
Do Compilers Break Constant-time Guarantees?

Lukas Gerlach1, Robert Pietsch2, and Michael Schwarz1

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
2 Saarland University, Saarbrücken, Germany

Abstract. Side-channel attacks are a significant concern for the im-
plementation of cryptographic algorithms. Data-oblivious programming
is a discipline that helps mitigate side-channel attacks by preventing
data leakage over side channels. However, due to various optimizations in
modern compilers, data-obliviousness cannot be guaranteed in high-level
languages. This work investigates to which extent compiler optimiza-
tions violate data-obliviousness. To this end, we present data-oblivious
compiler checker (DOCC), an automated binary testing pipeline for de-
tecting data-obliviousness violations under different compiler configura-
tions. We show that DOCC is applicable across 6 widely used compilers.
Additionally, DOCC can retrofit existing analysis tools with advanced
leakage models, such as data-dependent instruction execution times and
data-obliviousness under speculation. We evaluate DOCC on 5 major
cryptographic libraries and the recently proposed NIST lightweight cryp-
tography primitives. We reveal data-obliviousness violations in 93 out of
the 127 tested algorithms and 1845 out of the 12 917 test cases across
different cryptographic libraries, building blocks, and programming lan-
guages. We demonstrate that the choice of compiler and optimizations
heavily influences the resulting binary’s properties.

1 Introduction

Side-channel attacks threaten software security, compromising the confidential-
ity of functionally correct software systems. Examples of side-channels are the
execution time of programs [12, 34, 60], the state of data in caches [47, 67], and
the processor’s power consumption [42, 35]. Attackers can observe side channels
through software without physical access to the device. Side-channels often affect
widely used libraries, such as OpenSSL [45], as evidenced by past CVEs such as
CVE-2022-4304, CVE-2019-1547, and CVE-2018-5407. Side-channel leakage is
typically discovered manually and addressed on a case-by-case basis. To prevent
exploitation of such side channels, developers must write software in a side-
channel-resilient manner. Constant-time or data-oblivious programming [28, 51]
prevents software side channels by making the execution time, code, and data
access patterns of programms independent of secret values.

However, testing whether a program is data-oblivious is challenging for sev-
eral reasons. While a variety of different checking tools provide non-formal [61,
36, 63, 64, 53] as well as formal guarantees of data-obliviousness [14, 16], these



2 Gerlach et al.

tools are not typically integrated into modern build systems and often have sig-
nificant limitations both technically and from a usability perspective [24, 29].
Moreover, many checking tools consider a limited execution model based solely
on architectural observations and do not consider leakage in speculative execu-
tion [8]. Furthermore, current approaches rarely model variable execution time
instructions, which can increase the attack surface [3]. Finally and most impor-
tantly, data-obliviousness can only be defined at the machine-code level, not for
high-level C code [30]. This lack of a clear definition is due to the compiler’s
freedom to perform optimizations that do not alter observable behavior [19].

In this paper, we therefore ask the following question:

Do compilers influence data-obliviousness, and can we automatically detect
violations by combining different detection techniques?

We present DOCC, a systematic approach assessing the data-obliviousness
of compiled code under various compiler parameters. DOCC integrates different
compilers and testing tools in a flexible and expandable framework. It includes
binary-rewriting-based techniques that enhance existing and enable additional
testing capabilities for data-obliviousness. As a result, our framework can check
properties such as data-obliviousness in speculative execution or data-dependent
instruction execution. DOCC is efficient because it implements testing in 3
stages. In the first stage, DOCC conducts computationally inexpensive heuristic
tests to determine if the binary is data-oblivious. If the binary passes the heuristic
tests, DOCC proceeds to the second stage, which involves dynamic execution. If
the tests of the second stage are passed, the third stage employs symbolic execu-
tion to verify data-obliviousness formally. Ultimately, DOCC offers 2 outcomes:
Failure at any stage indicates non-data-obliviousness, and successful verification
at the third stage denotes data-obliviousness.

To evaluate DOCC, we analyze data-oblivious building blocks [66, 5] and en-
tire cryptographic algorithms from widely used libraries. We identify building
blocks where seemingly data-oblivious code compiles to machine code violating
data-obliviousness and also cases where code violating data-obliviousness com-
piles to data-oblivious executables. We evaluate the OpenSSL [45], BearSSL [49],
mbedTLS [4], wolfSSL [65] and libsodium [38] cryptographic libraries. We ana-
lyze AES, Aria, ChaCha20, Camellia, and SHA implementations of OpenSSL,
BearSSL, mbedTLS, wolfSSL, and libsodium using DOCC. We discover that
OpenSSL’s AES implementation exhibits key-dependent memory accesses when
compiled using the no-asm flag. Similarly, AES, Aria, and Camellia commonly
rely on non-data-oblivious lookup tables. In contrast, analyzing BearSSL and
libsodium produces evidence supporting their data-obliviousness claims. Addi-
tionally, we analyze candidates of the NIST lightweight cryptography compe-
tition [43]. We discover that 9 out of the 10 reference implementations of the
current NIST lightweight cryptographic competition are not data-oblivious.

Our evaluation shows that seemingly data-oblivious code only sometimes
leads to data-oblivious binaries. We emphasize that employing DOCC enables
automatic detection of issues, e.g., in a continuous-integration pipeline.

Contributions. The main contributions of this paper are:



Do Compilers Break Constant-time Guarantees? 3

1. We systematically evaluate how compilers influence data-obliviousness.
2. We introduce an extensible framework combining binary rewriting passes

with data-obliviousness checkers in a 3-stage pipeline that outperforms single
data-obliviousness checking tools.

3. We analyze the NIST lightweight cryptography finalists and 5 cryptographic
libraries, revealing 1063 data-obliviousness violations in 53 of 76 algorithms.

We publish our DOCC framework as open source.3

Responsible Disclosure We disclosed our findings to OpenSSL on August 30,
2023. Monero removed the OpenSSL no-asm flag from their codebase to guar-
antee a constant-time AES implementation.

