits in
memory without accessing them: An experimental study
of DRAM disturbance errors,” in ISCA, 2014.

[45] Kirill A. Shutemov, “Pagemap: Do Not
Leak Physical Addresses to Non-Privileged
Userspace,” Mar. 2015, retrieved on November
10, 2015. [Online]. Available: https://git.kernel.
org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=
ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce

[46] A. Kurmus, N. Ioannou, N. Papandreou, and T. Parnell,
“From random block corruption to privilege escalation:
A filesystem attack vector for rowhammer-like attacks,”
in Usenix WOOT, 2017.

[47] R. Lal and P. M. Pappachan, “An architecture method-
ology for secure video conferencing,” in IEEE Interna-
tional Conference on Technologies for Homeland Secu-
rity (HST), 2013.

[48] M. Lanteigne, “How Rowhammer Could Be Used to
Exploit Weaknesses in Computer Hardware,” Mar. 2016.
[Online]. Available: http://thirdio.com/rowhammer.pdf

[49] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and
M. Peinado, “Inferring fine-grained control flow inside
SGX enclaves with branch shadowing,” in USENIX Se-
curity Symposium, 2017.

[50] P. J. Meaney, L. A. Lastras-Montano, V. K. Papazova,
E. Stephens, J. S. Johnson, L. C. Alves, J. A. O’Connor,
and W. J. Clarke, “IBM zEnterprise redundant array
of independent memory subsystem,” IBM Journal of
Research and Development, vol. 56, no. 1.2, Jan 2012.

[51] Microsoft, “Introducing Azure confidential computing,”
2017. [Online]. Available: https://azure.microsoft.com/
en-us/blog/introducing-azure-confidential-computing

[52] ——, “Cache and Memory Manager
Improvements,” Apr. 2017. [Online]. Available:
https://docs.microsoft.com/en-us/windows-server/
administration/performance-tuning/subsystem/cache-
memory-management/improvements-in-windows-server

[53] A. Moghimi, G. Irazoqui, and T. Eisenbarth,
“CacheZoom: How SGX amplifies the power of
cache attacks,” in CHES 2017, 2017, pp. 69–90.

[54] O. Mutlu, “The RowHammer problem and other issues
we may face as memory becomes denser,” in Design,
Automation & Test in Europe Conference & Exhibition
(DATE), 2017.

[55] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta,
S. Nowo zin, K. Vaswani, and M. Costa, “Oblivious
Multi-Party Machine Learning on Trusted Processors,”
in USENIX Security Symposium, 2016.

[56] M. Payer, “HexPADS: a platform to detect “stealth”
attacks,” in ESSoS, 2016.

[57] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and
S. Mangard, “DRAMA: Exploiting DRAM Addressing
for Cross-CPU Attacks,” in USENIX Security Sympo-
sium, 2016.

[58] R. Qiao and M. Seaborn, “A new approach for Rowham-
mer attacks,” in International Symposium on Hardware
Oriented Security and Trust, 2016.

[59] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida,
and H. Bos, “Flip feng shui: Hammering a needle in the
software stack,” in USENIX Security Symposium, 2016.

[60] Red Hat, Red Hat Enterprise Linux 7 - Virtualization
Tuning and Optimization Guide, 2017.

[61] H. G. Rotithor, R. B. Osborne, and N. Aboulenein,
“Method and apparatus for out of order memory schedul-
ing,” Oct. 24 2006, uS Patent 7,127,574.

[62] M. Salyzyn, “UPSTREAM: pagemap: do not leak
physical addresses to non-privileged userspace,” 2015.
[Online]. Available: https://android-review.googlesource.
com/#/c/kernel/common/+/182766

[63] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis,
M. Peinado, G. Mainar-Ruiz, and M. Russinovich, “VC3:
trustworthy data analytics in the cloud using SGX,” in
S&P, 2015.

[64] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and
S. Mangard, “Malware Guard Extension: Using SGX to
Conceal Cache Attacks,” in DIMVA, 2017.

[65] M. Seaborn and T. Dullien, “Exploiting the DRAM
rowhammer bug to gain kernel privileges,” in Black Hat
Briefings, 2015.

[66] K. Suzaki, K. Iijima, T. Yagi, and C. Artho, “Memory
Deduplication as a Threat to the Guest OS,” in EuroSec,
2011.

[67] V. van der Veen, “Drammer: Deterministic rowhammer
attacks on mobile platforms,” 2016. [Online]. Available:
http://vvdveen.com/publications/drammer.slides.pdf

[68] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss,
C. Maurice, G. Vigna, H. Bos, K. Razavi, and C. Giuf-
frida, “Drammer: Deterministic Rowhammer attacks on
mobile platforms,” in CCS, 2016.

[69] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bind-
schaedler, H. Tang, and C. A. Gunter, “Leaky cauldron
on the dark land: Understanding memory side-channel
hazards in SGX,” in CCS, 2017.

[70] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One
bit flips, one cloud flops: Cross-VM Row Hammer
attacks and privilege escalation,” in USENIX Security
Symposium, 2016.

[71] Y. Xiao, M. Li, S. Chen, and Y. Zhang, “Stacco: Dif-
ferentially analyzing side-channel traces for detecting
SSL/TLS vulnerabilities in secure enclaves,” in CCS,
2017.

[72] Y. Xu, W. Cui, and M. Peinado, “Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Op-
erating Systems,” in S&P, May 2015.

[73] Y. Yarom and K. Falkner, “Flush+Reload: a High Res-
olution, Low Noise, L3 Cache Side-Channel Attack,” in
USENIX Security Symposium, 2014.

[74] K. S. Yim, “The rowhammer attack injection methodol-
ogy,” in IEEE 35th Symposium on Reliable Distributed
Systems (SRDS), 2016.

[75] T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A real-
time side-channel attack detection system in clouds,” in
RAID, 2016.

APPENDIX

A. Bitflips in sudo

Table IV lists exploitable bitflip offsets that modify opcodes
of sudoers.so (Ubuntu 17.04, sudo version 1.8.19p1)
yielding a skip of the privilege check and, thus, elevating an
unprivileged process to root privileges.

B. Computing the Optimal Runtime of our Attack

The runtime of our attack is computed as

P · (W + n · 0.05)
212 · n +

n · 216
F · E +

120 · P
230

seconds, where P is the amount of physical memory installed
in the system, W is the amount of time one waylaying
relocation takes, F is the flip rate (i.e., bit flips per second),
and E is the number of exploitable bit offsets within a 4 kB
page (which depends on the target binary). n ∈ N is the
optimization parameter, the number of bit flips to find in the
templating phase, influencing the runtime of the templating
phase and the waylaying phase. 0.05 seconds is the time
the prefetch address-translation oracle consumes for one test.
120 seconds is the amount of time the prefetch side-channel
attack consumes to translate a virtual to a physical address per
gigabyte (230 bytes) of system memory. The 216 represent the
215 bit offsets of a 4 kB page (212 bytes) which can flip in
both directions each.

On our test system we have P = 12 gigabytes, W = 2.68
seconds for memory waylaying, F = 0.67, and E = 29. With
these values we compute the runtime as

3 · 220 · (2.68 + n · 0.05)
n

+ n · 3373.3 + 24m

seconds. The minimum of this function is reached at n = 50.
Figure 5 shows the expected total runtime of the templating

phase, and memory waylaying and chasing, depending on
which hammering technique is used and how many bit offsets
are exploitable.

C. Memory Basics, Policies, and their Influence on One-
Location Hammering

DRAM is organized in multiple banks, e.g., for a dual-
channel dual-rank configuration 32 banks on DDR3 and 64
banks on DDR4. Each bank consists of an array of rows
of 8 kB each. Thus, the number of rows is typically in the
range of 214 to 216. Since the DRAM cells lose their charge
over time, the DDR standard defines that every row must be
refreshed once per 64 µs. When accessing a memory location,

TABLE IV: Exploitable bitflip offsets in sudoers.so.

Binary offset Bitflip offset Original Flipped

1 0x8c1c 4 lea rdi, aUser_is_exempt lea rbp, aUser_is_exempt
2 0x8c32 3 mov eax, ebp mov eax, esp
3 0x8d4e 0 lea rax, off_250860 lea rax, off_250860+1
4 0x8d4f 0 lea rax, off_250860 lea rax, unk_250760
5 0x8d59 0 mov eax, [rax+2C8h] mov eax, [rax+2C9h]
6 0x8d59 1 mov eax, [rax+2C8h] mov eax, [rax+2CAh]
7 0x8d59 2 mov eax, [rax+2C8h] mov eax, [rax+2CCh]
8 0x8d59 3 mov eax, [rax+2C8h] mov eax, [rax+2C0h]
9 0x8d59 6 mov eax, [rax+2C8h] mov eax, [rax+288h]

10 0x8d5a 5 mov eax, [rax+2C8h] mov eax, [rax+22C8h]
11 0x8d5d 7 test eax, eax add eax, 485775C0h
12 0x8d5e 0 test eax, eax test ecx, eax
13 0x8d5f 0 jnz short check_user_is_exempt jz short check_user_is_exempt
14 0x8dbd 3 test al, al mov eax, es
15 0x8dbd 7 test al, al add al, 0C0h
16 0x8dbf 0 jnz short near ptr unk_8D61 jz short near ptr unk_8D61
17 0x8dbf 3 jnz short near ptr unk_8D61 jge short near ptr unk_8D61
18 0x8dc4 3 lea rbp, qword_252700 lea rbp, algn_2526F8
19 0x8dc5 1 lea rbp, qword_252700 lea rbp, dword_252900
20 0x8dc5 2 lea rbp, qword_252700 lea rbp, __imp_fflush
21 0x8dc9 3 mov eax, [rbp+0F0h] mov ecx, [rbp+0F0h]
22 0x8dc9 4 mov eax, [rbp+0F0h] mov edx, [rbp+0F0h]
23 0x8dca 7 mov eax, [rbp+0F0h] mov eax, [rbp+70h]
24 0x8dcb 3 mov eax, [rbp+0F0h] mov eax, [rbp+8F0h]
25 0x8dcf 0 test eax, eax test ecx, eax
26 0x8dcf 3 test eax, eax test eax, ecx
27 0x8dd0 2 jnz loc_8FB0 or eax, [rbp+1DAh]
28 0x8dd1 0 jnz loc_8FB0 jz loc_8FB0
29 0x8e23 6 jz loc_8FE8 jz near ptr algn_8FA7+1

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

Exploitable bitflips

R
un

tim
e

[h
ou

rs
] One-location Double-sided Single-sided

One-location (MC) Double-sided (MC) Single-sided (MC)

Fig. 5: Expected total runtime (templating and waylaying) until
the attacker has the target page at the target physical location.

the corresponding row is opened, i.e., copied into an internal
array called the row buffer. Closing a row copies the data from
the row buffer back into the actual DRAM cells.

Before a row can be opened, the bank has to be precharged.
Consequently, when accessing a memory location in the cur-
rently opened row, i.e., a row hit, the latency is comparably
low. Accessing a memory location in a different row, i.e., a row
conflict, incurs first closing the DRAM row, then precharging
the bank, and finally opening the new row, copying the data
into the row buffer. The latency in this case is significantly
higher, e.g., 200% of the latency of a row hit.
recently accessed row open and buffered. This is beneficial

The memory controller can optimize the memory perfor-
mance by cleverly deciding when to close a row preemptively.
The two most basic memory controller policies are “open
page” and “closed page”. An open-page policy keeps the

for memory access latency, power consumption, and bank
utilization when the number of memory accesses is low [41].
However, when the number of memory accesses increases
the situation is more complex. A closed-page policy can
then achieve a better system performance, since the row is
immediately closed and the bank is precharged and ready to
open a new row [41].

