
Hidden in Plain Sight:
Scriptless Microarchitectural Attacks via

TrueType Font Hinting

Leon Trampert[0009−0001−6891−965X] and Michael Schwarz[0000−0001−6744−3410]

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{leon.trampert,michael.schwarz}@cispa.de

Abstract. Microarchitectural attacks threaten system security and pri-
vacy, especially if they can be mounted without native code execution.
Recent research has shown that such attacks are possible from within web
browsers via JavaScript and WebAssembly. Moreover, recent works have
demonstrated that “scriptless” attacks, using only CSS, can be leveraged
for side-channel attacks, including cache contention and user fingerprint-
ing.
In this paper, we introduce a new class of scriptless attacks that use the
hinting instructions embedded within TrueType font files. We show that
the hinting language is sufficiently robust to craft cache attacks, demon-
strating cache-contention attacks and precise L1 Prime+Probe attacks.
We demonstrate a website fingerprinting attack, as well as a method to
track which page of a PDF is currently displayed. Our results demon-
strate the practicality of font-based scriptless attacks in real-world sce-
narios. This emphasizes the need for future mitigations that go beyond
traditional scripting languages.

1 Introduction

Microarchitectural attacks present a significant threat to modern computing
systems, as they can compromise system security and privacy. They have been
shown to steal cryptographic keys [20], or spy on user behavior [22, 36]. Par-
ticularly concerning is that these attacks can be mounted without native code
execution, widening the range of adversaries and increasing their stealth.

Previous work has shown that such attacks are possible from within web
browsers via JavaScript [2,25,34,38] and WebAssembly [38]. This includes cache
attacks [34], interrupt-based attacks [19], Rowhammer exploits [13], and Spectre
attacks [2]. Consequently, substantial efforts have focused on developing mit-
igations and hardening strategies to mitigate the impact of these attacks on
web-based environments [31,32].

Recent research has pushed this concept further by exploring so-called “script-
less” attacks [33]–those mounted without the use of conventional scripting or
programming languages. For instance, recent works have highlighted how CSS
alone can be weaponized for side-channel attacks, including exploiting cache

2 Trampert et al.

contention [33] and enabling user fingerprinting [18, 39], thereby increasing the
attack surface. These works already suggest that existing assumptions about
what constitutes “code execution” may be too narrow.

In this paper, we introduce a new class of scriptless attacks by leveraging
the hinting code embedded within TrueType font files [3]. We exploit the fact
that custom fonts–common in websites, emails, and PDF documents–trigger
the execution of a complex hinting program on the victim system when text is
simply rendered. Unlike prior techniques [33, 34], this method does not depend
on JavaScript, WebAssembly, or even complex CSS, thus evading conventional
detection and prevention strategies. As a result, this mechanism allows attackers
to run attacker-provided code without relying on traditional scripting languages.

We demonstrate that the font hinting language provides sufficient capabilities
for microarchitectural attacks. In particular, we show cache-contention attacks
similar to those introduced by Shusterman et al. [33], and we further advance
this approach to achieve fine-grained Prime+Probe attacks across hyperthreads.

To show the practical impact, we present a website fingerprinting attack, as
well as a covert tracking method that allows an attacker to identify the current
page in a PDF. Our website fingerprinting has an accuracy of 71% to 81%, which
is on par with previous work on JavaScript-based website fingerprinting [34], and
outperforms scriptless CSS-based fingerprinting [33]. Our attacks emphasize the
severity and versatility of font-based scriptless attacks in real-world scenarios.

Our findings highlight that existing defenses must be reevaluated and broad-
ened. The traditional focus on script-based code execution, such as JavaScript
and WebAssembly, is no longer sufficient. Future mitigations must consider a
broader range of potential triggers and attack surfaces, including the execution
of hinting instructions embedded within fonts.
Contributions. We summarize our contributions as follows.
– We analyze the availability of TrueType hinting instructions in different en-

vironments, showing that they can be used for microarchitectural attacks.
– We demonstrate a website fingerprinting attack in the browser using font

hinting instructions, achieving an accuracy comparable with state-of-the-art
script-based attacks.

– We present a method for evicting chosen L1 cache sets, enabling a cross-
hyperthread covert channel in settings such as PDFs or emails.

Availability. Our artifact is available at https://github.com/cispa/fontention.

2 Background

In this section, we provide the background required for this paper. We briefly
introduce cache attacks, especially in the limited code execution setting, and
briefly introduce TrueType fonts.

2.1 Cache Attacks & Defenses

Microarchitectural side-channel attacks exploit variations in execution time and
resource contention at the level of CPU caches, branch predictors, and other

https://github.com/cispa/fontention

Hidden in Plain Sight 3

low-level hardware structures. Among these, cache attacks are especially well-
studied, with techniques such as Prime+Probe [26, 27] allowing an attacker to
measure the cache activity of specific cache sets in shared caches. By observing
subtle timing differences across repeated memory accesses, an attacker can infer
whether the victim accesses memory mapping to a monitored cache set. Depend-
ing on the victim, attackers can infer sensitive information, e.g., cryptographic
keys [26] or user behavior [34]. Variants of these attacks have been demonstrated
in environments ranging from native code execution [26,27] to more constrained
settings such as (sandboxed) JavaScript within web browsers [12,13,25,30].

For web browsers, a generic defense is the reduction of high-resolution timers [23]
and disabling methods for building timers [32], such as shared memory [15]. Con-
sequently, researchers have also explored alternative vectors, such as CSS-based
cache contention techniques [33]. These methods take advantage of the fact that
rendering engines must still process and layout style information, even when
JavaScript is unavailable. By embedding large memory-consuming CSS rules [33],
an attacker can measure cache contention, i.e., the overall activity in the cache.
Such methods circumvent mitigations that solely focus on JavaScript [31].

2.2 Font Terminology

Glyph. A “glyph” in typography refers to the specific shape or representation
of a character or symbol in a font [8]. It is essentially the visual manifestation
of a character. For example, in a particular font, the letter ‘A’ has a unique
appearance that is the glyph for the character ‘A’ in that font. For TrueType,
their representation is stored as vector graphics in the font file.
Rasterization & Hinting. Rasterization is the step that converts the vector
outline of a glyph into actual pixels (i.e., a bitmap). Here, hinting is the process
of optimizing the outlines so that they appear clear and legible on screens with
various resolutions and pixel densities [3,9]. It involves adjusting the outlines of
glyphs to align with the pixel grid of the screen. Note that hinting is optional,
and fonts can be rasterized without hinting, especially on high-resolution displays
where the effects of hinting are less noticeable [9]. Further, some systems employ
automatic hinting, ignoring the hinting instructions in the font file [40]. In the
following, we use the terms “rendering” and “rasterization” interchangeably, as
rendering a glyph involves rasterizing it.

