
Automating Seccomp Filter Generation for Linux Applications
Claudio Canella

Graz University of Technology
Austria

Mario Werner
Graz University of Technology

Austria

Daniel Gruss
Graz University of Technology

Austria

Michael Schwarz
CISPA Helmholtz Center for Information Security

Germany

ABSTRACT
Software vulnerabilities undermine the security of applications. By
blocking unused functionality, the impact of potential exploits can
be reduced. While seccomp provides a solution for filtering syscalls,
it requires manual implementation of filter rules for each individual
application. Recent work has investigated approaches to automate
this task. However, as we show, these approachesmake assumptions
that are not necessary or require overly time-consuming analysis.

In this paper, we propose Chestnut, an automated approach
for generating strict syscall filters with lower requirements and
limitations. Chestnut comprises two phases, with the first phase
consisting of two static components, i.e., a compiler and a binary an-
alyzer, that statically extract the used syscalls. The compiler-based
approach of Chestnut is up to factor 73 faster than previous ap-
proaches with the same accuracy. On the binary level, our approach
extends over previous ones by also applying to non-PIC binaries.
An optional second phase of Chestnut is dynamic refinement to
restrict the set of allowed syscalls further. We demonstrate that
Chestnut on average blocks 302 syscalls (86.5 %) via the compiler
and 288 (82.5 %) using the binary analysis on a set of 18 applications.
Chestnut blocks the dangerous exec syscall in 50 % and 77.7 % of the
tested applications using the compiler- and binary-based approach,
respectively. For the tested applications, Chestnut blocks exploita-
tion of more than 61 % of the 175 CVEs that target the kernel via
syscalls.

CCS CONCEPTS
• Security and privacy→ Operating systems security.

KEYWORDS
seccomp; Linux; automated syscall filtering
ACM Reference Format:
Claudio Canella, Mario Werner, Daniel Gruss, and Michael Schwarz. 2021.
Automating Seccomp Filter Generation for Linux Applications. In Proceed-
ings of the 2021 Cloud Computing Security Workshop (CCSW ’21), November
15, 2021, Virtual Event, Republic of Korea.ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3474123.3486762

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCSW ’21, November 15, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8653-1/21/11. . . $15.00
https://doi.org/10.1145/3474123.3486762

1 INTRODUCTION
The complexity of applications is steadily growing, and with that,
also the number of vulnerabilities found in applications [39]. A
consequence is that the attack surface for exploits is also growing.
Especially in applications written in memory unsafe languages such
as C, bugs often lead to memory safety violations that potentially
enable exploits [59]. Even with state-of-the-art defenses, a risk
remains that an attacker can exploit a remaining vulnerability in
an application. For privileged applications such as setuid binaries,
this can, in the worst case, fully compromise the entire system.

The remaining exploitation risk can be addressed by reducing the
post-exploitation impact (cf. principle of least privilege). With avail-
able resources and interfaces limited to those strictly required by
the application, a successful exploit cannot use arbitrary other func-
tionality [35]. Especially blocking dangerous syscalls and syscall
parameters that are not required by many applications, e.g., the
exec syscall to execute a new program, reduces an attacker’s pos-
sibilities in the post-exploitation phase. Application sandboxing
limits the resources available to an application [23, 45] and, ideally,
untrusted and potentially malicious, or benign but compromised
applications cannot escape the sandbox.

On Linux, seccomp [15] and the extended seccomp-bpf can
be used by applications to restrict the syscall interface. Seccomp-
bpf [15] supports developer-defined filter rules. Each syscall can be
blocked entirely or specific arguments for it. However, the correct
usage of seccomp-bpf requires the developer to knowwhich syscalls
are used by the application and the included libraries. Given the
considerable effort, seccomp is mainly used in applications that
provide isolation mechanisms, e.g., sandboxes [19, 28].

Recent works proposed two methods to automatically gener-
ate such seccomp filters [11, 21]. The first approach utilizes the
compiler and various external tools to derive the filters during com-
pilation [21]. To minimize the set of syscalls, the approach relies
on sophisticated points-to analysis [2] to generate a call graph of
reachable functions and syscalls. The second approach relies on
binary analysis to determine the syscalls an existing binary intends
to use [11]. While these are first solutions to the problem of au-
tomating filter generation, both come with clear limitations. For
instance, the first approach does not scale with the program size
due to the points-to analysis [2, 25]. In practice, the overheads can
be prohibitively large as they would require a massive upscaling
of development and build server resources. The second approach
comes with a strong requirement that the application is compiled
as a position-independent code (PIC) binary (PIE) [11]. While PIE is
the default on recent Ubuntu distributions for C and C++ compiled
programs, static C and C++ binaries are by default not compiled as

https://doi.org/10.1145/3474123.3486762
https://doi.org/10.1145/3474123.3486762

PIE. Other compiled binaries are often not PIE either, e.g., ‘golang’
binaries such as the popular git server Gogs, which are not sup-
ported by these previous works. Both limitations reduce the set of
applications that can be protected with these solutions substantially.

In this paper, we present a novel approach that overcomes the
limitations of previous ones and automatically generates strict sec-
comp filters for native Linux userspace applications. We show that
our approach is a significant improvement over the compiler-based
approach by Ghavamnia et al. [21] without the expensive points-to
analysis to generate filter rules. Instead, a faster has address taken
approach achieves the same accuracy but at a fraction of the perfor-
mance impact on compilation time. In contrast to DeMarinis et al.
[11], we demonstrate that the requirement of a PIC binary is not
necessary, significantly extending the set of target applications. We
implement our method in a proof-of-concept tool, Chestnut.1

Chestnut uses a two-phase process: A static first phase 𝒫1 con-
sisting of two static components (Sourcalyzer andBinalyzer), and
an optional dynamic second phase 𝒫2 (Finalyzer). Using static
analysis, Chestnut first identifies unused syscalls without running
the application in 𝒫1 and dynamically refines this set in 𝒫2 to
reduce the inherent limitations of the static analysis in𝒫1.

For Sourcalyzer, we extend the LLVM framework to detect
the syscalls used by the application already during compile- and
link-time. The syscall information for each shared library is either
extracted using the compiler or using Binalyzer. Binalyzer can be
used for applications and libraries which are either not compatible
with LLVMorwhere the source code is not available.We rely on cap-
stone [48] to disassemble applications and to locate syscalls. Using
symbolic backward execution [37] from the syscall instruction,
we infer the syscall number used in the identified syscall. Addition-
ally, we use the control-flow graph (CFG) recovery functionality of
angr [64] to map exported functions to identified syscalls. Exactly
as in previous work, an inherent limitation of static approaches is
that they can miss syscalls in rare cases if control-flow cannot be
inferred correctly. However, we observe that more frequently, the
set of used syscalls is overapproximated. To refine the number of
allowed syscalls, we provide a complementary optional dynamic
approach in the second phase of Chestnut. In this second phase,
Finalyzer traces all syscalls of the application and then refines the
allowlist to further restrict or relax the seccomp filters.

We demonstrate our approach’s feasibility by applying it to vari-
ous real-world client applications, such as git and busybox, database
applications, such as redis and sqlite3, and Nginx as a server appli-
cation. We show that Chestnut does not impair their functionality
but significantly reduces the attack surface. On average, Chestnut
blocks 295 syscalls (84.5 %) on Linux kernel 5.0. In the 18 real-world
binaries we evaluated, Chestnut blocked the exec syscall for 50 %
of the applications using Sourcalyzer and in 77.7 % using Binalyzer.
We block the mprotect syscall in 61.1 % of the tested applications
using Sourcalyzer. Furthermore, we evaluate our approach on real-
world exploits, showing that Chestnut blocks exploitation of 64 %
and 62 % of CVEs using Sourcalyzer and Binalyzer, respectively.
We compare our approaches with related previous work [11, 21]
and show that we are similarly effective in mitigating CVEs via

1The prototype and several demo videos can be found in our anonymous GitHub
repository https://github.com/chestnut-sandbox/Chestnut.

compiler-based approaches [21]. However, we improve the perfor-
mance by up to factor 73. In contrast to previous work [11], we
show that binary-based approaches can also be applied to non-PIC
binaries. We evaluate the functional correctness of Sourcalyzer
with test suites as well as a 6-month long-term case study of a
Sourcalyzer-protected Nginx production server. Furthermore, we
are the first to evaluate how tight automatically generated filter
rules are by relying on available test suites. We also advance the
state of the art in evaluation of automatic syscall filtering, with a
long-term case study and by measuring code coverage to confirm
our approach’s validity.

Filters generated automaticallywith a toolmight not always be as
strict as theoretically possible. However, there is no time investment
required by the developer, making it a very inexpensive defense in
depth. More importantly, Chestnut can be applied to and improve
the security of existing and widely-used technology, i.e., seccomp,
making syscall filtering available to commodity applications. The
only runtime overhead introduced is the small overhead of using
seccomp, similar as containers already do today.

To summarize, we make the following contributions:
(1) We present a new compiler-based approach for automated

syscall-filter generation, up to 73x faster than previous work.
(2) We present a dynamic method to refine the filters.
(3) We show that Chestnut blocks the exploitation of more than

61 % of the 175 CVEs in the Linux kernel exploitable via syscalls.
(4) We show that previous requirements can be lifted and show

that our approach can be applied to PIC and non-PIC binaries.
(5) In a 6 month long-term study on Nginx, we demonstrate the

correctness of our approach and do not observe a single crash.
Outline. Section 2 provides background, Section 3, threat model,

and design of Chestnut. Section 4 discusses our static and Section 5
our dynamic approach. We evaluate Chestnut in Section 6 and dis-
cuss related work and limitations in Section 7. Section 8 concludes.

2 BACKGROUND
Sandboxing is a securitymechanism that constrains software within
a tightly controlled environment by restricting the available re-
sources to a required minimum [23, 45]. Hence, the damage in case
of exploitation is limited. These restrictions may encompass the
ability to access the network, limit the amount of storage, file de-
scriptors, or inhibit the application from issuing specific syscalls.
By now, different forms of sandboxing have been adopted by many
browser vendors to secure their products [44, 50, 58, 66].