With modern processors having huge caches and complex
algorithms for spatial and temporal prefetching, the prob-
ability that further memory accesses go to the same row
decreases. Consequently, more complex memory controller
policies have been proposed and are implemented in modern
processors [41]. David et al. [20] noted that closed-page poli-
cies perform especially better on multi-core systems and hence
they assumed that these are implemented in current processor
architectures. Intel also holds patents for dynamically adjusting
memory controller policies [39]. A closed-page policy, but also
other policies which preemptively close rows, would allow
one-location hammering.

Besides these memory controller policies, the memory con-
troller can also reorder and combine memory accesses [61].
Since the Rowhammer bug is related to the number of row
activations [44], a lower number of activations due to reorder-
ing and combining also reduces the probability of bit flips. In
one-location hammering most of the accesses can be expected
to be reordered and combined to reduce the overall number
of row activations, leading to a lower number of bit flips than
with other hammering techniques.

Nethammer:
Inducing Rowhammer Faults through Network Requests

Moritz Lipp
Graz University of Technology

Misiker Tadesse Aga
University of Michigan

Michael Schwarz
Graz University of Technology

Daniel Gruss
Graz University of Technology

Clémentine Maurice
Univ Rennes, CNRS, IRISA

Lukas Raab
Graz University of Technology

Lukas Lamster
Graz University of Technology

ABSTRACT
A fundamental assumption in software security is that memory
contents do not change unless there is a legitimate deliberate mod-
ification. Classical fault attacks show that this assumption does
not hold if the attacker has physical access. Rowhammer attacks
showed that local code execution is already sufficient to break this
assumption. Rowhammer exploits parasitic effects in DRAM tomod-
ify the content of a memory cell without accessing it. Instead, other
memory locations are accessed at a high frequency. All Rowham-
mer attacks so far were local attacks, running either in a scripted
language or native code.

In this paper, we present Nethammer. Nethammer is the first truly
remote Rowhammer attack, without a single attacker-controlled
line of code on the targeted system. Systems that use uncached
memory or flush instructions while handling network requests,
e.g., for interaction with the network device, can be attacked using
Nethammer. Other systems can still be attacked if they are protected
with quality-of-service techniques like Intel CAT. We demonstrate
that the frequency of the cache misses is in all three cases high
enough to induce bit flips. We evaluated different bit flip scenar-
ios. Depending on the location, the bit flip compromises either the
security and integrity of the system and the data of its users, or it
can leave persistent damage on the system, i.e., persistent denial of
service.

We investigated Nethammer on personal computers, servers, and
mobile phones. Nethammer is a security landslide, making the for-
merly local attack a remote attack. With this work we invalidate all
defenses and mitigation strategies against Rowhammer build upon
the assumption of a local attacker. Consequently, this paradigm
shift impacts the security of millions of devices where the attacker
is not able to execute attacker-controlled code. Nethammer requires
threat models to be re-evaluated for most network-connected sys-
tems. We discuss state-of-the-art countermeasures and show that
most of them have no effect on our attack, including the target-
row-refresh (TRR) countermeasure of modern hardware.

Disclaimer: This work on Rowhammer attacks over the network
was conducted independently and unaware of other research groups
working on truly remote Rowhammer attacks. Experiments and
observations presented in this paper, predate the publication of the
Throwhammer attack by Tatar et al. [81]. We will thoroughly study
the differences between both papers and compare the advantages
and disadvantages in a future version of this paper.

1 INTRODUCTION
Hardware-fault attacks have been considered a security threat since
at least 1997 [12, 13]. In such attacks, the attacker intentionally
brings devices into physical conditions which are outside their
specification for a short time. For instance, this can be achieved by
temporarily using incorrect supply voltages, exposing them to high
or low temperature, exposing them to radiation, or by dismantling
the chip and shooting at it with lasers. Fault attacks typically re-
quire physical access to the device. However, if software can bring
the device to the border or outside of the specified operational
conditions, software-induced hardware faults are possible [50, 80].

The most prominent hardware fault which can be induced by
software is the Rowhammer bug, caused by a hardware reliability
issue of DRAM. An attacker can exploit this bug by repeatedly ac-
cessing (hammering) DRAM cells at a high frequency, causing unau-
thorized changes in physically adjacent memory locations. Since
its initial discovery as a security issue [50], Rowhammer’s ability
to defy abstraction barriers between different security domains
has been improved gradually to develop more powerful attacks
on various systems. Examples of previous attacks include privi-
lege escalation, from native environments [27, 78], from within a
browser’s sandbox [14, 25, 28], and from within virtual machines
running on third-party compute clouds [86], mounting fault attacks
on cryptographic primitives [11, 73], and obtaining root privileges
on mobile phones [84].

Most Rowhammer attacks assume that two DRAM rows must be
hammered to induce bit flips. The reason is that they assume that
an “open-page” memory controller policy is used, i.e., a DRAM row
is kept open until a different row is accessed. However, modern
CPUs employ more sophisticated memory controller policies that
preemptively close rows [27]. Based on this observation, Gruss
et al. [27] described a technique called one-location hammering.

In 2016, Intel introduced Cache Allocation Technology (CAT)
to address quality of service in multi-core server platforms [32].
Intel CAT allows restricting cache allocation of cores to a subset
of cache ways of the last-level cache, with the aim of optimizing
workloads in shared environments, e.g., protecting virtual machines
against performance degradation due to cache thrashing of a co-
located virtual machine. However, with a lower number of cache
ways available to the process, the probability to evict an address
by accessing other addresses increases significantly. Aga et al. [4]
showed that this facilitates eviction-based Rowhammer attacks.

All previously known Rowhammer attacks required some form
of local code execution, e.g., JavaScript [14, 25, 28] or native code [4,
9, 11, 27, 50, 62, 69, 73, 78, 84, 86]. Moreover, all works on Rowham-
mer defenses assume that some form of local code execution is
required [9, 14, 15, 17, 18, 26, 29, 31, 43, 49, 50, 59, 67, 74, 91].
In particular, we found that none of these works even mentions
the theoretical possibility of truly non-local Rowhammer attacks.
Consequently, it was a widely accepted assumption that remote
Rowhammer attacks are not possible. More specifically, devices
where an attacker could not obtain local code execution were so
far considered to be safe. Yet, the following questions arise:
Are remote Rowhammer attacks possible? More specifically, is it
possible for an attacker to induce bit flips and exploit them, without
any local code execution on the system?

In this paper, we answer these questions and confirm that truly
remote Rowhammer attacks are possible. We present Nethammer,
the first Rowhammer attack that does not require local code execu-
tion. Nethammer requires only a fast network connection between
the attacker and victim. It sends a crafted stream of size-optimized
packets to the victim which causes a high number of memory ac-
cesses to the same set of memory locations. If the network driver or
other parts of the network stack use uncached memory or flush in-
structions, e.g., for interaction with the network device, an attacker
can induce bit flips. Furthermore, if Intel CAT is activated, e.g., as an
anti-DoS mechanism, memory accesses lead to fast cache eviction
and thus frequent DRAM accesses. This enables attacks even if
there are no accesses to uncached memory or flush instructions
while handling the network packet. Thus, the attacker implicitly
hammers the DRAM through the code executed for processing the
network packets. While an attacker cannot control the addresses of
the bit flips, we demonstrate how an attacker can still exploit them.

Nethammer has several building blocks that we systematically de-
veloped. First, we measure whether handling network packets could
at least, in theory, induce bit flips, and the influence of real-world
memory-controller page policies. For this purpose, we present a
new algorithm to observe and classify the memory-controller page
policy. Second, based on these insights, we demonstrate that one-
location hammering [27] does not require a closed-page policy, but
instead, adaptive policies may also allow one-location hammering.
Third, we investigate memory operations that occur while handling
network requests. Fourth, we show that the time windows we ob-
serve between memory accesses from subsequent network requests
enable Rowhammer attacks.

As previous work on Rowhammer showed, once a bit flips in a
system, its security can be subverted. We present different attacks
exploiting bit flips on victim machines to compromise various ser-
vices, in particular, version-control systems, DNS servers and OCSP
servers. In all cases, the triggered bit flips may induce persistent
denial-of-service attacks by corrupting the persistent state, e.g.,
the file system on the remote machine. In our experiments, we
observed bit flips using Nethammer already after 300ms of running
the attack and up to 10 000 bit flips per hour. Nethammer represents
a significant paradigm shift, from local to remote attacks. Previous
fault attacks required physical access or local code execution in
the case of Rowhammer. Making Rowhammer possible over the
network requires re-evaluating the threat model of virtually every

network-connected system.We discuss state-of-the-art countermea-
sures and show that most of them do not affect our attack, including
the target-row-refresh (TRR) countermeasure in hardware. Further-
more, we evaluate the performance of different other proposed
Rowhammer countermeasures against Nethammer. Nethammer is
difficult to detect on systems where high network traffic is com-
monplace. Finally, we discuss how attacks like Nethammer can be
mitigated.

Contributions. The contributions of this work are:
• We present Nethammer, the first truly remote Rowhammer at-
tack, with not even a single line of attacker-controlled code running
on the target device.
• We demonstrate Nethammer on devices that either use uncached
memory or clflush while handling network packets.
• Wedemonstrate that evenwithout uncachedmemory and clflush,
attacks on cloud systems can still be practical.
• We illustrate how our attack invalidates assumptions from previ-
ous works, marking a paradigm shift, and requiring re-evaluation
of the threat models of most network-connected systems.
• We show that many previously proposed defenses, e.g., TRR, do
not work against our new attack.

Outline. The remainder of the paper is structured as follows.
In Section 2, we provide background information. In Section 3,
we overview the Nethammer attack. In Section 4, we describe the
building blocks and obtain insights we need for Nethammer. In Sec-
tion 5, we demonstrate how bit flips induced over the network can
be exploited. In Section 6, we evaluate the performance of Netham-
mer in different scenarios on several different systems. In Section 7,
we discuss and propose countermeasures. In Section 8, we discuss
limitations of Nethammer. We conclude our work in Section 9.

2 BACKGROUND
In this section, we provide the necessary background information
on DRAM, memory controller policies, and the Rowhammer attack.
Furthermore, we discuss caches and cache eviction as well as the
Intel CAT technology.

2.1 DRAM and Memory Controller Policies

DRAMOrganization. Modern computers use DRAM as the main
memory. To maximize data transfer rates, DRAM is organized for
a high degree of parallelism, in a hierarchy of channels, DIMMs,
ranks, bank groups, and banks. Most processors today support dual-
channel or quad-channel configurations. The DIMMs are assigned
to one of the channels. Each DIMM has one or more ranks, e.g., the
two sides of the DIMM may form two ranks. Every rank is further
subdivided into so-called banks, with each bank spanning over
multiple chips. The number of banks in a rank is standardized [45],
e.g., 8 banks on DDR3 and 16 banks on DDR4. Each bank is an array
of cells, organized in rows and columns, storing the actual memory
content. The row size, i.e., the amount of data that can be stored in
all cells of one row, is defined to be 8 kB [45]. Each cell is made out
of a capacitor and an access transistor. The charge of the capacitor
represents the binary data value of the cell. Each cell in the grid is
connected to the neighboring cells with a wire forming horizontal
and vertical bit lines.

When accessing a physical address, the memory controller trans-
lates the physical address to channel, DIMM, rank, bank group,
bank, row, and column addresses. While AMD publicly documents
these addressing functions [3], Intel andARMdo not. Pessl et al. [68]
reverse-engineered these addressing functions using an automated
technique for several Intel and ARM processors.

As DRAM cells lose their charge over time, they must be re-
freshed periodically. The maximum time interval between refreshes
is defined through the row refresh rate, standardized by the JEDEC
group for the different DRAM technologies [45]. Typically, the
refresh interval is 64ms but can vary depending on the device,
on-the-fly adjustments due to the current temperature, or other
external influences. With a 64ms refresh interval, the memory
controller issues the refresh command every 7.8 µs for each bank.