2.3 TrueType

TrueType is an outline font standard initially developed by Apple in the late
1980s and later adopted by Microsoft, becoming widely used on both Macintosh
and Windows platforms [7]. It is universally supported across operating systems.
Hinting. TrueType employs a set of instructions and algorithms that work at
the glyph level, utilizing a custom instruction set to fine-tune how each glyph is
rendered on various screens and resolutions [3]. These instructions, often referred
to as “hints,” are embedded within the font file as bytecode per glyph and dictate

4 Trampert et al.

Table 1: Hinting support for selected applications on major operating systems.

Windows Linux macOS Android

Chromium ✓ ✓† ✓‡ ✓∗

Firefox ✓ ✗ ✗ ✗

Acrobat Reader ✓ N/A ✓ ✓

Thunderbird ✓ ✗ ✗ ✗

Outlook ✗ N/A ✓ ✗
† with zoom or when applying the CSS scale transformation ∗ on overscroll or

when applying the CSS font-stretch property ‡ with
-webkit-font-smoothing: none at font sizes less than 36px

how the outlines of glyphs should be adjusted to align with the pixel grid of the
display. The font rasterizer executes the bytecode with an interpreter.

3 Font Environments

In this section, we analyze the support of TrueType hinting instructions on dif-
ferent operating systems and applications. While the operating system typically
does font rendering, specific applications relying heavily on font rendering, such
as browsers or PDF viewers, can ship their own rendering engine. As an example,
the Adobe Acrobat Reader ships with its own rendering engine that supports
hinting [1]. Thus, we analyze both the operating system support and the support
in selected applications. Table 1 provides an overview of the results.

3.1 Native Applications

Many native applications rely on the operating system’s default text render-
ing engine. For instance, on Windows, the DirectWrite API typically processes
TrueType hints automatically [7]. Our tests on Windows 11 show that hinting is
generally active in third-party applications such as Chromium, Firefox, and Out-
look, but also in Microsoft applications such as Outlook or Office. On macOS,
the Core Text framework handles font rendering [7]. However, macOS ignores
hinting by default. Note that an application can still perform hinting explicitly.
On Linux, most applications rely on the FreeType2 library [7,16]. However, the
configuration of FreeType and related components depends on the distribution.
Our tests on Ubuntu 24.04 show that hinting is used conditionally, depending on,
e.g., font size, transformations, and zoom levels. For attacker-controlled content,
it is generally possible to force hinting.

3.2 Browser

The browser can leverage system fonts or Web fonts that are supplied via Cascad-
ing Style Sheets (CSS). Here, the @font-face directive allows supplying a font

Hidden in Plain Sight 5

that is loaded from a URL. Further, hinting can be controlled via CSS properties
explicitly using -webkit-font-smoothing, or implicitly using font-stretch.
Chromium and Firefox generally use the rasterizer provided by the operating
system [7]. On Windows, hinting is generally active in both Chromium and
Firefox. In the default configuration of Ubuntu 24.04 LTS, Chromium applies
font hinting if specific conditions are fulfilled or if the system configuration en-
forces it. We see font hinting in Chromium when using a transform:scale CSS
effect on the font to stretch it, as well as when setting the CSS zoom factor to
a value larger than ‘1’ and smaller or equal to ‘2’. According to our testing, the
Chromium browser performs hinting on macOS only when applying the CSS
property -webkit-font-smoothing: none at font sizes less than 36px. On An-
droid, Chrome also supports hinting, but it is only applied when overscrolling
text, i.e., when the user tries to scroll past the beginning or end of a page. How-
ever, we can also force this behavior by applying the font-stretch property in
CSS. When applying a stretching factor, the hinting is always applied.

3.3 PDF

PDF files can utilize either system fonts or embedded fonts. Embedding fonts
directly into the PDF ensures consistent presentation across all devices but in-
creases the file size. Some PDF viewers, such as Adobe Acrobat, ship custom
rendering engines that perform advanced font processing, including partial or
full TrueType hinting [1]. Our tests show that Adobe Acrobat Reader (Version
2024.005.20320 64-bit) uses font hinting on Windows 10 and macOS Sonoma
14.2.1, independent of the system settings. The reader ships with its own ren-
dering engine that supports hinting.

3.4 Email

HTML emails can use custom fonts by specifying them with CSS. However,
compatibility varies across email clients, with some clients (e.g., the Gmail web
client) not supporting custom fonts. Further, content from the Web, including
Web fonts, may not be loaded until explicitly allowed. Note that inline CSS with
inlined fonts does not require explicit permission in many cases. Prior research
has shown that about half of email clients support custom fonts [39].

4 Threat Model

We assume a victim who uses an attacker-provided font for rendering text. The
attacker can control the content of the font, including the hinting instructions.
Note that this font does not have to be installed by the victim. Many applica-
tions, such as browsers, mail clients, or PDF viewers, can use embedded fonts
without requiring explicit permission or user interaction. Thus, it is sufficient
that a victim visits a website, opens an email, or PDF provided by the attacker.
Further, we assume the hinting instructions are executed by a rendering engine,

6 Trampert et al.

either by the operating system or an application. As fonts do not provide direct
means to communicate, e.g., via network requests or shared memory, we also rely
on a colluding party that relays the results of the attack to the attacker. This
colluding party can, e.g., be a simultaneously-opened website. The text rendered
with the attacker-provided font can either be attacker-controlled or even secret
information that the attacker wants to extract, depending on the scenario.

5 TrueType Hinting for Cache Attacks

In this section, we present a novel approach to constructing cache attacks with
TrueType font hinting instructions. We provide an overview in Section 5.1 and
analyze the capabilities of TrueType hinting instructions in Section 5.2. In ad-
dition, we also investigate the practical limitations imposed by the TrueType
standard [3] and the open-source FreeType2 implementation [16]. Note that our
approach is not limited to FreeType2 and can be applied to other rasterizers. Ac-
cording to our analysis, FreeType2 is generally the most restrictive regarding the
number of memory accesses and executed instructions such that our findings also
directly translate to other rasterizers. We describe how to build a custom attack
font in Section 5.3 and detail our cache-attack implementation in Section 5.4.