2.1 Linux Seccomp
To facilitate operations that require higher privileges or direct hard-
ware access, the kernel provides syscalls to every userspace appli-
cation. As with other interfaces, they also contain bugs that can
lead to privilege escalation [31–33]. Hence, platform security prof-
its from limiting the amount of syscalls that an application can
perform. With Secure Computing (seccomp) [15], Linux provides
a filter that allows a userspace program to specify the syscalls it
performs over its lifetime. The kernel then blocks the remaining
syscalls for the sandboxed application that might originate from an
application being hijacked. As seccomp filters do not dereference
pointers, so-called time-of-check time-of-use attacks [38] common

https://github.com/chestnut-sandbox/Chestnut

P1: Static Analysis

Source

Binary

Annotated
Binary
File(s)

Source
Analyzer

Binary
Analyzer

P2: Dynamic
Refinement

Dynamic
Analyzer Annotated

Binary
File(s) Chestnut

Generator

Chestnut
Patcher

Sandboxed
Binary

Wrapped
Binary

or

Figure 1: Chestnut consists of𝒫1, a static analysis on source
and binary files, and an optional dynamic analysis, 𝒫2, re-
fining the filters. Chestnut can either rewrite the binary or
generate a tailored sandbox to block unused syscalls.

in syscall interposition frameworks are not possible. Examples of
applications that rely on seccomp are Chromium [9], Firefox [41],
and the zygote process in Android systems [27].

2.2 Memory Safety
Memory safety is an essential concept in computer security, and its
violation can lead to exploitation. One way to exploit a program is
to corrupt its memory and to divert control flow to a previously in-
jected code sequence. This code sequence, i.e., the payload, is called
shellcode and is commonly written in machine code. These types of
attacks are commonly known as control-flow hijack attacks [59].

ROP attacks [53] allow chaining existing code gadgets within an
application to perform malicious tasks. Each gadget is a sequence
of instructions ending with a return instruction. ROP attacks are
hard to defend as all the information is already present within the
application, i.e., an attacker does not need to inject code. While
ROP attacks overwrite saved return addresses, similar attacks exist
that overwrite other pointers [4, 6, 7, 22, 51] or signal handlers [5].

2.3 Executable and Linkable Format
On Unix-based systems, the highly flexible and extensible Exe-
cutable and Linkable Format (ELF) [13] is used for shared libraries
and executables. ELF files consist of header and data, including a
program and a section header table for segments and sections. Seg-
ments contain information for the run-time execution of the binary,
while sections contain information for linking and relocating.
Dynamic Linking. The dynamic linker is responsible for loading
and linking shared libraries used by an executable during run-
time [13]. For that, the dynamic linker maps the shared library’s
content into memory and ensures its functionality, e.g., filling jump
tables and relocating pointers. On Unix-like systems, the dynamic
linker is selected at link time and is embedded into the ELF file.

3 DESIGN OF CHESTNUT
In this section, we introduce our threat model, outline challenges of
automatic filter generation, and discuss the high-level idea of Chest-
nut. We introduce the main components of Chestnut (Figure 1), i.e.,
the compiler modification Sourcalyzer, the binary analyzer Bina-
lyzer, and the dynamic refinement tool Finalyzer.

3.1 Threat Model and Idea of Chestnut
Chestnut supports Linux applications available as either C source
code or as a binary, and is not limited to PIC binaries as previous
work [11]. These applications can range from server applications

to applications executing potentially malicious code that is not
controlled by the user, such as browsers, office applications [42], and
pdf readers [16, 17]. Chestnut can also restrict the syscall interface
of messenger applications which have been used to compromise
systems [24, 54]. We assume correct usage of Chestnut in one of
its variants (cf. Figure 1). Chestnut assumes that the application
is not malicious but potentially vulnerable to exploitation, e.g.,
due to a memory-safety violation, enabling an attacker to gain
arbitrary code execution within the application. We assume that
post-exploitation requires syscalls, e.g., to gain kernel privileges.
Syscalls provided for file operations can potentially be hijacked
by an attacker to modify configuration files. Argument-level API
specialization [40] can be used to protect against such attacks. We
consider this an orthogonal problem, in line with related work [21],
and do not consider such attacks. Chestnut is orthogonal to other
defenses such as CFI, ASLR, NX, or canary-based protections and
enhances the security in case these other mitigations have been
circumvented. Side-channel and fault attacks are out of scope.

3.2 Challenges
Automatic filter generation using a static approach requires solving
the following four challenges that we detail in Sections 4 and 5.
𝒞1: Identifying Syscall Numbers for each Syscall. To automat-
ically block unused syscalls, we must identify the syscalls used by
the application. The syscall itself is usually a single instruction,
e.g., syscall (x86_64) or svc #0 (AArch64). The actual syscall is
specified as a number in a CPU register, e.g., rax (x86_64) or x8
(AArch64) [12]. Hence, the first challenge is to identify the syscall
number for a specific syscall. Syscalls have many different forms
within a program, e.g., inline assembly, assembly file, or issued with
the libc syscall wrapper function. Moreover, syscalls might not be
called directly, but via a call chain through various libraries.
𝒞2: Reconstruct Call Sites of Syscalls. By solving challenge
𝒞1, we know which syscalls are potentially called by the target
application. Unfortunately, including all detected syscalls of the
binary and the used libraries does not suffice. Most binaries link
against libc, which provides an implementation of almost all syscalls.
Hence, the generated filters would be too permissive as they would
basically allow all syscalls. We have to analyze the reachability of
the identified syscalls by constructing a call graph for every binary.
𝒞3: Generate Set of Syscalls. To generate the final set of syscalls
for our application, the information from 𝒞1 and 𝒞2 has to be
combined for the application and its libraries. By combining the
call graph obtained in 𝒞2 with the information which functions
are used in the application and libraries, we create a set of func-
tions potentially called by the application. In combination with
the call graph (𝒞2) and syscall numbers (𝒞1), this set provides the
information about all the syscalls that the application can execute.
𝒞4: Install Filters. Our library (libchestnut) relies on seccomp
to apply the syscall filters. This library uses the allowlist (𝒞3),
generates the seccomp rules, and installs the resulting filters before
the actual application starts at the main entry point.

3.3 High-Level Idea
This section discusses how the components of Chestnut solve the
challenges, with the implementation details in Sections 4 and 5.

Sourcalyzer. Sourcalyzer is the compiler-based component of
Chestnut for static analysis of the application source code. It is a
compiler pass in LLVM that identifies all syscalls at compile time.

For statically linked applications, and given that libraries are
compiled with Sourcalyzer, the compiler and linker are aware of
the entire codebase and can thus identify every syscall instruction
of the final binary. As the C standard library implements almost all
syscalls, linking against it would allow almost all syscalls, which
renders the filters ineffective. Hence, we need to determine further
which syscalls are used by the application by analyzing the CFG
to solve challenges 𝒞2 and 𝒞3. While comparable work [21] needs
to perform the same task, we demonstrate a solution that is up to
factor 73 faster. We discuss this in Section 4.1.
Binalyzer. Sourcalyzer requires the source code of the application
and all used libraries. Binalyzer has the same goal but works directly
on the binary level. With this, our approach is also applicable to
programs where the source code is not available or not compatible
with LLVM, retrofitting the approach to binaries. In contrast to
previous work [11], Binalyzer is not restricted to PIC binaries.

The idea is to scan binaries and libraries for syscall instructions
and use symbolic backward execution [37] from these locations to
infer the respective syscall number, again solving challenge 𝒞1. To
reduce overapproximation, Binalyzer leverages CFG analysis of all
dependencies to map exported functions to syscall numbers (𝒞2,
𝒞3). Binalyzer also works on stripped binaries as all the required
information is still included for dynamic linking.
Finalyzer. Working around limitations of static analysis, we pro-
pose an optional dynamic phase, Finalyzer, based on syscall tracing,
removing or adding filters that cannot be identified statically. Fi-
nalyzer is solely intended to refine filters identified by our static
approaches in a controlled, benign environment.

The dynamic nature of Finalyzer allows simplifying challenges
𝒞1 to 𝒞4. Finalyzer extracts the syscall number during runtime (𝒞1)
by intercepting all syscalls for the target application. By intercepting
the syscall, it is inherent that the syscall is reachable (𝒞2). In this
step, missed syscalls are added to refine the installed filter list (𝒞4).
We discuss this process in more detail in Section 5.
Combining Components. Chestnut is designed to allow com-
bining all three components (cf. Figure 1). For instance, Finalyzer is
intended to be used as an optional step after the static components
if they cannot infer the used syscalls due to the static analysis’s
limitations. An instance where this is necessary is when an ap-
plication dynamically starts other applications. The child process
inherits the parent’s filters, which cannot be relaxed anymore. By
combining the static approaches with Finalyzer, the syscalls of the
child process are identified and added to the application’s allowlist.
Sourcalyzer can also be used in combination with Binalyzer, e.g., if
the source is available for the application but not for a used library.
Applying Syscall Filters. The output of each component is a
set of syscalls the application can call. For Sourcalyzer, the syscall
filters are directly compiled into the target application. However,
if this is either not desirable or possible, e.g., because only the
binary is available, we provide two tools to apply the syscall filters
(cf. Figure 1). ChestnutGenerator creates a sandbox tailored to the
target application. Alternatively, ChestnutPatcher directly patches
the target application to include the syscall filters and libchestnut.

4 STATIC FILTER EXTRACTION
We now present the two static approaches of 𝒫1 to automatically
generate syscall filters.We highlight the necessary steps, cf. Figure 2,
for solving the outlined challenges in a fast and efficient way in
both a compiler and a binary-based approach in more detail.

4.1 Compiler-Based Approach
Sourcalyzer utilizes the LLVM compiler framework [34] to extract
syscalls from source code. It uses module passes (i.e., one analysis
and one transformation pass) that operate on the LLVM intermedi-
ate representation (IR). Additionally, LLVM’s linker lld is extended
to combine the extracted information from multiple translation
units. We use an unmodified compiler-rt and musl libc. Hence,
using Chestnut with the Sourcalyzer approach is as simple as com-
piling and linking an application with our extended toolchain.