2 Background

2.1 Software Side Channels

Software side-channel attacks exploit meta-information leaked during regular
system operation without requiring physical access or hardware bugs. Secret-
dependent control and data flows are common leakage sources [28]. Timing
attacks exploit differences in execution time resulting from secret-dependent
control flow. Particular instructions, e.g., multiplication, division, and shifting,
can also introduce timing variations based on operand values [51, 3]. Hardware
caching is vulnerable to side channels since it induces timing differences depend-
ing on whether a memory address was previously accessed. There are various
variants of cache attacks, with shared memory (e.g., Flush+Reload [67]) and
without shared memory (e.g., Prime+Probe [47]). Branch predictors predict
likely outcomes of branches to speed up instruction fetches in case of a stalled
branch condition. Branch prediction side channels exploit secret-dependent tim-
ing differences by mistraining branch predictors [2].

2.2 Assisted Data-oblivious Programming

To defend against side-channel attacks, data-oblivious programming [34, 50, 51, 5]
ensures that the sequence of memory accesses and control flow does not depend
on secret data. In the past, programmers relied on manual auditing the compiler
output for the absence of information leakage [29]. Nowadays, a wide variety of
assistance methods to test for data-obliviousness has emerged [24].

Heuristic-based Approach. Dudect collects program execution times for
different program arguments [53]. The resulting execution times are analyzed
statistically for secret-dependent execution times. This approach is inherently
limited to the path coverage generated by the respective program arguments.

Taint Tracking & Memory Tracing. Another approach is to trace
memory and instruction access patterns during the program’s execution. Ct-
grind [36] performs taint tracking [17] to detect dependencies between memory

3 https://github.com/cispa/constant-time-compilers



4 Gerlach et al.

accesses and program arguments. Taint tracking propagates additional informa-
tion (taint) during program execution to determine whether program arguments
labeled as secret end up in branches or memory accesses. Similarly, DATA [61]
is built upon Intel’s binary instrumentation framework Pin [27], which allows
for address-tracing, capturing a trace of the instruction and memory accesses of
a program. DATA performs statistic tests to determine if there is a difference
between sets of traces collected on different secret program inputs. Both taint
tracking and memory tracing are dynamic approaches that can only test the
parts of a program covered by the inputs during testing.

Symbolic Execution. Symbolic execution [32] symbolizes the program
state to derive logical constraints, which can be used with a logic solver to
obtain guarantees for each possible program execution under test. Unlike dy-
namic testing, symbolic execution can derive strong guarantees that hold for
the entire program under test. Pitchfork [15] leverages symbolic execution to
detect secret data flowing into address calculations or branch conditions.

2.3 Static Binary Rewriting

Binary rewriting is a technique that allows the modification of compiled binary
code without recompilation [62]. The remainder of the paper builds upon e9patch
[20] which uses trampolines patched into the code and, therefore, requires no
changes to the control and data flow of the remaining unpatched code. Thus,
the data-obliviousness properties of patched code remain unchanged.

3 Overview and Design of DOCC

We introduce DOCC, an automated approach testing data-obliviousness of ma-
chine code compiled with different compilers and compiler options under differ-
ent testing strategies. We build a generic, extensible framework that performs
compilation in different compiler configurations and tests the resulting binaries
for data-obliviousness violations. In addition, DOCC supports binary rewriting
passes to retrofit existing data-obliviousness analysis tools with new features,
such as detecting violations under speculation or from instructions with non-
constant runtimes. Moreover, our debranching technique can reduce the com-
plexity of applications, improving testing performance.

At the core of our testing framework lies the code snippet under test. To de-
termine how the snippet under test is compiled and run, we provide a checker-
and compiler-agnostic testing specification. This specification must be provided
once per snippet under test. Multiple compilers and architectures can be part of
a generic pipeline layout. Instead of relying on a static pipeline for a single ar-
chitecture incorporating a fixed number of compilers and methods to check each
binary for data-obliviousness, DOCC is a flexible framework. For the remainder
of the paper, we focus on the x86 architecture due to the variety of available
compilers.



Do Compilers Break Constant-time Guarantees? 5

Source Code

Compiler Compiler . . . Compiler

Rewriting Heuristic Tests Dynamic Execution Symbolic Execution

Non Data-Oblivious Data-Oblivious

Fig. 1: Three-phase design of DOCC. The input code is compiled with different
compilers, rewritten, and checked with increasingly powerful testing methods.
Each code snippet is ultimatively categorized as data-oblivious or not.

We employ a 3-stage checking approach (with an additional optional binary
rewriting pass), as shown in Figure 1, to find violations reliably and quickly.
Before testing, the binary can be rewritten to enable more efficient checking of
data-obliviousness violations or to test specific properties such as data operand-
dependent instruction timing or data-obliviousness under speculative execution.
The first 2 stages leverage heuristic tests and dynamic execution to find violations
of data-obliviousness. The main intuition is that showing a violation of data-
obliviousness requires only one such violating input (pair), while guaranteeing
data-obliviousness requires showing that no such violating inputs exist. Hence,
if DOCC cannot find inputs that violate data-obliviousness during a fixed test
time or coverage, it resorts to the computationally more expensive verification
of data-obliviousness in the third stage.

3.1 (Optional) Stage 0: Binary Rewriting

We introduce 4 novel rewriting approaches that broaden the applicability of
already developed data-obliviousness analysis techniques. Instead of changing
the checker, we change the binary under test such that the desired property can
be evaluated using an off-the-shelf checker, while keeping its data-obliviousness
properties. Our 4 rewriting strategies are:
– Rewriting non-constant-time instructions into data and control flow leakage.
– Debranching to reduce the false positive rate and increase the analysis speed

of taint tracking and symbolic-execution-based checkers.
– Speculative execution emulation to evaluate the data-obliviousness properties

of a binary under speculative execution.
– Coverage instrumentation to evaluate the completeness of the tests.