5.1 Overview

TrueType hinting relies on a stack-based interpreter that processes a specialized
instruction set, allowing fine-grained control of glyph rendering [3]. Although the
primary purpose of this instruction set is to position font outlines with pixel-
level precision, its flexible memory model and control-flow capabilities enable
attackers to abuse fonts for microarchitectural attacks.

Our approach leverages the TrueType interpreter’s storage area and the abil-
ity to access it at arbitrary indices. By relying on the WS (write storage) and RS
(read storage) instructions, we can create chains of pointer-chasing sequences
stored as hinting instructions. By placing indices referencing subsequent stor-
age locations, the interpreter’s repeated access to these entries forms a dynamic
traversal through memory. At each step, one storage value determines the follow-
ing address, i.e., storage location, to read, effectively preventing CPU prefetchers
from predicting future accesses and interfering with the eviction [38].

More concretely, we begin by writing a series of indices into consecutive
storage slots. Each entry within the storage points to the next, creating a linked
sequence of memory references. For instance, one might choose a chain such as
64 → 128 → 192 → 256 → 64. By starting at storage[64] and repeatedly
using the RS (read storage) instruction, the interpreter follows the chain, as RS
pops the index to read from the stack and pushes the read value onto the stack.
Listing 2 in Appendix A shows the corresponding hinting code for this illustrative
example. In practice, this loop is much longer. Additionally, we rely on control-
flow instructions (conditional jumps and backward branches) to repeat the access
pattern multiple times, leading to reliable eviction.

Hidden in Plain Sight 7

While implementing cache attacks purely through stack operations is theo-
retically also possible, this is more cumbersome. The storage area already offers
a more direct means for crafting predictable memory access patterns.

5.2 Capability Analysis

In this section, we introduce the features of TrueType that enable cache at-
tacks and analyze the limitations imposed by the TrueType standard [3] and the
implementation in the FreeType2 library [16,41].
Storage Size. The most important factor is the available memory that an
attacker can use during hinting. We focus on the explicitly provided storage area
that is accessed via the RS (read storage) and WS (write storage) instructions.
Standard The interpreter provides two different types of memory: a stack, and
an indexed storage area. The storage area is implemented as a fixed-size array
as the maximum index is also announced in the maxp table of the font [3]. The
limit of both the maximum stack and storage area index are 216 − 1 [3]. Per
TrueType standard, each stack or storage cell must be capable of holding a 32-
bit value [3]. As such, the required maximum size of each the stack and storage
area, per standard, is thus about 262 kB (262 140B).
FreeType2 Implementation The FreeType2 library implements the storage area
as a long array, which increases its maximum size to about 524 kB (524 280B)
on 64-bit systems [41]. After parsing the next instruction from the instruction
stream, the interpreter calls the corresponding subroutine for the instruction.
As such, the overhead between TrueType instructions is just a small number
of lookups, function calls, and range checks. Generally, storage operations are
performed by first conducting a bounds check and afterward accessing the storage
area array at the corresponding index.
Instruction Limit. The number of instructions that can be executed per glyph
is limited. Some interpreters even enforce additional restrictions to detect endless
loops and misbehaving bytecode.
Standard The maximum length of the instruction stream for a glyph must be
announced in the maxp table of the font [3]. Here, the maximum value is 216 − 1
bytes [3]. Note that this limit is not the number of executed instructions but
the length of the bytecode, which can contain loops and subroutine calls. The
standard does not specify a maximum number of executed instructions.
FreeType2 Implementation The interpreter adheres to the standard and parses
the instruction stream until the value announced in the maxp table is reached.
During execution, the interpreter keeps track of a few values to detect infinite
loops in the bytecode of glyphs. This includes the number of executed instruc-
tions, as well as the number of jumps and subroutine calls. By default, the maxi-
mum number of executed instructions per glyph is 1 000 000 [41]. In addition, the
interpreter limits the number of subroutine calls to 16. Further, heuristics are
employed as an upper bound on the number of jump instructions with negative
values and the LOOPCALL instruction. The bounds are determined dynamically
by various factors, such as the number of points in the glyph.

8 Trampert et al.

5.3 Custom Font Creation

We choose to build an entirely custom TrueType font with integrated hinting
instructions to demonstrate our technique. Note that it is possible to take an
existing font and embed our hinting code into its source. Modifying an existing
font allows for a more stealthy attack, as the font is less likely to be detected as
malicious, by both the user and security software. Existing fonts can be modified
using tools such as, e.g., FontForge1 or fontTools [28].

Instead, we generate a font from scratch, including dummy glyphs and hint-
ing instructions, as this approach is more straightforward and flexible. For our
attack, the visual appearance of glyphs is irrelevant; only the hinting instruc-
tions matter. By building our own font, we ensure full control over the storage
and stack configuration required for our pointer-chasing implementation.

We rely on the fontTools library for Python [28] to define glyphs, font
metadata, and the hinting bytecode. After setting basic font parameters and
creating rudimentary glyph outlines, we insert the custom hinting instructions
as TrueType assembly instructions. This code sets up the storage indices, writes
the required pointers, and then triggers a looped sequence of reads, ensuring that
the interpreter continuously accesses memory. Finally, we assemble the entire
font and produce a fully functional and standard-compliant .ttf file that, when
rasterized with hinting enabled, executes the integrated pointer-chasing logic.

5.4 Cache Attack Implementation

With our custom font, we can implement eviction and, thus, eviction-based cache
attacks. Since different rendering contexts are isolated into different processes,
we cannot leverage shared memory. Consequently, we opt for cache contention
and Prime+Probe on the L1 data cache.
Cache Contention. We implement general cache contention using a pointer
chase over multiple glyphs. As the amount of memory per glyph is limited, we
generate a font where each glyph accesses a different part of the storage area
to work around the limitations imposed by FreeType2. This additionally cir-
cumvents the limitations of instructions per glyph and the heuristics to detect
endless loops. Our custom font contains 52 glyphs, which feature hinting instruc-
tions. They correspond to the ASCII letters from ‘A’ to ‘Z’ and from ‘a’ to ‘z’.
In total, the font features 8 distinct pointer-chasing sequences, each with 4000
indices. Each sequence is stored in a separate glyph, and the sequences are cho-
sen to access different parts of the storage area. This results in a total of 32 000
indices, which corresponds to 256 kB of memory on 64-bit systems.
L1 Prime+Probe. For L1 Prime+Probe, we construct an eviction set–essentially
a set of addresses that all map to the same cache set in the L1 cache. Because
many modern CPUs use a virtually indexed L1 cache, we only need to deter-
mine virtual addresses that map to the target cache set and do not require

1 https://fontforge.org/

https://fontforge.org/

Hidden in Plain Sight 9

knowledge of physical addresses. We accomplish this by carefully choosing off-
sets and strides so that all the resulting storage indices correspond to memory
locations that collide within a single set.