𝒞1: Identify SystemCallNumbers. To invoke a syscall, x86_64
provides the syscall and AArch64 the svc #0 instruction. The extrac-
tion of the syscall number is the only architecture-dependent part
of Chestnut. Given the syscall number, the rest of the approach is
the same for all architectures supported by LLVM. Syscalls are typ-
ically abstracted by the standard C library via the syscall() function.
musl additionally provides the function __syscall_cp(). To detect all
invocations of syscalls, we need to detect all three cases, i.e., inline
assembly, the syscall function, and the __syscall_cp() function.

The LLVM analysis pass iterates over all functions within a
translation unit. For each function, we iterate over every LLVM
IR instruction to check whether it is a call site. If it is, we check
whether it is an inline syscall assembly statement or a call to either
one of the syscall or __syscall_cp functions. In all three cases, we
extract the first argument as it is the number of the requested syscall.
Due to the way we traverse the IR, we also know precisely what
function performs the respective syscall.

Our proof-of-concept implementation currently does not parse
assembly files as they are treated differently by LLVM than normal
source files. Hence, if a syscall is implemented in one, e.g., clone,
we cannot detect it, but a full implementation can handle this case.

𝒞2: Reconstruct Syscall Call Sites. Sourcalyzer uses the syscall
numbers extracted in 𝒞1 as a starting point for further analyzing
which syscalls are used based on the call graph. The main challenge
here is extracting a reasonably precise call graph without inducing
huge performance overheads or by requiring changes to the com-
mon compilation model (e.g., by demanding link-time optimization
(LTO)). In particular, restricting indirect function call sites to a set
of possible call targets is a necessary, but typically quite expensive,
task that commonly relies on inter-procedural pointer analysis (e.g.,
Andersen [2], Steensgaard [57]). This type of analysis requires ac-
cess to the whole program and often does not scale efficiently to
larger program sizes [2, 25]. An automated syscall-detection system
based on this form of analysis and its impact on the compile-time
performance has been demonstrated by Ghavamnia et al. [21]. This
approach also requires changes to the common compilation model,
which is not supported by every application.

Hence, as we want to avoid changes to the compilation model
and given that our application can tolerate some imprecision, we do
not use sophisticated pointer analysis in our prototype implemen-
tation and opt for a function-signature based heuristic to determine

Sources
Extract

System Call
Number

Build Call
Graph

Annotated
Binary
File(s)

Libraries
Generate

System Call
List

Annotated
Executable

Install
Filters

Figure 2: The different steps of Sourcalyzer, which starts with the source and ends with a fully sandboxed application.

possible call targets. Every function in the program where the func-
tion type of the call site matches the function type of the definition
is considered a possible call target. For correctly typed programs,
this heuristic is an overapproximation of the actual possible call
targets, which corresponds to permitting more syscalls than are
actually needed (cf. Section 6.4.2).

Both the LLVM IR passes and the linker are involved in mapping
syscall numbers to functions. Our analysis pass traverses over all
defined functions within the module. It extracts function signature,
direct and indirect function calls, and functions referenced in the
code (for which function pointers exist, i.e., functions that have their
address taken). The latter is similar to what LLVM uses for software-
based CFI. This gives rise to the assumption that the resulting call
graph is precise enough as applications that use software-based
CFI would otherwise not work correctly.

We perform our analysis in the same traversal in which we
locate the used syscall numbers (see 𝒞1). We also support function
aliases by treating them as copies of the original function. Finally,
references to functions in global initializers are extracted, as they
are used, e.g., for global file structures.

Our IR transformation pass stores the information collected from
the analysis pass in the ELF object for the linker to use.

𝒞3: Generate Syscall Set. By solving challenges 𝒞1 and 𝒞2,
we generate object files containing the serialized syscall and call
graph information. The linker extracts this information from all the
provided input files to perform the actual call graph construction
and syscall number propagation. Finally, the linker can either gen-
erate the set of relevant syscalls for the application or a flattened
call graph for further processing.

In more detail, after loading the call graph metadata, all reach-
able functions are resolved according to their symbol’s linkage
specification (e.g., local or global, strong or weak), and a list of in-
direct callable functions is generated. In the next step, a call graph
is constructed in which each node represents a function, and each
directed edge represents a possible control-flow transfer from the
caller to the callee. The linker transforms this call graph into a di-
rected acyclic graph (DAG) using Tarjan’s algorithm [60], enabling
efficient propagation of the information. Namely, each graph node
has to be updated only once by visiting the DAG in post-order.
Using the discovered strongly coupled components, circular call de-
pendencies are directly resolved by merging the information from
all functions that are part of the respective cycle in the original call

graph. As a result, the linker has access to a flattened call graph in
which, for every function, all reachable syscall numbers are known.

With the flattened call graph, we determine which syscalls our
final application needs. For a static binary, we extract all syscalls
that can be reached from the main and the exit function and embed
them as a simple list of numbers into the final ELF binary. For
dynamic binaries or shared libraries, we instead embed the flattened
call graph into the linked binary for further processing.

𝒞4: Install Seccomp Filters. After linking with Sourcalyzer,
the binary contains annotations for the application’s used syscall
numbers directly or its flattened call graph that still needs to be
combined with the additional dynamic libraries. For static linkage,
we delegate the processing to the application itself by additionally
linking against our libchestnut library. This library contains a con-
structor that extracts the syscall numbers and installs the seccomp
filters using libseccomp [14] before the application starts executing.

In the second case, dynamic linkage, we provide two options.
ChestnutPatcher extracts the embedded call graph from all library
dependencies and determines all syscalls from functions that are
reachable from the main and exit function. Finally, the tool adds
a new note section with information on syscall numbers. As the
compiler has generated the dynamic binary, we can already link
libchestnut against it automatically. ChestnutGenerator performs
the same steps except that it does not modify the binary but creates
a launcher that sets up the filters before executing the actual binary.

4.2 Binary Syscall Extraction
The second static approach of Chestnut, Binalyzer, works on the
binary level. With less semantic information available than on the
compiler level, Binalyzer works without access to the source code
and even for stripped binaries. In contrast to previous work [11],
we demonstrate our approach on PIC and non-PIC binaries.

𝒞1: Identify Syscall Numbers. The syscall number is not en-
coded in the instruction but is provided in a register, i.e., rax on
x86_64 or x8 on AArch64. Hence, Binalyzer has to reconstruct the
syscall number by inferring the content of this register.

Binalyzer uses the capstone framework [48] to disassemble a
binary as this framework supports various ISAs, e.g., x86_64 and
AArch64. Starting from a syscall instruction, Binalyzer leverages
symbolic backward execution [37]. Tracking back from the syscall
instruction, Binalyzer tracks the register’s symbolic value contain-
ing the syscall number. In many cases, the immediate for the syscall

mov $0x1, %bl
xor %edi, %edi
mov %ebx, %eax
lea 0xf(%rip), %rsi
mov $0xd, %edx
syscall rax = ?

rax = ?
rax = ?
rax = rbx = ?
rax = rbx = ?
rax = rbx = $0x1

Figure 3: Symbolic backward execution starts from the
syscall instructions and finds the syscall number by symbol-
ically tracking the corresponding CPU register.

number is directly moved to the register before the syscall instruc-
tion as it is a constant value. However, in some cases, there is at
least some form of register-to-register transfer involved. These
transfers also include register copies where only a lower part of
the register is involved. Thus, as illustrated in Figure 3, Binalyzer
keeps the content of the register symbolic and steps back through
the binary, symbolically evaluating operations. This symbolic back-
ward execution is repeated until either a concrete immediate for the
syscall number is identified, or after a user-definable number of in-
structions have been analyzed without successfully identifying the
immediate.2 One failure reason can be that the syscall instruction
is a call or jump target, i.e., there are potentially multiple call sites
reaching the instruction with different syscall numbers. Luckily, the
syscall instruction is usually inlined, and thus, we do not consider
such situations for our proof of concept.

𝒞2: Reconstruct Syscall Call Sites. To reduce the overapprox-
imation of syscalls, Binalyzer analyzes the CFG to map syscalls to
(exported) functions. We rely on angr [64] to statically create a
CFG of the binary. Based on the basic blocks of all functions in
the CFG, we assign every syscall identified in 𝒞1 to a function.
Binalyzer traverses the CFG from each exported function as the
root node to identify reachable functions with a syscall instruction.
Assuming a correctly reconstructed CFG from angr and correctly
identified syscall numbers (𝒞1), this yields a set of possible syscalls
per exported function.

𝒞3: Generate Syscall Set. To solve challenge 𝒞3, we have to
combine the information created from solving 𝒞2 for all binaries,
i.e., the application binary and all of its libraries. We cannot create
a complete CFG over the application binary and its libraries as this
would take multiple hours to days, depending on the size of the
application and the number of dynamic libraries. Instead, we chose
to overapproximate the number of possible syscalls by relying on
individual CFGs that we merge. We only consider functions that are
defined in the dynamic symbol table of the ELF file. These functions
are found in the dynamic libraries loaded by the application. Hence,
we search for these functions in the shared object dependencies and
look up the used syscalls for the function in the respective library.
As shared libraries can also have a dynamic symbol table if they
call functions from other libraries, this process is repeated for all
dynamic symbols of all shared object dependencies.

Solving challenge 𝒞3 yields a set of syscalls that the application
can potentially call. This assumes that no dynamic libraries are
2For the evaluation, we set this number to 30, which was sufficiently large.

Kernel

System Call

notify

System Call
Tracer

allow

return

Log
Syscall

Tracee
Trace

Figure 4: The tracer gets notified by the kernel when the
tracee executes a syscall. The tracer logs the syscall and in-
forms the kernel to execute the syscall.

loaded at runtime, e.g., via dlopen, and that the application does
not execute a different binary at runtime, e.g., via exec. In such
cases, we need to resort to𝒫2 as the complete set of syscalls cannot
be determined statically.