Memory Controller Policies. Each bank has a row buffer, acting
as a directly-mapped cache for the rows. To read data, the data is
moved from the cells of a row to the row buffer before it is sent to
the processor. Similarly, write accesses go to the row buffer instead
of directly to the row. By raising the word line of a row, all access
transistors in that row are activated to connect all capacitors to their
respective bit line. This transfers the charge representing the data
from the row to the row buffer. If the requested data from this bank
is already stored in the row buffer, the data can be transmitted to
the processor immediately, resulting in a fast access time (a row hit).
However, if the requested data is not in the row buffer, a so-called
row conflict occurs, and the bit lines must be pre-charged before the
data can be read from the new target row (row-activate).

Consequently, there are three different cases leading to distinct
access times: row hits are the fastest, an access to a row in a pre-
charged bank is a few nanoseconds slower, row conflicts are sig-
nificantly slower (i.e., several nanoseconds). Hence, the memory
controller can optimize the memory performance by deciding when
to close a row preemptively and pre-charge the bank. Typically,
memory controllers employ one of the three following page policies:
(1) Closed-page policy: the page is immediately closed after ev-
ery read or write request, and the bank is pre-charged and, thus,
ready to open a new row (page-empty). If subsequent accesses are
likely to be from other rows, a closed-page policy can achieve a
better average system performance.
(2) Fixed open-page policy: the page is left open for a fixed
amount of time after a read or write request. If temporal local-
ity is given, subsequent accesses are served with a low latency. This
policy is also beneficial for power consumption and bank utiliza-
tion [48].
(3) Adaptive open-page policy: the adaptive open-page policy
by Intel [21] is similar to the fixed open-page policy but dynam-
ically adjusts the page timeout interval. Each row buffer has a
timeout counter and a timeout register. A row remains open until
the timeout counter reaches the value of the timeout register. As
the initial timeout register value might not be the most efficient,
an additional mistake counter is introduced to update the timeout
register dynamically [26]. If a row conflict occurs, the memory
controller kept the row open for too long and hence, the mistake
counter is decremented. Whenever a page-empty access could have
been a hit as the requested row is the same as the last accessed one,
the mistake counter is incremented. Periodically, the value of the

xn

. . .
x-2
x-1
x
x+1
x+2

. . .
xm

(a) Single-sided

. . .
x-3
x-2
x-1
x
x+1
x+2
x+3

. . .

(b) Double-sided

. . .
x-3
x-2
x-1
x
x+1
x+2
x+3

. . .

(c) One-location

Figure 1: Different hammering strategies: blue rectangles ()
represent the hammered location, while red rectangles ()
represent the most likely location for bit flips to occur.

mistake counter is checked to decide if a less or more aggressive
close-page policy should be used. If the mistake counter is higher
than a certain threshold, the timeout register is incremented to
keep the row open for a longer period of time, and conversely, if
the mistake counter is lower than a certain threshold, the timeout
register is decremented to close the row earlier.

As modern processors have many cores running independently
as well as deploy large caches and complex algorithms for spatial
and temporal prefetching, the probability that subsequent memory
accesses go to the same row decreases. Awasthi et al. [8] proposed
an access-based page policy that assumes a row receives the same
number of accesses as the last time it was activated. Shen et al. [79]
proposed a policy taking past memory accesses into account to
decide whether to close a row preemptively. Intel suggested pre-
dicting how long a row should be kept open [47, 82]. Consequently,
more complex memory controller policies have been proposed and
are implemented in modern processors [26, 48]. Besides these mem-
ory controller policies, the memory controller can also reorder and
combine memory accesses [76].

2.2 Rowhammer
With increasing DRAM cell density, the physical size of DRAM
cells and their capacitance decreases. While this has the advantage
of higher storage capacity and lower power consumption, cells
may be more susceptible to disturbance errors. Disturbance errors
are interferences between cells that cause memory corruption by
unintentionally flipping the bit-value of a DRAM cell [62].

In 2014, Kim et al. [50] demonstrated that such bit flips could be
reliably triggered in a DRAM row by accessing memory locations
in adjacent DRAM rows in a high frequency, a technique known as
row hammering [35]. Typically, subsequent memory accesses would
be served from the CPU cache. However, in a Rowhammer attack,
the cache is bypassed by either using specific instructions [50],
cache eviction [4, 9, 25, 28] or uncached memory [69, 84].

To reliably induce bit flips, different techniques have been pro-
posed using different memory access patterns as illustrated in Fig-
ure 1. While the name single-sided hammering suggests that only
one memory location is accessed, Seaborn and Dullien [78] accessed
8 randomly chosen memory locations simultaneously. Seaborn and
Dullien [78] focused on a typical DDR3 setup with 32 DRAM banks.
Following the birthday paradox, the probability is quite high that
at least 2 out of 8 random memory locations map into the same
DRAM bank. By repeatedly accessing these 8 memory locations,

the attacker induces row conflicts at a high frequency. With single-
sided hammering, bit flips most likely occur in some proximity to
one of the 8 hammered rows.

With double-sided hammering, the attacker chooses three rows,
where the two outer rows are hammered. Bit flips most likely occur
in the row between the two rows. Double-sided hammering requires
at least partial knowledge of virtual-to-physical mappings.

Finally, Gruss et al. [27] proposed one-location hammering, in
which the attacker only accesses one single location at a high fre-
quency. The attacker does not directly induce row conflicts but
instead keeps re-opening one row permanently. As modern pro-
cessors do not use strict open-page policies anymore, the memory
controller preemptively closes rows earlier than necessary, causing
row conflicts on the subsequent accesses of the attacker. Bit flips
most likely occur in proximity to the hammered row.

Using these techniques, the Rowhammer bug has been exploited
in different scenarios. Bhattacharya and Mukhopadhyay [11] ex-
ploited untargeted bit flips at random locations to produce faulty
RSA signatures, allowing the recovery of the secret keys. How-
ever, as bit flips can be reproduced quite reliably, more determin-
istic attacks have been mounted. These attacks include privilege-
escalation attacks, sandbox escapes and the compromise of cryp-
tographic algorithms. They have been mounted from sandboxed
environments [78], from native environments [27, 78], from vir-
tual machines in the cloud [73, 86], as well as from within a web
browser running JavaScript [14, 28]. Furthermore, attacks from na-
tive code [84] and JavaScript within the browser sandbox [25] have
been demonstrated on mobile devices. To reliably induce a bit flip
on a specific page, memory spraying [28, 78, 86], grooming [84],
and page deduplication [14, 73] have been used.

To develop countermeasures, a large body of research focused on
detecting [17, 18, 29, 31, 43, 67, 91], neutralizing [14, 15, 28, 73, 84],
or eliminating [9, 15, 18, 26, 49, 50] Rowhammer attacks in software
or hardware. Furthermore, the LPDDR4 standard [46] specifies
two features to mitigate Rowhammer attacks: with Target Row
Refresh (TRR) the memory controller refreshes adjacent rows of
a certain row and with Maximum Activation Count (MAC) the
number of times a row can be activated before adjacent rows have to
be refreshed is specified. However, in 2018, Gruss et al. [27] showed
that an attacker can bypass all software-based countermeasures
and gain root privileges by mounting a one-location hammering
Rowhammer attack from inside an Intel SGX enclave.

2.3 Caches and Cache Eviction
Caching is a fundamental concept that is used to reduce the latency
of various operations, in particular computations and accesses to
slower storage. Hardware caches keep frequently used data from
main memory in smaller but faster memories.

CacheOrganization. ModernCPUs havemultiple levels of caches,
varying in size and latency, where the level-1 (L1) cache is the
smallest and fastest, and the L3 or last-level cache is the biggest but
slowest cache. Modern caches are organized in cache sets consisting
of a fixed number of cache ways. The cache set is determined by ei-
ther the virtual or physical address. Addresses are called congruent
if they map to the same cache set. The cache replacement policy

Last-Level Cache

VM1 VM2 VM3

(a) CAT disabled

Last-Level Cache

VM1 VM2 VM3

(b) CAT enabled

Figure 2: When Intel CAT is disabled in (a), the cache is
shared among the virtual machines. In (b), Intel CAT is con-
figured with 6 ways for VM1, and 1 way for VM2 and VM3.

decides which of the cache ways is replaced (evicted) when new
data has to be loaded into the cache.

On most Intel CPUs, the last-level cache is inclusive, i.e., data
present in L1 or L2 cache must also be present in the last-level
cache. Furthermore, the last-level cache is shared among all cores
and divided into so-called cache slices. The hash function that maps
physical addresses to slices is not publicly documented but has been
reverse-engineered [39, 57, 88].

Cache Eviction. To mount a Rowhammer attack, memory ac-
cesses need to be directly served by the main memory. Thus, an
attacker needs to make sure that the data is not stored in the cache.
An attacker can use the unprivileged clflush instruction [87] to
invalidate the cache line or use uncached memory if available [84].
On devices where no uncached memory and no unprivileged cache
flush instruction is available, an attacker can instead evict a cache
line by accessing congruent memory addresses [25, 28, 52], i.e., ad-
dresses that map to the same cache set and same cache slice. Merely
accessing a large number of different but congruent addresses in an
arbitrary order typically does not lead to a high eviction rate. Gruss
et al. [28] observed that to evict the victim address, a so-called evic-
tion set of attacker-chosen congruent addresses has to be accessed
in a specific pattern. The eviction set does not contain the victim
address, which is consequently evicted from the cache.

Intel CAT. In 2016, Intel introduced Cache Allocation Technol-
ogy (CAT) [41] to address quality of service in multi-core server
platforms [32, 40]. Intel CAT allows system software to partition
the last-level cache to optimize workloads in shared environments
as well as to isolate applications or virtual machines in the cloud.
When a virtual machine in the cloud thrashes the cache and there-
fore decreases the performance of other co-located machines, the
hypervisor can restrict this virtual machine to a subset of the cache
to retain the performance of other tenants. More specifically, Intel
CAT allows restricting the number of cache ways available to pro-
cesses, virtual machines, and containers, as illustrated in Figure 2.
However, Aga et al. [4] showed that Intel CAT allows improving
eviction-based Rowhammer attacks as it reduces the number of
accesses required for cache eviction and consequently reduces the
time required to evict an address from the cache.

3 NETHAMMER ATTACK
All previously published Rowhammer attacks rely on some form
of code execution on the targeted device, be it the execution of a
native binary [4, 27, 73, 78], an application [84] or using a scripted
language in the web browser, like JavaScript [14, 25, 28]. In this sec-
tion, we present Nethammer, the first Rowhammer attack that does
not rely on any attacker-controlled code on the victim machine.

3.1 Attack Overview
Nethammer sends a crafted stream of network packets to the tar-
get device to mount a one-location or single-sided Rowhammer
attack by exploiting quality-of-service technologies deployed on
the device. For each packet received on the target device, a set of
addresses is accessed, either in the kernel driver or a user-space
application processing the contents. By repeatedly sending pack-
ets, this set of addresses is hammered and, thus, bit flips may be
induced. As frequently-used addresses are served from the cache
for performance, the cache must be bypassed such that the access
goes directly into the DRAM to cause the row conflicts required for
hammering. This can be achieved in different ways if the code that
is executed (in kernel space or user space) when receiving a packet,
(1) flushes (and later on reloads) an address;
(2) uses uncached memory;
(3) evicts (and later on reloads) an address.
All three scenarios are plausible. Uncached memory is often used on
ARM-based devices for interaction with the hardware, e.g., access
buffers used by the network controller. Intel x86 processors have
the clflush instruction for the same purpose. We verified that an
attack is practical in both scenarios, as we describe in Section 6.2.

As caches are large, and cache replacement policies try to keep
frequently-used data in the cache, it is not trivial to mount an
eviction-based attack without executing attacker-controlled code
on the device. However, to address quality of service in multi-core
server platforms, Intel introduced CAT (cf. Section 2.3), allowing
to control the amount of cache available to applications or virtual
machines dynamically as illustrated in Figure 2. If a virtual ma-
chine is thrashing the cache, the hypervisor limits the number of
cache ways available to this virtual machine to meet performance
guarantees given to other tenants on the same physical machine.
Thus, if an attacker excessively uses the cache, its virtual machine
is restricted to a low number of ways, possibly only one, leading to
a fast self-eviction of addresses.