Our analysis shows that the storage area is page aligned, i.e., starts at a
virtual address that is a multiple of 4096. Moreover, as every storage area entry
has 64-bit, we can directly convert a page offset to a storage-area index by
dividing it by 8 [41]. As the L1 cache set is defined by bits 6 to 11 of the
virtual address, we choose the base index as 64

8 × set to ensure that it maps
to the set number set (given that L1 cache lines are typically 64 bytes). By
incrementing the base address in steps of 512 (= 4096

8), we create additional
indices to the storage area where the underlying address maps to the same
L1 cache set. For reliable eviction, we choose 64 addresses for the eviction set,
ensuring that there are definitely more addresses than cache ways. All calculated
indices are combined into the pointer-chase loop.

The hinting code uses a loop to repeat the pointer chase 500 times, ensuring
that the memory accesses consistently evict the target cache set. With each
iteration, the interpreter follows the same chain of 64 storage accesses, creating
a reliable eviction set for the L1 Prime+Probe attack. For this L1 Prime+Probe,
one glyph is sufficient for building an eviction set that evicts one cache set. Thus,
with a font containing 64 glyphs, we can have one glyph for every cache set.

6 Website Fingerprinting Attack in the Browser

In this section, we present a novel browser-based cache contention attack for
website fingerprinting [29, 34]. Website fingerprinting is a side-channel attack
that allows an attacker to infer the websites a user visits without directly ob-
serving the network traffic [29, 34]. The attack leverages unique patterns in the
timing, magnitude, and number of network requests, which are influenced by the
structure and content of the website. Prior work has established that website fin-
gerprinting can be performed by monitoring the cache activity of the system, as
the cache activity is influenced by the browser’s network requests [34].

Our attack implementation consists of two phases: a data collection phase
in the browser, and a classification phase that leverages ML-based techniques
to identify the visited website. Our data collection phase uses the custom font
introduced in Section 5.4 to induce cache contention on the victim’s system. The
cache contention is measured by timing the rendering of glyphs in the custom
font. The timing is influenced by the cache activity, which in turn is influenced
by the network requests made by the browser. The classification phase is imple-
mented in Python and uses a time series forest classifier [5, 35] to recover the
visited website from the collected data.

6.1 Data Collection

The data collection of our attack is implemented in a single HTML document.
A script acts as the colluding party that communicates the attack’s results to

10 Trampert et al.

1 for (let size of sizes) {
2 ctx.clearRect(0, 0, canvas.width, canvas.height);
3 ctx.font = ‘${size}px CustomFontFamily‘;
4 let start = performance.now();
5 ctx.fillText(string, 10, canvas.height / 2);
6 let diff = performance.now() - start;
7 measurements.push(diff);
8 }

Listing 1: The data collection phase of the Website Fingerprinting attack that
uses the custom font to induce cache contention. JavaScript is acting as the
colluding party for time measurements.

the attacker. We leverage the Canvas API and its 2D rendering context, which
allows measuring the time it takes to render a glyph synchronously. We first
load our custom font that contains the TrueType bytecode for our attack. We
prepare an HTML canvas element, which is manipulated during the following
phases. Finally, we wait 10 seconds to ensure our font is loaded before we start
the actual data collection.

In the following, we render a string consisting of 8 characters, each corre-
sponding to one of the 8 pointer-chasing sequences in our custom font, repeat-
edly. In each iteration, we clear the canvas element, set the font to our custom
font, and the font size to the current iteration number. This ensures that the
hinting instructions are executed again, as the rendering engine has to rasterize
the glyphs at a new size, preventing the renderer from using a cached version
of the glyph. We render the string on the canvas using the fillText method
and measure the time it takes to render it using performance.now(). The im-
plementation is shown in Listing 1. This is repeated for 120 iterations, so the
exploitation phase takes about 5 seconds.

In our setup, we trigger the opening of an additional tab in the browser using
window.open() in the sixth iteration. This tab contains the target website that
we want to fingerprint. It emulates a user visiting a website while the attack
runs in an attacker-controlled tab.

6.2 Classification

The data collected in the data collection phase is a time series of 59 measure-
ments. Each measurement corresponds to the time it took to render the string
of 8 characters, which are designed to induce cache contention. We use a time
series forest classifier to classify the visited websites based on the collected data.
The time series forest classifier is an adaptation of the random forest classifier
designed explicitly for time series data [5]. For this, we use the sktime library,
which provides an easy-to-use implementation [35].

Hidden in Plain Sight 11

6.3 Evaluation

We evaluate our attack on a system running Ubuntu 24.04 LTS with an Intel
Core i7-1260P CPU that is connected to a fast and reliable 1 GbE network.
As a dataset, we use the Alexa top 100 websites collected on Jan 31, 2022. We
opted for this dataset, as it has been used in prior work [42] and also does not
contain domains that do not host websites. We restrict ourselves to a closed-
world scenario, where the attacker knows the set of possible websites, as this
is a common assumption in website fingerprinting attacks [34], and our attack
merely serves as a proof-of-concept. We use the Google Chrome browser (Version
120) for our evaluation, as it is the most widely used browser [37]. For the data
collection, we instrument the browser in headful mode using the Playwright
library. The automated browser visits the attacker-controlled document, which
triggers the loading of a target website in a new tab. The target website is
chosen from the dataset. This is repeated for all websites in the dataset over
30 iterations. Ultimately, we collect 30 samples for 100 sites, resulting in 3000
samples in total.
Classification Results. The classifier is trained on 75% of the samples and
tested on the remaining 25%. We employ a hyperparameter search using a grid
search with 5-fold cross-validation that is repeated 5 times. This effectively re-
sults in 25 training and testing runs, each with a different split of the training
data, for the hyperparameter search. After training the classifier, we evaluate
the classification performance of the optimal classifier using the accuracy, macro-
averaged F1 score, and the top-5 accuracy. The top-5 accuracy is the percentage
of samples where the correct website is among the top-5 predictions of the clas-
sifier and was used in prior work [33]. The performance is evaluated on the
held-out test set of 25% of the samples.