𝒞4: Install Seccomp Filters. From the full set of syscalls, Bin-
alyzer has to create filter rules and apply them to the binary. We
cannot simply compile the filters with the application (cf. Sourca-
lyzer). Instead, Binalyzer supports binary rewriting or alternatively
building a sandbox wrapper (cf. Figure 1). ChestnutGenerator is a
simple tool that sets up the filter rules and starts the target program.

With binary rewriting, Binalyzer stores the syscall numbers
in the ELF binary and injects a new shared object dependency,
libchestnut. The library provides a constructor function, which is
called before the actual application starts and which parses the
filters stored in the binary to apply the seccomp filter rules. The
advantage of a rewritten binary is that it does not need any launcher.

5 DYNAMIC REFINEMENT
In this section, we discuss the optional 𝒫2 component Finalyzer, a
method to dynamically refine the previously detected syscall filters.
It simplifies the challenges 𝒞1 to 𝒞4 by inspecting syscalls just-in-
time in a secure and controlled environment during development.

5.1 Limitations of Static Approaches
While our approach for statically detecting an application’s syscalls
works well for most binaries (cf. Section 6), there are inherent
limitations to a static approach. Dynamically loaded libraries, e.g.,
codecs, plugins, self-modifying, or JIT-compiled code, often cannot
be analyzed statically. Moreover, seccomp is not flexible enough to
handle scenarios involving child processes with a different set of
syscalls, as a child inherits its parent’s filters and can only further
restrict but not relax them. Hence, the parent also needs to install
filters for the child’s syscalls.

5.2 Implementation Details
In our prototype, Finalyzer is an strace-like syscall-tracing compo-
nent linked against the target application or used as a standalone
wrapper for a binary (cf. Figure 1). This allows Finalyzer to work
with Binalyzer and Sourcalyzer. If desired, it can also be used with-
out the static components to identify required syscalls.

In either case, Finalyzer, i.e., the tracer, first creates a child pro-
cess, the tracee. Finalyzer then installs seccomp filters for all syscalls
in a way that informs the tracer about a seccomp violation. To en-
able this behavior, the tracer needs to attach itself to the tracee.
The tracee then stops execution until it receives the continue signal

from the tracer to ensure that it successfully attached itself. If the
child process creates a new child process, the tracer is automatically
attached to the newly created child process. The tracer is then also
informed of the unsuccessful execution of the child’s syscalls.

When receiving the notification of a violating syscall, Finalyzer
extracts the syscall number (𝒞1), logs it (𝒞3), and allows it for all
future occurrences (cf. Section 3.3), as illustrated in Figure 4. As the
syscall is indeed executed, it is inherent that it is reachable (𝒞2).

Once Finalyzer has finished tracing the application, it cross-
references the set of obtained syscalls with the ones obtained in
𝒫1. If a syscall is missing, it adds the newly detected syscall to the
allowlist. Optionally, it can also be used to remove syscalls that𝒫1
identified but which were never executed during𝒫2.

6 EVALUATION
In this section, we evaluate the performance, functional correct-
ness, and security of Chestnut. Our evaluation is in line with related
work [11, 21] while improving on it in several points, i.e., we eval-
uate several parts that were not yet evaluated in these works. In
the performance evaluation, we evaluate the one-time overheads
of Chestnut, such as compile time and binary-analysis time. We
also discuss the runtime overhead seccomp introduces. For the
functional correctness, we evaluate whether Chestnut causes any
issues in terms of functionality of existing real-world software, e.g.,
crashes. We also perform a 6-months long evaluation of an Nginx
server with its syscall interface restricted by Sourcalyzer. In the
security evaluation, we evaluate the ability of Chestnut to block the
dangerous exec syscall and the overapproximation of syscalls in
general. With the latter, we are the first to demonstrate how tight
the automatically generated filters are. Furthermore, we evaluate
how well Chestnut can mitigate real-world exploits. Finally, we
detail differences between our work and related works in this field.

6.1 Setup
For the evaluation of Chestnut, we focus on x86_64. Note that the
only architecture-dependent part of Chestnut is the extraction of
the syscall number. Hence, we do not expect significant differences
for other architectures. We also verified that the general approach
works across architectures by successfully extracting the syscall
numbers from musl libc for both x86_64 and AArch64.

We evaluate Chestnut on various real-world applications (cf.
Table 1), including client, server, and database software. While
busybox may be seen as a non-obvious choice, it is in line with
previous work that used coreutils for the evaluation [47]. We in-
stead chose busybox as the number of provided utilities is 3 times
higher, making it a better choice for our evaluations. For evaluating
Sourcalyzer, we compile the binaries statically with and without
Chestnut enabled using our modified compiler. For Binalyzer, we
compile the applications dynamically using GCC 7.5.0-3 on Ubuntu
18.04.4. For the sake of brevity, we do not evaluate every combi-
nation of components and sandboxes but focus on libchestnut for
Sourcalyzer and ChestnutGenerator for Binalyzer.

6.2 Performance Evaluation
In this section, we evaluate the performance of Chestnut. This
includes the one-time overheads for compiling (Section 6.2.1) or

binary analysis (Section 6.2.2), the increase in binary size (Sec-
tion 6.2.3), and runtime overheads (Section 6.2.4).

6.2.1 Compile-Time Overhead. We analyze the impact Sourcalyzer
has on the compile time of an application. To make comparison
possible, we compile the application 10 times with and without our
modification enabled, always using our modified compiler, and use
the average compile time over these runs.

As the results show, we observe the worst-case overhead for the
git application with an increase from an average of 65.5 s (𝜎𝑥 =

0.094, 𝑁 = 10) to 84 s (𝜎𝑥 = 0.054, 𝑁 = 10), an increase of 28 %. For
the busybox utilities combined, the average increases from 10.94 s
(𝜎𝑥 = 2.88, 𝑁 = 10) to 10.99 s (𝜎𝑥 = 2.79, 𝑁 = 10). When compared
to related work [21], we observe a speedup of factor 73 for Nginx
when using Sourcalyzer. This low overhead makes it a feasible
approach to be used in everyday development cycles.

6.2.2 Binary Extraction Runtime. For Binalyzer, we evaluate the
time it takes to extract the syscalls from the dynamic binary. We
assume that default dependencies like libc.so have already been pro-
cessed, i.e., their extracted call graph is available. For completeness,
we timed the extraction of syscalls from libc.so, which takes on av-
erage 44.66 s (𝜎𝑥 = 0.18, 𝑁 = 10). For the applications themselves,
we can see in Table 1 that the extraction process is in the range of 2
to 10 s for the individual busybox utilities, with an average time of
3.4 s (𝜎𝑥 = 0.73, 𝑁 = 10). For large binaries like FFmpeg (> 100 MB)
and its dynamic dependencies, the extraction takes ≈11 min.

6.2.3 Binary Size Analysis. The code size does not increase with
added filters, but the binary size increases by the meta-information.

Compiler. We analyze the size of the binary produced by Sour-
calyzer compared to a vanilla application. Chestnut needs to treat
static and dynamic ELF files differently as syscall numbers of exter-
nally linked libraries are not known. In a static binary, we only add
the set of syscall numbers to the binary and link against libchestnut
and libseccomp. As both libraries are of fixed size, the maximum
overhead in a static binary is limited by the number of syscalls
Linux provides, i.e., 349 on Linux 5.0. Table 1 shows the overhead
for statically linked binaries. As expected, the overhead is quite
small in large binaries, e.g., FFmpeg. In the small busybox utilities,
the overhead appears to be huge (> 177 %), but as these binaries
sizes are in the lower kilobyte range (40-100 kB), linking against
two additional libraries drastically increases the size. Nevertheless,
the binaries remain in the kilobyte range.

For dynamic binaries and shared libraries, we have to embed the
entire call graph as we need the information later on to determine
the required syscalls. Table 2 shows the size increase for three
shared libraries. In libcrypto.so, we observe a worst-case increase
from 4.1 MB to 23 MB (460 %). The overhead also increases with the
size of the binary as the call graph is larger for the larger codebase.

Binary. Table 1 shows the increase for Binalyzer. We opted to
generate a binary that needs to be launched by ChestnutGenerator
instead of rewriting the binary. Still, for simplicity, we embed the
detected syscalls in the binary from where our wrapper extracts the
information. As we embed only the numbers, the overhead in all 18
applications is less than 2 %. Binary rewriting incurs the overhead
of the dependency on libchestnut and libseccomp, but this increase
is again negligible beneath the other overheads.

Table 1: Results for the compiler- () and binary-based () approach of Chestnut, respectively. We show the number of
detected syscalls in 𝒫1, used syscalls, and added syscalls in 𝒫2, the size overhead of the annotations, compile-time overhead
(for Sourcalyzer), and binary analysis time (for Binalyzer). The exec and mprotect columns indicate whether Chestnut blocks
(✓) the respective syscalls or not (✗). We also show the percentage of fully mitigated CVEs and the individual subvariants.
Syscalls added in𝒫2 are only necessary for edge cases in our proof-of-concept implementation of Chestnut.