Non-Constant-Time Instruction Rewriting Execution times for most in-
structions are typically independent of operand values, but there are exceptions,
such as integer divisions and shift operations [51, 1]. Such timing differences have
been exploited in browser-based and cryptographic attacks [3]. However, such
leakage is not detectable with off-the-shelf checkers. We present a two-stage ap-
proach to identify such non-constant-time instructions. First, we detect whether
an instruction’s execution time is influenced by its operands using statistical
tests. Next, we make these instructions detectable via code rewriting.



6 Gerlach et al.

Our testing method, inspired by test vector leakage assessment [55], involves
evaluating instructions on two classes of inputs: one with fixed values and the
other with randomly sampled values. Execution times are measured using ran-
domly interleaved inputs from these two classes. A statistical test, specifically
a Welsch t-test, is then applied to determine if there is a significant difference
between the two sets of timing measurements. If the t-test reveals a significant
difference (with a threshold of 4.5 [55]), we conclude that the instruction’s timing
likely depends on its operands.

In the second step, we rewrite variable time instructions into data and con-
trol flow leakage. Each instruction is replaced with a snippet of code called a
trampoline, which performs artificial data and control flow constructs. The tram-
poline is designed such that any bitwise change in the input arguments causes a
change in data and control flow. After the trampoline, the patched instruction
is executed normally. Therefore, the semantics of the binary under test do not
change. In addition, the patching itself does not induce new secret-dependent
control or data flow. Therefore, the data-obliviousness properties of the binary
are only changed by the contents of the trampoline.

We tested our rewriting pass on the RC5 implementation [46] of OpenSSL,
which contains secret-dependent shift instructions in both the E RC5 32 and
D RC5 32macro. We confirmed that the shift instruction has a different, operand-
dependent runtime when executed on an Intel i9-12900K CPU. DOCC automat-
ically rewrites the OpenSSL binary to detect the shift instruction in our patched
version using DATA.

We additionally test our rewriting pass on the examples snippets tested in
Section 5.1. These examples contain 296 shift instructions on average. However,
using a combination of DATA and our rewriting pass, we verify that none of
them are secret dependent. By manually verifing that no secret dependent shift
instructions exist in the resulting binaries we find that our binary rewriting pass
is effective for our examples.

Debranching Both symbolic execution and taint tracking can produce false
positives, such as in code like if(never taken & secret) func(). Here, a se-
cret value flows into a never-taken branch, leading to a false positive data-
obliviousness violation. We implemented a binary rewriting strategy because
addressing the issue at the source code level is tedious and ineffective; compiler
optimizations can alter the binary’s properties again.

Our approach benchmarks the program on random, well-formed inputs until
sufficient coverage is achieved, using a custom Quiling-based tracer [23]. This
tracer records all branches and whether they were taken, allowing us to identify
branches that are always or never executed during regular operation. These static
branches, often part of assertions, are then rewritten as unconditional branches.
Since assertions are always true for valid input, they can safely be ignored in
data-obliviousness tests.

We applied this technique to a base64 decoding routine in CTTK [50], where
comparisons with whitespace—flagged as violations by bothCtgrind andPitch-



Do Compilers Break Constant-time Guarantees? 7

fork—were rewritten as unconditional branches, resolving the false positive.
Similar issues were found and addressed in the mbedTLS base64 implementa-
tion and the hex decoding in libsodium. In all other tests debranching was not
able to find and eliminates stale branches as they did not occur. In such cases,
debranching does not reduce false positives as it simply has no effect.

Speculative Execution Emulation Typically, data-obliviousness checks focus
on architectural execution. However, speculative execution can expose additional
attack surfaces [33, 13]. An example of such a program contains a branch that
is never architecturally taken, e.g., an assertion statement. Under speculative
execution, an attacker can trick the branch predictor into entering the branch. If
the branch contains a non-data-oblivious statement leaking the secret variable,
i.e., a memory lookup, the attacker can leak the content of the variable [33, 13].

Rather than integrating speculative execution checks into the tools used by
DOCC, we use binary rewriting to emulate speculative execution in two steps.
First, we execute the binary while recording all conditional branches and their
coverage. Once sufficient coverage is achieved, we identify static branches that are
candidates for speculative execution rewrites, particularly those never taken dur-
ing normal execution but potentially vulnerable under speculation. We rewrite
each static branch by inverting its condition, similar to the approach used in
SpecFuzz [44], effectively emulating speculative execution. This process is re-
peated for all branches in the binary.

We evaluated the rewriting approach on the wolfSSL library, where the
Poly1305 authenticated encryption showed additional leakage during specula-
tion. However, this leakage induced by an error-checking branch without a spec-
ulative leakage gadget inside the branch is likely not exploitable.

Coverage Instrumentation Dynamic testing methods only partially test a
binary, resulting in data-obliviousness guarantees only for the covered code. We
provide a coverage-instrumentation rewriting pass using bcov [10] to measure
coverage. Rewriting the binary for coverage has the benefit that it is independent
of the compiler. We tested our coverage of the mbedTLS [4] AES implementation
and observed full test coverage on the encryption and decryption routines.

Takeaway Binary rewriting of programs under test is a viable alternative to
adding functionality to individual checkers.

3.2 Stage 1: Inexpensive Heuristic Checks

The first stage of our pipeline uses efficient heuristic checks to identify poten-
tial data-obliviousness violations quickly. We employ a customized version of
Dudect [53], which runs the code snippet while measuring execution time and
tracking microarchitectural events through performance counters. Performance
counters allow for tracking events that are hard to detect using timing only,



8 Gerlach et al.

such as cache misses. These events only produce timing differences on specifi-
cally crafted inputs, which are often not covered by Dudect, as inputs for each
execution are generated randomly for secret inputs and fixed for public inputs. If,
during execution, the snippet induces statistically significant secret-dependent
timing or counter differences, it is labeled as non-data-oblivious.

Despite its efficiency, this approach has limitations. False negatives may occur
because simple heuristics might miss subtle violations, while false positives can
arise due to measurement noise or runtime variance caused by external factors
like interrupts. Stage 2 employs a more powerful dynamic test to verify negative
results. In the case of false positives, the checks can be repeated or refined using
more robust tests.

Takeaway Heuristic checks can be extended using performance counters to
detect more subtle data-obliviousness violations.