3.2 Attack Setup
In our attack setup, the attacker has a fast network connection
to the victim machine, e.g., a gigabit connection. We assume that
the victim machine has DDR2, DDR3, or DDR4 memory that is
susceptible to one-location (or single-sided) hammering.

Personal Computers. For our attack on personal computers,
tablets, smartphones, or devices with similar hardware configu-
ration, we make no further assumptions.

Cloud Systems. For our attack on cloud systems, we assume that
the victim is running a virtual machine on a cloud server providing
an interface or API accessible over the network. Furthermore, to
prevent denial-of-service situations due to cache thrashing, we

assume that the hypervisor on the cloud server uses Intel CAT to
constrain the virtual machine of the victim to a subset of the cache.

Note that there are overlaps between the two attack setups. A
personal computer can be susceptible to the attack we describe
for the cloud scenario. Even more likely a cloud system can be
susceptible to the attack we describe for personal computers.

3.3 Inducing Bit Flips over Network
To induce bit flips remotely, one requirement is to send as many
packets as possible over the network in a short time frame. As
defined in Section 3.2, we assume that either uncached memory or
clflush is used when receiving a network packet or alternatively,
that Intel CAT is active on the victim machine. Thus, every single
packet processed by the network stack actively evicts and reloads
data from the cache. By sending many packets, the corresponding
addresses are hammered efficiently.

As an example, UDP packets without content can be used, allow-
ing an overall packet size of 64 B, which is the minimum packet size
for an Ethernet packet. This allows to send up to 1 024 000 packets
per second over a 500Mbit/s connection.

4 FROM REGULAR MEMORY ACCESSES TO
ROWHAMMER

Naturally, several challenges need to be solved to induce Rowham-
mer bit flips over the network. Fundamentally, we need to investi-
gate memory-controller page policies to determine whether regular
memory accesses that occur while handling network packets could
at least, in theory, induce bit flips. Note that these investigations
are oblivious to the specific technique to access the DRAM row (i.e.,
eviction, flushing, uncached memory). Hence, in this section, we
do not discuss clflush, uncached memory, or eviction strategies
with [4] or without Intel CAT [28, 52]. We defer comparisons of
Nethammer with these techniques to Section 6. In this section, we
focus on the underlying behavior of the memory controller and
what this means for possible attacks.

Gruss et al. [27] found that the memory-controller page policy
has a significant influence on the way the Rowhammer bug can be
triggered. In particular, they found that one-location hammering
works and deduced from this that the memory-controller page
policy must be similar to a closed-page policy. Most previous work
on Rowhammer assumed an open-row policy [4, 9, 11, 50, 62, 69,
73, 78, 84, 86]. In Section 4.1, we propose a method to determine the
memory-controller page policy on real-world systems automatically.
We show that one-location hammering does not necessarily need a
closed-page policy, but instead, adaptive policies may allow one-
location hammering.

Based on these insights, we demonstrate the first one-location
Rowhammer attack on an ARM device in Section 4.2, and draw the
connection to the attack presented by Aga et al. [4]. Finally, we in-
vestigate whether Rowhammer via network packets is theoretically
possible. Network packets do not arrive with the same speed as the
memory accesses in an optimized tight loop.

4.1 Automated Classification of
Memory-Controller Page Policies

Gruss et al. [27] stated that a requirement for one-location ham-
mering is a policy similar to a closed-page policy. To get a more
in-depth understanding of the memory-controller page policy used
on a specific system, we present an automated method to detect
the used policy. This is a significant step forward for Rowhammer
attacks, as it allows to deduce whether specific attack variants may
or may not work without an empiric evaluation. Pessl et al. [68]
reverse-engineered the undocumented mapping functions of physi-
cal memory addresses to DRAM channels, ranks and banks. These
mapping functions allow selecting addresses located in the same
bank but in a different row. If we access these addresses consec-
utively, we will cause a row conflict in the corresponding bank.
This row conflict induces latency for the second access because the
currently active row must be closed (written back), the bank must
be pre-charged, and only then the new row can be fetched with an
activate command. This side-channel information can not only be
used to build a covert communication channel [68], but as we show,
it can also be used to detect the page policy used by the memory
controller.

AutomatedClassification of thePage-policy. Weassume knowl-
edge of processor and DRAM timings. For the DRAM this means in
particular, the tRCD latency (the time to select a column address),
and the tRP latency (the time between pre-charge and row activa-
tion). These three timings influence the observed latency as follows:
(1) we consider the case page open / row hit as the base line;
(2) in the case page empty / bank pre-charged, we observe an
additional latency of tRP over a row hit;
(3) in the case pagemiss / row conflict, we observe an additional
latency of (tRP + tRCD) over a row hit.
To compute the actual number of cycles we can expect, we have
to divide the DRAM latency value by the DRAM clock rate. In
case of DDR4, we have to additionally divide the latency value by
factor two, as DDR4 is double-clocked. This yields the latency in
nanoseconds. By dividing the nanoseconds by the processor clock
speed, we obtain the latency in CPU cycles. Still, as we cannot ob-
tain absolutely clean measurements due to out-of-order execution,
prefetching, and other mechanisms that aim to hide the DRAM
latency, the actually observed latency will deviate slightly.

As in our test we cannot simply measure the three different cases,
we define an experiment that allows to distinguish the different
policies. In the experiment we use for our automated classification,
we select two addresses A and B that map to the same bank but
different rows. Using the clflush instruction, we make sure that
A and B are not cached, in order to load those addresses directly
from main memory. We base our method on two observations for
open-page policies:
Single By loading address A an increasing number of times (n =
1..10 000) before measuring the time it takes to load the same ad-
dress on a subsequent access, we can measure the access time of an
address in DRAM if the corresponding row is already active. For
an open-page policy the access time should be the same for any n.
Conflict By accessing address A and subsequently measuring the
access time to address B, we can measure the access time of an
address in DRAM in the occurrence of a row conflict.

0 20 40 60 0 20 40 60 0 20 40 60
260

265

270

Time [ms]

A
cc
es
s
tim

e
[c
yc
le
s]

Single Address Conflicting Address

Figure 3: Measured access times over a period of time for
a single address (blue) and an address causing a row con-
flict (red) for different page policies on the Intel Xeon D-
1541: open policy (left), closed policy (middle), adaptive pol-
icy (right).

0 200 400 600 800 1,000
200

300

400

500

Number of previous accesses

Ac
ce
ss

tim
e
[c
yc
le
s]

Adaptive policy Open-page policy

Figure 4: Open-page policy and adaptive page policy can be
distinguished by testing increasing numbers of accesses to
the same row. The open-page policy (Intel Core i7-4790) al-
ways has the same timing for subsequent accesses, since the
row always remains open. The adaptive page policy (Intel
Xeon E5-1630v4) only leaves the row open for a longer time
after a larger number of accesses.

Our classification now works by running the following checks:
(1) If there is no timing difference between the two cases described
above (Singlewith a largen andConflict), the system uses a closed-
page policy. The closed-page policy immediately closes the row
after every read or write request. Thus, there is no timing difference
between these two cases. The timing observed corresponds to the
row-pre-charged state.
(2) Otherwise, if the timing for the Single case is the same, re-
gardless of the value of n, but differs from the timing for Conflict,
the system uses an open-page policy. The timing difference corre-
sponds to the row hits and row conflicts. Following the definition
of the open-page policy, the timing for row hits is always the same.
(3) Otherwise, the timing for the Single case will have a jump at
some n after which the page policy is adapted to cope better with
our workload. Consequently, the timing differences we observe
correspond to row hit and row-pre-charged states.

Figure 3 shows the memory access time measured on an In-
tel Xeon D-1541 with different page policies. The plot shows that
closed-page policy can be distinguished from the other two us-
ing our method. We also verified our results by reading out the
CLOSE_PG bit in the mcmtr configuration register of the integrated
memory controller [42].

We validated that we can distinguish open-page policy and adap-
tive page policy by running our experiments on two systems with
the corresponding page policies. Figure 4 shows the results of these

experiments. The difference between open-page policy and adaptive
policy is clearly visible.

Our experiments show that adaptive page policies often be-
have like closed-page policies. This indicates the possibility of
one-locating hammering on systems using an adaptive page policy.

4.2 One-location Hammering on ARM
To make Nethammer a more generic attack, it is essential to demon-
strate it not only on Intel CPUs but also on ARM CPUs. This is
particularly interesting as ARM CPUs dominate the mobile market,
and ARM-based devices are predominant also in IoT applications.
Gruss et al. [27] only demonstrated one-location hammering on
Intel CPUs. However, as one-location hammering is the most plau-
sible hammering variant for Nethammer, we need to investigate
whether it is possible to trigger one-location hammering bit flips
on ARM.

In our experiments, we used a LG Nexus 4 E960 mobile phone
equipped with a Qualcomm Snapdragon 600 (APQ8064) [71] SoC
and 2GB of LPDDR2 RAM, susceptible to bit flips using double-
sided hammering. The page policy used by the memory controller
is selected via the DDR_CMD_EXEC_OPT_0 register: if the bit is set
to 1, which is the recommended value [72], a closed-page policy
is used. If the bit is set to 0, an open-page policy is used. Hence,
we can expect the memory controller to preemptively close rows,
enabling one-location hammering.

So far, bit flips on ARM-based devices have only been demon-
strated in the combination of double-sided hammering, and un-
cached memory [84] or access via the GPU [25]. Even in the pres-
ence of a flush instruction [7] or optimal cache eviction strate-
gies [52], the access frequency to the two neighboring rows is too
low to induce bit flips. Furthermore, devices with the ARMv8 in-
struction set that allows exposing a flush instruction to unprivileged
programs are usually equipped with LPDDR4 memory.

In our experiment, we allocated uncached memory using the
Android IONmemory allocator [90].We hammered a single random
address within the uncached memory region at a high frequency
and then checked the memory for occurred bit flips. We were able
to observe 4 bit flips while hammering for 10 hours. Thus, we can
conclude that there are ARM-based devices that are vulnerable to
one-location hammering.

4.3 Minimal Access Frequency for
Rowhammer Attacks

A show stopper for Nethammer is if the frequency of memory ac-
cesses caused by processing network packets is not high enough
to induce bit flips on one of our test systems successfully. As the
system performs many memory accesses when handling a network
packet, the attacker, in fact, cannot tell whether only one location
in a bank is hammered (i.e., one-location hammering) or multiple
locations (i.e., single-sided hammering). In particular, following
the pigeon-hole principle, in our test setups with 32 bank (single
DIMM) or 64 bank (dual DIMM) setups, we know that, if we ac-
cess at least n + 1 different addresses, i.e., 33 or 65 respectively, at
least two addresses must be served from the same bank. Hence,
we can assume that there is a good probability that the attacker

actually does single-sided hammering. Moreover, some addresses
are accessed multiple times.

Previous work has investigated the minimal number of accesses
that are necessary within a 64ms refresh interval to still obtain
bit flips. Kim et al. [50] reported bit flips starting at 139 000 row
activations per refresh interval, which can be, depending on the
page policy, identical to the number of memory accesses. Gruss
et al. [28] reported bit flips starting at 43 000 and Aweke et al. [9]
at 110 000 memory accesses per refresh interval.

In our experiments, we send 500Mbit/s (and more) over the net-
work interface. With a minimum size of 64 B for Ethernet packets,
we can send 1 024 000 packets per second over a 500Mbit/s con-
nection. As described in Section 6.2, we found functions which
are called multiple times, e.g., 6 times in the case of once func-
tion. Hence, on a 500Mbit/s connection, the attack can induce
6 144 000 accesses per second. Divided by the default refresh inter-
val of 64ms, we are at 393 216 accesses per refresh interval. This is
clearly above the previously reported required number of memory
accesses [9, 28, 50]. Hence, we conclude that in theory, if the system
is susceptible to Rowhammer attacks, network packets can induce
bit flips. In the following section, we will describe how an attacker
can exploit such bit flips.