Software #Syscalls
Found / Used /𝒫2 Added Size Overhead Analysis Time exec mprotect

Fully
Mitigated

Subvariant
Mitigated

Compiler () Binary () Compiler () Binary ()

Cl
ie
nt

ls 24 / 14 / 0 39 / 18 / 1 +173 kB (253 %) +288 B (1.08 %) +0.38 s (1.72 %) 3.041 s ✓ ✓ ✓ ✗ 81.1 % 81.1 % 87.5 % 87.5 %
chown 22 / 11 / 0 36 / 14 / 0 +174 kB (369 %) +280 B (1.52 %) +0.29 s (1.35 %) 2.777 s ✓ ✓ ✓ ✗ 81.7 % 81.7 % 87.8 % 87.8 %
cat 18 / 6 / 0 34 / 13 / 0 +174 kB (397 %) +272 B (1.9 %) +0.08 s (2.29 %) 2.576 s ✓ ✓ ✓ ✗ 82.3 % 81.7 % 88.1 % 87.8 %
pwd 16 / 4 / 0 34 / 14 / 0 +175 kB (430 %) +272 B (1.92 %) +0.21 s (0.98 %) 2.507 s ✓ ✓ ✓ ✗ 85.1 % 81.7 % 90.3 % 87.8 %
diff 25 / 9 / 0 36 / 16 / 0 +173 kB (304 %) +280 B (1.25 %) +0.06 s (1.44 %) 2.946 s ✓ ✓ ✓ ✗ 81.1 % 81.7 % 87.5 % 87.8 %
dmesg 15 / 5 / 0 34 / 14 / 0 +176 kB (439 %) +272 B (1.92 %) +0.08 s (2.17 %) 2.452 s ✓ ✓ ✓ ✗ 85.1 % 81.7 % 90.3 % 87.8 %
env 15 / 3 / 0 33 / 13 / 0 +175 kB (416 %) +272 B (1.92 %) +0.07 s (1.88 %) 2.416 s ✗ ✓ ✓ ✗ 81.7 % 81.7 % 88.4 % 87.8 %
grep 20 / 11 / 0 34 / 16 / 0 +174 kB (177 %) +272 B (1.49 %) +0.41 s (1.88 %) 2.748 s ✓ ✓ ✓ ✗ 81.7 % 81.7 % 87.8 % 87.8 %
true 3 / 1 / 0 32 / 12 / 0 +200 kB (3277 %) +264 B (4.4 %) +0.09 s (2.55 %) 9.908 s ✓ ✓ ✓ ✗ 98.3 % 83.4 % 98.4 % 88.7 %
head 17 / 7 / 0 33 / 13 / 0 +174 kB (434 %) +272 B (1.92 %) +0.06 s (1.64 %) 2.436 s ✓ ✓ ✓ ✗ 82.3 % 81.7 % 88.1 % 87.8 %
git 82 / 42 / 1 85 / 42 / 2 +219 kB (4.5 %) +448 B (0.003 %) +18.5 s (28.18 %) 247 s ✗ ✗ ✗ ✗ 34.3 % 58.3 % 55.9 % 73.4 %
FFmpeg 63 / 27 / 1 91 / 27 / 2 +190 kB (0.21 %) +472 B (0 %) +268 s (27.14 %) 643 s ✗ ✓ ✗ ✗ 33.1 % 34.9 % 57.8 % 44.1 %
mutool 61 / 16 / 1 69 / 15 / 0 +189 kB (0.48 %) +376 B (0.001 %) +3.17 s (0.69 %) 164 s ✗ ✓ ✗ ✗ 52.0 % 38.3 % 69.4 % 60.3 %
memcached 88 / 54 / 1 102 / 59 / 4 +216 kB (28.9 %) +456 B (0.13 %) +0.35 s (5.5 %) 8 s ✗ ✓ ✗ ✗ 30.3 % 33.7 % 50.0 % 41.9 %

D
B redis-server 85 / 35 / 1 93 / 42 / 3 +216 kB (11.2 %) +472 B (0 %) +2.4 s (2.7 %) 41 s ✗ ✗ ✗ ✗ 30.3 % 32.0 % 54.1 % 54.4 %

sqlite3 92 / 72 / 1 102 / 72 / 13 +215 kB (5.9 %) +456 B (0.02 %) +0.8 s (7.2 %) 45 s ✗ ✗ ✗ ✗ 62.9 % 32.6 % 75.3 % 57.5 %

Se
rv
er Nginx 105 / 48 / 0 106 / 51 / 4 +217 kB (1.5 %) +528 B (0.003 %) +7.9 s (10.53 %) 277 s ✗ ✓ ✓ ✗ 32.0 % 30.9 % 38.8 % 40.0 %

httpd 98 / 50 / 1 106 / 46 / 0 +218 kB (8.3 %) +504 B (0.04 %) +4.1 s (5 %) 16.8 s ✗ ✗ ✗ ✗ 29.7 % 30.3 % 50.9 % 44.4 %

Table 2: We evaluate the size overhead of Sourcalyzer on
shared libraries compared to a vanilla version.

Shared library Vanilla Annotated Overhead

musl libc.so 815 kB 1007 kB 23.63 %
libssl.so 657 kB 1.7 MB 161 %
libcrypto.so 4.1 MB 23 MB 460 %

6.2.4 Runtime Overhead and Seccomp. For the static approaches,
the only overhead compared to manually crafted seccomp filters
is the parsing of the syscall numbers. As this is done during ap-
plication startup, it is a one-time overhead that depends on the
number of rules that need to be set up. We investigate the over-
head for setting up the application with the smallest (true) and
largest (Nginx) number of syscalls based on Sourcalyzer. For Nginx,
the setup time takes on average 9.92 ms (𝜎𝑥 = 0.007, 𝑁 = 10 000)
while it only takes 0.58 ms (𝜎𝑥 = 0.004, 𝑁 = 10 000) for true. The
remaining slowdown is then introduced by seccomp itself, which
is unavoidable if a developer decides to use it for syscall filtering.

6.2.5 Dynamic Refinement Overhead. As a microbenchmark, we
analyze the impact of Finalyzer on the syscall latency. We first
benchmark the latency of the getppid syscall without Finalyzer in
place 1 million times. The latency of getppid on our test system
(Ubuntu 18.04.4, kernel 5.0.21-050021-generic) is 1358 (𝜎𝑥 = 0.91,
𝑁 = 1 000 000) cycles. With Finalyzer, we observe an average la-
tency of 17 103 (𝜎𝑥 = 5.52, 𝑁 = 1 000 000) cycles, an increase of
approximately 1160 %.While this increase seems large, it is intended
as an optional step during development. Hence, we consider this
less of a problem without impact on the released application.

6.3 Functional-Correctness Evaluation
Binaries sandboxed with Chestnut must be guaranteed to still work
as intended. Related work [21] tested each application 100 times us-
ing various workloads. For a fair comparison, we perform the same
tests. For applications where a test suite is available, we execute
them to reach higher coverage, ensuring that we do not miss edge
cases. Beyond previous work [11, 21], we evaluate code coverage
to show that large parts of the application are executed. Finally, we
perform a 6-month long test of Nginx sandboxed by Sourcalyzer.

In more detail, we first apply Chestnut to the binaries, cf. Table 1.
Obtaining a sound ground truth of whether all syscalls are detected
is infeasible and would require time-consuming formal proofs that
are out-of-scope for this paper. Hence, we rely on executing the
available test suites that should cover many of the different code
paths available in the tested application. This is, for instance, possi-
ble for FFmpeg, memcached, redis, Nginx, and sqlite3. In other cases,
we execute the binaries with different configurations to reach as
many different code paths as possible [21]. We observed no crashes
in applications sandboxed with Chestnut. Even if a syscall is missed
in𝒫1,𝒫2 can be used to add it, ensuring correct functionality.

While this is not an exhaustive test, it can be assumed that test
suites for large applications are designed for complete functionality
coverage and thorough testing of critical components in particular.
Based on the latter, it is a reasonable assumption that our test tests
whether all syscalls in the core functionality of the application
are found. To further substantiate this, we perform line and func-
tion coverage tests for a selection of applications, cf. Table 1. We
perform these tests for FFmpeg (Lines: 59.3 %, Functions: 61.7 %),
memcached (77 %, 91.9 %), and redis (77 %, 61.5 %). Additionally, the
sqlite developers always maintain 100 % branch and 100 % MC/DC

coverage [56]. While not perfect, the results indicate that large
parts of the respective applications are executed and, to a certain
degree, demonstrate that Chestnut does not impede them. In fu-
ture work, we want to employ coverage-guided fuzzing to better
estimate whether all required syscalls are found.

Programs using fork+exec, e.g., git-diff, exhibit the inherent
problem of seccomp, namely that a child program inherits its par-
ent’s filters. If the child uses a syscall blocked by the parent, the
child crashes. For such applications, 𝒫2 is necessary to ensure
functionality. Out of the 18 tested applications,𝒫2 was only neces-
sary for two of them, namely git-diff and git-log as they performed
syscalls blocked by their parent. After refining the filters using
Finalyzer, both successfully completed their task.
AddingMissed Syscalls using𝒫2. Weevaluate howmany syscalls
the static approaches miss. For Sourcalyzer, Finalyzer adds 4 syscalls
to musl libc, which then propagate to applications if the correspond-
ing function is used, e.g., clone. Table 1 shows how many syscalls
are added in𝒫2. For Binalyzer and busybox,𝒫2 only adds a syscall
in ls. Sqlite3 misses the most as Finalyzer needs to add 13 syscalls.
These missed syscalls are only a limitation of our proof-of-concept
implementation, occurring in edge cases that can be handled in a
full implementation. Hence, Chestnut also works without Finalyzer.

Long-Term Study using Nginx. To demonstrate the func-
tional correctness of Chestnut, we performed a long-term study of
6 months using Nginx. In this test, we compiled a static version
of Nginx using Sourcalyzer (105 allowed syscalls), which we then
deployed to a real-world server to host a website. Within 6 months,
the server handled ≈ 100 000 requests without ever triggering a
seccomp violation. This shows that Sourcalyzer can infer all syscalls
necessary for a successful operation on a real-world system.

6.4 Security Evaluation
To evaluate how Chestnut increases the security of sandboxed
applications, we analyze how often dangerous syscalls, e.g., exec,
are blocked (Section 6.4.1), the number of syscalls not blocked even
though they are not used by the application (Section 6.4.2), the
number of mitigated real-world exploits (Section 6.4.3), and how
malicious SGX enclaves can be blocked (Section 6.4.4).

6.4.1 Blocking Dangerous Syscalls. Three of the more dangerous
syscalls that Linux provides are the two syscalls in the exec group,
i.e., execve and execveat, and the mprotect syscall. With the exec
syscalls available, an attacker can execute an arbitrary binary in
the presence of an exploitable memory safety violation [6]. In fact,
most libc versions even contain a ROP gadget that leverages the
exec syscall to open a shell [30]. Hence, an attacker can execute
a new program in the context of the current one. With mprotect,
an attacker can modify the permissions of existing memory, i.e.,
make it executable. While mmap can be used to map memory as
executable, we did not consider it in our evaluation. We consider
attacks not relying on syscalls [8] as out of scope.