This evaluation is performed for the top 100 and the top 15 websites in the
dataset. On the top 15 websites, the attack achieves an accuracy of approxi-
mately 81%, a macro-averaged F1 score of 81%, and a top-5 accuracy of 98%
(cf. Table 2). On the entire dataset, we find that our attack achieves an accuracy
of 71%, a macro-averaged F1 score of 69%, and a top-5 accuracy of 92% (cf.
Table 2). We compare our trained classifier to a dummy classifier that predicts
uniformly at random and thus presents a baseline for the classification perfor-
mance. Since the dataset is balanced, the dummy classifier achieves an accuracy
of about 5% and 1%, respectively. As our classifier significantly outperforms the
dummy classifier, our attack effectively classifies the visited websites.

For the top 15 websites, we also provide a confusion matrix in Figure 1.
The diagonal represents the correctly classified websites, while the off-diagonal
elements represent misclassifications. The classifier performs well for most sites,
with only a few misclassifications. Interestingly, the classifier struggles primarily
with websites for Asian countries, such as taobao.com and tmall.com. This is
likely due to our evaluation setup, which uses a system in Europe, and the data
collection time window, which is set to 5 seconds.

Figure 3 in the appendix shows the confusion matrix for the top 100 websites.
The observation regarding the misclassification of websites for Asian countries

12 Trampert et al.

Table 2: The classification results of the Website Fingerprinting attack on the
top 15 and top 100 websites of the Alexa dataset.

Accuracy macro-F1 Top-5 Acc. No. of sites

DummyClassifier 0.053 0.007 0.177
15

TimeSeriesForestClassifier 0.812 0.813 0.984

DummyClassifier 0.007 0.000 0.040
100

TimeSeriesForestClassifier 0.705 0.688 0.917

also holds for the top 100 websites. In addition, the figure shows that the classifier
occasionally struggles with differentiating between sites that offer regionalized
domains, such as google.com and google.fr. This is no surprise, as the content
and server infrastructure of these sites are the same, and the only difference is
the top-level domain. For example, google.fr still serves content in English
when accessed with a browser that sends an English language header.

7 Emitting Unique Signals

In this section, we show that our fonts can be useful as sending ends of a covert
channel in scenarios where no traditional code execution is possible. This includes
PDFs or emails. We combine two properties of hinting: our building blocks to
evict a specific cache set (Section 5.4) and that hinting code is only executed
when the text is rendered, i.e., visible. Consequently, we can create a specific
cache pattern as soon as a text is rendered. Finally, we discuss two use cases: a
PDF reading tracker and an email read notification.

7.1 Setup

The sending end of our covert channel is our custom-crafted font that targets
an attacker-chosen cache set. We ensure that text is rendered with this font,
triggering the eviction as soon as the text is displayed. As the receiving end of
our covert channel, we use a program that measures the activity in a target cache
set. This can be implemented in native code or as a website, e.g., in JavaScript.
The only requirement is that the sending and receiving end of the covert channel
run on the same physical CPU core, i.e., on hyperthreads.

We verify that our hinting code indeed evicts the targeted cache set by mea-
suring the activity of all 64 cache sets in the L1 cache when rasterized by the
FreeType2 library (Version 2.13.3) on a system running Ubuntu 24.04 LTS with
an Intel Core i7-1260P CPU. The receiver is implemented as a native program
that repeatedly accesses data in the L1 cache and measures the access times.
Figure 2 shows the activity of all 64 cache sets in the L1 cache while rendering
text that evicts cache set ‘21’ or cache set ‘50’. As can be seen in the figure, the

Hidden in Plain Sight 13

www.3
60

.cn

www.a
m

az
on

.co
m

www.b
ai
du

.co
m

www.fa
ce

bo
ok

.co
m

www.g
oo

gl
e.c

om

www.jd
.co

m

www.n
et

fli
x.

co
m

www.q
q.

co
m

www.so
hu

.co
m

www.ta
ob

ao
.co

m

www.tm
al
l.c

om

www.w
ik

ip
ed

ia
.o
rg

www.y
ah

oo
.co

m

www.y
ou

tu
be

.co
m

www.zo
om

.u
s

www.360.cn

www.amazon.com

www.baidu.com

www.facebook.com

www.google.com

www.jd.com

www.netflix.com

www.qq.com

www.sohu.com

www.taobao.com

www.tmall.com

www.wikipedia.org

www.yahoo.com

www.youtube.com

www.zoom.us

3 0 1 0 0 2 0 0 0 0 0 0 0 0 0

0 6 0 0 0 0 0 0 0 0 0 0 1 0 0

1 0 3 0 0 5 0 0 0 0 0 0 0 0 0

0 0 0 9 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 8 0 0 0 0 1 0 0 0 0 0

1 0 0 1 0 3 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 5 0 0 1 0 0 0 0 0

3 0 1 0 0 0 1 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 4 0 0 0 1 0 0

0 0 0 0 0 0 1 0 1 4 1 0 0 0 0

0 0 1 1 0 0 0 2 0 5 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 11 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 6 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 10 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

Fig. 1: Confusion matrix for the top 15 websites.

targeted cache set is the one with the highest activity. We measure the activ-
ity by averaging the average access time to 300 addresses falling into each set.
The higher the activity, the higher the probability that our accessed address was
already evicted, leading to a slow cache miss.

7.2 Use Case: PDF Reading Tracker

An interesting use case of this technique is embedding multiple versions of the
custom-crafted font–each targeting a distinct L1 cache set or cache-set combination–
across different pages of a PDF. When a user opens the PDF in a viewer that
supports font hinting, such as Adobe Acrobat Reader or Chrome, rendering the
text automatically triggers the eviction patterns. By assigning a unique cache
set (or combination thereof) to each page, we can observe spikes in the receiv-
ing end’s measurements that correspond exactly to the page a user is currently
viewing. As long as the attacker’s measuring code, which is implemented, e.g., in
a website that remains open in the background, is running on the same physical
CPU core, it can continuously probe cache sets to detect which page in the PDF
is currently displayed. This approach allows for real-time tracking of a user’s
reading progress. In practice, attackers could use this to stealthily monitor when

14 Trampert et al.

10 20 30 40 50 60
220
240
260
280
300
320

L1 cache set

E
vi

ct
io

n
ti

m
e

[c
yc

le
s]

Set 21 Set 50

Fig. 2: L1 cache-set activity while rendering a glyph containing an eviction set
for a specific cache set. The spike shows the targeted cache set.

sensitive sections of a PDF document are accessed, or the other way round,
important parts of the PDF are skipped.