5 EXPLOITING BIT FLIPS OVER A NETWORK
In this section, we discuss Nethammer attack scenarios to exploit
bit flips over the network in detail. We discuss the possible locations
of bit flips in Section 5.1. We describe different Nethammer attacks
in Section 5.2.

5.1 Bit Flip Location and Effect
As the Nethammer attack does not control where in physical mem-
ory a bit flip is induced and, thus, what is stored at that location,
the bit flip can lead to different consequences. On a high level, we
can divide bit flips into two groups, based on the location of the
flip. We distinguish between bit flips in user memory, i.e., memory
pages that are mapped as user_accessible in at least one process,
and bit flips in kernel memory, i.e., memory pages that are never
mapped as user_accessible. We can also distinguish the bit flips
based on their high-level effect, again forming two groups. The first
group consists of bit flips that lead to a denial-of-service situation.
The second group consists of bit flips that do not lead to a denial-
of-service situation. If a denial-of-service situation is temporary, a
system reboot may be necessary. A denial-of-service situation can
be persistent if the bit flip is written back to a permanent storage
location. Then it may be necessary to reinstall the system software
or parts of it from scratch, clearly taking more time than just a
reboot. Denial-of-service attacks have a direct financial impact on
companies due to unplanned downtimes and maintenance times.
Moreover, studies show that their announcement can also have a
negative impact on the stock prices [1]. Consequently, Nethammer
poses a severe threat to servers vulnerable to the attack.

5.2 Bit Flip Targets
Nethammer may induce a bit flip in kernel memory. Depending on
the modified location, parts of the operating system can behave

unexpectedly, or the entire system may even halt. Bit flips in user
memory may have similar consequences.

5.2.1 File System Data Structures. File system data structures,
e.g., inodes, are not directly part of the kernel code or data but are
also in the kernel memory. An inode is a data structure defining a
file or a directory of a file system. Each inode contains metadata
such as the size of the file, owner and permission data as well as the
disk block location of its data. If a bit flips in the inode structure,
it corrupts the file system and, thus, causes persistent loss of data.
This may again crash the entire system.

5.2.2 SGX Enclave Page Cache. If the victim machine supports
Intel SGX [19], an x86 instruction-set extension that allows the
execution of programs in so-called secure enclaves to run with in-
tegrity and confidentiality guarantees in untrusted environments,
a bit flip easily causes a denial of service. Enclave memory is stored
in a physically contiguous block of memory that is encrypted us-
ing a Memory Encryption Engine [30]. Jang et al. [44] and Gruss
et al. [27] demonstrated that if a bit flip in enclave memory is in-
duced, the Memory Encryption Engine locks the memory controller,
preventing any future memory operations and thus, halting the
entire system.While such a bit flip is not persistent itself, the unsafe
halting of the entire system can leave permanent damage leading
to a persistent denial-of-service.

5.2.3 Application Memory in General. If a bit flip occurs in mem-
ory of a user-space application, e.g., code or data, a possible outcome
is the crash of the program. Such a flip may render the affected
service unavailable.

Another outcome of a bit flip in the data of a user-space applica-
tion, e.g., in the database of a service, is that the service delivers
modified, possibly invalid, content. Depending on the service, its
users cannot distinguish if the data is correct or has been altered.

Altering DNS Entries to redirect to Malicious Services. To
resolve domain names to the corresponding IP address, a DNS
request [60] is sent to a DNS server. DNS servers are organized in
a tree-like structure, building a distributed system to store DNS
records. A record consists of a type, a name, a class code, a time-
to-live for caching, and the value. For instance, the A record holds
a 32-bit IPv4 address for a specific domain. However, DNS allows
defining aliases to map one domain name to another. This is used to
define message transfer agents for a domain or to redirect domains.

In this attack, the attacker leverages Nethammer to induce a bit
flip in a character of a DNS entry to make it point to a different
domain. For instance, domain.com changes to dnmain.com if the
least-significant bit of the “o” character is flipped from ‘1’ to ‘0’. Such
an attack is also referred to as bitsquatting [20]. Such bit flips in
domains have been successfully exploited before using Rowhammer
attacks [73]. DNS zone transfers (AXFR queries) allow replicating
DNS databases across different servers. Using zone transfers, an
attacker can retrieve entries of an entire zone at once. The attacker
queries the DNS server for its entries, mounts the attack and then
verifies whether a bit flip at an exploitable position has occurred
by monitoring changes in the queried entries. If so, the attacker
can register the changed domain and host a malicious service on
the domain, e.g., a fake website to steal login credentials or a mail
server intercepting email traffic. Users querying the DNS server

for said entry connect to the server controlled by the attacker and
are thus exposed to data theft. A flip might also change an MX
entry, pointing it to a different domain. The attacker can then again
register the domain and intercept connections that were intended
to go to the original mail server.

Rebuilding Trust inRevokedCertificates. An attacker can also
target OCSP servers. The Online Certificate Status Protocol (OCSP)
is a protocol to retrieve the revocation status of a certificate [77]. In
contrast to a certificate revocation list, where all revoked certificates
are enumerated, the OCSP protocol enables to query the status of a
single certificate. This protocol shifts the workload from the user
to the OCSP server, so that users, or more specifically browsers, do
not have to store huge revocation lists. Instead, the OCSP server
manages a list of revoked certificate fingerprints.

Digital certificates are used to generate digital signatures that
present the authenticity of digital documents or messages. They are
typically obtained from a trusted party, e.g., a certificate authority.
The certificate allows verifying that a specific signature was indeed
issued by the signer. However, if the corresponding private key
of a certificate is exposed to the public, everyone can sign data in
the name of the signer. Hence, a user can revoke a certificate to
avoid any abuse. Liu et al. [53] evaluated 74 full IPv4 HTTPS scans
and found that 8% of 38 514 130 unique SSL certificates served have
been revoked.

To process a certificate validity request, the server queries its
database for the requested certificate identifier. The result can either
be that the certificate is revoked, not revoked (i.e., valid), or that
the state is unknown (i.e., it is not in the database). If a client tries
to establish a secure connection to a server or check the validity
of a signed document, it queries the OCSP server provided by the
certificate. If the certificate has been revoked, the client aborts the
connection or marks the signature as invalid.

In this attack, the attacker flips a bit in the memory of an OCSP
server of a certificate authority where private keys of certificates
have become public, and the certificates have thus been revoked.
The attacker can either flip the status or the identifier of the certifi-
cate. As the status of the certificate is stored as an ASCII character
in the OpenSSL OCSP responder [65], one bit flip is sufficient to flip
the “R” (revoked) to “V” (valid). Assuming the memory is filled with
revocation list entries, which are on average 100 B for this specific
responder, an attacker has a chance of 0.125 % per bit flip to make
a random certificate valid again. Thus, an attacker can again reuse
that certificate (with the known private key) to sign documents or
data and, thus, impersonate the original signer.

A weaker, but more likely attack scenario, is to flip a bit in
the certificate identifier. Such a bit flip leads to the OCSP server
not finding the certificate in its database anymore, thus, return-
ing “unknown” as the state. Most browsers fall back to their own
certificate revocation list in such a case [2, 56, 66]. However, only
high-value revocations are kept in the browser’s list, making it very
unlikely that the certificate is in the certificate revocation list of
the browser [2]. Hence, an attacker can again reuse that certificate.

Other attacks. The attack scenarios described above are by far not
exhaustive. With bit flips in applications, attackers have numerous
possibilities to modify random data, yielding different, disastrous

consequences. However, the outlined attacks highlight the severity
of remotely induced bit flips by Nethammer.

5.2.4 Cryptographic Material. Cryptographic material as part
of the application memory is particularly interesting for attacks.
In the past, it has been demonstrated that fault attacks on RSA
public keys result in broken keys which are susceptible to key
factorization [10, 16]. Therefore, also public key material has to be
protected against faults. Muir [61] remarked that a bit flip in an
RSA public key allows an attacker with a non-negligible probability
to compute a private key corresponding to the modified key in a
reasonable amount of time. Thus, an attacker can flip a bit of a
public RSA key in memory using Nethammer, giving the attacker
the same privileges and permissions as the owner of the original
key. These permissions are only temporary, e.g., until the key is
reloaded from the hard drive.

Distribution ofMalicious Software onVersion-ControlHost-
ing Services. An attacker can compromise a hosting service to
distribute malicious software. The number of organizations using
hosting services for revision control to manage changes to their
source code, documents or other information is increasing steadily.
These services can either be subscription based, e.g., GitHub [36],
or self-hosted, e.g., GitLab [37], and, thus, are deployed on many
web servers to distribute their software.

To commit changes to a version-controlled repository, users
authenticate with the service using public-key cryptography. Typ-
ically, users generate an SSH key pair [89], e.g., using RSA [75],
upload the public key to the service, and store the private key se-
curely on their local system. As the position of the bit flip cannot
be controlled using Nethammer, an attacker can improve the prob-
ability to induce a bit flip in the modulus of a public key by loading
as many keys as possible into the main memory of the server. Some
APIs, e.g., the GitLab API [38], allow enumerating the users regis-
tered for the service as well as their public keys. By enumerating
and, therefore, accessing all public keys of the service, the attacker
loads the public keys into the DRAM.

In the first step of the attack, the attacker enumerates all keys of
all users and stores them locally. In the second step, the attacker
mounts Nethammer to induce bit flips on the targeted system. The
more keys the attacker loaded into memory, the more likely it is
that the bit flip corrupts the modulus of a public key of a user. For
instance, with 80 % of the memory filled with 4096-bit keys, the
chance to hit a bit of a modulus is 79.7 %. As the attacker does not
knowwhich keywas affected by the bit flip, the attacker enumerates
all keys again and compares them with the locally stored keys.
If a modified key has been found, the attacker computes a new
corresponding private key [61, 73]. The attacker uses this new key to
authenticatewith the service, impersonating the user. Consequently,
the attacker can make changes to the software repository as that
user and, thus, introduce bugs that can later be exploited if the
software is distributed. The original public key will be restored
after a while when the key is evicted from the page cache and has
to be reloaded from the hard drive. As the correct key is restored,
the attack leaves no traces. Furthermore, it also breaks the non-
repudiation guarantee provided by the public-key authentication,
making the victim whose public key was attacked the prime suspect
in possible investigations.

6 EVALUATION
In this section, we evaluate Nethammer and its performance. We
show that the number of bit flips induced byNethammer depends on
how the cache is bypassed and the memory-controller’s page policy.
We evaluate which kernel functions are executed when handling a
UDP network packet. We describe the bit flips we obtained when
running Nethammer in different attack scenarios. Finally, we show
that TRR does not protect against Nethammer or Rowhammer in
general.

6.1 Environment
In our evaluation, we used the test systems listed in Table 1. We
used the first system for our experiments with a non-default net-
work driver implementation that uses clflush in the process of
handling a network packet, and the second and third system for
our experiments with Intel CAT. To mount Nethammer, we used
a Gigabit switch to connect two other machines with the victim
machine. The two other machines were used to flood the victim
machine with network packets triggering the Rowhammer bug.
We used the fourth system for our experiments on an ARM-based
device that uses uncached memory in the process of handling a
network packet.

6.2 Evaluation of the Different Cache Bypasses
for Nethammer

In Section 4, we investigated the requirements to trigger the Rowham-
mer bug over the network. In this section, we evaluate Nethammer
for the three cache-bypass techniques (see Section 3.1): a kernel
driver that flushes (and reloads) an address whenever a packet is
received, Intel Xeon CPUs with Intel CAT for fast cache eviction,
and uncached memory on an ARM-based mobile device.