3.3 Stage 2: Moderately-expensive Dynamic Execution

When heuristic tests fail to detect data-obliviousness violations, we move to more
powerful dynamic execution methods. For instance, runtime-based heuristics are
often insufficient for detecting secret-dependent memory accesses, as these do
not always cause measurable timing differences—such as in small lookup ta-
bles where entries are mostly cached. Additionally, hardware optimizations like
dynamic frequency scaling or prefetching can distort timing results, leading to
inaccuracies.

We employ 2 different strategies of increasing computational power but also
complexity, namely recording execution traces [61, 63, 64] and taint tracking [36].
Taint tracking can detect data-dependent edge cases that are unlikely to be found
with trace recording as taint allows to track secret-dependent computations in-
dependent of concrete values.

While these techniques only cover executed code paths, this is not a signifi-
cant problem, as cryptographic implementations contain few branches. Like pre-
vious work, generating random inputs is sufficient to achieve good coverage [61,
53]. Our coverage instrumentation rewriting pass described in Section 3.1 can
validate this. If dynamic execution finds no data-obliviousness violations, DOCC
transitions to symbolic execution in Stage 3.

3.4 Stage 3: Expensive Symbolic Execution

If dynamic execution fails to detect data-obliviousness violations, we proceed to
symbolic execution [7, 32]. Symbolic execution explores all possible paths through
a program, providing a complete analysis. The code is considered data-oblivious
if no violations are found during this phase.

Symbolic execution for verifying data-obliviousness has been studied exten-
sively in previous works [16, 15]. Unlike taint tracking, which dynamically exe-
cutes the program, symbolic execution solves constraints over inputs to deter-



Do Compilers Break Constant-time Guarantees? 9

mine whether a secret input can influence a branch or memory access. If it finds
such a case, the program leaks sensitive information.

Symbolic execution is the only approach employed by DOCC to provide
strong guarantees. However, to do so, the entire program must be explored,
which is only feasible if the generated program contains a manageable number
of branches. For more complex programs, symbolic execution suffers from the
problem of path explosion [7]. It is, therefore, more helpful in finding data-
obliviousness violations than in proving their absence.

3.5 Result Analysis and Option Triage

Our pipeline allows to discover the root cause of data-obliviousness violations
on the source code as well as compiler optimization level. Root cause analysis
on the source code level is supported by data-obliviousness-checking tools [36,
61]. We provide an automated approach to detect which compiler optimization
leads to the data-obliviousness violation. We first find the optimization level
at which a binary is no longer data-oblivious or becomes data-oblivious. Then,
we remove and add subsets of the optimization flags until the binary becomes
data-oblivious again. We perform a search over the optimization flags, finding
a minimal data-oblivious configuration. We evaluate this approach on the code
samples in Section 5.1 with the gcc compiler. With gcc we only observe examples
where code is transformed to constant time code in our building block tests. This
is unanimously the case due to the -fipa-pure-const optimization. This opti-
mization eliminates constants and allows artificial non-constant-time constructs
to be optimized away. For clang we implemented a similar approach, here we
do not observe a single flag that causes switches in constant time behavior. We
tested up to a combination of 3 flags, but optimization pass ordering and the
presence of multiple interdepent flags make exhaustie testing infeasible.

4 Implementation

In this section, we discuss the implementation details of DOCC that we use
for our evaluation (Section 5.1 and Section 5.2). For our proof-of-concept im-
plementation, we use 7 different compilers and 4 different checkers for data-
obliviousness. Note that the implementation can be arbitrarily extended to use
different compilers or checkers.

Compilers. We currently support GCC (gcc), Clang (clang), Intel C++
compiler (icc), AMD Optimizing C/C++ Compiler (aocc), Tiny C Compiler
(tcc), CompCert C Compiler (compcert), and Zig (zigcc). This set of compil-
ers includes the most commonly used openly accessible compilers. We support
various optimization levels, including -O1, -O2, -O3, -Ofast, and -Os, to capture
a range of compiler optimizations, along with the -Obranchless option for the
CompCert compiler, which aims to minimize branching.

Checkers. We currently support Dudect, DATA, Ctgrind, and Pitch-
fork. ThePitchfork checker was chosen over the similarBinsec/Rel checker,



10 Gerlach et al.

as it supports 64-bit binaries. As described in Section 2.2, these methods can be
categorized into heuristic tests (Dudect), dynamic taint tracking (Ctgrind),
address-tracing (DATA), and symbolic execution (Pitchfork).

To further reduce execution time, DOCC parallelizes tests whenever possible.
All tests, except heuristic ones that may lose precision under system load, can
run in parallel up to the number of available cores and memory.

5 Evaluation

In the following, we evalaute DOCC across a wide range of constant-time building
blocks and cryptographic libraries. The normalized results of each tests are shown
in Figure 2, more detailled results are provided as part of our artifact.

5.1 Building-block Analysis

In this section, we apply DOCC to 9 common building blocks for data-oblivious
code. We also test the non-constant time instruction rewriting pass and the de-
branching rewriting pass on these building blocks as stated in Section 3.1 Our
study identifies 312 of 2525 test cases across 14 of 24 tested code snippets as
non-data-oblivious. We test DOCC on building blocks suggested in the litera-
ture for writing data-oblivious code [66, 28, 5]. We provide the details about the
tested building blocks in Appendix B. In Appendix A, we test the Constant
Time Toolkit (CTTK) [50] library containing primitives for data-oblivious pro-
gramming. Our analysis reveals that code appearing data-oblivious at the source
level can be compiled into non-data-oblivious machine code and vice versa.

Takeaway Compiler options, e.g., optimizations, influence the data-
obliviousness properties of the resulting binaries in arbitrary ways.

33% of the samples produce a non-data-oblivious binary from ostensibly
data-oblivious C code. In contrast, 56% of the samples that are not data-
oblivious on the source level result in a data-oblivious binary. The CTTK library
remained data-oblivious independent of compilation options, showing that it is
possible to create robust and portable data-oblivious code.