Even with Chestnut, certain attacks are still possible, e.g., adding
an ssh key if a privileged application is hijacked and the open/write
syscalls are allowed. These attacks are also possible with Chestnut,
but other attacks are blocked, improving the overall system security.
Hence, Chestnut still improves the status quo.

Compiler. We evaluate how often Sourcalyzer can block exec
and mprotect (Table 1). In busybox, we block the exec syscalls
in 9 out of 10 cases and mprotect in all 10. Additionally, we also
evaluated all the remaining busybox utilities and blocked exec in
313 out of 396 (79.0 %) of them and mprotect in all 396 (100 %). In
Nginx, we cannot block exec, but we block mprotect. In the other
applications, we can block neither of them as our compiler detects
a potential call to a function that contains the respective syscalls.

Binary. Binalyzer blocks the exec syscalls in all busybox utili-
ties, cf. Table 1, where Sourcalyzer could not block the exec syscall
in the env utility. We manually verified that the syscalls are in-
deed not required. The mprotect analysis showed the opposite
behavior as it is not blocked in any of the applications. For Nginx,
memcached, mutool, and FFmpeg, we also block the exec syscalls
without crashing the application, but not mprotect. We could not
block either one of them in git, httpd, redis, and sqlite3. For git and
the exec syscalls, the reason is that some of git commands rely on
other applications, i.e., the configured pager for commands like diff
or log. The explanation of why we cannot block mprotect using
Binalyzer is the point of time at which we start blocking syscalls.
In Sourcalyzer, we block syscalls that are reachable only from the
main and exit functions, while we block them from the start of the
application in Binalyzer. Hence, we need to allow mprotect as it
is required for setting up the application. In a full implementation,
functions necessary for program startup can be removed from the
analysis, e.g., the mprotect syscall.

6.4.2 Overapproximation of Syscalls. Chestnut can drastically re-
duce the number of syscalls available to an application (cf. Table 1).
For our 18 tested applications, Nginx and httpd block the least num-
ber of syscalls with 106 being allowed. However, without Chestnut,
349 syscalls in Linux 5.0 would be available [36]. While Chestnut
drastically reduces the attack surface, both Sourcalyzer and Bina-
lyzer often allow more syscalls than necessary. In this section, we
estimate how tight automatically generated syscall filters are that an
automated approach can generate. We are the first to demonstrate
this for an automated seccomp-filter generation tool. We apply
this analysis also to related work [11] to compare the different
approaches (cf. Section 6.5).

Setup. To evaluate our static components’ overapproximation,
we leverage the functionality of Finalyzer in libchestnut. This has
the advantage over strace that we do not include syscalls that are
needed for setting up the application, i.e., we only log syscalls after
the main entry point. We then either execute the applications test
suite or execute the program with different arguments to trigger
different code paths, i.e., try to trigger as many of the existing
syscalls as possible. The accuracy of our results depends on the
code coverage of the respective test suites. As was the case in
Section 6.3, we argue that despite this not being an exhaustive
test, test suites typically cover at least the core functionality of
the application and its critical components. We substantiate this
claim with the code coverage metrics discussed in Section 6.3 The
results show that large parts of the respective applications are
executed, demonstrating that this is an adequate but not perfect
approach to detect overapproximation. This depicts a first step to
the measurement of the tightness of automatically generated filters.

Using the aforementioned approach, we obtain a list of syscalls
that the evaluated program issued. We calculate that list’s inter-
section with the allowed syscalls as detected by Sourcalyzer or
Binalyzer. This gives us a list of syscalls that our approach allows
but that are never executed by the application in our tests. If a
syscall was triggered that our static approaches block, Finalyzer
automatically refines the application’s filter list.

Compiler. As Table 1 shows, overapproximation varies between
different applications when using Sourcalyzer. In the busybox util-
ities, we observed the largest overapproximation for env, where
only 20 % of the detected syscalls are actually used. For the larger
applications, we observe the largest overapproximation in mutool,
with only 26.23 % being used. Note that the results cannot be com-
pared to Binalyzer due to different libc versions being used, i.e.,
musl libc for applications compiled with Sourcalyzer and glibc in
Binalyzer.

Binary. For the evaluation of Binalyzer, we slightly deviate
from the outlined setup just to ease the evaluation. Instead of using
libchestnut, we use the standalone implementation of Finalyzer.
Hence, we observe a larger amount of syscalls as we also record
syscalls executed during program startup, similar to strace.

In busybox, we overapproximate the most in the true utility,
where only 37.5 % are being used. In the larger applications, we
observe the lowest percentage of actually used syscalls in mu-
tool, with only 21.74 % being used. Future work could extend the
functional-correctness evaluation, estimating overapproximation
using coverage-guided fuzzing.

6.4.3 Mitigating Real-World Exploits. For evaluating the effective-
ness of Chestnut in mitigating real-world exploits, we assume an
attacker that can either inject shellcode or mount a ROP attack [59]
in one of our target applications. We define an exploit as successful
if the attacker can exploit a kernel bug from the application context.
These bugs either trigger a privilege escalation or result in a denial
of service. As seccomp filters restrict the available syscalls, they
reduce the attack surface of the kernel.

For the evaluation, we extract a list of 175 CVEs from the CVE
database [61] that exploit syscalls on the x86_64 Linux kernel. From
this list, we extract the necessary syscalls, resulting in a list of
231 malicious samples. The reason is that a CVE can be triggered
by different syscalls that are independent of each other. As some
syscalls have equivalent versions, we extend our list of samples
to 320 by substituting the syscall numbers where applicable. We
provide a list of these equivalent syscalls in Appendix A. As we
want to show that Chestnut-sandboxed applications impede the
exploitation of unpatched kernel vulnerabilities, we assume a kernel
that is vulnerable to all these CVEs.

To determine the effectiveness of Chestnut, we cross-reference
the syscall numbers from each sample with the ones we block in
Table 1. If one of the syscalls required for the exploit is blocked,
we determine that this application cannot trigger the exploit in
the kernel, indicating that Chestnut increased the security of the
system.We consider both the number of CVEs that we fully mitigate
and the number of subvariants mitigated by Chestnut.

Compiler. With Sourcalyzer, we can fully mitigate 84.04 % of
the CVEs and 89.42 % of the subvariants in the case of busybox. The
reason for that is that the busybox utilities are rather small, allowing

only a few syscalls. Even with larger applications, our compiler still
increases the system’s security, fully mitigating 38.08 % of CVEs
and 56.53 % of the subvariants.

Binary. In busybox, Binalyzer mitigates 81.8 % of the CVEs fully
and 87.9 % of the subvariants. In the larger binaries, Binalyzer can
fully mitigate 36.38 % of the CVEs and 52 % of the subvariants.

6.4.4 Blocking Malicious SGX Enclaves. Intel SGX enclaves cannot
directly execute any syscalls, but only use functionality provided by
the host application. The host application can use syscalls to provide
this functionality to the enclave. Schwarz et al. [52] presented a
technique to execute arbitrary syscalls from an SGX enclave via
a ROP attack on the host application. This allows malicious or
hijacked enclaves to mount attacks on the kernel.

Weiser et al. [65] presented SGXJail as a generic defense for
malicious enclaves, blocking them from executing arbitrary syscalls.
Binalyzer achieves a similar goal without affecting the performance
of required syscalls. For the evaluation, we used the public proof-
of-concept exploit provided by Schwarz et al. [52]. The Intel SGX
SDK currently does not support LLVM; hence, we can only evaluate
Binalyzer. As enclaves cannot contain syscalls, Binalyzer only has
to scan the host application and allow only syscalls legitimately
used by the host application. Out of the 349 syscalls provided by
Linux 5.0, 279 (79.9 %) are blocked, including exec. We verified that
the benign functionality of the host and enclave is not impacted.
As a result, the malicious (or hijacked) enclave cannot run arbitrary
programs anymore, and the attack surface is drastically reduced.

6.5 Comparison to Other Approaches
Two recent approaches on automating seccomp filter generation [11,
21] were published after the start of our 6-month long-term case
study of Chestnut on Nginx. In this section, we compare our work
to these two approaches and discuss the differences.

Temporal Syscall Specialization. Ghavamnia et al. [21] pro-
pose an automated approach to detect the used syscalls during
compilation. Their approach is limited to applications that can be
split into an initialization and serving phase, i.e., server applications.
The idea is to detect syscalls used after the server’s initialization
phase, i.e., the point in time where it starts handling requests. Thus,
this approach is not directly applicable to applications that cannot
be easily split into these two phases, potentially enabling attacks
through browsers, malicious PDFs [16, 17], messengers [24, 54], and
office applications [42]. We explicitly consider such applications
in our approach as our threat model is broader and includes local
attackers additionally to remote ones. Similar to Chestnut, they
also extract a sufficiently precise call graph to be able to extract
which syscalls are reachable by the application. Their approach
relies on Andersen’s points-to analysis, which is known to not scale
with program size [2, 25]. We evaluated an orthogonal has address
taken approach as is used by LLVM’s CFI implementation. As this
is already used for the CFI implementation of LLVM, we know that
the resulting CFG is reasonably precise as otherwise applications
that rely on software-based CFI would not work. Our approach
achieves similar results in terms of detected syscalls as the more
complex and slower approach used by Ghavamnia et al. [21]. In
contrast to our approach, they require a multitude of tools for the
compilation and link-time optimization that is not supported by

every application. As neither Andersen’s points-to nor our address
taken approach can guarantee a complete CFG, we rely on the
more practical address-taken algorithm. This choice significantly
reduces the compile time. For instance, syscall extraction for Nginx
using Andersen’s algorithm shows an increase in compilation time
from 1 min to 83 min (+8300 %) [21] compared to an increase of 7.9 s
(+10.53 %) with Chestnut.

In summary, we improved the approach’s performance signifi-
cantly while maintaining accuracy and security. Additionally, our
approach is applicable to a broader range of applications, including
local applications that are commonly hijacked. We also provide an
evaluation of the tightness of the resulting filters.

Sysfilter. A second approach, sysfilter [11] focuses on extracting
syscalls from existing binaries. While sysfilter and Binalyzer share
the same goal, the approaches differ in the used tools, i.e., Binalyzer
relies on the angr framework that already supports parts of what
sysfilter manually implemented. Both approaches show similar
success rates in mitigating exploits in their respective test sets.

