
KASLR: Break It, Fix It, Repeat
Claudio Canella

Graz University of Technology
Michael Schwarz

Graz University of Technology
Martin Haubenwallner

Graz University of Technology

Martin Schwarzl
Graz University of Technology

Daniel Gruss
Graz University of Technology

ABSTRACT
In this paper, we analyze the hardware-based Meltdownmitigations
in recent Intel microarchitectures, revealing that illegally accessed
data is only zeroed out. Hence, while non-present loads stall the
CPU, illegal loads are still executed. We present EchoLoad, a novel
technique to distinguish load stalls from transiently executed loads.
EchoLoad allows detecting physically-backed addresses from un-
privileged applications, breaking KASLR in 40 µs on the newest
Meltdown- and MDS-resistant Cascade Lake microarchitecture. As
EchoLoad only relies on memory loads, it runs in highly-restricted
environments, e.g., SGX or JavaScript, making it the first JavaScript-
based KASLR break. Based on EchoLoad, we demonstrate the first
proof-of-concept Meltdown attack from JavaScript on systems that
are still broadly not patched against Meltdown, i.e., 32-bit x86 OSs.

We propose FLARE, a generic mitigation against known microar-
chitectural KASLR breaks with negligible overhead. By mapping
unused kernel addresses to a reserved page and mirroring neigh-
boring permission bits, we make used and unused kernel memory
indistinguishable, i.e., a uniform behavior across the entire kernel
address space, mitigating the root cause behind microarchitectural
KASLR breaks. With incomplete hardware mitigations, we propose
to deploy FLARE even on recent CPUs.

CCS CONCEPTS
• Security and privacy→ Operating systems security.

KEYWORDS
meltdown; side-channel attack; transient execution; kaslr; counter-
measure; reverse engineering
ACM Reference Format:
Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin Schwarzl,
and Daniel Gruss. 2020. KASLR: Break It, Fix It, Repeat. In Proceedings of
the 15th ACM Asia Conference on Computer and Communications Security
(ASIA CCS ’20), June 1–5, 2020, Taipei, Taiwan. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3320269.3384747

1 INTRODUCTION
CPUs are optimized for performance and efficiency. Some optimiza-
tions are exposed to the user via the instruction-set architecture

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS ’20, June 1–5, 2020, Taipei, Taiwan
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6750-9/20/06. . . $15.00
https://doi.org/10.1145/3320269.3384747

(ISA), the hardware-software interface, but most are transparent
to the developer. CPU vendors can implement any optimizations
while still adhering to the ISA, without taking security into account.

As a consequence, many attacks on the microarchitectural CPU
state have been published [25]. Most of these are side-channel at-
tacks, including attacks on cryptographic algorithms [4, 45, 46, 60,
69, 71, 96], on user interactions [34, 58, 78], but also covert data
transmission [60, 62, 94, 95]. Meltdown [59], Foreshadow [87, 93],
RIDL [89], ZombieLoad [79], and Fallout [9] are recent microarchi-
tectural attacks that go beyond side-channel attacks and directly
leak (arbitrary) data instead of metadata. These attacks, commonly
referred to as Meltdown-type transient-execution attacks [10], ex-
ploit the lazy fault handling property of some CPUs. With lazy fault
handling, the CPU continues using data in the out-of-order execu-
tion even if the loading of the data resulted in a fault, e.g., failed
the privilege-level check. While the data never becomes visible on
the architectural level, it is encoded in the microarchitectural state,
i.e., in the cache. From there, it is made visible on the architectural
level using microarchitectural side-channel attacks.

Meltdown-type transient-execution attacks [10] break the hard-
ware enforced-isolation between the trusted kernel and untrusted
user programs. These attacks, which are present in most Intel CPUs,
showed that it is not always possible to protect an application
against side-channel attacks. This is contrary to the belief that side-
channel attacks have to be prevented by the application itself [5, 46].

Deeply rooted in the CPU, either close to or in the critical path,
most transient-execution attacks cannot be fixed with microcode
updates. However, on recent CPUs, Intel introduced hardware mit-
igations for the first Meltdown-type attacks [17, 39, 40]. On the
latest microarchitecture (Cascade Lake), all known Meltdown-type
attacks are mitigated in hardware [41]. However, due to their sever-
ity and the ease of exploitation, operating systems (OSs) rolled
out software-based mitigations to prevent Meltdown [30]. These
software mitigations introduce a stricter separation of user and
kernel space [31, 32]. This stricter separation does not only prevent
Meltdown but also prevents other microarchitectural attacks on the
kernel [31], e.g., KASLR (kernel address space layout randomiza-
tion) breaks [32, 37, 49] which allow an attacker to de-randomize
the location of the kernel in the address space. As a drawback,
these software mitigations may introduce significant performance
overhead. This is especially true for workloads that need frequent
switching between user and kernel space [30]. Consequently, hard-
ware manufacturers solved the underlying root cause directly in
recent CPUs, making the software mitigations obsolete.

Even though new CPUs are not vulnerable anymore to the
original Meltdown attack, we show that they still show signs of
Meltdown-type effects. In this paper, we investigate CPUs that have
hardware-based Meltdown mitigations. We analyze these fixes and

https://doi.org/10.1145/3320269.3384747
https://doi.org/10.1145/3320269.3384747

develop the hypothesis that they only prevent the data from being
used in subsequent operations, not the actual load. We confirm this
hypothesis by showing that the fixes introduce new side effects,
namely that on illegal accesses to kernel addresses, the CPU zeroes
out the data but still performs the load. In contrast, loads from non-
present pages stall the CPU. We present a method based on Flush+
Reload [96] to distinguish the stalling behavior of loads. With this
method, we can exploit the side effects of the Meltdown mitigations
to break KASLR reliably. By probing the kernel space for load stalls,
we detect whether the probed virtual address is physically backed,
revealing the location of the kernel. We demonstrate that these
effects can also be exploited on older CPUs, which are affected by
Meltdown but protected by software mitigations.

Our KASLR break, EchoLoad, works on all major OSs (Linux,
Windows, macOS, and Android x86_64). We tested the KASLR break
on Intel microarchitectures from Arrandale (2010) to Cascade Lake
(2019) on Atom, Core, and Xeon CPUs. Even on Cascade Lake with
fixes for Meltdown and MDS [41], we de-randomize the kernel in
40 µs (F-score 1, n = 109). Hence, our KASLR break is the fastest
and most reliable one published. Moreover, EchoLoad is the only
KASLR break that only relies on memory loads and works on Intel
microarchitectures since at least 2010. EchoLoad even works on
KPTI, the Linux software mitigation for Meltdown.

As EchoLoad does not require anything but memory loads, it
works in restricted environments such as SGX and JavaScript. We
highlight that EchoLoad can aid kernel exploitation from within
SGX enclaves, facilitating SGX malware [81, 82]. In contrast to
previous ASLR breaks from JavaScript [7, 29, 76], we are the first
to demonstrate a microarchitectural KASLR break from JavaScript
on x86 OSs. We also show that on older unpatched x86 OSs, Melt-
down can even be exploited from JavaScript. This is particularly
dangerous for any Windows XP machines (1–3% of Desktop com-
puters [68]), for which no software patches are available, but which
are still running in official, commercial, industrial, or personal en-
vironments. Our attack will also soon be possible on unprotected
64-bit systems as WebAssembly plans to extend the size of linear
memory indices to 64 bit [91].We pinpoint the remaining challenges
for widely deployable JavaScript-based Meltdown exploits.

To mitigate all microarchitectural attacks on KASLR, including
EchoLoad, we present FLARE (Fake Load Address REsponse). The
basic idea is to back the entire kernel address space with physical
pages. FLARE prevents previous attacks [9, 32, 37, 49, 76] by hiding
the kernel within a virtual-address range appearing to be valid. Our
proof-of-concept implementation has a memory overhead of only
12 kB, and no measurable runtime overhead.

FLARE is compatible with KPTI on Meltdown-affected CPUs,
and forms a low-cost mitigation on CPUs with hardware fixes. We
evaluated our open-source proof-of-concept implementation of
FLARE1 for Linux for both cases. Our results show that FLARE
indeed prevents all known microarchitectural attacks on KASLR.

We conclude that while the hardware mitigation for Meltdown
fixes the problem of Meltdown-US [10], they introduce a new side
effect by merely zeroing out data that is illegally accessed, enabling
EchoLoad. Based on our analysis of the behavior of AMD and ARM
CPUs, we believe that the only complete solution for Meltdown is

1https://github.com/IAIK/FLARE

to treat inaccessible pages the same way as unmapped pages. Fur-
thermore, the software-based isolation of user and kernel space [31]
is not sufficient, and we thus suggest to deploy FLARE to prevent
microarchitectural attacks on the kernel.
Contributions. The contributions of this work are:
(1) We analyze Meltdown hardware fixes on Intel CPUs and dis-

cover a Meltdown-related effect on Meltdown-fixed Intel CPUs.
(2) We present KASLR and ASLR breaks, even from SGX and in-

cluding the first KASLR break from JavaScript.
(3) We show a JavaScript Meltdown attack on 32-bit x86.
(4) We propose FLARE, a mitigation preventing currently known

microarchitectural attacks on KASLR with negligible overhead.
Outline. Section 2 provides background on ASLR and attacks on
ASLR. We analyze Meltdown hardware fixes in Section 3. Section 4
presents our new mitigation for microarchitectural KASLR breaks.
Section 5 evaluates FLARE’s performance and efficacy against at-
tacks. Section 6 discusses related work. Section 7 concludes.
Responsible Disclosure. We responsibly disclosed our findings
to Intel on August 5, 2019, and Intel acknowledged them.

2 BACKGROUND
In this section, we provide the background on caches, transient
execution and transient-execution attacks, virtual memory, Intel
SGX, and address space layout randomization (ASLR).

2.1 Cache Attacks
Caches were designed to hide the latency of memory accesses, creat-
ing a timing side channel. Over the past two decades, many different
attack techniques have been proposed [5, 33, 54, 69, 96]. Two of
these attacks are Prime+Probe [69, 71] and Flush+Reload [96]. In a
Prime+Probe attack, an attacker constantly measures how long it
takes to fill a cache set with the same set of data. Whenever a victim
accesses a cache line mapping to the same cache set, the attacker
will measure a higher runtime for the filling. In a Flush+Reload
attack, an attacker constantly flushes a cache line and reloads the
data. By measuring how long the reload takes, the attacker can
infer whether a victim has accessed the data in the meantime. As
Flush+Reload exhibits low noise and has a fine granularity, it has
been used for attacks on user input [34, 58, 78], cryptographic
algorithms [4, 46, 96], and web server function calls [97].