7.3 Use Case: Email Read Notification

A related scenario can be constructed with HTML emails viewed in a mail client
supporting font hinting, such as Microsoft Outlook. Just as with PDF files,
a font that triggers evictions on a specific cache set can be embedded in the
email. This is possible via remote content but also directly via data URLs [39].
When the user opens the email, the hinting instructions activate and evict the
designated cache lines. Meanwhile, an attacker-controlled website running in the
browser (again on the same physical CPU core) can detect that eviction event.
While the website has no control over the core scheduling, it is possible to spawn
multiple workers until co-location is achieved [6]. This setup enables a stealthy
“read receipt” mechanism, notifying the attacker the moment the user views the
email. Additionally, this technique can also be used for benign use cases. For
instance, enterprise or security-focused organizations might embed such covert
signaling to confirm that a user indeed opened the message on the current device.
This technique demonstrates how font-based evictions function as a powerful
channel for relaying state changes or user actions, all without requiring explicit
code execution in traditional programming languages like JavaScript.

8 Mitigations

In this section, we discuss potential mitigations for our presented attack. We
discuss mitigations on the application and the system level.
Application Level. The most straightforward and most restrictive approach
to mitigating font-based cache attacks is to prevent the loading of custom fonts.
This is, for example, done by email clients such as the webmail interface of Google
Gmail. Especially in security-sensitive contexts, such as encrypted emails, this
may be a sensible approach. Another restrictive approach is to disable using the
bytecode interpreter for untrusted fonts, e.g., for fonts that are not system fonts.
This could either be implemented by the application calling the text rendering
library or in the text rendering library. Simply removing or reducing the storage

Hidden in Plain Sight 15

area is not sufficient. An attack can work around a reduced storage area by dis-
tributing the attack over multiple glyphs. If there is no storage area, an attacker
can still craft an attack via the code or the stack.
System Level. The most restrictive but also most effective mitigation is to
disable hinting at the system level. This is, e.g., already the case on macOS,
where hinting is not enabled by default for most applications. However, this
assumes that applications rely on the operating system for font rendering and
do not come with their rendering engine, as is, e.g., the case with Adobe Acrobat
Reader on macOS. A mitigation specific to cache attacks would be to randomize
the allocation of the memory used by the bytecode interpreter and ensure that
the memory is not contiguous. Disruptive memory accesses [10, 31] might also
be a simple but effective strategy to make attacks more difficult.

9 Discussion

In this section, we discuss the applicability of our attack to other font formats,
theoretical improvements in the data collection, and related work.

9.1 Other Font Formats

Hinting is not exclusive to TrueType fonts. In OpenType, hinting can be provided
via embedded TrueType bytecode (for OpenType fonts with a .ttf extension)
or through Compact Font Format (CFF) instructions (for OpenType fonts with
a .otf extension) [16, 21]. CFF hinting is more declarative and less procedural
than TrueType hinting, which makes it less suitable for our approach.

Other web-oriented formats, such as WOFF (Web Open Font Format) or
WOFF2, typically contain a TrueType or OpenType/CFF core. When decom-
pressed by the browser or a rendering engine, the same rasterization pipelines
(including TrueType or CFF hinting) can be applied [17].

9.2 Scriptless Data Collection

Similar to the technique described for the CSS-based cache-contention attack [33],
we could hypothetically remove the need for a timing solution in JavaScript by
leveraging the in-order rendering of HTML documents. Here, timing informa-
tion is collected by an attacker-controlled DNS server. The rendering time of the
HTML is calculated as the difference between the arrival times of DNS requests
at the DNS server. These DNS requests are induced by having one image tag
at the top and one image tag at the bottom of the document, which is rendered
top-down. The approach does, however, not work with hinting, as it is performed
asynchronously. The initial layout of the DOM simply uses the advance width
of each glyph, such that the bottom HTML element in the HTML document
is reached before hinting is completed. Note that this is not a limitation of the
technique itself but rather a limitation imposed by the current implementation
of the rendering pipeline.

16 Trampert et al.

9.3 Related Work

Website Fingerprinting. Prior work has achieved 70% to 90% accuracy in
classifying websites based on cache activity in a closed-world scenario of 100
sites [29, 34]. Notably, existing attacks have been trained on a greater number
of samples, which may lead to higher accuracy, and used JavaScript to induce
cache contention. Furthermore, our evaluation setup has not been optimized for
performance, and we have not conducted extensive hyperparameter tuning, as
our work is primarily a proof-of-concept.
Scriptless Cache Attacks. Shusterman et al. [33] presented a scriptless cache
contention attack that leverages CSS to induce cache contention (cf. Section 9.2).
While their attack does not require JavaScript, the primitive is limited to con-
tention and does not provide fine-grained control over cache patterns. Their
attack achieves an accuracy of 50% on the top 100 websites while the evaluation
uses a larger dataset and a more complex classifier.
Font-based Attacks. While font-based attacks are not a new concept, they
have primarily focused on exploiting vulnerabilities in font parsers or rasterizers.
For example, CVE-2011-3402 describes a vulnerability in the Windows TrueType
font parser that could be exploited to execute arbitrary code [4]. As a response,
font parsers have received increased scrutiny, with fuzzing tools being developed
to identify vulnerabilities [11, 14]. Further, unprotected web fonts have been
shown as a vector for misrepresenting a website’s content [24].

10 Conclusion

In conclusion, our work demonstrates that microarchitectural attacks can be
mounted through hinting instructions embedded in TrueType fonts that are ex-
ecuted during text rendering. We presented a novel cache contention attack that
leverages a custom font to induce cache contention for Website Fingerprinting in
the browser. Our attack achieves accuracies of 81% and 71% on the top 15 and
top 100 websites, respectively, demonstrating the feasibility of our approach. We
further showed that our fonts can be used to emit unique signals in scenarios
where traditional code execution is not possible, such as PDFs or emails, by
performing targeted L1 cache-set evictions. These signals can be used for track-
ing user behavior or as a read receipt mechanism. Our font-based cache attacks
bypass existing script-based defenses and highlight the need for further research
into scriptless attacks and corresponding mitigations.