Sysfilter provides no analysis of the approach’s overapproxima-
tion, making it hard to estimate how tight the resulting syscall
filters are. Hence, we perform such an analysis to show differences
between the approaches. As we discussed in Sections 6.3 and 6.4.2,
obtaining a ground truth is infeasible and would require compu-
tational intensive formal proofs. Hence, we need another source
for a reliable baseline to which we can compare the results of the
evaluation for Binalyzer and sysfilter.

To provide this baseline, we rely on the results of Sourcalyzer
when generating a static binary, for two reasons: First, the compiler
has the most information about the application as it needs to gener-
ate a functioning binary, i.e., it needs to know which functions are
actually required and called. The second reason is based on what a
compiler like clang does when it generates the static binary that
we use. When generating this binary, the compiler already removes
all unnecessary functions, i.e., functions that are never called and
never have their address taken, from the binary. So the resulting
binary only contains functions and their respective syscalls if the
compiler determined a potential path to the respective function.
Therefore, any syscall found by the two binary tools within the
static binary can be reached and is necessary for the application to
work correctly. This number may differ from the one detected by
Sourcalyzer due to the inherent overapproximation of the function
signature heuristic, i.e., read and write have the same function sig-
nature, so if one is used, the other one is automatically included in
the set. In this case, the syscall of a function is included even though
the compiler removed the function’s actual code. Nevertheless, we
expect the numbers to be in a similar range.

In this evaluation, both sysfilter and Binalyzer work on the exact
same static binaries. We ensured that the binary still contains the
stack unwinding information (.eh_frame) and other necessary sec-
tions (.init, .fini) on which sysfilter relies for its precise disassembly.
While sysfilter notes that one requirement is a PIC binary, we note
that the additional tasks that sysfilter performs for PIC binaries,
i.e., relocations or checking the dynamic symbol table, are by the
design of static binaries simply not necessary. Building the call
graph does not depend on these steps either. In fact, for binary
analysis tools like sysfilter and Binalyzer, a static binary can be

Table 3: The number of extracted syscalls by Sourcalyzer, Bi-
nalyzer, and the two modes of sysfilter.

Binary Sourcalyzer Binalyzer sysfilter
(vacuumed-fcg)

sysfilter
(universal-fcg)

FFmpeg 63 53 18 53
busybox 163 144 15 152
Redis-server 85 74 12 74

considered the most straightforward use case as all information is
already contained within the static binary.

We consider two different modes of sysfilter, i.e., the default
behavior that prunes the call graph based on a reachability anal-
ysis and the universal approach that assumes that every function
is reachable by every other function. As the binary is compiled
statically, we expect that both modes produce the same result as
only functions that are reachable from the main entry point are
included. We show the result of this analysis in Table 3.

As our analysis shows, the assumption that both modes of sys-
filter produce the same result does not hold as the pruning-based
mode significantly underapproximates in all three evaluated bina-
ries. The low number of detected syscalls hints at some mistake in
the pruning algorithm as the number is too low for such complex
applications. In two out of three binaries, Binalyzer and sysfilter us-
ing the universal approach produce the exact same result while the
third binary only shows a small difference of 8 syscalls. In this case,
the difference to Sourcalyzer is within an expected range due to the
overapproximation of Sourcalyzer. This is not true for the pruning-
based approach of sysfilter as the difference is too large, and the
number of detected syscalls is lower than the number of syscalls
that are actually used (cf. Table 1). Interestingly, the universal-fcg
implementation of sysfilter also supports our observation that a
PIC binary is not a requirement for these types of binary analysis
tools as it produces similar results to Binalyzer, contradicting the
statement by its developers. Nevertheless, there is still a difference
in the operation between the universal-fcg approach of sysfilter
and Binalyzer as the latter achieves this result by not assuming
that every function is reachable by every other function. Instead, it
still builds a correct call graph and derives the information from it,
which fails for the vacuum-fcg approach of sysfilter.

We investigated the low number of syscalls found in the pruning-
based approach of sysfilter. This analysis showed that during the
pruning, the main function is removed from the set of reachable
functions, which results in the whole application being removed
from the analysis. We leave the analysis of whether this is purely
an implementation bug or a hint that this is a general problem in
the approach for future work as this is out of scope for this paper.

7 DISCUSSION
Limitations and FutureWork. Fast and reliable points-to analy-
sis with limited overapproximation is still an unsolved problem [25].
In some cases, we also exhibit the opposite effect in angr that it
is not able to detect the call target of an indirect call, hence miss-
ing a potentially reachable syscall. In contrast to previous work,
we evaluate this problem by measuring the code coverage on real-
world code examples. Future work may extend our analysis with

coverage-guided fuzzing to obtain more precise estimates for the
overapproximation of automated seccomp filter generation tools.

Future work may investigate the possibility of extending the
syscall filtering with argument tracking. While detecting constant
syscall arguments is possible, the precise propagation of this infor-
mation throughout the call graph is not trivial. Solving this prob-
lem would allow restricting syscalls further, e.g., only allow certain
hardcoded paths for exec or limit possible permissions passed to
mprotect, e.g., no executable permissions. Finally, one limitation
is the performance of seccomp [26, 62] imposed by the underlying
system. Since this is not a weakness of Chestnut itself, we consider
improving the performance of seccomp out of scope for this paper.
Related Work. Several related works also discuss the problem
of automating sandboxing mechanisms, e.g., reducing the attack
surface of applications by removing unused code. One of the first ap-
proaches for library debloating is based on removing non-imported
functions from a shared library during load time [43]. This approach
has been further improved by removing all unused functions from
shared libraries during load time by extending the compiler and the
loader [47]. Agadakos et al. [1] proposed a binary-level approach
for library debloating, based on function boundary detection and
dependency identification to identify and erase unused functions.
Davidson et al. [10] analyzed the entire software stack for web ap-
plications to create specialized libraries based on the requirements
for PHP code and the server binaries. Shredder [40] instruments
binaries to restrict arguments to system APIs to a predefined al-
lowlist. Another approach is to apply data dependency analysis for
fine-grained customization of static libraries [55].

More closely related to our work is the approach by Ghavam-
nia et al. [21]. However, their approach suffers from a significantly
higher execution time for the analysis during compilation while
achieving a comparable accuracy in detecting syscalls. Wagner and
Dean [63] propose a static approach to build an IDS that uses a simi-
lar approach to Sourcalyzer for pointer analysis to extract amodel of
expected application behavior. In general, several papers have pro-
posed static analysis of syscalls for anomaly detection and IDS [18].
Rajagopalan et al. [49] propose to replace syscalls with authenti-
cated syscalls that specify a policy and provide a cryptographic
MAC that guarantees the integrity of the syscall. sysfilter [11] uses
the Egalito framework to statically extract the syscalls from the
binary similar to Binalyzer, but has a strong requirement on PIC
binaries which Binalyzer does not.

Other approaches reduce the attack surface using training to
identify the unused code sections, e.g., Ghaffarinia and Hamlen [20].
Without access to the source code, training and heuristics can be
used to identify and remove unnecessary basic blocks [46].

Previous work focused mostly on C/C++ software with few solu-
tions for software in other languages. For Java, one approach uses
static code analysis to remove unused classes and methods [29]. For
PHP, Azad et al. [3] proposed a framework using dynamic analysis
to remove superfluous features.

8 CONCLUSION
Chestnut is an automated approach to block unused syscalls in ap-
plications, identified using static analysis and an optional dynamic
refinement. The compiler-based approach is up to factor 73 faster

than previous work without any loss in accuracy. On the binary
level, our approach extends over previous ones by also applying
to non-PIC binaries and thus a broader set of applications. Chest-
nut increases platform security without manual effort as shown in
our evaluation of correctness and overapproximation, using test
suites, code coverage, and a 6-month long-term evaluation. Chest-
nut blocks more than 82.5 % of all syscalls and 61 % corresponding
kernel CVEs from these applications.

ACKNOWLEDGMENTS
This work has been supported by the Austrian Research Promotion
Agency (FFG) via the project ESPRESSO, which is funded by the
province of Styria and the Business Promotion Agencies of Styria
and Carinthia. This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020
research and innovation program (grant agreement No 681402).
Additional funding was provided by generous gifts from ARM,
Intel, and Red Hat. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the funding parties.

REFERENCES
[1] Ioannis Agadakos, Di Jin, David Williams-King, Vasileios P Kemerlis, and Geor-

gios Portokalidis. 2019. Nibbler: debloating binary shared libraries. In ACSAC.
[2] Lars Ole Andersen. 1994. Program Analysis and Specialization for the C Program-

ming Language. Ph.D. Dissertation.
[3] Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis. 2019. Less is More:

Quantifying the Security Benefits of Debloating Web Applications. In USENIX
Security Symposium.

[4] Tyler K. Bletsch, Xuxian Jiang, Vincent W. Freeh, and Zhenkai Liang. 2011. Jump-
oriented programming: a new class of code-reuse attack. In AsiaCCS.

[5] Erik Bosman and Herbert Bos. 2014. Framing Signals - A Return to Portable
Shellcode. In S&P.

[6] Nicholas Carlini and David A. Wagner. 2014. ROP is Still Dangerous: Breaking
Modern Defenses. In USENIX Security Symposium.

[7] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Hovav Shacham, and Marcel Winandy. 2010. Return-oriented programming
without returns. In CCS.

[8] Shuo Chen, Jun Xu, Emre Can Sezer, Prachi Gauriar, and Ravishankar K Iyer. 2005.
Non-Control-Data Attacks Are Realistic Threats.. In USENIX Security Symposium.

[9] Chromium. [n.d.]. Linux Sandboxing. https://chromium.googlesource.com/
chromium/src/+/0e94f26e8/docs/linux_sandboxing.md

[10] Nicolai Davidsson, Andre Pawlowski, and Thorsten Holz. 2019. Towards auto-
mated application-specific software stacks. In ESORICS.