Side channels can also be used to build covert channels. In a
covert channel, the attacker controls both the sender and receiver.
The goal is then to leak information from one security domain to
another, bypassing isolation on both the functional and system
level. Both Prime+Probe and Flush+Reload have been used in high-
performance covert channels [33, 60, 62].

2.2 Transient-execution Attacks
Another optimization is out-of-order execution, avoiding CPU stalls
when in-order instructions wait for operands. Instructions are
decoded into micro-operations (µOPs) [22] and placed in the Re-
Order Buffer (ROB), along with their operands. While waiting for
operands, µOPs whose operands are already available are scheduled
in the meantime. Results of the out-of-order executed instructions
are stored until they can be retired.

https://github.com/IAIK/FLARE

Modern software is rarely linear but contains branches. To avoid
pipeline stalls upon unresolved branch conditions, modern CPUs
implement speculative execution, predicting the most likely out-
come of the branch and starting execution along the predicted
path. The results are again placed in the ROB until retirement, i.e.,
the prediction has been verified. If the prediction was correct, a
significant speedup is achieved. Otherwise, the CPU has to revert
all results and needs to flush the pipeline and the ROB. Unfor-
tunately, microarchitectural state changes, such as loading data
into the cache or TLB, are not reverted. This allows an attacker to
use microarchitectural covert channels to exfiltrate the secret data.
Speculative or out-of-order executed instructions that were never
committed to the architectural state are also referred to as transient
instructions [10, 53, 59]. Spectre-type attacks exploit transient exe-
cution before a misprediction is discovered [10, 36, 51, 53, 55, 61].
Meltdown-type attacks exploit transient execution before a fault or
interrupt is handled [3, 9, 10, 39, 40, 51, 59, 79, 85, 87, 89, 93].
Meltdown. Meltdown exploited lazy exception handling in mod-
ern CPUs [59]. The attacker triggers a page fault but suppresses
it via fault handling, TSX transactions, or misspeculation. While
the CPU knows that the access is not allowed, the exception is
only raised at the retirement stage. Hence, dependent instructions
receive the data and can then, e.g., encode the value in the cache
which the attacker can leak using a technique like Flush+Reload.

2.3 Intel SGX
In recent years, software vendors discovered that specific security
properties, e.g., for DRM, in theory, are much easier to achieve
with trusted-execution mechanisms. Consequently, hardware ven-
dors reacted and developed different trusted-execution environ-
ments [1, 42, 50]. Intel developed an instruction-set extension called
Software Guard Extension (SGX) [42]. With SGX, an application is
split into a trusted and an untrusted part. To protect the former, it
is executed within a hardware-backed enclave. In the SGX threat
model, neither the OS nor any other application is trusted. There-
fore, the CPU guarantees that any memory belonging to the enclave
cannot be accessed by anyone else than the enclave. The SGX threat
model also allows the remaining hardware to be malicious or com-
promised. Consequently, the SGX memory is encrypted, protecting
it from being directly read from the DRAM module. Additional
threats like memory-safety violations [56], side channels [8, 82], or
race conditions [77, 92] are considered out of scope and remain an
enclave developer’s responsibility.

The SGX interface to let the untrusted part enter an enclave
conceptually resembles system calls. Once the trusted execution is
finished, the result of its computation as well as the control flow
is returned to the callee. However, SGX protection mechanisms
are one-sided: SGX allows data sharing between the trusted and
the untrusted part by giving enclaves full access to the entire host
application’s address space. Recently, it has been shown that this
asymmetric protection gives rise to enclave malware [81].

2.4 Address Translation
Modern OSs rely on memory isolation for security purposes. Hence,
CPUs support virtual memory for abstraction and memory iso-
lation. Processes work on virtual addresses and cannot architec-
turally interfere with each other as the virtual address spaces are
non-overlapping and overlapping areas are protected according to
the processes’ requirements. These virtual addresses have to be
translated to physical addresses using multi-level page tables. A
dedicated translation-table register indicates the location of the
first-level table, e.g., CR3 on Intel architectures. Upon a context
switch, the OS updates the translation-table register with the phys-
ical address of the first-level page table of the process scheduled
next. Page-table entries do not only provide translations but also
define properties of memory regions, e.g., executable or not.

2.5 Address Space Layout Randomization
Since the introduction of non-executable (NX) bits, memory cor-
ruption attacks have to rely on existing code in the victim pro-
cess instead of code injection [86]. Shacham et al. [83] generalized
the concept of code-reuse attacks, which is now widely known as
return-oriented programming (ROP). Subsequently, a variety of
code-reuse attack techniques have been described [6, 12, 13, 28, 75].

Code-reuse attacks require knowing addresses of specific code
snippets. Similarly, data-only attacks [11, 47] require knowledge
of addresses, e.g., of specific data structures. Over the years, many
different mitigation techniques have been developed [86], e.g., NX
stacks, stack canaries, and ASLR. The idea behind ASLR is to make
the addresses of code and data unknown to an attacker by ran-
domizing them. Typically, ASLR randomizes the base address of
the executable, stack, heap, and shared libraries. Hence, even if an
attacker hijacks the control flow, it is significantly harder to exploit
bugs in an application as the location of code snippets usable for
code-reuse attacks is unknown. By brute-forcing the location, the
chances are high that the process will crash, and any ongoing attack
is unsuccessful. Furthermore, an application is re-randomized on
every startup, reducing the chances of a successful attack.
General Idea of KASLR. While ASLR initially only protected
user-space applications, the kernel space was later on also pro-
tected by KASLR [20, 49], e.g., introduced in Windows in 2007 [49],
macOS in 2012 [2], and Linux in 2014 [20]. The kernel consists of
multiple segments that are individually mapped into the kernel
address space. These segments include the code (i.e., text segment),
drivers or modules, and data (e.g., stack, heap). The KASLR imple-
mentations of the three major OSs (Linux, Windows, macOS) only
use coarse-grained randomization, i.e., randomized base address.
Fine-grained KASLR implementations using code diversification
have been proposed [27, 72] but are not used in practice.

Another property of KASLR implementations is that the kernel
is mapped using either 4 kB or 2 MB pages. The mapping is 2 MB-
aligned [76], reducing the number of possible offsets. Moreover, the
order of the randomized segments is not changed, e.g., in Linux,
the text segment always has a lower address than the modules [57].
Consequently, KASLR provides a lower entropy than typical user-
space ASLR implementations [20]. However, if an exploit attempt
fails, it likely crashes the kernel. Hence, an attacker only has one

shot, and exploitation techniques relying on a large number of
retries cannot be used against the kernel if KASLR is active.
Linux. In Linux 5.x, most sections are independently randomized
at boot, including the direct-physical map, vmalloc and ioremap
space (vmalloc area), virtual-memory map (vmemmap), text seg-
ment, and modules [24]. The text segment is mapped between
0xffff ffff 8000 0000 and 0xffff ffff c000 0000 with a maxi-
mum size of 1 GB [76]. As the kernel has to be aligned to a 2 MB
boundary, the randomization has 9 bits of entropy. Therefore, the
kernel is placed at one of 512 possible offsets. Modules are mapped
using 4 kB pages in a 1 GB range following the text segment. Un-
mapped pages follow each module before a new module starts [49].

Start and end addresses for the direct-physical map, the vmal-
loc area, and the vmemmap are documented [57], but analyzing
the start addresses on repeated restarts shows that they are only
correct if KASLR is disabled. Therefore, we analyzed the KASLR
implementation of Linux kernel version 5.2.9. This analysis showed
that the possible start address is indeed 0xffff 8880 0000 0000 for
the direct-physical map. It is then placed at a random offset from
the start address, aligned to a 1 GB boundary. The vmalloc space is
placed at a random offset relative to the end of the direct-physical
map with at least 1 GB between them. The vmemmap area is then
randomized starting from the end of the vmalloc area, again with
at least 1 GB between them. The range of possible addresses is,
therefore, from 0xffff 8880 0000 0000 to 0xffff fdff ffff ffff,
always with a 1 GB alignment and the preserved order.
Windows. Windows randomizes almost everything except the
HAL heap once at boot [44]. Windows first introduced KASLR
with Vista [49] and improved it over time [32]. Windows 7 maps
the kernel, followed by the drivers in the same range with the
same randomization. The address range of the kernel and drivers
is 0xffff f800 0000 0000 to 0xffff f803 ffff ffff [49]. KASLR
on Windows 10 differs from Windows 7 as there is a separate area
for the kernel and drivers. The kernel is still mapped in the same
virtual address range, but drivers are now mapped in the range of
0xffff f800 0000 0000 to 0xffff f80f ffff ffff [23]. The kernel
is also 2 MB-aligned, resulting in 8192 possible offsets. Drivers are
mapped with 4 kB pages with a 16 kB alignment.
macOS. Starting with macOS 10.8 (Mountain Lion), the kernel,
kexts (kernel modules), and zones are randomized [70]. For in-
stance, the kernel is mapped in the range of 0xffff ff80 0000 0000
to 0xffff ff80 2000 0000 with a 2 MB alignment, resulting in 256
possible offsets. The offset at which the kernel is placed relative to
the start of the address range is called kslide. According to Chen
and He [14], kernel and kexts share the same kslide.

3 A NOVEL (K)ASLR BREAK
In this section, we first analyze the Meltdown hardware mitiga-
tion on new Intel CPUs. We then introduce EchoLoad, an attack
primitive that exploits incomplete Meltdown countermeasures to
break KASLR. We detail how we can use it to break KASLR from
an unprivileged user-space application, JavaScript, and SGX.

3.1 Analyzing the Meltdown Mitigation
The Meltdown vulnerability allowed unprivileged users to leak
kernel memory (cf. Section 2.2). The immediate workaround was

Vulnerable Mitigated Unaffected
0%

50%

100% 80 82 9080 82
100100 100 100

user
kernel

not present

Figure 1: Loads from non-present pages always stall, loads
to kernel addresses stall on unaffected AMD CPUs.

KAISER [31], a software-only solution to unmap the kernel when
running in user space. With the Whiskey Lake microarchitecture,
Intel fixed the vulnerability in hardware without providing further
details on how their fix works. CPUs with the hardware mitigation
indicate that they are not vulnerable by having the RDCL_NO bit set
in the IA32_ARCH_CAPABILITIES model-specific register [42].