Testing small snippets helps evaluate the effectiveness and precision of vari-
ous data-obliviousness-checking methods. However, each method can yield false
results for different reasons. Simple heuristics may produce false positives due
to measurement noise, misinterpreting errors as secret-dependent differences.

More sophisticated methods, such as taint analysis and symbolic execution,
may also be overly sensitive, misclassifying branches that are never taken—like
assertions—as leakage. For instance, in testing the CTTK library, a branch that
skips non-secret whitespace was incorrectly flagged as a violation. To address
these issues, we propose binary rewriting, as discussed in Section 3.1.

Takeaway Checkers disagree on data-obliviousness violations, but an ensem-
ble of checkers can detect data-obliviousness violations reliably.



Do Compilers Break Constant-time Guarantees? 11

5.2 Cryptographic Library Analysis

This section analyzes cryptographic libraries as real-world case studies. We ana-
lyze implementations from the NIST lightweight cryptography competition,and
5 popular cryptographic libraries (OpenSSL, wolfSSL, Mbed TLS, BearSSL, and
libsodium). Due to scalability issues these tests are all performed without the
rewrtiting step.

NIST Lightweight Cryptography Finalists We test all 10 NIST lightweight
cryptography finalists implementing authenticated encryption with associated
data (AEAD). These algorithms should work on devices with little computa-
tional power while still providing sufficient security properties. We test multiple
implementations per candidate, leading to 28 tested code snippets. Only one
finalist variant is free of data-obliviousness violations.

Test Setup. We test the 10 finalist submissions, including the optimized
implementation, using all compilers and checkers described in Section 4. Each
submission is tested for both encryption and decryption routines.

Results. In 11 of the 28 tested implementations, data-obliviousness depends
on the compiler or compiler option. We find that 16 schemes are implemented in
a non-data-oblivious way independent of the compiler. For example, the romolus
and photon-beetle reference implementations use lookup tables, always resulting
in non-data-oblivious binaries. Lastly, ascon is the only finalist that is data-
oblivious across all compilers and compiler options (excluding a false positive
with the zig compiler).

Common Cryptograpic Libraries We evaluate DOCC on 5 commonly used
cryptographic libraries: OpenSSL (3.1.1), wolfSSL (5.6.3-stable), Mbed TLS
(v3.4.1), BearSSL (v0.6) and libsodium (1.0.19-stable). While previous work
already focussed on manual and automatic testing of these libraries [61, 53], we
focus on the compilation process and options. As our results show, for OpenSSL,
the presence of optimization may cause the resulting library to violate data-
obliviousness after compilation.

Tested Functions. We evaluate the AES Aria, and Camellia block ciphers,
the ChaCha20 stream cipher and its AEAD counterpart Poly1305. We also test
utility functions like base64 encoding. These functions are valid attack targets
for cache and timing attacks, making their data-oblivious implementation cru-
cial [69, 6].

Results. Across all libraries, Aria and Camellia use lookup tables, which
intrinsically makes these ciphers violate data-obliviousness guarantees. We as-
sume the reason for this is the limited use of those ciphers and their lower perfor-
mance compared to AES when implemented without lookup tables. All analyzed
cryptographic libraries provide a data-oblivious version of AES. However, the
compilation flag no-asm of the OpenSSL library induces non-data-oblivious be-
havior in the compiled code. This behavior is only documented in the changelog
of version 3.0.2. Our analysis on GitHub shows that multiple projects, includ-
ing widespread ones such as nginx and the Monero GUI, use this flag. While



12 Gerlach et al.

OpenSSL acknowledges our finding, they are not considering a change, as they
consider this the responsibility of the project using OpenSSL.

ChaCha20 is data-oblivious across all tested libraries. Its design avoids lookup
tables and secret-dependent control flow. Likewise, Poly1305, is data-oblivious
in all libraries. DOCC verifies the data-obliviousness of ChaCha20 and Poly1305
in 4 of the 5 libraries, others timed out before verification.

The SHA hashing algorithm is either implemented in a data-oblivious way or
leads to timeouts during the analysis. Manual inspection of the tests shows that
the code is data-oblivious, as SHA does not require branches or lookup tables.

Base64 encoding is implemented data-oblivious independent of the used com-
piler optimizations for the tested utility functions. However, similar to Sec-
tion 5.1, we encounter false positives with Ctgrind and Pitchfork. They also
stem from branches never taken on well-formed data and can be easily removed
by debranching via binary rewriting.

op
en
ss
l

w
ol
fs
sl

ct
tk

lig
ht
w
ei
gh
t

sn
ip
pe
t

m
be
dt
ls

be
ar
ss
l

lib
so
di
um

0

0.2

0.4

0.6

0.8

1

P
ro

p
o
rt
io
n

crash timeout violation ct

Fig. 2: Normalized data-obliviousness results for the accumulate function in all
tested libraries. DOCC finds violations in all tested libraries.

Takeaway Not all cryptographic primitives, even in the most-common cryp-
tographic libraries, are data-oblivious, and libraries may fall back to unsafe
implementations silently.

6 Evaluation Outcome

In the following we evaluate the efficacy and performance of DOCC across all
tests from Section 5.

Efficacy. We illustrate the efficacy of DOCC in Figure 3a. Our pipeline can
capture data-obliviousness violations in each stage, with the dynamic methods
in Stage 2 being the most effective. Additionally, we observe that the third stage
(symbolic execution) still discovers new data-obliviousness violations.

Figure 3b shows the number of violations observed for each compiler and
optimization level. The significantly fewer violations in compcert and zig are
due to the fewer code snippets they could compile. Overall, the relationship
between optimization options and the number of violations varies by compiler.



Do Compilers Break Constant-time Guarantees? 13

Dudect DATA Ctgrind Pitchfork
0

500

1,000
5

75

664

82

116
770

78

991

231 47

Violation Timeout Crash

Stage 1 Stage 2 Stage 3

(a) Snippets grouped by result and
pipeline stage. If a violation is detected,
later pipeline stages are excluded.

gcc clan
g icx aocc zigc

c
com

pcer
t

100

200

300
46 44 46 44

25

25

45 44 44 43

25

25

44 45 50 45

27
42 43 45 44

2545 43 46 46
25 2552 43 45 46 38 27

O0 O1 O2 O3 Ofast/Obrl Os

(b) Violations for each compiler and op-
timization level.