Acknowledgment

We want to thank our anonymous reviewers for their comments and suggestions.
This work has been supported by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) - 491039149. We thank Ruiyi Zhang, Daniel We-
ber, and Lukas Gerlach for their valuable feedback and discussions on the experi-
ments. We further thank the Saarbrücken Graduate School of Computer Science
for their funding and support.

Hidden in Plain Sight 17

References

1. Adobe: Adobe PDF Library Overview (2004), https://web.archive.org/
web/20150923212758/http://www.datalogics.com/pdf/doc/Version6.1/
PDFLOverview.pdf

2. Agarwal, A., O’Connell, S., Kim, J., Yehezkel, S., Genkin, D., Ronen, E., Yarom,
Y.: Spook.js: Attacking chrome strict site isolation via speculative execution (2022)

3. Apple: TrueType Reference Manual (2024), https://developer.apple.com/fonts/
TrueType-Reference-Manual/, retrieved 2024-04-24

4. Bencsáth, B., Pék, G., Buttyán, L., Félegyházi, M.: Duqu: A stuxnet-like malware
found in the wild. CrySyS Lab Technical Report (2011)

5. Deng, H., Runger, G., Tuv, E., Vladimir, M.: A time series forest for classification
and feature extraction. Information Sciences 239 (2013)

6. Easdon, C., Schwarz, M., Schwarzl, M., Gruss, D.: Rapid Prototyping for Microar-
chitectural Attacks. In: USENIX Security (2022)

7. Esfahbod, B.: State of Text Rendering 2024 (2024), https://behdad.org/text2024/
8. Fonts, G.: Glossary - Glyph (2025), https://fonts.google.com/knowledge/glossary/

glyph
9. Fonts, G.: Glossary - Hinting (2025), https://fonts.google.com/knowledge/

glossary/hinting
10. Fuchs, A., Lee, R.B.: Disruptive Prefetching: Impact on Side-Channel Attacks and

Cache Designs. In: Proceedings of the 8th ACM International Systems and Storage
Conference (SYSTOR’15) (2015)

11. Google Project Zero: BrokenType (2025), https://github.com/googleprojectzero/
BrokenType

12. Gras, B., Razavi, K., Bosman, E., Bos, H., Giuffrida, C.: ASLR on the Line: Prac-
tical Cache Attacks on the MMU. In: NDSS (2017)

13. Gruss, D., Maurice, C., Mangard, S.: Rowhammer.js: A Remote Software-Induced
Fault Attack in JavaScript. In: DIMVA (2016)

14. (j00ru) Jurczyk, M.: Reverse engineering and exploit-
ing font rasterizers (2015), https://j00ru.vexillium.org/talks/
44con-reverse-engineering-and-exploiting-font-rasterizers/

15. van Kesteren, A.: Safely reviving shared memory (2020), https://hacks.mozilla.
org/2020/07/safely-reviving-shared-memory/

16. Lemberg, W.: The FreeType Auto-Hinter (2025), https://freetype.org/index.html
17. Levantovsky, V.: Woff file format 2.0 (2024), https://www.w3.org/TR/2024/

REC-WOFF2-20240808/
18. Lin, X., Araujo, F., Taylor, T., Jang, J., Polakis, J.: Fashion faux pas: Implicit

stylistic fingerprints for bypassing browsers’ anti-fingerprinting defenses. In: IEEE
S&P (2023)

19. Lipp, M., Gruss, D., Schwarz, M., Bidner, D., Maurice, C.m.t.n., Mangard, S.:
Practical Keystroke Timing Attacks in Sandboxed JavaScript. In: ESORICS (2017)

20. Lou, X., Zhang, T., Jiang, J., Zhang, Y.: A survey of microarchitectural side-
channel vulnerabilities, attacks, and defenses in cryptography. ACM CSUR (2021)

21. Microsoft: OpenType Font Specification (2024), https://learn.microsoft.com/
en-us/typography/opentype/spec/, retrieved 2024-04-24

22. Monaco, J.: SoK: Keylogging Side Channels. In: S&P (2018)
23. Mozilla: performance.now resolution (2019), https://developer.mozilla.org/en-US/

docs/Web/API/Performance/now

https://web.archive.org/web/20150923212758/http://www.datalogics.com/pdf/doc/Version6.1/PDFLOverview.pdf
https://web.archive.org/web/20150923212758/http://www.datalogics.com/pdf/doc/Version6.1/PDFLOverview.pdf
https://web.archive.org/web/20150923212758/http://www.datalogics.com/pdf/doc/Version6.1/PDFLOverview.pdf
https://developer.apple.com/fonts/TrueType-Reference-Manual/
https://developer.apple.com/fonts/TrueType-Reference-Manual/
https://behdad.org/text2024/
https://fonts.google.com/knowledge/glossary/glyph
https://fonts.google.com/knowledge/glossary/glyph
https://fonts.google.com/knowledge/glossary/hinting
https://fonts.google.com/knowledge/glossary/hinting
https://github.com/googleprojectzero/BrokenType
https://github.com/googleprojectzero/BrokenType
https://j00ru.vexillium.org/talks/44con-reverse-engineering-and-exploiting-font-rasterizers/
https://j00ru.vexillium.org/talks/44con-reverse-engineering-and-exploiting-font-rasterizers/
https://hacks.mozilla.org/2020/07/safely-reviving-shared-memory/
https://hacks.mozilla.org/2020/07/safely-reviving-shared-memory/
https://freetype.org/index.html
https://www.w3.org/TR/2024/REC-WOFF2-20240808/
https://www.w3.org/TR/2024/REC-WOFF2-20240808/
https://learn.microsoft.com/en-us/typography/opentype/spec/
https://learn.microsoft.com/en-us/typography/opentype/spec/
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now

18 Trampert et al.

24. Mueller, T., Klotzsche, D., Herrmann, D., Federrath, H.: Dangers and prevalence
of unprotected web fonts. In: International Conference on Software, Telecommuni-
cations and Computer Networks (SoftCOM) (2019)

25. Oren, Y., Kemerlis, V.P., Sethumadhavan, S., Keromytis, A.D.: The Spy in the
Sandbox: Practical Cache Attacks in JavaScript and their Implications. In: CCS
(2015)