Lipp et al. [59] argued that stalling the CPU until the permission
check is done might be too costly. We suspect that such a change
also requires redesigning a significant part of the CPU’s pipeline.
As the first CPUs with hardware mitigations already shipped ap-
proximately one and a half years after Meltdown was disclosed to
Intel, we expect only minor hardware changes as mitigation.
Hypothesis. We hypothesize that instead of stalling on an illegal
memory load, the CPU zeroes out the result. Hence, the CPU still
loads inaccessible memory locations, but instead of providing the
real value to dependent instructions, it always provides ‘0’.
Verification. We get the first indication that our hypothesis is
correct by simply mounting a Meltdown attack. When running
the Meltdown attack on a Xeon Silver 4208 CPU which has the
RDCL_NO bit set, we always get ‘0’s. To verify our hypothesis, we
further analyzed performance counters on three different systems: a
Meltdown-vulnerable Intel CPU (i7-8650U), an Intel CPU with hard-
ware mitigations (Xeon Silver 4208), and a non-affected AMD CPU
(Ryzen Threadripper 1920X). For all systems, we evaluate perfor-
mance counters when executing the following code 104 times: if (

transient_begin()) { *(volatile char*)0; oracle[*address]; }. The func-
tion transient_begin either starts a TSX transaction if available,
or sets up a signal handler for segmentation faults [59]. The null-
pointer access is required to always cause an exception.

The first performance counter of interest is the number of CPU
stalls when executing the above code. On Intel CPUs, we use
CYCLE_ACTIVITY.STALLS_MEM_ANY, and on AMD CPUs the “Dis-
patch Stalls” counter. We set address to a valid kernel address. As
baselines, we choose a mapped user address as well as a non-present
address for address. Figure 1 shows the results of the performance
counters for all 3 systems. For comparison, we normalized the
values such that the highest value on each system represents 100 %.

All CPUs stall when accessing a non-present virtual address. The
AMD CPU also stalls when accessing a kernel address. Both Intel
CPUs with and without mitigations show the same stall behavior.
Hence, even the Intel CPUs with Meltdown mitigations do not stall
when accessing a kernel address. This indicates that the memory
load for the kernel address is actually issued.

We substantiate this observation by analyzing another perfor-
mance counter.With the counters UOPS_DISPATCHED_PORT.PORT_2
and UOPS_DISPATCHED_PORT.PORT_3, we can track the number of
µOPs issued on the load ports. The sum of these two counters is
the number of all memory loads. Figure 2 shows the number of
memory loads when running the code mentioned above with a

without mitigations with mitigations
0
2
4
6
8

⋅104

60
,06

6

60
,04

2

60
,06

0

60
,03

790
,00

7

75
,02

0

user
kernel

not present

Figure 2: Issued load µOPs for user and kernel addresses (In-
tel). Only invalid loads fromnon-present pages are reissued.

without mitigations with mitigations
0

100
200

211

90

206

92
0 0

user
kernel

not present

Figure 3: Number of cycles L1D cache misses are pending.
User andkernel addresses reach thememoryhierarchy, non-
present pages do not.

0xffff ffff8 0000 000

stalls

kernel

0

0xffff ffff c000 0000

stalls

Figure 4: Reading addresses not physically backed stalls the
CPU, while kernel addresses return ‘0’ (or the actual data).

user-space, kernel-space, and non-present address both on an Intel
CPU with and without hardware mitigation. When trying to load
from a non-present page, the load faults and the load instruction is
re-issued [79]. The number of issued loads for kernel addresses is
the same as for user-space addresses on both CPUs. This indicates
that these loads succeed and do not have to be re-issued.

Finally, we show that the issued loads for kernel addresses indeed
load data from the memory hierarchy, and not, e.g., from an internal
buffer containing ‘0’. Thus, we monitor the number of cycles that L1
data-cachemisses are waiting to be retrieved. Figure 3 shows the val-
ues of the performance counter L1D_PEND_MISS.PENDING_CYCLES
for the previously shown code. While non-present pages do not
cause an L1 miss, both user-space and kernel addresses cause L1
misses. This is even the case for CPUs with hardware mitigations
against Meltdown, showing that loads to kernel addresses retrieve
the actual value, and only later on zero it out.

3.2 Breaking KASLR
EchoLoad is a new microarchitectural KASLR attack exploiting
Meltdown-related side effects. EchoLoad reliably breaks KASLR,
regardless of OS, software mitigations, and microcode updates.
EchoLoad works on all Intel CPUs since 2010, even if they are not
affected byMeltdown, e.g., CPUs with the RDCL_NO bit. In contrast
to the KASLR break by Schwarz et al. [76], EchoLoad also works on
the new Cascade Lake, which is not affected by Meltdown or MDS.
General Idea. The general idea is to distinguish whether accessing
a kernel address in the transient-execution domain leads to a stall.
We exploit the fact that instructions can only be executed out of
order if their data dependencies are fulfilled. Hence, we dereference
a user-space memory location where the address is computed based
on the value of the kernel address that is being tested.

Listing 1 shows this central part of EchoLoad. First, an attacker
induces transient execution by provoking a fault or a misspecu-
lation in Line 1. If the access to address in Line 2 stalls, the user

1 if (transient_begin()) {
2 *(volatile char*)(mem + *address);
3 }
4 if (flush_reload(mem)) return ADDRESS_MAPPED;
5 else return ADDRESS_NOT_MAPPED;

Listing 1: Themain part of EchoLoad. The address mem is only
cached if the access to address does not stall.

address cannot be computed before the transient execution aborts.
Otherwise, the user address is dereferenced and, thus, cached be-
fore the transient execution aborts. After the transient execution,
the attacker probes the user- address in Line 4, e.g., using Flush+
Reload. If the user address is cached, address is valid, i.e., physi-
cally backed. Otherwise, address is not valid, i.e., not physically
backed. Figure 4 illustrates the general idea of EchoLoad.
CPUs with Meltdown Fixes. To break KASLR on CPUs with
Meltdown fixes, we run EchoLoad on all 512 possible kernel offsets
(cf. Section 2.5). Onlywhere a physical page backs the tested address,
we read 0, on other addresses the CPU stalls.

As the CPU stalls on all reads from addresses that the kernel is
not mapped to, we observe no false positives. This makes EchoLoad
a very reliable attack that even works on Cascade Lake CPUs.
CPUs without Meltdown Fixes. On CPUs without Meltdown
fixes, we cannot rely on the CPU returning 0 for reads on kernel
pages. Instead, if KPTI is disabled, we read the actual content of
the page. As the content of the page is code, there are 256 possible
addresses which could be dereferenced.

As the 256 possible addresses are contiguous, and the cache line
size is typically 64 byte, they fall into one out of 4 possible cache
lines. Testing 4 adjacent cache lines with Flush+Reload triggers the
stride prefetcher [38] on Intel CPUs. Instead, we can exploit the
L2 adjacent cache line prefetcher (spatial prefetcher) [38], which
fetches the sibling cache line whenever a cache miss is handled.
Hence, we only have to check 2 cache lines using Flush+Reload,
which works without triggering the stride prefetcher. Consider
a case with 4 adjacent cache lines. If the data we read falls into
line 0 and we check line 1, we observe a hit on line 1 because the
prefetcher also loads it into the cache. The same is true if the data
falls into line 3, and we check line 4. By merely checking cache
lines 1 and 3, we detect all possible accesses.

We can even further increase the performance by only checking
one cache line. By using a kernel module, we investigated the
beginning of the kernel text segment and determined that it is
always the same across kernel versions (i.e., 0x48).

EchoLoad also works with KPTI [30] as the pages still mapped
with KPTI use the same randomization offset as the rest of the
kernel code. While the value differs with KPTI (i.e., 0xf), it is still
the same across kernel versions that use it. As we only look for
the beginning of the kernel and we know that the value remains
constant, we can reduce the number of cache lines we need to check
to 1. This further improves the performance of our KASLR break.
EchoLoad and LVI-NULL. On CPUs that have already received
fixes for Meltdown, EchoLoad is the inverse of the LVI-NULL at-
tack [88]. While LVI-NULL abuses the fixes to inject a dummy value
of zero to dependent transient instructions in a victim, EchoLoad

Table 1: Environments where we evaluated EchoLoad and
Data Bounce (KPTI disabled).

CPU µarch. EchoLoad Data Bounce

Intel Atom x5-Z8300 Cherry Trail ✓ ✓

Intel Core i5-450M Arrandale ✓ ✓

Intel Core i5-3230M Ivy Bridge ✓ ✓

Intel Core i5-8250U Kaby Lake R ✓ ✓

Intel Core i7-4790 Haswell ✓ ✓

Intel Core i7-6700K Skylake ✓ ✓

Intel Core i7-8650U Kaby Lake R ✓ ✓

Intel Core i7-8565U Whiskey Lake ✓ ✓

Intel Core i9-9900K Coffee Lake ✓ ✓

Intel Xeon E5-1630 v4 Broadwell ✓ ✓

Intel Xeon Silver 4208 Cascade Lake ✓ ✗

Intel Cascade Lake (Google Cloud) Cascade Lake ✓ ✗

AMD Ryzen Threadripper 1920X Zen ✗ ✗

AMD Ryzen 7 3700 Zen 2 ✗ ✗

ARM Cortex-A57 A57 ✗ ✗

Table 2: Performance of EchoLoad in terms of runtime and
F-score. Each possible offset is tested a single time.

CPU Speculation TSX Segfault

i7-6700K Time (F-Score) 63 µs (0.999) 48 µs (1.000) 133 µs (1.000)
i9-9900K Time (F-Score) 33 µs (1.000) 29 µs (1.000) 86 µs (1.000)
Xeon Silver 4208 Time (F-Score) 51 µs (0.994) 40 µs (1.000) 127 µs (1.000)

exploits the inverse effect, i.e., the retrieving of a zero value, to
break KASLR.
Evaluation. We evaluated EchoLoad on different Intel microarchi-
tectures running Linux (cf. Table 1). On all CPUs, we evaluated our
attack with both KPTI enabled and disabled. These experiments
show that KPTI does not prevent EchoLoad. If KPTI is disabled,
EchoLoad detects the symbol startup_64. With KPTI, it detects the
symbol __entry_text_start, which is the trampoline required
to enter the kernel. As Android is based on the Linux kernel, the
behavior on Android is the same. While we evaluate the ability
and performance of EchoLoad to leak the kernel code offset, it can
equally leak the offsets of all other randomized parts of the kernel.