Fig. 3: Comparison of pipeline stages and compiler optimizations.

While gcc shows slightly more violations at lower optimization levels, LLVM-
based compilers like clang, icx, and aocc exhibit slightly more violations at
higher optimization levels.

Takeaway Pipelined checks of increasing complexity efficiently and reliably
dectect data-obliviousness violations.

Performance. While high accuracy is desirable, it must be achievable within
a practical timeframe for DOCC to be usable. We use an Intel Xeon Gold 6346
machine with 32 cores and 128GB of memory running Ubuntu 22.04, with a
test timeout of 2min. In our tests, we find most violations within seconds, only
requiring longer on branchy code or code that enters Stage 3. In addition, we
parallelize testing, which scales with the number of cores on the test system.
Running all tests in this paper takes around 100 h on our test system. With
12 917 tests overall, this results in an average time of 27 s per test.

As shown in Figure 3a, most timeouts occur in either Stage 1 (heuristic
checks) or Stage 3 (symbolic execution). Still, Stage 1 is valuable to our pipeline,
as it can capture secret-dependent instruction runtime differences.

7 Discussion

Potential Improvements. Input generation is the limiting factor for dynamic
approaches. Fuzzing-based methods [25] with coverage-driven input generation
could enhance coverage more quickly. Since DOCC manages input generation
and provides coverage instrumentation, integrating this approach could improve
efficiency without additional checker modifications.

Supporting more architectures in DOCC presents another avenue for future
work. Different architectures come with unique instructions and optimizations,
meaning C code that compiles to a data-oblivious binary on one architecture
may not retain this property on another.

Related Work. Previous work manually analyzed the impact of compila-
tion on data-obliviousness. Kaufmann [30] found that a seemingly data-oblivious
implementation of curve25519 was vulnerable to a side-channel attack when com-
piled with the MSVC compiler. Additionally, Simon et al. [58] show that specific



14 Gerlach et al.

cryptographic code snippets are transformed to non data-oblivious ones by the
compiler and devise ways to prevent this transformation. Concurrent work [54]
analyzed the impact of compiler optimizations on data-obliviousness in crypto-
graphic libraries. However, our focus lies more on the choice of testing tool and
compiler, where they test more cryptographic libraries and architectures.

Jancar et al. [29] surveyed data-oblivious programming and automated test-
ing frameworks to check for data-obliviousness. They find that most developers
working on cryptographic implementations are unaware of such tools or do not
use them. Similarly, Geimer et al. [24] show that using a single checking tool
can lead to unreliable results. These results closely relate to our work, as we not
only provide more thorough checking of binaries but also unify multiple checking
frameworks such that a testing harness only has to be written once.

Much work has gone into automatically rewriting programs into their data-
oblivious counterparts [21, 22, 26, 31, 39–41, 52, 59]. FaCT [14] is a programming
language that guarantees that the resulting executable satisfies constant-time
properties. Similarly, Barthe et al. [9] propose a framework to compile code to
constant-time versions that are then proven correct using the Coq proof assistant.
In addition, Wu et al. [66] rewrite a program’s LLVM code to a data-oblivious
version. Program synthesis based approaches have been used to synthesize a
constant time instructions from a safe subset of instructions [18]. A similar ap-
proach is taken by Borrello et al. [11], where code is dynamically benchmarked
to ensure more precise rewriting. Additionally approaches that require a special
runtime to enable data-obliviousness have been proposed [37, 56]. However, this
approach trades provable data-obliviousness with performance and practicality.
All compiler-based approaches require a modified compiler toolchain.

Work on extending the processor ISA [68, 39] aims to fix the data-obliviousness
problem on the ISA level.

8 Conclusion

In this work, we proposed DOCC, an automated pipeline for checking data-
obliviousness under different compiler optimizations. DOCC efficiently detects
violations of data-obliviousness while at the same time being able to give strong
guarantees. In 3 case studies, we evaluated the capabilities of DOCC, revealing
data-obliviousness violations in 93 of the 127 tested algorithms and 1845 of the
12 917 test cases across cryptographic libraries and building blocks. We show
that the choice of compiler and optimizations heavily influences the final binary’s
properties, making rigorous testing necessary to guarantee data-oblivious code.

Acknowledgment

We thank our reviewers and our shepherd for their valuable feedback. We thank
Leon Trampert for fruitful discussions.



Do Compilers Break Constant-time Guarantees? 15

References

1. A. Abel, “Automatic generation of models of microarchitectures,” 2020.

2. O. Acıiçmez, J.-P. Seifert, and c. K. Koç, “Predicting secret keys via branch pre-
diction,” in CT-RSA, 2007.

3. M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and H. Shacham,
“On subnormal floating point and abnormal timing,” in S&P, 2015.

4. ARM, “mbed TLS,” 2020. [Online]. Available: https:///tls.mbed.org

5. J.-P. Aumasson, “Cryptocoding,” 2023. [Online]. Available: {https://github.com/
veorq/cryptocoding}

6. D. Bae, J. Hwang, and J. Ha, “Flush+ reload cache side-channel attack on block
cipher aria,” Journal of the Korea Institute of Information Security & Cryptology,
2020.

7. R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi, “A survey of
symbolic execution techniques,” CSUR, 2018.

8. G. Barthe, S. Cauligi, B. Grégoire, A. Koutsos, K. Liao, T. Oliveira, S. Priya,
T. Rezk, and P. Schwabe, “High-assurance cryptography in the spectre era,” in
S&P, 2021.

9. Barthe, Gilles and Grégoire, Benjamin and Laporte, Vincent, “Secure compilation
of side-channel countermeasures: the case of cryptographic “constant-time”,” in
CSF, 2018.