26. Osvik, D.A., Shamir, A., Tromer, E.: Cache Attacks and Countermeasures: the
Case of AES. In: CT-RSA (2006)

27. Percival, C.: Cache Missing for Fun and Profit. In: BSDCan (2005)
28. Python Package Index (pypi): fonttools (2024), https://pypi.org/project/

fonttools/
29. Rimmer, V., Preuveneers, D., Juarez, M., Van Goethem, T., Joosen, W.: Auto-

mated Website Fingerprinting through Deep Learning. In: NDSS (2018)
30. Schwarz, M., Canella, C., Giner, L., Gruss, D.: Store-to-Leak Forwarding: Leaking

Data on Meltdown-resistant CPUs. arXiv:1905.05725 (2019)
31. Schwarz, M., Lipp, M., Gruss, D.: JavaScript Zero: Real JavaScript and Zero Side-

Channel Attacks. In: NDSS (2018)
32. Schwarz, M., Maurice, C., Gruss, D., Mangard, S.: Fantastic Timers and Where

to Find Them: High-Resolution Microarchitectural Attacks in JavaScript. In: FC
(2017)

33. Shusterman, A., Agarwal, A., O’Connell, S., Genkin, D., Oren, Y., Yarom, Y.:
Prime+Probe 1, JavaScript 0: Overcoming Browser-based Side-Channel Defenses.
In: USENIX Security Symposium (2021)

34. Shusterman, A., Kang, L., Haskal, Y., Meltser, Y., Mittal, P., Oren, Y., Yarom,
Y.: Robust Website Fingerprinting Through The Cache Occupancy Channel. In:
USENIX Security Symposium (2019)

35. sktime: Api reference - timeseriesforestclassifier (2025), https://www.sktime.net/
en/stable/api_reference/auto_generated/sktime.classification.interval_based.
TimeSeriesForestClassifier.html

36. Spreitzer, R., Moonsamy, V., Korak, T., Mangard, S.: Systematic classification
of side-channel attacks: a case study for mobile devices. IEEE Communications
Surveys & Tutorials 20(1), 465–488 (2017)

37. Stats, S.G.: Desktop Browser Market Share Worldwide (2023), https://gs.
statcounter.com/browser-market-share/desktop/worldwide

38. Trampert, L., Rossow, C., Schwarz, M.: Browser-based CPU Fingerprinting. In:
ESORICS (2022)

39. Trampert, L., Weber, D., Gerlach, L., Rossow, C., Schwarz, M.: Cascading Spy
Sheets: Exploiting the Complexity of Modern CSS for Email and Browser Finger-
printing. In: NDSS (2025)

40. Turner, D.: The FreeType Auto-Hinter (2025), https://freetype.org/autohinting/
hinter.html

41. Turner, D., Wilhelm, R., Lemberg, W.: Truetype bytecode interpreter -
version 2.13.3 (2025), https://gitlab.freedesktop.org/freetype/freetype/-/blob/
VER-2-13-3/src/truetype/ttinterp.c

42. Zhang, R., Kim, T., Weber, D., Schwarz, M.: (M)WAIT for It: Bridging the Gap
between Microarchitectural and Architectural Side Channels. In: USENIX Security
(2023)

https://pypi.org/project/fonttools/
https://pypi.org/project/fonttools/
https://www.sktime.net/en/stable/api_reference/auto_generated/sktime.classification.interval_based.TimeSeriesForestClassifier.html
https://www.sktime.net/en/stable/api_reference/auto_generated/sktime.classification.interval_based.TimeSeriesForestClassifier.html
https://www.sktime.net/en/stable/api_reference/auto_generated/sktime.classification.interval_based.TimeSeriesForestClassifier.html
https://gs.statcounter.com/browser-market-share/desktop/worldwide
https://gs.statcounter.com/browser-market-share/desktop/worldwide
https://freetype.org/autohinting/hinter.html
https://freetype.org/autohinting/hinter.html
https://gitlab.freedesktop.org/freetype/freetype/-/blob/VER-2-13-3/src/truetype/ttinterp.c
https://gitlab.freedesktop.org/freetype/freetype/-/blob/VER-2-13-3/src/truetype/ttinterp.c

Hidden in Plain Sight 19

1 PUSHW[] 128
2 PUSHW[] 64
3 WS[] ; storage[64] = 128
4 PUSHW[] 192
5 PUSHW[] 128
6 WS[] ; storage[128] = 192
7 PUSHW[] 256
8 PUSHW[] 192
9 WS[] ; storage[192] = 256

10 PUSHW[] 64
11 PUSHW[] 256
12 WS[] ; storage[256] = 64
13 PUSHW[] 64 ; Start at storage[64]
14 RS[] ; Reads storage[64] (which returns 128)
15 RS[] ; Reads storage[128] (which returns 192)
16 RS[] ; Reads storage[192] (which returns 256)
17 RS[] ; Reads storage[256] (which returns 64, forming a loop)

Listing 2: Hinting instructions for the pointer-chase example in Section 5.1.

1 timeseries_forest_params = {
2 "n_estimators": [50, 100, 150, 200],
3 "inner_series_length": [10, 25, 50, 100],
4 "min_interval": [2,3,4],
5 }

Listing 3: The hyperparameters used for the optimization of the classifier.

A Sample Pointer Chase with Hinting Instructions

Listing 2 shows a simple example of a pointer chase implemented in TrueType
hinting instructions. The first 12 lines set up the storage area, writing the values
128, 192, 256, and 64 to storage indices 64, 128, 192, and 256, respectively. Next,
the chase starts at storage index 64 and then performs four reads, following the
pointers. The last read returns to the starting point, forming a loop.

B Hyperparameters

Listing 3 shows the hyperparameters used for the optimization of the time series
forest classifier. They are used in a grid search to find the best combination for
the classifier. Listing 4 shows the best parameters found for the time series forest
classifier for the top 15 and top 100 websites as described in Section 6.

20 Trampert et al.

1 # best performing hyperparameters, top 15
2 {’inner_series_length’: 50, ’min_interval’: 3, ’n_estimators’: 100}
3 # best performing hyperparameters, top 100
4 {’inner_series_length’: 50, ’min_interval’: 3, ’n_estimators’: 200}

Listing 4: The best hyperparameters found for the time series forest classifier.

Fig. 3: The confusion matrix for the top 100 websites without labels.

C Confusion Matrix

Figure 1 shows the confusion matrix for the top 100 websites without labels.
The diagonal represents the correctly classified websites. Misclassifications corre-
spond to off-diagonal elements. A notable cluster of misclassifications can be ob-
served for regionalized domains by Google, such as google.com and google.fr.

	Hidden in Plain Sight:Scriptless Microarchitectural Attacks via TrueType Font Hinting