For the performance evaluation, we used the same setup that
Schwarz et al. [76] describe in their paper.We tested 10 different ran-
domizations (i.e., 10 reboots), each 100 times. Using this approach,
we have a sample size of 103. We evaluated the performance on
a selected number of architectures in all three cases, namely mis-
speculation, TSX, and segfault handling. Table 2 shows the result
of this evaluation. In all tested cases, we achieve almost perfect
accuracy. On the i9-9900K, we outperform Data Bounce in terms of
time required while matching the accuracy.

Similar to Schwarz et al. [76], we tested EchoLoad with TSX on
a larger scale. For that, we tested the same offset 100 million times
and repeated the experiment 10 times for a total of 1 billion tries.
On all three CPUs (cf. Table 2, we achieved an average F-score of 1,
giving us perfect accuracy in detecting the KASLR offset.

On Windows 10, we also tested 10 different randomizations (i.e.,
10 reboots), each 100 times. In all cases, we successfully found
the location of the kernel image. On macOS 10.11.6, instead of 10
randomizations, we repeated the experiment 100 times to verify
that the given kernel range is still correct [14]. We then successfully
recovered the kernel location in all 100 randomizations.

1 if(xbegin() == (~0u)) { *(volatile char*)mem; xend(); }
2 if(flush_reload(mem)) return ROLL_BACK;
3 else return IMMEDIATE_ABORT;

Listing 2: Analyzing the behavior of the TSX abort. If the
transaction is aborted on xbegin, mem cannot be cached. If
the transaction is just rolled back on xend, mem is cached.

3.3 Breaking (K)ASLR from SGX
As EchoLoad only requires memory accesses, it also works in re-
stricted environments. We demonstrate EchoLoad in SGX enclaves
breaking host ASLR, victim-enclave ASLR, and KASLR.

While it is also possible to use EchoLoad for detecting the loca-
tion of SGX enclaves from the host application, this is an artificial
scenario. First, the host maps the enclave to its location and, thus,
knows where the enclave is. Second, on Linux, the host can access
this information from the pseudo file /proc/self/maps, contain-
ing all virtual-address mappings of the current process. Finally, the
host can also probe the virtual memory for the enclave, e.g., using
a signal handler to catch segmentation faults. If a region returns
0xff, it is likely to be an EPC page of an enclave.
EchoLoad from Enclave to Host. TAP is a method to break host
ASLR from an enclave using Intel TSX [81]. It allows scanning the
host address space for mapped pages to mount a ROP attack from
inside the enclave, impersonating the host application.

While TAP only worked for CPUs with TSX, it does not work
on CPUs with MDS fixes in microcode at all. With the microcode
update, all TSX transactions abort immediately when started inside
an SGX enclave [43]. We further analyzed whether the transaction
aborts immediately, or is only rolled back in all cases.

Listing 2 shows the code we use to analyze the TSX-transaction
aborts. If the transaction aborts already at the xbegin instruction,
the memory dereference is never executed. If the transaction exe-
cutes but then rolls back the executed instructions, the dereference
of the address still causes the memory location to be in the cache.

Our results show that the transaction is never started as the
address mem is never cached after the transaction. Hence, we can-
not even use TSX to access memory locations transiently. We ob-
serve the same behavior outside an SGX enclave when setting the
TSX_FORCE_ABORT MSR to 1. While this MSR is documented to
abort every TSX transaction on commit [98], we verified with our
test (Listing 2) that the transaction is not even started.

Consequently, even if TSX is re-enabled in SGX via a microcode
update, it can be manually disabled with the TSX_FORCE_ABORT
MSR to protect against attacks such as TAP. This is the case on the
Amazon EC2 cloud [79]. In contrast to Data Bounce [76], EchoLoad
works on the newest CPU generation, as it does not require TSX.
Thus, EchoLoad can be used to mount SGX ROP attacks [81] even
if TSX is disabled, once more enabling such attacks.

Due to the unavailability of syscalls and the rdtsc instruction
inside SGX, we mount EchoLoad behind a misspeculated branch
and use a counting thread [82] as a timer. We achieve a speed of
388 Mbit/s for scanning the host address space with EchoLoad.
Hence, EchoLoad is a viable alternative to TAP to de-randomize the
host application from an SGX enclave.

EchoLoad from Enclave to Enclave. Enclaves might not only
want to de-randomize the host application but also learn informa-
tion about other enclaves. While enclaves are mutually untrusted
and, thus, cannot access each other, EchoLoad can be used to learn
the address-space layout of other enclaves. Moreover, assuming
that enclaves have unique sizes, an enclave can even detect which
other enclaves are used by the host by detecting their size.

We evaluated EchoLoad in the cross-enclave scenario by loading
two enclaves in our test application. One enclave is malicious and
leverages EchoLoad to learn which other enclaves are used by the
host application.We use the same experiment as for de-randomizing
the host to scan the address space for other enclaves. We success-
fully detect the location and the size of the second enclave used by
the host application. The speed for scanning the address space is
the same as for de-randomizing the host application.
EchoLoad fromEnclave to Kernel. Enclaves may foster stealthy
exploits [48, 65, 81, 82]. In this work, we add another primitive to
malware hidden inside SGX. With EchoLoad, an enclave can de-
randomize KASLR, which is a prerequisite for many kernel exploits.

The same code which is used to de-randomize the host ap-
plication can be used to de-randomize the kernel. We evaluated
EchoLoad inside an SGX enclave to find the KASLR offset. Due to
the use of misspeculation and a timing thread, the performance
is worse than in native code. However, we still detect the KASLR
offset with an F-score of 1 (n = 103).

3.4 Meltdown and KASLR Break in JavaScript
EchoLoad can even be mounted from a JavaScript sandbox. We
demonstrate EchoLoad, and as an extension Meltdown, from the
Spidermonkey JavaScript engine 60.1.3 used in Firefox.

There are two challenges for mounting EchoLoad in JavaScript.
First, both JavaScript and WebAssembly currently only support a
32-bit linear memory index, restricting arrays to 4 GB [19]. While
this prevents EchoLoad on a 64-bit OS, it does not prevent it on
32-bit OSs, which only support a 32-bit virtual address space. Hence,
we evaluate this attack on Ubuntu 16.04 (Kernel 4.15.0-60) i686 on
an Intel i7-4790. While we are currently limited to 32-bit systems,
the WebAssembly developers are planning to increase the size of
linear memory indices from 32-bit to 64-bit, allowing the attack on
all commodity systems that are not patched against Meltdown [91].
Second, the Spectre mitigations do not only reduce the resolution
of the high-resolution timer [67], but also harden the bounds check
for arrays, preventing speculative out-of-bounds accesses by de-
fault [66]. As our focus is not demonstrating a Spectre attack but a
Meltdown-related effect, we use a version of the engine that allows
speculative out-of-bounds accesses, as in previous work [53]. To de-
velop widely deployable Meltdown and EchoLoad exploits, further
research is necessary to investigate whether other misprediction
mechanisms may provide a suitable workaround to the hardened
out-of-bounds checks. Note that previous work has already shown
that some of these mitigations can be circumvented [35].
Building Blocks. An alternative to the high-resolution timer is
a counting thread which is commonly used for microarchitectural
attacks in JavaScript [29, 53, 80]. Furthermore, as the clflush in-
struction is not available in JavaScript, we resort to Evict+Reload
as described in related work [29, 76, 90]. Instead of measuring only

Table 3: We compare microarchitectural attacks on KASLR.
EchoLoad outperforms all previous microarchitectural at-
tacks on KASLR while having no requirements.

Attack Time Accuracy Requirements

Hund et al. [37] 17 s 96 % -
Gruss et al. [32] 500 s N/A cache eviction
Jang et al. [49] 5 ms 100 % Intel TSX
Evtyushkin et al. [21] 60 ms N/A BTB reverse engineering
Canella et al. [9] 0.27 s 100 % MDS vulnerable CPU
Schwarz et al. [76] 42 µs 100 % Intel CPU before Cascade Lake
EchoLoad (our attack) 29 µs 100 % -

one address in our Evict+Reload, we use amplification on multiple
cache lines [63]. With amplification, we encode the out-of-bounds
access into multiple different cache lines to achieve more reliable
results. To access a kernel address during transient execution, we
hide an out-of-bounds array access behind a misspeculated branch.
EchoLoad from JavaScript. By combining the building blocks,
we can implement EchoLoad in JavaScript. On average, it takes
25.09 ms (n = 103, σx̄ = 5.92) to find the start of the kernel image.
The detected offset is relative to the base of the array, which is used
for the out-of-bounds accesses. However, an attacker can leverage
any JavaScript ASLR break [29] to recover the array base address,
and from that compute the absolute address of the kernel image.
Meltdown from JavaScript. Contrary to Linux, many 32-bit OSs
still in use do not haveMeltdown patches (e.g.,WindowsXP). Hence,
we show that with the building blocks, we can mount a Meltdown
attack from JavaScript on such systems. Relying on EchoLoad for
the KASLR break, we can even target specific locations in the kernel.

To evaluate the attack performance of the proof of concept, we
disable KPTI and leak a known value from the kernel. Our JavaScript
attack leaks 2 B/s, with an error rate of 0.3 % (n = 103).

3.5 Other Side-Channel Attacks on KASLR
Microarchitectural attacks on KASLR so far relied on either branch-
predictor states [21], address-translation caches [32, 37, 49], or store-
buffer optimizations [9, 76]. We compare EchoLoad to previous
attacks on KASLR [21, 32, 37, 49, 76].

Our attack outperforms all state-of-the-art KASLR breaks on Intel
x86 CPUs (cf. Table 3). We outperform Data Bounce [76] in terms
of speed and match it in accuracy while having lower requirements.
Similar to Data Bounce, EchoLoad also has the advantage over
previous microarchitectural attacks that it does not require Intel
TSX, or knowledge of internal data structures like the branch-target
buffer (BTB) or the store buffer.

For instance, Evtyushkin et al. [21] assume an attacker knows
how the BTB works internally, which has not yet been reverse-
engineered for microarchitectures after Haswell. Moreover, with
the widely-deployed Spectre mitigations [10, 39], the BTB is either
cleared on context switch or not shared between privilege levels.
Hence, this attack does not work on state-of-the-art CPUs anymore.