10. M. A. Ben Khadra, D. Stoffel, and W. Kunz, “Efficient binary-level coverage anal-
ysis,” in FSE, 2020.

11. P. Borrello, D. C. D’Elia, L. Querzoni, and C. Giuffrida, “Constantine: Auto-
matic side-channel resistance using efficient control and data flow linearization,”
in SIGSAC, 2021.

12. B. B. Brumley and N. Tuveri, “Remote timing attacks are still practical,” in ES-
ORICS, 2011.

13. C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner, F. Piessens,
D. Evtyushkin, and D. Gruss, “A Systematic Evaluation of Transient Execution
Attacks and Defenses,” in USENIX Security, 2019, extended classification tree and
PoCs at https://transient.fail/.

14. S. Cauligi, G. Soeller, F. Brown, B. Johannesmeyer, Y. Huang, R. Jhala, and
D. Stefan, “FaCT: A flexible, constant-time programming language,” in 2017 IEEE
Cybersecurity Development (SecDev). IEEE, 2017, pp. 69–76.

15. Cauligi, Sunjay and Disselkoen, Craig and Gleissenthall, Klaus v and Tullsen,
Dean and Stefan, Deian and Rezk, Tamara and Barthe, Gilles, “Constant-time
foundations for the new spectre era,” in SIGPLAN, 2020.

16. L.-A. Daniel, S. Bardin, and T. Rezk, “Binsec/rel: Efficient relational symbolic
execution for constant-time at binary-level,” in S&P, 2020.

17. D. E. Denning, “A lattice model of secure information flow,” Commun. ACM, 1976.

18. S. Dinesh, G. Garrett-Grossman, and C. W. Fletcher, “Synthct: Towards portable
constant-time code,” in NDSS, 2022.

19. G. Dos Reis, B. Stroustrup, and A. Merideth, “Axioms: Semantics aspects of c++
concepts,” ISO/IEC JTC1/WG21 doc, 2009.

20. G. J. Duck, X. Gao, and A. Roychoudhury, “Binary rewriting without control flow
recovery,” in ACM SIGPLAN, 2020.

21. C. W. Fletcher, M. v. Dijk, and S. Devadas, “A secure processor architecture for
encrypted computation on untrusted programs,” in STC, 2012.



16 Gerlach et al.

22. C. W. Fletchery, L. Ren, X. Yu, M. Van Dijk, O. Khan, and S. Devadas, “Sup-
pressing the oblivious ram timing channel while making information leakage and
program efficiency trade-offs,” in HPCA, 2014.

23. Q. Framework, “quiling: A True Instrumentable Binary Emulation Framework ,”
2024. [Online]. Available: https://github.com/qilingframework/qiling

24. A. Geimer, M. Vergnolle, F. Recoules, L.-A. Daniel, S. Bardin, and C. Maurice, “A
systematic evaluation of automated tools for side-channel vulnerabilities detection
in cryptographic libraries,” in SIGSAC, 2023.

25. S. He, M. Emmi, and G. Ciocarlie, “ct-fuzz: Fuzzing for timing leaks,” in ICST,
2020.

26. C. Hunger, M. Kazdagli, A. Rawat, A. Dimakis, S. Vishwanath, and M. Tiwari,
“Understanding contention-based channels and using them for defense,” in HPCA,
2015.

27. Intel Corporation, “Pin - A Dynamic Binary Instrumentation Tool,” 2012. [On-
line]. Available: https://software.intel.com/en-us/articles/pin-a-dynamic-binary-
instrumentation-tool

28. ——, “Guidelines for Mitigating Timing Side Channels Against Cryptographic
Implementations,” 2020. [Online]. Available: https://www.intel.com/content/
www/us/en/developer/articles/technical/software-security-guidance/secure-
coding/mitigate-timing-side-channel-crypto-implementation.html

29. J. Jancar, M. Fourné, D. D. A. Braga, M. Sabt, P. Schwabe, G. Barthe, P.-A.
Fouque, and Y. Acar, ““they’re not that hard to mitigate”: What cryptographic
library developers think about timing attacks,” in SP, 2022.

30. T. Kaufmann, H. Pelletier, S. Vaudenay, and K. Villegas, “When constant-time
source yields variable-time binary: Exploiting curve25519-donna built with MSVC
,” in CANS, 2016.

31. T. Kim, M. Peinado, and G. Mainar-Ruiz, “{STEALTHMEM}:{System-Level}
protection against {Cache-Based} side channel attacks in the cloud,” in USENIX,
2012.

32. J. C. King, “Symbolic execution and program testing,” Commun. ACM, 1976.
33. P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,

S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre Attacks: Exploiting
Speculative Execution,” in S&P, 2019.

34. P. C. Kocher, “Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS,
and Other Systems,” in CRYPTO, 1996.

35. A. Kogler, J. Juffinger, L. Giner, L. Gerlach, M. Schwarzl, M. Schwarz, D. Gruss,
and S. Mangard, “Collide+Power: Leaking Inaccessible Data with Software-based
Power Side Channels,” in USENIX Security, 2023.

36. A. Langley, “Checking that functions are constant time with Valgrind,” 2023.
[Online]. Available: {https://github.com/agl/ctgrind}

37. H. B. Lee, T. M. Jois, C. W. Fletcher, and C. A. Gunter, “Dove: A data-oblivious
virtual environment,” arXiv preprint arXiv:2102.05195, 2021.

38. libsodium, “libsodium,” 2023. [Online]. Available: https://libsodium.org
39. C. Liu, A. Harris, M. Maas, M. Hicks, M. Tiwari, and E. Shi, “Ghostrider: A

hardware-software system for memory trace oblivious computation,” SIGPLAN,
2015.

40. C. Liu, M. Hicks, and E. Shi, “Memory trace oblivious program execution,” in
CSF, 2013.

41. M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic, J. Kubiatowicz,
and D. Song, “Phantom: Practical oblivious computation in a secure processor,”
in SIGSAC, 2013.



Do Compilers Break Constant-time Guarantees? 17

42. S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Revealing the Se-
crets of Smart Cards. Springer Science & Business Media, 2008.