[11] Nicholas DeMarinis, KentWilliams-King, Di Jin, Rodrigo Fonseca, and Vasileios P.
Kemerlis. 2020. sysfilter: Automated System Call Filtering for Commodity Soft-
ware. In RAID.

[12] David Drysdale. 2014. Anatomy of a system call, part 2. https://lwn.net/Articles/
604515/

[13] David Drysdale. 2015. How programs get run: ELF binaries. https://lwn.net/
Articles/631631/

[14] Jake Edge. 2012. A library for seccomp filters. https://lwn.net/Articles/494252/
[15] Jake Edge. 2015. A seccomp overview. https://lwn.net/Articles/656307/
[16] Jose Miguel Esparza. 2012. Static analysis of a CVE-2011-2462 PDF exploit.
[17] Jose Miguel Esparza. 2014. Quick analysis of the CVE-2013-2729 obfuscated

exploits.
[18] Henry Hanping Feng, Jonathon T Giffin, Yong Huang, Somesh Jha, Wenke Lee,

and Barton P Miller. 2004. Formalizing sensitivity in static analysis for intrusion
detection. In S&P.

[19] Firejail 2018. Firejail Security Sandbox. https://firejail.wordpress.com/
[20] Masoud Ghaffarinia and Kevin W Hamlen. 2019. Binary Control-Flow Trimming.

In CCS.
[21] SeyedhamedGhavamnia, Tapti Palit, ShacheeMishra, andMichalis Polychronakis.

2020. Temporal System Call Specialization for Attack Surface Reduction. In
USENIX Security Symposium.

[22] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis. 2014.
Out of Control: Overcoming Control-Flow Integrity. In S&P.

[23] Ian Goldberg, David Wagner, Randi Thomas, Eric A Brewer, et al. 1996. A secure
environment for untrusted helper applications: Confining the wily hacker. In

https://chromium.googlesource.com/chromium/src/+/0e94f26e8/docs/linux_sandboxing.md
https://chromium.googlesource.com/chromium/src/+/0e94f26e8/docs/linux_sandboxing.md
https://lwn.net/Articles/604515/
https://lwn.net/Articles/604515/
https://lwn.net/Articles/631631/
https://lwn.net/Articles/631631/
https://lwn.net/Articles/494252/
https://lwn.net/Articles/656307/
https://firejail.wordpress.com/

USENIX Security Symposium.
[24] Samuel Groß. 2020. Remote iPhone Exploitation Part 1: Poking Memory via

iMessage and CVE-2019-8641.
[25] Michael Hind. 2001. Pointer analysis: Haven’t we solved this problem yet?. In

PASTE.
[26] Tom Hromatka. 2018. seccomp and libseccomp performance improvements.
[27] Google Inc. 2017. Seccomp filter in Android O. https://android-developers.

googleblog.com/2017/07/seccomp-filter-in-android-o.html
[28] Google Inc. 2019. Sandbox2. https://developers.google.com/sandboxed-api/

docs/sandbox2/overview
[29] Yufei Jiang, Dinghao Wu, and Peng Liu. 2016. JRed: Program Customization and

Bloatware Mitigation Based on Static Analysis. In COMPSAC.
[30] Mateusz Jurczyk and Gynvael Coldwind. 2015. Permissions overview. In-

somni’hack (2015).
[31] Vasileios Kemerlis. 2015. Protecting Commodity Operating Systems through Strong

Kernel Isolation. Ph.D. Dissertation. Columbia University.
[32] Vasileios P Kemerlis, Michalis Polychronakis, and Angelos D Keromytis. 2014.

ret2dir: Rethinking kernel isolation. In USENIX Security Symposium.
[33] Vasileios P. Kemerlis, Georgios Portokalidis, and Angelos D. Keromytis. 2012.

kGuard: Lightweight Kernel Protection against Return-to-User Attacks. In
USENIX Security Symposium.

[34] Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In IEEE / ACM International
Symposium on Code Generation and Optimization – CGO.

[35] Xin Lin, Lingguang Lei, Yuewu Wang, Jiwu Jing, Kun Sun, and Quan Zhou. 2018.
A measurement study on Linux container security: Attacks and countermeasures.
In ACSAC.

[36] Linux. 2019. 64-bit system call numbers and entry vectors. https://github.com/
torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl

[37] Kin-KeungMa, Khoo Yit Phang, Jeffrey S Foster, andMichael Hicks. 2011. Directed
symbolic execution. In International Static Analysis Symposium.

[38] W. S. McPhee. 1974. Operating system integrity in OS/VS2. IBM Systems Journal
(1974).

[39] Matt Miller. 2019. Trends, challenges, and strategic shifts in the software vulner-
ability mitigation landscape. Bluehat IL (2019).

[40] Shachee Mishra and Michalis Polychronakis. 2018. Shredder: Breaking exploits
through API specialization. In ACSAC.

[41] Mozilla. 2016. Seccomp filter in Android O. https://wiki.mozilla.org/Security/
Sandbox/Seccomp

[42] Jens Müller, Fabian Ising, Christian Mainka, Vladislav Mladenov, Sebastian
Schinzel, and Jörg Schwenk. 2020. Office Document Security and Privacy. In
WOOT.

[43] Collin Mulliner and Matthias Neugschwandtner. 2015. Breaking Payloads with
Runtime Code Stripping and Image Freezing. BlackHat USA (2015).

[44] Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd, Eric Rahm,
Sorin Lerner, Hovav Shacham, and Deian Stefan. 2020. Retrofitting Fine Grain
Isolation in the Firefox Renderer. In USENIX Security Symposium.

[45] Vassilis Prevelakis and Diomidis Spinellis. 2001. Sandboxing Applications. In
USENIX ATC.

[46] Chenxiong Qian, Hong Hu, Mansour Alharthi, Pak Ho Chung, Taesoo Kim,
and Wenke Lee. 2019. RAZOR: A Framework for Post-deployment Software
Debloating. In USENIX Security Symposium.

[47] Anh Quach, Aravind Prakash, and Lok Yan. 2018. Debloating Software through
Piece-Wise Compilation and Loading. In USENIX Security Symposium.

[48] Nguyen Anh Quynh. 2014. Capstone: Next-gen disassembly framework. Black
Hat USA (2014).

[49] Mohan Rajagopalan, Matti Hiltunen, Trevor Jim, and Richard Schlichting. 2005.
Authenticated system calls. In DSN.

[50] Charles Reis, AlexanderMoshchuk, and Nasko Oskov. 2019. Site Isolation: Process
Separation for Web Sites within the Browser. In USENIX Security Symposium.

[51] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza
Sadeghi, and Thorsten Holz. 2015. Counterfeit Object-oriented Programming:
On the Difficulty of Preventing Code Reuse Attacks in C++ Applications. In S&P.

[52] Michael Schwarz, Samuel Weiser, and Daniel Gruss. 2019. Practical Enclave
Malware with Intel SGX. In DIMVA.

[53] Hovav Shacham. 2007. The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86). In CCS.

[54] Natalie Silvanovich. 2020. Exploiting Android Messengers with WebRTC: Part 1.
[55] Linhai Song and Xinyu Xing. 2018. Fine-grained library customization. In SALAD.
[56] SQLite. 2020. How SQLite Is Tested.
[57] Bjarne Steensgaard. 1996. Points-to Analysis in Almost Linear Time. In POPL.
[58] Nicolas Sylvain. 2008. A new approach to browser security: the Google Chrome

Sandbox.
[59] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal

War in Memory. In S&P.
[60] Robert Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM journal

on computing (1972).

[61] The MITRE Corporation. [n.d.]. Common Vulnerabilities and Exposures. http:
//cve.mitre.org/

[62] Tizen. 2018. Security:Seccomp. https://wiki.tizen.org/Security:Seccomp
[63] David Wagner and R Dean. 2000. Intrusion detection via static analysis. In S&P.
[64] Fish Wang and Yan Shoshitaishvili. 2017. Angr - The Next Generation of Binary

Analysis. In 2017 IEEE Cybersecurity Development (SecDev).
[65] Samuel Weiser, Luca Mayr, Michael Schwarz, and Daniel Gruss. 2019. SGXJail:

Defeating Enclave Malware via Confinement. In RAID.
[66] MozillaWiki. 2019. Security/Sandbox. https://wiki.mozilla.org/Security/Sandbox

A LIST OF EQUIVALENT SYSCALLS
In this appendix, we provide a list of equivalent syscalls (cf. Table 4).

Table 4: Syscalls and their equivalents.

Syscall Equivalents

munlockall munlock
listxattr llistxattr, flistxattr
epoll_create epoll_create1
mlockall mlock, mlock2
execve execveat
recvfrom recvmsg, recvmmsg
writev pwritev
mknod mknodat
open openat
accept accept4
getdents getdents64
sendto sendmmsg, sendmsg
getxattr fgetxattr, lgetxattr
rename renameat, rename2
epoll_ctl epoll_ctl_old

https://android-developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html
https://android-developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html
https://developers.google.com/sandboxed-api/docs/sandbox2/overview
https://developers.google.com/sandboxed-api/docs/sandbox2/overview
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
https://wiki.mozilla.org/Security/Sandbox/Seccomp
https://wiki.mozilla.org/Security/Sandbox/Seccomp
http://cve.mitre.org/
http://cve.mitre.org/
https://wiki.tizen.org/Security:Seccomp
https://wiki.mozilla.org/Security/Sandbox

	Abstract
	1 Introduction
	2 Background
	2.1 Linux Seccomp
	2.2 Memory Safety
	2.3 Executable and Linkable Format

	3 Design of Chestnut
	3.1 Threat Model and Idea of Chestnut
	3.2 Challenges
	3.3 High-Level Idea

	4 Static Filter Extraction
	4.1 Compiler-Based Approach
	4.2 Binary Syscall Extraction

	5 Dynamic Refinement
	5.1 Limitations of Static Approaches
	5.2 Implementation Details

	6 Evaluation
	6.1 Setup
	6.2 Performance Evaluation
	6.3 Functional-Correctness Evaluation
	6.4 Security Evaluation
	6.5 Comparison to Other Approaches

	7 Discussion
	8 Conclusion
	References
	A List of equivalent syscalls