The double page-fault attack [37] was the first microarchitec-
tural attack on KASLR. By accessing a kernel memory location,
an attacker first triggers a page fault. This triggers an interrupt
which is handled by the OS. After handling the interrupt, the OS
returns control to a pre-installed error handler in the user-space

program. In the error handler, the attacker measures the time it
took to handle the fault. The attacker then repeats the attack step,
again measuring the time it took to handle the fault. If the kernel
address is valid, the first illegal access has created a TLB entry. This
speeds up the handling of the second fault, creating a timing side
channel. Consequently, a user-space attacker can infer whether a
kernel address is valid or not. The requirement for this attack is
that the user can install a signal handler to handle segmentation
faults. Hence, native code execution is required.

Jang et al. [49] retrofitted the attack by Hund et al. [37] with
Intel TSX. TSX is an x86 instruction-set extension introducing
hardware transactional memory. If a page fault occurs within a
transaction, it is aborted without architecturally raising a fault and,
hence, without any OS interaction. This allows the attack to skip
the page fault handling of the OS, significantly speeding up the
attack and reducing its noise. The approach by Jang et al. [49] only
works on CPUs starting from Haswell as it relies on Intel TSX. This
extension is not present on low-end CPUs or any CPUs built before
2013 and can be disabled on newer CPUs as well. Intel TSX is, for
example, disabled on the Amazon EC2 cloud [79].

Gruss et al. [32] use the software prefetch instruction as a side
channel. This side channel exploits that the execution time of the
prefetch instruction depends onwhether the translation cache holds
the correct entry. As the TLB can only hold addresses for which a
valid translation, i.e., a physical page is mapped to it, the location of
the kernel is revealed due to it consisting of the only valid address
mapping within the predefined region.With this attack, the attacker
additionally learns the page size that is used for the mapping.

Fallout [9] demonstrates a KASLR break on MDS-vulnerable
Intel CPUs. First, they ensure that a user-controlled value is in the
store buffer. Then, they attempt to access an address with the same
page offset ,which is inaccessible. On MDS-vulnerable CPUs, the
store-buffer content is transiently forwarded to faulting loads on
valid kernel addresses, revealing the location of the kernel. Fall-
out [9] relies on the opportunistic store-buffer behavior that vir-
tual addresses are likely equivalent if the least-significant 12 bits
match. However, this is only the case on MDS-vulnerable Intel
CPUs that are not patched. Hence, this KASLR break does not work
on CPUs indicating that they are MDS-resistant via the MDS_NO flag
in the IA32_ARCH_CAPABILITIES model-specific register, e.g., on
the newest Cascade Lake CPUs.

Data Bounce [76] breaks KASLR by exploiting that the CPU only
performs store-to-load forwarding if a physical page backs a virtual
address, i.e., the virtual address can be resolved to a physical address.
Using this approach, they can break KASLR on all Intel CPUs going
back to 2004. They claim that the attack has perfect accuracy and
only requires 42 µs to detect the correct kernel location. One of the
advantages of this approach over Jang et al. [49] is that it does not
require TSX and, hence, is applicable to a broader range of CPUs.
However, the behavior of store-to-load forwarding was changed
in Cascade Lake CPUs to prevent this attack (cf. Table 1). Hence,
while their approach works on microarchitectures starting from
the Pentium 4 Prescott to Whiskey Lake and Coffee Lake R, it does
not work on the recent Cascade Lake.

EchoLoad relies on the load stalling behavior of the CPU, an
effect which has not been exploited so far. As this effect is deeply
rooted in the design of the microarchitecture, it cannot easily be

v4.15 v5.0 v5.2

1,536 6,144 5,632

11 5 4
4KB
2MB

Figure 5: On recent Linux, several 2MB pages in the kernel
text segment have been replaced by 4 kB pages.

fixed (cf. Section 3.1), neither in software nor hardware. Moreover,
the attack does not have any requirements as it solely relies on
memory loads. As a consequence, even the most recent Cascade
Lake is affected by EchoLoad.

4 FLARE: MITIGATING KASLR BREAKS
In this section, we propose FLARE, a defense against KASLR attacks
rooted in a CPU’s microarchitecture.

FLARE has a negligible memory overhead of only a few kilobytes
and next to no runtime overhead. FLARE tackles the root causes of
all the microarchitectural KASLR breaks discussed in Section 3.5.
It builds on ideas from KAISER [31] and LAZARUS [26] to fix
remaining weaknesses efficiently and securely.

The challenge is to fully eliminate differences in:
C1: timing and behavior for mapped and unmapped pages,
C2: timing for different page sizes, and
C3: timing between executable and NX pages.

As we show in this section, FLARE successfully tackles these chal-
lenges. However, before we justify these challenges, we briefly
introduce a threat model. We then discuss implementation details,
corner cases, and pitfalls in Section 4.1.
Threat Model. Our attacker can run unprivileged native code
on an up-to-date OS. Furthermore, the attacker knows the exact
version of the Linux kernel that the victim uses and, hence, knows
the exact structure of the kernel image in memory.
C1: Differences for Mapped and Unmapped Pages. In Sec-
tion 3.5, we discuss that recent attacks, including EchoLoad, can
distinguish mapped from unmapped pages [9, 32, 37, 49, 76]. There-
fore, the first challenge is to prevent an attacker from detecting the
KASLR offset based on that information.

To tackle this challenge, we map all unmapped virtual addresses
in the randomization range to a dummy physical page. Therefore,
none of the known attacks that rely on distinguishing mapped from
unmapped addresses can de-randomize the kernel anymore.
C2: Timing Differences for Page Sizes. In Section 3.5, we dis-
cuss that the attack by Gruss et al. [32] can distinguish different
page sizes: Even if the entire kernel space has a valid mapping, dif-
ferent page sizes can create a unique pattern which de-randomizes
the kernel. This is especially a problem as the kernel uses different
page sizes for its mapping (cf. Figure 5), possibly creating such a
unique pattern. We tackle this challenge by avoiding different page
sizes in the kernel altogether.
C3: Timing Difference between Executable and NX Pages.
Jang et al. [49] showed that there is a timing difference between
executable and NX pages. We analyzed the kernel and discovered
that executable and NX pages are strictly separated. That is, af-
ter the first NX page in the address space there is not a single
executable page in the remaining address space. To prevent this
straightforward KASLR break, we randomize the executable and

0xffff ffff 8000 0000

Executable

code

0xffff ffff bfff ffff

Non-Executable

data

0xffff ffff 9fff ffff

Figure 6: With FLARE, all possible kernel offsets are physi-
cally backed, i.e., any potentially read value from this range
will be zero. Code and data is independently randomized in
512MB ranges. This setup allows preventing all currently
known microarchitectural attacks on KASLR.

the NX range separately and pad them each with executable and
NX pages respectively to the full randomization range.

4.1 Implementation Details
The different Linux kernel regions (cf. Section 2.5) are mapped
with different properties, i.e., different page sizes and permissions
(e.g., executable and NX). Note that we only need to protect the
trampoline code if KPTI is active, while we have to protect the
following regions without KPTI.
Text Segment. Figure 5 shows that the text segment is mapped
using both 4 kB and 2 MB pages. To address C1, we map the entire
range where the text segment can be mapped using 4 kB pages,
preventing the attacker from seeing the actual text-segment range.
To address C2, we map the text segment only with 4 kB pages,
preventing attacks that distinguish page sizes [32]. This is not a
large kernel change as this is already an ongoing development (cf.
Figure 5). The kernel already supports disabling the use of non-4 kB
pages by clearing the CPU capability X86_FEATURE_PSE.

Furthermore, to tackle C3, we use the solution shown in Figure 6.
We split the randomization range of the text segment in half. We
then use one half for the randomization of executable pages, i.e.,
the kernel code, and the other for NX pages, i.e., the kernel data.
Both regions are then randomized independently to not leak their
corresponding start and end addresses. This split does not introduce
any compatibility issues, even with relative addressing, as we stay
within the maximum addressable range of 4 GB.
Modules. Modules already use 4 kB pages only, solving C2. In our
proposal, we pad the code and data sections of every module to
a multiple of 1 MB, depending on the size of the largest currently
loaded module. We then map the remaining offsets in the address
range with dummy modules using 4 kB pages that look exactly the
same as the actual modules, i.e., same size for code and data sections.
Consequently, using the technique by Jang et al. [49] in the memory
range for kernel modules, we only see executable and NX regions of
all the same size. This mitigates the templating attack by Jang et al.
[49] as the attacker cannot infer anymore which module is real and
which one is not. With this approach, we solve all three challenges.

Naturally, the privileged user can dynamically load modules
which takes the place of a previous dummy module. Likewise, for
the unload, a dummy module replaces the kernel module mapping.
However, the implementation should be careful not to leave a small
time window open for an attack. In our FLARE proof-of-concept,
we enable the loading of modules by first removing the dummy
mapping by hooking the function load_module. Then the module
is loaded, and afterward, the mitigation is re-applied. However,
a proper implementation should exchange the page-table entries

directly instead. This way, it is guaranteed that no time window
is left for the attacker to observe the short unmapping from a
concurrent microarchitectural attack, as there simply is no short
unmapping. Furthermore, the loading and unloading of modules
typically does not happen for an average user.
Direct-Physical Map, Vmalloc, Vmemmap. We analyzed how
the direct-physical map, vmalloc, and vmemmap are mapped. None
of the pages mapped in this region is executable. Thus, we tackle
challenges C1 and C3 by mapping all pages in the corresponding
randomization regions in our dummy mapping as NX.

Currently, the kernel does not use an explicit randomization
range for each of the three regions. Instead, the kernel uses one
large range and only guarantees to preserve their order. To mitigate
the attack by Gruss et al. [32], all three must use the same page
size. We verified that this is already the case when clearing the
X86_FEATURE_PSECPU capability at boot. As this causes significant
pressure on the TLB, we propose a different approach.

We propose that the kernel uses an explicit randomization range
for each of the three regions. Hence, to tackle C2, we can enforce
that the kernel consistently uses one page size per region. This
mitigates the attack by Gruss et al. [32]. In the analysis for our
defense, we empirically determined the page sizes used for each
region. On our test machine running Linux kernel 4.15, the kernel
indicates during the boot process that 1 GB pages are used for
mapping the direct-physical map. However, our analysis revealed
that it is mapped using all three page sizes, i.e., 4 kB, 2 MB, and
1 GB. Similarly, the vmalloc area uses both 4 kB and 2 MB pages.
The vmemmap area consisted of 2 MB pages only.