43. N. I. of Standards and Technology, “Lightweight cryptography,” 2023. [Online].
Available: https://csrc.nist.gov/projects/lightweight-cryptography

44. O. Oleksenko, B. Trach, M. Silberstein, and C. Fetzer, “SpecFuzz: Bringing spectre-
type vulnerabilities to the surface,” in USENIX Security Symposium, 2020.

45. OpenSSL, “OpenSSL: The Open Source toolkit for SSL/TLS,” 2019. [Online].
Available: http://www.openssl.org

46. ——, “OpenSSL RC5 implementation,” 2024. [Online]. Available: https:
//github.com/openssl/openssl/tree/master/crypto/rc5

47. D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and Countermeasures:
the Case of AES,” in CT-RSA, 2006.

48. B. Pinkas and T. Reinman, “Oblivious ram revisited,” in CRYPTO, 2010.
49. T. Pornin, “BearSSL: A smaller SSL/TLS library,” 2022. [Online]. Available:

https://www.bearssl.org
50. ——, “Constant-time toolkit,” 2022. [Online]. Available: https://github.com/

pornin/CTTK
51. ——, “Why Constant-Time Crypto?” 2022. [Online]. Available: https://www.

bearssl.org/constanttime.html
52. A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital {Side-Channels}

through obfuscated execution,” in USENIX, 2015.
53. O. Reparaz, J. Balasch, and I. Verbauwhede, “Dude, is my code constant time?”

in DATE, 2017.
54. M. Schneider, D. Lain, I. Puddu, N. Dutly, and S. Capkun, “Breaking

bad: How compilers break constant-time˜ implementations,” arXiv preprint
arXiv:2410.13489, 2024.

55. T. Schneider and A. Moradi, “Leakage assessment methodology: A clear roadmap
for side-channel evaluations,” in CHES, 2015.

56. F. Shaon, M. Kantarcioglu, Z. Lin, and L. Khan, “Sgx-bigmatrix: A practical
encrypted data analytic framework with trusted processors,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, 2017.

57. E. Shi, T. H. H. Chan, E. Stefanov, and M. Li, “Oblivious ram with o ((log n) 3)
worst-case cost,” in ASIACRYPT, 2011.

58. L. Simon, D. Chisnall, and R. Anderson, “What you get is what you c: Controlling
side effects in mainstream c compilers,” in EuroS&P, 2018.

59. L. Soares and F. M. Q. Pereira, “Memory-safe elimination of side channels,” in
CGO, 2021.

60. D. X. Song, D. Wagner, and X. Tian, “Timing Analysis of Keystrokes and Timing
Attacks on SSH,” in USENIX Security Symposium, 2001.

61. S. Weiser, A. Zankl, R. Spreitzer, K. Miller, S. Mangard, and G. Sigl, “DATA
- Differential Address Trace Analysis: Finding Address-based Side-Channels in
Binaries,” in USENIX Security Symposium, 2018.

62. M. Wenzl, G. Merzdovnik, J. Ullrich, and E. Weippl, “From hack to elaborate
technique—a survey on binary rewriting,” CSUR, 2019.

63. J. Wichelmann, A. Moghimi, T. Eisenbarth, and B. Sunar, “MicroWalk: A Frame-
work for Finding Side Channels in Binaries,” in ACSAC, 2018.

64. J. Wichelmann, F. Sieck, A. Pätschke, and T. Eisenbarth, “Microwalk-ci: practical
side-channel analysis for javascript applications,” in SIGSAC, 2022.

65. wolfSSL, “wolfSSL: Embedded TLS Library,” 2023. [Online]. Available:
https://www.wolfssl.com/



18 Gerlach et al.

66. M. Wu, S. Guo, P. Schaumont, and C. Wang, “Eliminating timing side-channel
leaks using program repair,” in ISSTA, 2018.

67. Y. Yarom and K. Falkner, “Flush+Reload: a High Resolution, Low Noise, L3 Cache
Side-Channel Attack,” in USENIX Security Symposium, 2014.

68. J. Yu, L. Hsiung, M. El Hajj, and C. W. Fletcher, “Data oblivious isa extensions
for side channel-resistant and high performance computing,” Cryptology ePrint
Archive, 2018.

69. X.-j. Zhao, T. Wang, and Y. Zheng, “Cache Timing Attacks on Camellia Block
Cipher.” 2009.

A Tested CTTK Library Functions

In this section, we discuss the tested CTTK primitives, including the testing
results and challenges. CTTK is a small library that provides data-oblivious
primitives for cryptographic applications.

De- and Encoding Functions. We test 2 standard functions to encode
data, namely base64 and hex encoding.

Multiplication. Constant-time multiplication is necessary if the underlying
processor does not provide a constant-time multiplication in its instruction set.
Some hardware architectures [51] do not or only partially provide constant-time
multiplications, so these operations must be emulated by software.

Oblivious RAM (ORAM). ORAM [48, 57] provides a way to perform
memory accesses in a data-oblivious way. The implementation provided by CTTK
accesses each element in memory when performing a single memory access while
arithmetically masking the result.

B Tested Building Blocks

We discuss building blocks that stress compiler optimization and provide a
ground truth for DOCC. We provide a data-oblivious and non-data-oblivious
variant for each example. Previous work proposed simmilar examples [66].

Array Lookup. This building block performs a lookup into a uint32 t

array using an index value that is considered secret. The data-oblivious version
accesses every array cell and uses arithmetic to select a result. Array lookups
are a widely used primitive (e.g., in T-table AES implementations).

String Comparison. This building block compares two-byte strings and
returns whether they are equal. Again, string comparison is a widely used oper-
ation susceptible to timing attacks [53].

Conditional Select. This building block allows the selection of one of
the operands depending on a condition. Such an operation can be implemented
manually on systems where the cmov instruction or inline assembly is unavailable.
It is widely used in cryptographic programming to avoid branches.

Maximum of Integers. This building block computes the maximum of 2
numbers. Like a conditional select, computing the maximum of 2 numbers is a
common operation in cryptographic programming (e.g., inner.h in BearSSL).