Driver with clflush. To verify that Nethammer can induce bit
flips, we used a non-default network driver implementation that
uses clflush in the process of handling a network packet on an
Intel i7-6700K CPU.We sent UDP packets with up to 500Mbit/s and
scanned memory regions where we expected bit flips. We observed
a bit flip every 350ms showing that hammering over the network
is feasible if at least two memory accesses are served from main
memory, due to flushing an address while handling a network
packet. Thus, in this scenario, up to 10 000 bit flips per hour can be
induced.

Eviction with Intel CAT. The operating system will handle ev-
ery network packet received by the network card. The operating
system parses the packets depending on their type, validates their
checksum and copies and delivers every packet to each registered
socket queue. Thus, for each received packet quite some code is ex-
ecuted before the packet finally arrives at the application destined
to handle its content.

We tested Nethammer on Intel Xeon CPUs with Intel CAT. The
number of cache ways has been limited to a single one for code
handling the processing of UDP packets, resulting in fast cache
eviction. If a function is called multiple times for one packet, the
same addresses are accessed and loaded from DRAM with a high
probability, thus, hammering this location. To estimate how many
different functions are called and how often they are called, we

Table 1: List of test systems that were used for the experiments.

Device CPU DRAM Network card Operating system

Desktop Intel i7-6700K @ 4GHz 8GB DDR4 @ 2133MHz Intel 10G X550T Ubuntu 16.04
Server Intel Xeon E5-1630v4 @ 3.7GHz 8GB DDR4 @ 2133MHz Intel i210/i218-LM Gigabit Xubuntu 17.10
Server Intel Xeon D-1541 @ 2.1GHz 8GB DDR4 @ 2133MHz Intel i350-AM2 Gigabit Ubuntu 16.04

LG Nexus 4 Qualcomm APQ8064 @ 1.5GHz 2GB LPDDR2 @ 533MHz USB Adapter Android 5.1.1

use the perf framework [22] to count the number of function calls
related to UDP packet handling. Appendix A shows the results of
a system handling UDP packets. Out of 27 different functions we
identified, most were called only once for each received packet. The
function __udp4_lib_lookup is called twice. In a more extensive
profiling scan, we found that nf_hook_slow is called 6 times while
handling UDP packets on some kernels.

With this knowledge, we analyzed how many bit flips can be
induced from this code execution. We observed 45 bit flips per
hour on the Intel Xeon E5-1630v4. As TRR is active on this system
(see Section 6.5), fewer bit flips occur in comparison to systems
without TRR. In Section 6.3, we evaluate the number of bit flips on
the Intel Xeon D-1541 depending on the configured page policy.

Uncached Memory. In Section 4.2, we demonstrated that ARM-
based devices are vulnerable to one-location hammering in general.
To investigate whether bit flips can also be induced over the net-
work, we connect the LG Nexus 4 using an OTG USB ethernet
adapter to a local network. Using a different machine, we send as
many network packets as possible to the mobile phone. An appli-
cation on the phone allocates memory and repeatedly checks the
allocated memory for occurred bit flips. However, we were not able
to observe any bit flips on the device within 12 hours of hammering.
As the device does not deploy a technology like Intel CAT (Sec-
tion 2.3), the cache is not limited for certain applications and, thus,
the eviction of code or data used by handling memory packets has
a low probability. As network drivers often use DMA memory and,
thus, uncached memory, bit flips induced by the network are more
likely if the network driver itself uses uncached memory. While we
identified a remarkable number of around 5500 uncacheable pages
used by the system, we were not able to induce any bit flips over
the network. However, we found that the USB ethernet adapter
only allowed for a network capacity of less than 16Mbit/s, which
is clearly too slow for a Nethammer attack. It is very likely that
with a faster network connection, e.g., more than 200Mbit/s, it is
possible to induce bit flips. Nevertheless, we were successfully able
to induce bit flips using Nethammer on the Intel Xeon E5-1630v4
where one uncached address is accessed for every received UDP
packet.

6.3 Influence of Memory-Controller Page
Policies on Rowhammer

In order to evaluate the actual influence of the used memory-
controller page policy on Nethammer, i.e., howmany bit flips can be
induced depending on the policy used, we mounted the Nethammer
in different settings. The experiment was conducted on our Intel
Xeon D-1541 test system, as the BIOS of its motherboard allowed to

0 20 40 60 80 100
0
10
20
30

CPU Load

Bi
tfl
ip
s

Figure 5: Number of bit flips depending on the CPU load
with a closed-page policy after 15 minutes (Xeon D-1541).

chose between different page policies: Auto, Closed, Open, Adaptive.
For each run, we configured the victim machine with one of the
policies and Intel CAT, and, mounted a Nethammer attack for at
least 4 hours. To detect bit flips, we ran a program on the victim
machine that mapped a file into memory. The program then repeat-
edly scans the content of all allocated pages and reports bit flips if
the content has changed.

We detected 11 bit flips in 4 hours with the Closed policy, with
the first one after 90 minutes. We did not observe any bit flips with
the Open policy within the first 4 hours. However, when running
the experiment longer, we observed 46 bit flips within 10 hours.
With the Adaptive policy, we observed 10 bit flips in 4 hours, with
the first one within the second hour of the experiment. While this
experiment was conducted without any additional load on the sys-
tem, we see in Figure 5 that additional CPU utilization increases the
number of bitflips drastically. Using the Closed policy, we observed
27 bitflips with a load of 35% within 15 minutes.

These results do not immediately align with the assumption that
a policy that preemptively closes rows is required to induce bit
flips using one-location hammering. However, depending on the
addresses that are accessed and the constant eviction through Intel
CAT, it is possible that two addresses map to the same bank but
different rows and, thus, bit flips can be induced through single-
sided hammering. In fact, the attacker cannot know whether the
hammering was actually one-location hammering or single-sided
hammering. However, as long as a bit flip occurs, the attacker does
not care how many addresses mapped to the same bank. Finally,
depending on the actual parameters used by a fixed-open-page
policy, a row can still be closed early enough to induce bit flips.

6.4 Bit Flips induced by Nethammer
As described in Section 5.1, a bit flip can occur in user space or
kernel space leading to different effects depending on the memory it
corrupts. In this section, we present bit flips that we have observed
in our experiments and the effects they have caused.

Kernel image corruption and kernel crashes. We observed
Nethammer bit flips that caused the system not to boot anymore.
It stopped responding after the bootloader stage. We inspected
the kernel image and compared it to the original kernel image
distributed by the operating system. As the kernel image differed
blockwise atmany locations, we assume that the Nethammer caused
a bit flip in an inode of the file system. The inode of a program that
wanted to write data did not point to the correct file any longer but
to the kernel image and, thus, corrupted the kernel image.

Furthermore, we observed several bit flips immediately halting
the entire system such that interaction with it was not possible any
longer. By debugging the operating system over a serial connection,
we detected bit flips in certain modules such as the keyboard or
network driver. In these cases, the system was still running but did
not respond to any user input or network packets anymore. We also
observed bit flips that were likely in the SGX EPC region, causing
an immediate permanent locking of the memory controller.

Bit flips in user space libraries and executables. We observed
that bit flips crashed running processes and services or prevented
the execution of others as the bit flip triggered a segmentation fault
when functions of a library were executed. On one occasion, a bit
flip occurred either in the SSH daemon or the stored passwords
of the machine, preventing any user to login on the system. The
system was restored to a stable state only by rebooting the machine
and thus reloading the entire code from disk.

We also validated that an attacker can increase chances to flip
a bit in a target page by increasing the memory usage of a user
program. In fact, this was the most common scenario, overlapping
with our general test setup to detect bit flips for our evaluation. Un-
surprisingly, these bit flips equally occur when filling the memory
with actual contents that the attacker targets.

6.5 Target Row Refresh (TRR)
Previous assumptions on the Rowhammer bug lead to the conclu-
sion that only bit flips in the victim row adjacent to the hammering
rows would occur. While the probability for bit flips to occur in di-
rectly adjacent rows is much higher, Kim et al. [50] already showed
rows further away (even a distance of 8 rows and more) are af-
fected as well. Still, the hardware vendors opted for implementing
countermeasures focusing on the directly adjacent rows.

With the Low Power Double Data Rate 4 (LPDDR4) standard, the
JEDEC Solid State Technology Association [46] defines a reliability
feature called Target Row Refresh (TRR). The idea of TRR is to
refresh adjacent rows if the targeted row is accessed at a high
frequency. More specifically, TRR works with a maximum number
of activations allowed during one refresh cycle, the maximum active
count. Thus, if a double-sided Rowhammer attack (Section 2.2) is
mounted, and two hammered rows are accessed more than the
defined maximum active count, the adjacent rows (in particular the
victim row of the attack) will be refreshed. As the potential victim
rows are refreshed, in theory, no bit flip will occur, and the attack is
mitigated. However, in practice, bit flips can be further away from
the hammered rows and thus TRR may be ineffective.

With the Ivy Bridge processor family, Intel introduced Pseudo
Target Row Refresh (pTRR) for Intel Xeon CPUs to mitigate the
Rowhammer bug [55]. On these systems pTRR-compliant DIMMs

must be used; otherwise, the system will default into double re-
fresh mode, where the time interval in which a row is refreshed is
halved [55]. However, Kim et al. [50] showed that a reduced refresh
period of 32ms is not sufficient enough to impede bit flips in all
cases. While pTRR is implemented in the memory controller [54],
DRAM module specifications theoretically allow automatically run-
ning TRR in the background [58].

In our experiments, we were able to induce bit flips on a pTRR-
supporting DDR4 module using double-sided hammering on an
Intel i7-6700K. The bit flips occurred in directly adjacent rows and
rows further away. We observed that when using the same DDR4
DRAMon the Intel Xeon E5-1630 v4 CPU, no bit flips occurred in the
directly adjacent rows, but we observed no statistically significant
difference in the number of bit flips for the rows further away.
This indicates that TRR is active on the second machine but also
that TRR does not prevent the occurrence of exploitable bit flips in
practice. Thus, we conclude that the TRR hardware countermeasure
is insufficient in mitigating Rowhammer attacks.

7 COUNTERMEASURES
Since Nethammer does not require any attack code in contrast to
a regular Rowhammer attack, e.g., no attacker-controlled code on
the system, most countermeasures do not prevent our attack.

Countermeasures based on static code analysis aim to detect
attack code in binaries [43]. However, as our attack does not use
any suspicious code and does not execute a program, these counter-
measures do not detect the ongoing attack. Other countermeasures
detect on-going attacks using hardware- and software-based per-
formance counters [17, 18, 29, 31, 67, 91] and subsequently stop
the corresponding programs. However, when hammering over the
network, the large amount of memory accesses are executed by the
kernel itself, and the kernel cannot just be terminated or stopped
like a regular program. Hence, these countermeasures cannot cope
with our attack. Modifying the system memory allocator to hinder
the exploitability of bit flips [15, 28, 84] may generally work against
Nethammer. However, the hammering is in practice done by the
kernel, so the proposed isolation schemes are ineffective, and new
schemes have to be proposed.

ANVIL [9] uses performance counters to detect and subsequently
mitigate Rowhammer attacks. Since ANVIL, in its current form,
does not detect one-location hammering [27], it also does not detect
our attack. While we believe an adapted version of ANVIL could
detect our attack, it would require evaluating whether the false
positive and false negative rates allow for an application in prac-
tice. B-CATT [15] blacklists vulnerable locations, thus, effectively
reducing the amount of usable memory, but fully eliminating the
Rowhammer bug. B-CATT would work against Nethammer, but
previous work has found that it is not practical as it would block
too much memory [27, 50].

In general, we recommend reviewing any network stack and
network services code. Uncached memory and clflush instruc-
tions should only be used with extreme care, and it may even be
necessary to add artificial slow downs such that they cannot be
exploit for Nethammer attacks anymore. If this is not possible for
technical reasons, the threat model of the device should be revisited
and reevaluated. Mitigating our eviction-based Nethammer attack

might be more straight-forward, as it requires a specific configura-
tion for Intel CAT. Either avoiding the restriction to a low number
of cache ways via Intel CAT on network-connected systems or in-
stalling ECC memory would likely be sufficient to make our attack
very improbable to succeed. Hence, we also recommend using Intel
CAT very carefully in network-connected systems.