Based on this analysis, we propose to consistently use 2 MB pages
for the vmemmap region and 4 kB pages for the vmalloc region.
For the direct-physical map, we use 1 GB pages. Unfortunately, we
cannot use such a huge dummy page for our mapping as we would
reduce the available physical memory by 1 GB. Instead, we pick
1 GB of RAM, which is already mapped in the direct-physical map,
and map it using a 1 GB page in our dummy mapping. Hence, we
avoid the additional memory overhead without increasing the risk
for exploitation as we map the page as NX.

5 EVALUATION
In this section, we evaluate the overhead of FLARE in three as-
pects, namely runtime overhead using the SPEC CPU 2017 bench-
marks [16], module loading overhead, as well as the memory over-
head. We also evaluate the efficacy of FLARE by analyzing how
successful it is in preventing microarchitectural attacks on KASLR.

5.1 Overhead Analysis
Runtime. We create our dummy mapping directly in the init_mm
struct which is copied into every newly created process. We only
have to apply our mapping once, and every new process has the
mitigation enabled. Hence, we expect no runtime overhead.

We confirmed this using the LMbenchmicrobenchmark suite [64].
We evaluated process-creation time (fork and exec) and context
switches on an Intel i7-8650U (Linux kernel 5.0.0-15). This involves
a larger number of TLB invalidations and address resolutions, i.e.,
the situations that may see a performance penalty. For process cre-
ation, we do not encounter any overhead. Both with and without

per
lbe
nch mc

f

om
net
pp

xal
anc

bm
k
x26

4

dee
psj
englee

la

exc
han

ge2

cac
tuB

SSNlbm wr
f

pop
2

ima
gic
k nab

34
1 79

2

50
3

27
7 40
7

41
9 54
4

29
4

2,
56

1

1,
97

1

3,
95

4

3,
22

3

7,
13

4

3,
45

8

34
2 80

8

50
3

27
4 40
7

46
9

54
5

29
3

2,
55

2

1,
98

0

3,
95

9

3,
22

4

7,
13

2

3,
47

0

Ru
nt
im

e

No Mitigation Mitigation

Figure 7: Runtime overhead of FLARE on SPEC CPU 2017.

FLARE, the process creation takes on average 61.14 µs (n = 105, σx̄
= 0.27). Similarly, there is no difference in the syscall latency. In
both cases, the latency is on average 1.03 µs (n = 105, σx̄ = 0.006).

For a real-world workload, we evaluated the runtime overhead
using the SPEC CPU 2017 benchmark. We ran the benchmark once
with our mitigation and once without it on an Intel Xeon Silver 4208.
We excluded some benchmarks in both the intspeed and fpspeed
benchmark as they already crashed or did not compile on our vanilla
Linux system. Figure 7 shows the results. As expected by the design
of FLARE, we exhibit next to no runtime overhead.
Module Loading. Next, we evaluated the increase in module load-
ing time. We first establish a baseline by loading and unloading a
simple test module 104 times. We then load the FLARE proof of
concept, which requires removing and re-applying the dummymap-
ping for every module load, thus overapproximating the overhead
of our mitigation. We again load and measure the required time 104

times. We only observe a 4 % increase from 2.39 ms to 2.48 ms per
module load. When implemented in the Linux kernel, the module
memory allocation logic is made aware of the dummy mappings so
that they are treated like free memory. Thus, overheads are avoided
entirely except in cases where the modules have to be re-padded,
where we observe the overheads to be negligible.
Memory. Finally, we analyzed the memory overhead of FLARE,
which is minimal in our proof of concept. We always map the same
dummy page in the paging hierarchy and re-use the same page
directory and page table. We do not need a new PDPT, as we are
working on existing 1 GB ranges. Therefore, we only require one
page each for the new page directory, page table, and one page
to point to. As all these pages are 4 kB, the maximum overhead
is 12 kB. To map huge dummy pages, the maximum overhead is
only increased by 2 MB. The direct-physical map padding with 1 GB
pages does not consume additional memory (cf. Section 4).

5.2 Mitigate Microarchitectural KASLR Breaks
In a first step, we evaluated the effectiveness of FLARE in prevent-
ing breaking the randomization of the kernel text segment. Using
a vanilla Linux 5.0 kernel, we test microarchitectural attacks on
KASLR that are not mitigated through orthogonal countermeasures
(cf. Section 3.5) with KPTI disabled (cf. Figure 8). In all cases, we first
establish a baseline of the attack without FLARE in place, which
shows the exact position of the kernel with all attacks.

We then load FLARE and re-evaluate all attacks. We see for
each attack that the kernel can no longer be distinguished from
other positions. With EchoLoad (Figure 8a), all offsets are backed
by a physical page, the load succeeds, but the CPU returns zero
for the illegal access. The stall percentage is based on cache hits

and misses on the probe array, not performance counter values.
With the prefetch side channel (Figure 8b), we see that the prefetch
instruction can now also prefetch all other possible locations, miti-
gating the KASLR break. Data Bounce (Figure 8c) also no longer
distinguishes kernel locations from dummy mappings as store-to-
load forwarding works for all possible offsets. The double-page
fault (Figure 8d) as well as the DrK attack (Figure 8e) also do not
work anymore, exhibiting the same timing across the whole address
range. With Fallout (Figure 8f), we also see no difference anymore
as every page allows to trigger the WTF effect. An attack that tries
to detect our dummy mapping based on timing the page-table walk
is also not possible. Even though the physical page is shared across
all dummy mappings, a TLB entry for one mapping is not shared
with another. Hence, each access to a new page requires a full page-
table walk. Our dummy mapping can also not be uncoverd via the
cache as an access to a privileged address does not load the data
into it [42, 76, 79]. Based on the results shown in Figure 8, none of
the currently known microarchitectural attacks that are not mit-
igated through orthogonal countermeasures (cf. Section 3.5) can
de-randomize the kernel location despite FLARE. This empirically
confirms that we solve challenge C1.

Next, we de-randomize the kernel based on the timing difference
between executable and NX pages [49]. We confirm that tackling
only C1 and C2 is insufficient (cf. Figure 9). However, full FLARE
(cf. Figure 9) separates the regions and the switch from executable
to NX is not visible in this region anymore but at the pre-defined
start of the randomization range (cf. Figure 6).

Next, we used the prefetch side-channel attack to try to break
KASLR based on different page sizes. The different levels visible in
the default case of Figure 8b show the different paging levels for
the address we test. If nothing is mapped in the PML4, we observe
the highest time. There is a drop in the access time for addresses
with no PDPT entry, and another drop for addresses that map to
an entry in the page table, i.e., a 4 kB page. Thus, the prefetch side
channel shows the different paging levels [32].With FLARE in place,
we can no longer see the difference in page sizes as all possible
locations as well as the kernel are mapped using 4 kB pages. Thus,
we empirically confirmed that our strategy for C3 works, defeating
microarchitectural attacks on KASLR based on different page sizes.

6 RELATEDWORK
With the advent of KASLR, many different attacks have been pro-
posed to break KASLR. One problem is that the kernels of the major
OSs cannot change the randomization at runtime. Hence, if an
attacker knows the KASLR offset, it is valid until the next time
the OS is rebooted. So far, most of the attacks on KASLR relied
either on software vulnerabilities or side-channel attacks on the
microarchitecture as discussed in Section 3.5.

6.1 Software-based KASLR Breaks
On Linux, parts of kernel pointers are often disclosed inadvertently
through kernel interfaces, e.g., due to uninitialized structure fields
or structure padding [84]. There have been many such software vul-
nerabilities in kernels (e.g., CVE-2012-6138, CVE-2013-1825, 1826,
1827, 1873, 2634, 2635, 2636) that revealed parts of kernel addresses.
Similarly, for Windows, multiple methods leak kernel pointers, e.g.,

-16 -8 0 8 16 24 32 40
0

50

100

Kernel offset [MB]

St
al
ls
[%
]

(a) EchoLoad

-16 -8 0 8 16 24 32 40
100
200
300
400
500

Kernel offset [MB]

Pr
ef
et
ch

tim
e

(b) Prefetch [32]

-16 -8 0 8 16 24 32 40
0

10
20
30

Kernel offset [MB]

Re
pe
tit
io
ns

(c) Data Bounce [76]

-16 -8 0 8 16 24 32 40
2,900
2,920
2,940
2,960

Kernel offset [MB]

Pa
ge
-fa

ul
tt
im

e

(d) Double page fault [37]

-16 -8 0 8 16 24 32 40
260
280
300
320
340

Kernel offset [MB]

TS
X
tim

e

(e) DrK [49]

-16 -8 0 8 16 24 32 40
0

50

100

Kernel offset [MB]

W
TF

su
cc
es
s[
%]

(f) Fallout [9]

Figure 8: Detecting the kernel (offset 0 to 32MB) with all known microarchitectural attacks on KASLR without FLARE ()
and with FLARE (). For all attacks, FLARE successfully prevents the detection of the kernel.

0 8 16 24140
150
160
170

Kernel
Text

Read-only
Data

Kernel offset [MB]

TS
X
tim

e

0 8 16 24140
150
160
170

Kernel
Text

Kernel offset [MB]

TS
X
tim

e

Figure 9: DrK [49] distinguishes executable from NX pages.
An attacker can observe the switch toNXpages directly after
the executable pages (left), when tackling only C1 and C2
() and entirely without () FLARE. With full FLARE
(right), this attack is also fully mitigated.

using the Win32ThreadInfo or the Desktop heap [74]. Other at-
tacks on KASLR relied on the fact that kernel addresses were used as
unique identifiers [84], or as seed for pseudo-random numbers [52].
For debugging reasons, kernel addresses were often visible in log
files or debugging interfaces such as the perf subsystem [18].

6.2 Mitigating Software-based KASLR Attacks
While software bugs causing KASLR breaks can be easily fixed,
there are also general concepts for preventing address leakage from
the kernel. Linux introduced a setting to mask kernel pointers in log
files with a random mask [73]. Thus, a developer sees which point-
ers are the same, but an attacker cannot learn the actual pointer
value and, thus, the KASLR offset. This mitigation reduces the risk
of leaking the KASLR offset without impairing the debugging capa-
bilities. The PaX Team proposed STACKLEAK [15], a mechanism to
clear kernel-stack memory which is no longer in use. This reduces
accidental address leakage from uninitialized stack values.