8 DISCUSSION

Hardware requirements. To induce the Rowhammer bug, one
needs to access memory in the main memory repeatedly and, thus,
needs to circumvent the cache. Therefore, either native flush in-
structions [87], eviction [4, 28] or uncached memory [84] can be
used to remove data from the cache. In particular, for eviction-
based Nethammer, the system must use Intel CAT as described
in Section 2.3 in a configuration that restricts the number of ways
available to a virtual machine in a cloud scenario to guarantee
performance to other co-located machines [40]. If none of these
capabilities are available over the network, an attacker could not
mount Nethammer in practice.

One limitation of our attack is that only DRAM susceptible to
bit flips can be exploited using a Rowhammer attack and, thus,
Nethammer. To reduce the risk of bit flips on servers, one would
assume that cloud providers tend to deploy ECC RAM usually.
However, many cloud providers offer to rent hardware without
ECC RAM [23, 33, 34, 63, 64, 85], potentially allowing Nethammer
attacks. DRAM with ECC can only be used in combination with
Intel Xeon CPUs and can detect and correct 1-bit errors. Therefore
it can deal with single bit flips. While non-correctable multi-bit flips
can be exploitable [5, 6, 51], they often end up in a denial-of-service
attack depending on the operating system’s response to the error.

Network traffic. Nethammer sends as many network packets to
the victimmachine as possible, aiming to induce bit flips. Depending
on the actual attack scenario (see Section 5), additional traffic, e.g.,
by enumerating the public keys of the service, is generated. If
the victim uses network monitoring software, the attack might
be detected and stopped, due to the highly increased amount of
traffic. In our experiments, we sent a stream of UDP packets with
up to 500Mbit/s to the target system. We were able to induce a bit
flip every 350ms and, thus, if the first random bit flip already hits
the target or causes a denial-of-service, the attack could already
be successful. However, as the rows are periodically refreshed, an
attacker only needs an extraordinary high burst of memory accesses
to a row between two refreshes, i.e., within a period of 64ms. Hence,
an attacker couldmount Nethammer for a few hundredmilliseconds
and then pause the attack for a longer time. These short network
spikes may circumvent network monitoring software that might
otherwise detect and prevent the on-going attack, e.g., by null
routing the victim server.

Gigabit LTE on Mobile Devices. While ethernet adapters in
mobile phones are uncommon, many ARM-based embedded devices
in IoT setups are equipped and connected with gigabit ethernet.
However, we expect the maximum throughput of these network
cards to be too low on many of these devices, e.g., the Raspberry
Pi 3 Model B+ [24], and also WiFi chips typically offer too little
capacity. However, on more recent processors, e.g., the Qualcomm

2000 2005 2010 20151

2

3

4
SD
R

DD
R1

DD
R2

DD
R3

DD
R3
L

DD
R4

LP
DD
R1

LP
DD
R2

LP
DD
R3

LP
DD
R4

Year

Su
pp

ly
Vo

lta
ge

Regular Low-power

Figure 6: Minimum DRAM supply voltages for different
DDR standards. The highlighted area marks the voltage and
manufacturing years ofDRAMmoduleswhereRowhammer
bit flips have been reported.

Snapdragon 845 chipset [70], and modems like the Qualcomm X20
Gigabit LTE modem, throughputs up to 1.2Gbit/s are possible in
practice. This would enable to send enough packets to hammer
specific addresses to induce bit flips on the device and, thus, to
successfully mount Nethammer.

Influence of DRAM Supply Voltage on Rowhammer Effect.
Kim et al. [50] identified voltage fluctuations as the root cause of
DRAM disturbance errors, e.g., the Rowhammer bug. However,
no study so far has investigated the direct effect of the DRAM
supply voltage on Rowhammer bit flips. In fact, we can already
observe a direct correlation between a low DRAM supply voltage by
reviewing related work. Figure 6 shows how the DRAM voltage has
been reduced over the past years. Previous work observed that the
vulnerability of DRAMmodules is related to themanufacturing date,
i.e., no bitflips before 2010 [50, 78]. However, as shown in Figure 6
there are at least two possible correlations with the Rowhammer
bug, the manufacturing date, and the supply voltage.

Indeed, Rowhammer has only been reported on DRAM modules
with a voltage below 1.5 volts [50, 78], i.e., DDR3 [50, 78], DDR4 [68],
LPDDR2 and LPDDR3 [84], and LPDDR4 [83].

We investigated the influence of the DRAM voltage on the oc-
currence of bit flips on two systems. We tested voltage increases
in 0.01V steps. On three tested systems (2× DDR4, 1× DDR3), we
observed no significant change in the number of bit flips, i.e., the
number of bit flips stayed in the same order of magnitude, even
when increasing the voltage by 0.2V. Future work should inves-
tigate whether other voltage-related parameters could lead to a
straightforward elimination of the Rowhammer bug.

9 CONCLUSION
In this paper, we presented Nethammer, the first truly remote
Rowhammer attack, without a single attacker-controlled line of
code on the targeted system. We demonstrate attacks on systems
that use uncached memory or flush instructions while handling
network requests, and systems that don’t use either but are pro-
tected by Intel CAT. In all cases, we were able to induce multiple
bit flips per hour on real-world systems, leading to temporary or
persistent damage on the system. We showed that depending on the
location, the bit flip compromises either the security and integrity
of the system and the data of its users. In some cases, the system
was rendered unbootable after the attack.

We presented a method to automatically identify the page policy
used by the memory controller. Consequently, we found that adap-
tive page policies are also vulnerable to one-location hammering.
While we were able to mount the first one-location hammering
attack on an ARM device, the network capacity on this device was
too low for Nethammer.

Transforming formerly local attacks into remote attacks is al-
ways a landslide in security. Assumptions that were true for the
local scenario are largely invalid in a remote scenario. In particular,
all defenses and mitigation strategies were designed against local
Rowhammer attacks, i.e., remote Rowhammer attacks were out of
scope. Hence, Nethammer requires the re-evaluation of the security
of millions of devices where the attacker is not able to execute
attacker-controlled code. Finally, our work demonstrates that we
need to develop countermeasures with the root cause of both local
and remote Rowhammer attacks in mind.

ACKNOWLEDGEMENT
We thank Mattis Turin-Zelenko and Paul Höfler for help with some
experiments. We thank Stefan Mangard, Anders Fogh, Thomas
Dullien, and Jann Horn for fruitful discussions.

This work has been supported by the Austrian Research Promo-
tion Agency (FFG) via the K-project DeSSnet, which is funded in
the context of COMET – Competence Centers for Excellent Tech-
nologies by BMVIT, BMWFW, Styria and Carinthia. This project
has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 681402).

REFERENCES
[1] Abhishta, Reinoud Joosten, and Lambert J.M. Nieuwenhuis. 2017. Comparing

Alternatives to Measure the Impact of DDoS Attack Announcements on Target
Stock Prices. (2017).

[2] Adam Langley. 2014. Revocation still doesn’t work. (2014). https://
www.imperialviolet.org/2014/04/29/revocationagain.html

[3] Advanced Micro Devices. 2013. BIOS and Kernel Developer’s Guide (BKDG) for
AMD Family 15h Models 00h-0Fh Processors. (2013). http://support.amd.com/
TechDocs/42301_15h_Mod_00h-0Fh_BKDG.pdf

[4] Misiker Tadesse Aga, Zelalem Birhanu Aweke, and Todd Austin. 2017. When
good protections go bad: Exploiting anti-DoSmeasures to accelerate Rowhammer
attacks. In International Symposium on Hardware Oriented Security and Trust.

[5] Barbara Aichinger. 2015. DDR memory errors caused by Row Hammer. In HPEC.
[6] Barbara Aichinger. 2015. Row Hammer Failures in DDR Memory. In memcon.
[7] ARM Limited. 2013. ARM Architecture Reference Manual ARMv8. ARM Limited.
[8] Manu Awasthi, David W. Nellans, Rajeev Balasubramonian, and Al Davis. 2011.

Prediction Based DRAM Row-Buffer Management in the Many-Core Era. In
PACT’11.

[9] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetuparna Das,
Matthew Hicks, Yossi Oren, and Todd Austin. 2016. ANVIL: Software-based
protection against next-generation Rowhammer attacks. ACM SIGPLAN Notices
51, 4 (2016), 743–755.

[10] Alexandre Berzati, Cécile Canovas, and Louis Goubin. 2008. Perturbating RSA
Public Keys: An Improved Attack. In Cryptographic Hardware and Embedded
Systems – CHES 2008.

[11] Sarani Bhattacharya and Debdeep Mukhopadhyay. 2016. Curious Case of
Rowhammer: Flipping Secret Exponent Bits Using Timing Analysis. In Con-
ference on Cryptographic Hardware and Embedded Systems (CHES).

[12] Eli Biham. 1997. A fast new DES implementation in software. In International
Workshop on Fast Software Encryption. 260–272.

[13] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. 1997. On the Importance
of Checking Cryptographic Protocols for Faults. In Advances in Cryptology -
EUROCRYPT ’97.

[14] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2016. Dedup
Est Machina: Memory Deduplication as an Advanced Exploitation Vector. In
S&P.

[15] Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen, and Ahmad-
Reza Sadeghi. 2017. CAn’t Touch This: Software-only Mitigation against
Rowhammer Attacks targeting Kernel Memory. In USENIX Security Symposium.

[16] Eric Brier, Benoît Chevallier-Mames, Mathieu Ciet, and Christophe Clavier. 2006.
Why One Should Also Secure RSA Public Key Elements. In Cryptographic Hard-
ware and Embedded Systems - CHES 2006.

[17] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. 2015. Real time detection
of cache-based side-channel attacks using Hardware Performance Counters.
Cryptology ePrint Archive, Report 2015/1034. (2015).

[18] Jonathan Corbet. 2016. Defending against Rowhammer in the kernel. (Oct. 2016).
https://lwn.net/Articles/704920/

[19] Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. (2016).
[20] Artem Dinaburg. 2011. Bitsquatting: DNS Hijacking without Exploitation.

(2011). http://media.blackhat.com/bh-us-11/Dinaburg/BH_US_11_Dinaburg_
Bitsquatting_WP.pdf

[21] James M. Dodd. 2003. Adaptive page management. (2003). https://
encrypted.google.com/patents/US7076617B2 US Patent Grant 2006-07-11.

[22] Jake Edge. 2009. Perfcounters added to the mainline. (Jul 2009). http://lwn.net/
Articles/339361/

[23] fasthosts. 2018. High performance dedicated servers. (May 2018). https://
www.fasthosts.co.uk/dedicated-servers

[24] Raspberry Pi Foundation. 2018. Raspberry Pi 3 Model B+. (March 2018). https:
//www.raspberrypi.org/products/raspberry-pi-3-model-b-plus

[25] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2018. Grand
Pwning Unit: Accelerating Microarchitectural Attacks with the GPU. In IEEE
S&P.

[26] Mohsen Ghasempour, Mikel Lujan, and Jim Garside. 2015. ARMOR: A Run-time
Memory Hot-Row Detector. (2015). http://apt.cs.manchester.ac.uk/projects/
ARMOR/RowHammer

[27] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas Juffinger, Sioli
O’Connell, Wolfgang Schoechl, and Yuval Yarom. 2018. Another Flip in the Wall
of Rowhammer Defenses. In S&P’18.

[28] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2016. Rowhammer.js:
A Remote Software-Induced Fault Attack in JavaScript. In DIMVA’16.

[29] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+Flush: A Fast and Stealthy Cache Attack. In DIMVA.

[30] Shay Gueron. 2016. A Memory Encryption Engine Suitable for General Purpose
Processors. Cryptology ePrint Archive, Report 2016/204. (2016).