6.3 Mitigate Microarchitectural KASLR Breaks
While microarchitectural attacks on KASLR cannot be simply fixed
in software, there are software-based workarounds. Gruss et al. [31,
32] proposed stronger kernel isolation to preventmicroarchitectural
attacks on the kernel by unmapping the kernel address space when
running in user space. Thus, in theory, there is no valid kernel
address in user space, preventing all microarchitectural attacks on
the kernel. However, while their proposal is deployed on all major
OSs to prevent Meltdown [59], it cannot prevent our KASLR break
(cf. Section 3.2). The reason is that x86 requires some kernel pages
always to be mapped, even when running in user space [31].

Lazarus [26] proposed a similar approach to KAISER [31]. It is
based on fencing the kernel paging entries off from those of the
user space by separating user and kernel page tables. Therefore,
the Memory Management Unit can no longer use entries pointing
to kernel space memory from user space. Contrary to KAISER,
Lazarus uses dummy mappings to hide the context switching code
while KAISER separates it from the rest of the kernel code section.
However, it does not tackle the challenges we identified and does
not defeat all known microarchitectural attacks on KASLR.

7 CONCLUSION
In this paper, we analyzed Intel’s recent hardware fixes for Melt-
down. Our analysis led to the understanding that illegal memory
accesses do not lead to a CPU stall, but instead, the illegally loaded
data is zeroed-out. With EchoLoad, we presented a novel tech-
nique based on Flush+Reload to distinguish stalling loads from
transiently executed ones. Hence, EchoLoad enables an attacker to
detect physically-backed kernel addresses and break KASLR. Our
KASLR break is the fastest and most reliable microarchitectural
KASLR break presented so far, taking only 40 µs to de-randomize
the kernel. The only requirement for EchoLoad are memory loads,
allowing it to be mounted from restricted environments such as
SGX and JavaScript. We presented the first JavaScript-based Melt-
down attack and KASLR break on the systems that do not receive
Meltdown patches, i.e., x86 32-bit OSs.

With FLARE, we proposed a generic approach for protecting
the kernel against microarchitectural KASLR breaks. We verified
that FLARE mitigates the root cause behind current microarchi-
tectural KASLR breaks and yields a uniform behavior across the
kernel address space. Thus, considering the state of the hardware
mitigations, we propose to deploy FLARE even on the most recent
CPU generations.

ACKNOWLEDGMENTS
We thank our anonymous reviewers for their comments and sug-
gestions that helped improving the paper. This project has received
funding from the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation program (grant
agreement No 681402). This work has been supported by the Aus-
trian Research Promotion Agency (FFG) via the project ESPRESSO,

which is funded by the province of Styria and the Business Pro-
motion Agencies of Styria and Carinthia. Additional funding was
provided by generous gifts from Intel, ARM, and Cloudflare. Any
opinions, findings, and conclusions or recommendations expressed
in this paper are those of the authors and do not necessarily reflect
the views of the funding parties.

REFERENCES
[1] Tiago Alves. 2004. TrustZone: Integrated Hardware and Software Security.
[2] Apple Inc. 2012. OS X Mountain Lion Core Technologies Overview.

http://movies.apple.com/media/us/osx/2012/docs/OSX_MountainLion_Core_
Technologies_Overview.pdf

[3] ARM Limited. 2018. Vulnerability of Speculative Processors to Cache Timing
Side-Channel Mechanism.

[4] Naomi Benger, Joop van de Pol, Nigel P Smart, and Yuval Yarom. 2014. Ooh Aah...
Just a Little Bit: A small amount of side channel can go a long way. In CHES.

[5] Daniel J. Bernstein. 2004. Cache-Timing Attacks on AES.
[6] Erik Bosman and Herbert Bos. 2014. Framing Signals - A Return to Portable

Shellcode. In S&P.
[7] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2016. Dedup

Est Machina: Memory Deduplication as an Advanced Exploitation Vector. In
S&P.

[8] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache
Attacks Are Practical. In WOOT.

[9] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Ma-
rina Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, Jo
Van Bulck, and Yuval Yarom. 2019. Fallout: Leaking Data on Meltdown-resistant
CPUs. In CCS.

[10] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg,
Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. 2019. A
Systematic Evaluation of Transient Execution Attacks and Defenses. In USENIX
Security Symposium.

[11] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R
Gross. 2015. Control-Flow Bending: On the Effectiveness of Control-Flow In-
tegrity.. In USENIX Security Symposium.

[12] Nicholas Carlini and David A. Wagner. 2014. ROP is Still Dangerous: Breaking
Modern Defenses. In USENIX Security.

[13] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Hovav Shacham, and Marcel Winandy. 2010. Return-oriented programming
without returns. In CCS.

[14] Liang Chen and Qidan He. 2016. Shooting the OS X El Capitan Kernel Like a
Sniper.

[15] Jonathan Corbet. 2018. Preventing kernel-stack leaks. https://lwn.net/Articles/
748642/

[16] Standard Performance Evaluation Corporation. 2017. SPEC CPU 2017. https:
//www.spec.org/cpu2017/

[17] Ian Cutress. 2018. Spectre and Meltdown in Hardware: Intel Clarifies Whiskey
Lake and Amber Lake. https://www.anandtech.com/show/13301/spectre-and-
meltdown-in-hardware-intel-clarifies-whiskey-lake-and-amber-lake

[18] Lizzie Dixon. 2017. Breaking KASLR with perf. https://blog.lizzie.io/kaslr-and-
perf.html

[19] ecma international. 2018. ECMAScript 2018 Language Specification. https:
//www.ecma-international.org/ecma-262/9.0/index.html

[20] Jake Edge. 2013. Kernel address space layout randomization. https://lwn.net/
Articles/569635/

[21] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Jump
over ASLR: Attacking branch predictors to bypass ASLR. In MICRO.

[22] Agner Fog. 2016. The microarchitecture of Intel, AMD and VIA CPUs: An
optimization guide for assembly programmers and compiler makers.

[23] Ulf Frisk. 2016. Windows 10 KASLR Recovery with TSX. http://blog.frizk.net/
2016/11/windows-10-kaslr-recovery-with-tsx.html

[24] Thomas Garnier. 2016. Kernel memory randomization and trampoline page
tables. https://medium.com/@mxatone/kernel-memory-randomization-and-
trampoline-page-tables-9f73827270ab

[25] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2016. A Survey of Microar-
chitectural Timing Attacks and Countermeasures on Contemporary Hardware.
Journal of Cryptographic Engineering (2016).

[26] David Gens, Orlando Arias, Dean Sullivan, Christopher Liebchen, Yier Jin, and
Ahmad-Reza Sadeghi. 2017. LAZARUS: Practical Side-Channel Resilient Kernel-
Space Randomization. In RAID.

[27] Jason Gionta, William Enck, and Per Larsen. 2016. Preventing kernel code-reuse
attacks through disclosure resistant code diversification. In Communications and
Network Security (CNS).

[28] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis. 2014.
Out of Control: Overcoming Control-Flow Integrity. In S&P.

[29] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuffrida. 2017.
ASLR on the Line: Practical Cache Attacks on the MMU. In NDSS.

[30] Daniel Gruss, Dave Hansen, and Brendan Gregg. 2018. Kernel Isolation: From an
Academic Idea to an Efficient Patch for Every Computer. USENIX ;login (2018).

[31] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, ClémentineMaurice,
and Stefan Mangard. 2017. KASLR is Dead: Long Live KASLR. In ESSoS.

[32] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Man-
gard. 2016. Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR.
In CCS.

[33] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+Flush: A Fast and Stealthy Cache Attack. In DIMVA.

[34] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches. In USENIX Security
Symposium.

[35] Noam Hadad and Jonathan Afek. 2018. Overcoming (some) Spectre browser mit-
igations. https://alephsecurity.com/2018/06/26/spectre-browser-query-cache/

[36] Jann Horn. 2018. speculative execution, variant 4: speculative store bypass.
[37] Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical Timing Side

Channel Attacks against Kernel Space ASLR. In S&P.
[38] Intel. [n.d.]. Intel 64 and IA-32 Architectures Optimization Reference Man-

ual. https://www.intel.com/content/www/us/en/architecture-and-technology/
64-ia-32-architectures-optimization-manual.html

[39] Intel. 2018. Intel Analysis of Speculative Execution Side Chan-
nels. https://software.intel.com/security-software-guidance/api-
app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-
Side-Channels-White-Paper.pdf

[40] Intel. 2018. Speculative Execution Side Channel Mitigations. Revision 3.0.
[41] Intel. 2019. Deep Dive: Intel Analysis of Microarchitectural Data Sam-

pling. https://software.intel.com/security-software-guidance/insights/deep-
dive-intel-analysis-microarchitectural-data-sampling

[42] Intel. 2019. Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3 (3A, 3B & 3C): System Programming Guide.

[43] Intel. 2019. Performance Monitoring Impact of Intel Transactional Synchroniza-
tion Extension Memory. https://cdrdv2.intel.com/v1/dl/getContent/604224

[44] Alex Ionescu. 2016. Twitter: Windows KASLR. https://twitter.com/aionescu/
status/725399988306644992

[45] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2015. S$A: A Shared Cache
Attack that Works Across Cores and Defies VM Sandboxing – and its Application
to AES. In S&P.

[46] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar. 2014.
Wait a minute! A fast, Cross-VM attack on AES. In RAID’14.

[47] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer. 2018.
Block Oriented Programming: Automating Data-Only Attacks. In CCS.

[48] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. 2017. SGX-Bomb:
Locking Down the Processor via Rowhammer Attack. In SysTEX.

[49] Yeongjin Jang, Sangho Lee, and Taesoo Kim. 2016. Breaking Kernel Address
Space Layout Randomization with Intel TSX. In CCS.

[50] David Kaplan, Jeremy Powell, and TomWoller. 2016. AMD Memory Encryption.
[51] Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative Buffer Overflows:

Attacks and Defenses. arXiv:1807.03757 (2018).
[52] Amit Klein and Benny Pinkas. 2019. From IP ID to Device ID and KASLR Bypass.

In USENIX Security.
[53] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,

Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
S&P.

[54] Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffe-Hellman, RSA,
DSS, and Other Systems. In CRYPTO.

[55] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu Song, and Nael
Abu-Ghazaleh. 2018. Spectre Returns! Speculation Attacks using the Return
Stack Buffer. In WOOT.

[56] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi, Changho
Choi, Taesoo Kim, Marcus Peinado, and Brent Byunghoon Kang. 2017. Hacking
in Darkness: Return-oriented Programming against Secure Enclaves. In USENIX
Security Symposium.