[31] Nishad Herath and Anders Fogh. 2015. These are Not Your Grand Daddys CPU
Performance Counters – CPU Hardware Performance Counters for Security.
In Black Hat Briefings. https://www.blackhat.com/docs/us-15/materials/us-
15-Herath-These-Are-Not-Your-Grand-Daddys-CPU-Performance-Counters-
CPU-Hardware-Performance-Counters-For-Security.pdf

[32] Andrew Herdrich, Edwin Verplanke, Priya Autee, Ramesh Illikkal, Chris Gianos,
Ronak Singhal, and Ravi Iyer. 2016. Cache QoS: From concept to reality in the
Intel Xeon processor E5-2600 v3 product family. In IEEE HPCA’16.

[33] Hetzner. 2018. Dedicated Root Server Hosting. (May 2018). https://
www.hetzner.com/dedicated-rootserver/

[34] DefineQuality Hosting. 2018. Highend Dedicated Rootserver. (May 2018). https:
//definequality.net/dedicated.php

[35] Rei-Fu Huang, Hao-Yu Yang, Mango C.-T. Chao, and Shih-Chin Lin. 2012. Al-
ternate hammering test for application-specific DRAMs and an industrial case
study. In Annual Design Automation Conference (DAC).

[36] GitHub Inc. 2018. GitHub. (2018). https://github.com
[37] GitLab Inc. 2018. GitLab. (2018). https://gitlab.com
[38] GitLab Inc. 2018. GitLab Documentation: List SSH keys. (2018). https:

//docs.gitlab.com/ee/api/users.html#list-ssh-keys
[39] Mehmet S Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas Eisenbarth, and

Berk Sunar. 2016. Cache Attacks Enable Bulk Key Recovery on the Cloud.
In Cryptographic Hardware and Embedded Systems - CHES (LNCS), Vol. 9813.
Springer, 368–388.

[40] Intel. 2015. Improving Real-Time Performance by Utilizing Cache Allocation
Technology: Enhancing Performance via Allocation of the Processor’s Cache.
(April 2015). https://www.intel.com/content/www/us/en/communications/
cache-allocation-technology-white-paper.html

[41] Intel. 2016. Intel 64 and IA-32 Architectures Software Developer′s Manual,
Volume 3 (3A, 3B & 3C): System Programming Guide. 253665 (2016).

[42] Intel. 2016. Intel Xeon Processor E5 v4 Product Family: Datasheet Volume 2:
Registers. 2 (2016).

[43] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2017. MASCAT: Stopping
Microarchitectural Attacks Before Execution. Cryptology ePrint Archive, Report
2016/1196. (2017).

[44] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. 2017. SGX-Bomb:
Locking Down the Processor via Rowhammer Attack. In SysTEX.

[45] Jedec Solid State Technology Association. 2013. Low Power Double Data Rate 3.
(2013). http://www.jedec.org/standards-documents/docs/jesd209-4a

[46] JEDEC Solid State Technology Association. 2017. Low Power Double Data Rate
4. (2017). http://www.jedec.org/standards-documents/docs/jesd209-4b

[47] Suryaprasad Kareenahalli, Zohar B. Bogin, and Mihir D. Shah. 2003. Adaptive
idle timer for a memory device. (2003). https://encrypted.google.com/patents/
US7076617B2 US Patent Grant 2005-06-21.

[48] Dimitris Kaseridis, Jeffrey Stuecheli, and Lizy Kurian John. 2011. Minimalist
open-page: A DRAM page-mode scheduling policy for the many-core era. In
International Symposium on Microarchitecture (MICRO).

[49] Dae-Hyun Kim, Prashant J Nair, and Moinuddin K Qureshi. 2015. Architectural
support for mitigating row hammering in DRAM memories. IEEE Computer
Architecture Letters 14, 1 (2015), 9–12.

[50] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance errors. In
ISCA’14.

[51] Mark Lanteigne. 2016. How Rowhammer Could Be Used to ExploitWeaknesses in
Computer Hardware. (March 2016). http://www.thirdio.com/rowhammer.pdf

[52] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. 2016. ARMageddon: Cache Attacks on Mobile Devices. In USENIX
Security Symposium.

[53] Yabing Liu, Will Tome, Liang Zhang, David Choffnes, Dave Levin, Bruce Maggs,
Alan Mislove, Aaron Schulman, and Christo Wilson. 2015. An End-to-End
Measurement of Certificate Revocation in the Web’s PKI. In IMC ’15.

[54] Sreenivas Mandava, Brian S. Morris, Suneeta Sah, Roy M. Stevens, Ted Rossin,
Mathew W. Stefaniw, and John H. Crawford. 2017. Techniques for determining
victim row addresses in a volatile memory. (2017). https://encrypted.google.com/
patents/US9824754B2 US Patent Grant 2017-11-21.

[55] Marcin Kaczmarski. 2014. Thoughts on Intel Xeon E5-2600 v2 Product Family
Performance Optimisation – component selection guidelines. (August 2014). http:
//infobazy.gda.pl/2014/pliki/prezentacje/d2s2e4-Kaczmarski-Optymalna.pdf In-
fobazy 2014.

[56] Mark Goodwin. 2015. Improving Revocation: OCSP Must-Staple and Short-lived
Certificates. (2015). https://blog.mozilla.org/security/2015/11/23/improving-
revocation-ocsp-must-staple-and-short-lived-certificates/

[57] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann, Olivier Heen,
and Aurélien Francillon. 2015. Reverse Engineering Intel Complex Addressing
Using Performance Counters. In RAID.

[58] Micron. 2014. DDR4 SDRAM. (2014). https://www.micron.com/~/media/
documents/products/data-sheet/dram/ddr4/4gb_ddr4_sdram.pdf Retrieved on
February 17, 2016.

[59] Microsoft. 2017. Cache and Memory Manager Improvements. (April
2017). https://docs.microsoft.com/en-us/windows-server/administration/
performance-tuning/subsystem/cache-memory-management/improvements-
in-windows-server

[60] Paul V Mockapetris. 1987. Domain names-concepts and facilities. (1987).
[61] James A Muir. 2006. Seifert’s RSA fault attack: Simplified analysis and gen-

eralizations. In International Conference on Information and Communications
Security.

[62] Onur Mutlu. 2017. The RowHammer problem and other issues we may face as
memory becomes denser. In Design, Automation & Test in Europe Conference &
Exhibition (DATE).

[63] myLoc managed IT. 2018. The dedicated server in comparison. (May
2018). https://www.myloc.de/en/server-hosting/dedicated-server/dedicated-
server-comparison.html

[64] netcup. 2018. Dedicated servers for professional applications. (May 2018).
https://www.netcup.eu/professional/dedizierte-server/

[65] OpenSSL. 2015. Online Certificate Status Protocol utility. (Jan. 2015). https:
//www.openssl.org/docs/man1.0.2/apps/ocsp.html

[66] Paul Mutton. 2014. Certificate revocation: Why browsers remain affected by
Heartbleed. (2014). https://news.netcraft.com/archives/2014/04/24/certificate-
revocation-why-browsers-remain-affected-by-heartbleed.html

[67] Matthias Payer. 2016. HexPADS: a platform to detect “stealth” attacks. In ES-
SoS’16.

[68] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. 2016. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks.
In USENIX Security Symposium.

[69] Rui Qiao and Mark Seaborn. 2016. A New Approach for Rowhammer Attacks.
In International Symposium on Hardware Oriented Security and Trust.

[70] Qualcomm. 2017. Snapdragon 845 Mobile Platform Product Brief. (Dec.
2017). https://www.qualcomm.com/documents/snapdragon-845-mobile-
platform-product-brief

[71] Inc. Qualcomm Technologies. 2016. Qualcomm Snapdragon 600 APQ8064: Data
Sheet. (2016).

[72] Inc. Qualcomm Technologies. 2016. Qualcomm Snapdragon 600E Processor
APQ8064E: Recommended Memory Controller and Device Settings. (2016).

[73] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida, and
Herbert Bos. 2016. Flip Feng Shui: Hammering a Needle in the Software Stack.

In USENIX Security Symposium.
[74] Red Hat. 2017. Red Hat Enterprise Linux 7 - Virtualization Tuning and Optimization

Guide.
[75] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. 1977. Cryptographic

communications system and method. (1977). https://patents.google.com/patent/
US4405829 US Patent Grant 1983-09-20.

[76] Hemant G Rotithor, Randy B Osborne, and Nagi Aboulenein. 2006. Method and
apparatus for out of order memory scheduling. (Oct. 2006). US Patent 7,127,574.

[77] Stefan Santesson, Michael Myers, Rich Ankney, Ambarish Malpani, Slava
Galperin, and Dr. Carlisle Adams. 2013. X.509 Internet Public Key Infras-
tructure Online Certificate Status Protocol - OCSP. RFC 6960. (2013). https:
//doi.org/10.17487/RFC6960

[78] Mark Seaborn and Thomas Dullien. 2015. Exploiting the DRAM rowhammer
bug to gain kernel privileges. In Black Hat Briefings.

[79] X. Shen, F. Song, H. Meng, S. An, and Z. Zhang. 2014. RBPP: A row based DRAM
page policy for the many-core era. In IEEE ICPADS.

[80] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. 2017. CLKSCREW: Ex-
posing the Perils of Security-Oblivious Energy Management. In USENIX Security
Symposium.

[81] Andrei Tatar, Radhesh Krishnan, Elias Athanasopoulos, Cristiano Giuffrida,
Herbert Bos, and Kaveh Razavi. 2018. Throwhammer: Rowhammer Attacks over
the Network and Defenses. In USENIX ATC.

[82] Chee Hak Teh, Suryaprasad Kareenahalli, and Zohar Bogin. 2006. Dynamic
update adaptive idle timer. (2006). https://encrypted.google.com/patents/
US7076617B2 US Patent Grant 2009-09-08.

[83] Victor van der Veen. 2016. Drammer: Deterministic Rowhammer Attacks on
Mobile Platforms. (2016). http://vvdveen.com/publications/drammer.slides.pdf

[84] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clé-
mentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano
Giuffrida. 2016. Drammer: Deterministic Rowhammer Attacks on Mobile Plat-
forms. In CCS’16.

[85] webtropia. 2018. Dedicated Server. (May 2018). https://www.webtropia.com/
en/dedicated-server/root-server-vergleich.html

[86] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu. 2016. One Bit
Flips, One Cloud Flops: Cross-VM RowHammer Attacks and Privilege Escalation.
In USENIX Security Symposium.

[87] Yuval Yarom and Katrina Falkner. 2014. Flush+Reload: a High Resolution, Low
Noise, L3 Cache Side-Channel Attack. In USENIX Security Symposium.

[88] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and Gernot Heiser. 2015. Map-
ping the Intel Last-Level Cache. Cryptology ePrint Archive, Report 2015/905 (2015),
1–12.

[89] Tatu Ylonen andChris Lonvick. 2006. The secure shell (SSH) protocol architecture.
(2006).

[90] Thomas M. Zeng. 2012. The Android ION memory allocator. (Feb. 2012). https:
//lwn.net/Articles/480055/

[91] Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee. 2016. CloudRadar: A Real-Time
Side-Channel Attack Detection System in Clouds. In RAID.

A KERNEL ACCESSES FOR NETWORK
PACKETS

Table 2 shows the results of the funccount script of the perf frame-
work [22] for functions with udp in their name while the targeted
system is flooded with UDP packets.

Table 2: Results of funccount on the victim machine for
functions with udp in their name while the system is
flooded with UDP packets.

Function Number of calls

__udp4_lib_lookup 2 000 024
__udp4_lib_rcv 1 000 012
udp4_gro_receive 1 000 012
udp4_lib_lookup_skb 1 000 012
udp_error 1 000 012
udp_get_timeouts 1 000 013
udp_gro_receive 1 000 013
udp_packet 1 000 012
udp_pkt_to_tuple 1 000 012
udp_rcv 1 000 012
udp_v4_early_demux 1 000 012