[57] Linux. 2019. Complete virtual memory map with 4-level page tables. https:
//www.kernel.org/doc/Documentation/x86/x86_64/mm.txt

[58] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. 2016. ARMageddon: Cache Attacks on Mobile Devices. In USENIX
Security Symposium.

[59] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In USENIX Security Symposium.

[60] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-
Level Cache Side-Channel Attacks are Practical. In S&P.

http://movies.apple.com/media/us/osx/2012/docs/OSX_MountainLion_Core_Technologies_Overview.pdf
http://movies.apple.com/media/us/osx/2012/docs/OSX_MountainLion_Core_Technologies_Overview.pdf
https://lwn.net/Articles/748642/
https://lwn.net/Articles/748642/
https://www.spec.org/cpu2017/
https://www.spec.org/cpu2017/
https://www.anandtech.com/show/13301/spectre-and-meltdown-in-hardware-intel-clarifies-whiskey-lake-and-amber-lake
https://www.anandtech.com/show/13301/spectre-and-meltdown-in-hardware-intel-clarifies-whiskey-lake-and-amber-lake
https://blog.lizzie.io/kaslr-and-perf.html
https://blog.lizzie.io/kaslr-and-perf.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/
http://blog.frizk.net/2016/11/windows-10-kaslr-recovery-with-tsx.html
http://blog.frizk.net/2016/11/windows-10-kaslr-recovery-with-tsx.html
https://medium.com/@mxatone/kernel-memory-randomization-and-trampoline-page-tables-9f73827270ab
https://medium.com/@mxatone/kernel-memory-randomization-and-trampoline-page-tables-9f73827270ab
https://alephsecurity.com/2018/06/26/spectre-browser-query-cache/
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://cdrdv2.intel.com/v1/dl/getContent/604224
https://twitter.com/aionescu/status/725399988306644992
https://twitter.com/aionescu/status/725399988306644992
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt

[61] G. Maisuradze and C. Rossow. 2018. ret2spec: Speculative Execution Using Return
Stack Buffers. In CCS.

[62] Clémentine Maurice, ManuelWeber, Michael Schwarz, Lukas Giner, Daniel Gruss,
Carlo Alberto Boano, Stefan Mangard, and Kay Römer. 2017. Hello from the
Other Side: SSH over Robust Cache Covert Channels in the Cloud. In NDSS.

[63] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L Titzer, and Toon Verwaest. 2019.
Spectre is here to stay: An analysis of side-channels and speculative execution.
arXiv:1902.05178 (2019).

[64] Larry McVoy and Carl Staelin. 1996. Lmbench: Portable Tools for Performance
Analysis. In USENIX ATC.

[65] Andrei Mogage, Rafael Pires, Vlad Crăciun, Pascal Felber, and Emanuel Onica.
2019. Supply chain malware targets SGX: Take care of what you sign (Practical
Experience Report). In SRDS.

[66] Mozilla. 2019. Index Masking in Firefox. https://bugzilla.mozilla.org/show_bug.
cgi?id=1430051

[67] Mozilla. 2019. performance.now resolution. https://developer.mozilla.org/en-
US/docs/Web/API/Performance/now

[68] Net Applications.com. 2019. Desktop Operating System Market Share. http:
//www.netmarketshare.com/operating-system-market-share.aspx

[69] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-
termeasures: the Case of AES. In CT-RSA.

[70] Matthew Panzarino. 2012. Apple releases OS X 10.8 Mountain Lion Developer
Preview 2, lists known issues. https://thenextweb.com/apple/2012/03/16/apple-
releases-os-x-10-8-mountain-lion-developer-preview-2-to-mac-developers/

[71] Colin Percival. 2005. Cache missing for fun and profit. In BSDCan.
[72] Marios Pomonis, Theofilos Petsios, Angelos D Keromytis, Michalis Polychronakis,

and Vasileios P Kemerlis. 2017. kRˆ X: Comprehensive Kernel Protection against
Just-In-Time Code Reuse. In EuroSys.

[73] Dan Rosenberg. 2010. kptr_restrict for hiding kernel pointers. https://lwn.net/
Articles/420403/

[74] Morten Schenk. 2019. Development of a new Windows 10 KASLR Bypass
(in One WinDBG Command). https://www.offensive-security.com/vulndev/
development-of-a-new-windows-10-kaslr-bypass-in-one-windbg-command/

[75] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza
Sadeghi, and Thorsten Holz. 2015. Counterfeit Object-oriented Programming:
On the Difficulty of Preventing Code Reuse Attacks in C++ Applications. In S&P.

[76] Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss. 2019. Store-to-
Leak Forwarding: Leaking Data on Meltdown-resistant CPUs. arXiv:1905.05725
(2019).

[77] Michael Schwarz, Daniel Gruss, Moritz Lipp, Clémentine Maurice, Thomas Schus-
ter, Anders Fogh, and Stefan Mangard. 2018. Automated Detection, Exploitation,
and Elimination of Double-Fetch Bugs using Modern CPU Features. In AsiaCCS.

[78] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser, Clémentine Maurice,
Raphael Spreitzer, and Stefan Mangard. 2018. KeyDrown: Eliminating Software-
Based Keystroke Timing Side-Channel Attacks. In NDSS.

[79] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-Privilege-
Boundary Data Sampling. In CCS.

[80] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Mangard. 2017.
Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural
Attacks in JavaScript. In FC.

[81] Michael Schwarz, Samuel Weiser, and Daniel Gruss. 2019. Practical Enclave
Malware with Intel SGX. In DIMVA.

[82] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. 2017. Malware Guard Extension: Using SGX to Conceal Cache Attacks.
In DIMVA.

[83] Hovav Shacham. 2007. The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86). In CCS.

[84] Brad Spengler. 2013. KASLR: An Exercise in Cargo Cult Security. https:
//grsecurity.net/kaslr_an_exercise_in_cargo_cult_security.php

[85] Julian Stecklina and Thomas Prescher. 2018. LazyFP: Leaking FPU Register State
using Microarchitectural Side-Channels. arXiv:1806.07480 (2018).

[86] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal
War in Memory. In S&P.

[87] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. In USENIX Security Symposium.

[88] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin,
Daniel Genkin, Yarom Yuval, Berk Sunar, Daniel Gruss, and Frank Piessens.
2020. LVI: Hijacking Transient Execution through Microarchitectural Load Value
Injection. In 41th IEEE Symposium on Security and Privacy (S&P’20).

[89] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:
Rogue In-flight Data Load. In S&P.

[90] Pepe Vila, Boris Köpf, and Jose Morales. 2019. Theory and Practice of Finding
Eviction Sets. In S&P.

[91] WebAssembly. 2019. Features to add after the MVP. https://github.com/
WebAssembly/design/blob/master/FutureFeatures.md

[92] NicoWeichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza. 2016. Async-
Shock: Exploiting Synchronisation Bugs in Intel SGX Enclaves. In ESORICS.

[93] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Raoul Strackx, Thomas F. Wenisch, and Yuval Yarom.
2018. Foreshadow-NG: Breaking the Virtual Memory Abstraction with Transient
Out-of-Order Execution. https://foreshadowattack.eu/foreshadow-NG.pdf.

[94] Zhenyu Wu, Zhang Xu, and Haining Wang. 2014. Whispers in the Hyper-
space: High-bandwidth and Reliable Covert Channel Attacks inside the Cloud.
IEEE/ACM Transactions on Networking (2014).

[95] Yunjing Xu, Michael Bailey, Farnam Jahanian, Kaustubh Joshi, Matti Hiltunen,
and Richard Schlichting. 2011. An exploration of L2 cache covert channels in
virtualized environments. In CCSW’11.

[96] Yuval Yarom and Katrina Falkner. 2014. Flush+Reload: a High Resolution, Low
Noise, L3 Cache Side-Channel Attack. In USENIX Security Symposium.

[97] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2014. Cross-
Tenant Side-Channel Attacks in PaaS Clouds. In CCS.

[98] Peter Zijlstra. 2019. Implement support for TSX Force Abort. https://lkml.org/
lkml/2019/3/12/1352

https://bugzilla.mozilla.org/show_bug.cgi?id=1430051
https://bugzilla.mozilla.org/show_bug.cgi?id=1430051
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
http://www.netmarketshare.com/operating-system-market-share.aspx
http://www.netmarketshare.com/operating-system-market-share.aspx
https://thenextweb.com/apple/2012/03/16/apple-releases-os-x-10-8-mountain-lion-developer-preview-2-to-mac-developers/
https://thenextweb.com/apple/2012/03/16/apple-releases-os-x-10-8-mountain-lion-developer-preview-2-to-mac-developers/
https://lwn.net/Articles/420403/
https://lwn.net/Articles/420403/
https://www.offensive-security.com/vulndev/development-of-a-new-windows-10-kaslr-bypass-in-one-windbg-command/
https://www.offensive-security.com/vulndev/development-of-a-new-windows-10-kaslr-bypass-in-one-windbg-command/
https://grsecurity.net/kaslr_an_exercise_in_cargo_cult_security.php
https://grsecurity.net/kaslr_an_exercise_in_cargo_cult_security.php
https://github.com/WebAssembly/design/blob/master/FutureFeatures.md
https://github.com/WebAssembly/design/blob/master/FutureFeatures.md
https://foreshadowattack.eu/foreshadow-NG.pdf
https://lkml.org/lkml/2019/3/12/1352
https://lkml.org/lkml/2019/3/12/1352

	Abstract
	1 Introduction
	2 Background
	2.1 Cache Attacks
	2.2 Transient-execution Attacks
	2.3 Intel SGX
	2.4 Address Translation
	2.5 Address Space Layout Randomization

	3 A Novel (K)ASLR Break
	3.1 Analyzing the Meltdown Mitigation
	3.2 Breaking KASLR
	3.3 Breaking (K)ASLR from SGX
	3.4 Meltdown and KASLR Break in JavaScript
	3.5 Other Side-Channel Attacks on KASLR

	4 FLARE: Mitigating KASLR Breaks
	4.1 Implementation Details

	5 Evaluation
	5.1 Overhead Analysis
	5.2 Mitigate Microarchitectural KASLR Breaks

	6 Related Work
	6.1 Software-based KASLR Breaks
	6.2 Mitigating Software-based KASLR Attacks
	6.3 Mitigate Microarchitectural KASLR Breaks

	7 Conclusion
	Acknowledgments
	References

