
Lixom: Protecting Encryption Keys with
Execute-Only Memory

Tristan Hornetz, Lukas Gerlach, and Michael Schwarz

CISPA Helmholtz Center for Information Security
<firstname>.<lastname>@cispa.de

Abstract. The confidentiality of cryptographic secrets is crucial for the
security of modern computing systems. However, ensuring confidentiality
is difficult in the presence of privileged attackers or transient-execution
vulnerabilities such as Meltdown or Spectre. While Trusted Execution
Environments (TEEs) provide robust protection, they suffer from limited
hardware availability, performance overhead, and the need for substantial
system redesign, making them impractical for many deployments.
In this paper, we present Lixom, a lightweight and generic technique to
prevent data leakage of cryptographic secrets on x86 processors. Lixom
achieves its confidentiality guarantees by storing secrets in code instead
of data and preventing access to them with execute-only memory (XOM).
In virtual machines, Lixom protects secrets from a compromised guest
kernel, providing security guarantees akin to TEEs. Additionally, Lixom
protects against Spectre, Meltdown, and Foreshadow attacks without
performance overhead for algorithms such as AES. In 3 case studies, we
show that Lixom improves the security of applications like disk encryp-
tion or digital rights management in real-world applications.

1 Introduction

Cryptographic secrets are high-value targets that require special protection from
attackers. However, protecting cryptographic secrets is incredibly challenging if
attackers have native privileged code execution, i.e., root attackers, or can ex-
ploit transient-execution attacks [9], such as Spectre [20] or Meltdown [25]. Ex-
isting hardware mechanisms, such as Trusted Execution Environments (TEEs)
or Trusted Platform Modules (TPMs), can protect secrets against many such
attacks [10], but they are not universally available. Moreover, even TEEs are
susceptible to microarchitectural attacks breaking confidentiality [45, 11, 29, 24,
5, 52]. Additionally, many systems still use hardware vulnerable to powerful and
virtually unfixable transient-execution attacks such as Meltdown [25] or Fore-
shadow [45] that leak data across security domains.

This paper presents Lixom, a generic protection mechanism that prevents the
disclosure of cryptographic secrets by leveraging Execute-only memory (XOM)
on x86. The core idea of Lixom is to embed secret data directly into code, such
as encoding secrets as immediate values in mov instructions, rather than storing
them in data sections. XOM then prevents any direct disclosure or modification



of these secrets while permitting their regular usage by executing the protected
code. This provides leakage resistance and helps with policy enforcement, as
secrets are only usable within the scope of what the protected code allows.

Lixom considers a powerful threat model: We show that it can protect se-
crets from attackers that have fully compromised the kernel of a VM guest, a
level of protection previously only possible with a TEE. We achieve this by uti-
lizing Intel’s hypervisor-controlled Extended Page Tables (EPT) [18] to enforce
XOM. Furthermore, we introduce two novel techniques: Page locking, which
allows guests to securely relinquish read access to sensitive code, and register
clearing, which prevents a malicious guest kernel from disclosing a program’s reg-
ister state. Together, these measures can defend against many attacks, including
transient-execution attacks. The reason is one observation we make in this paper:
Most transient-execution attacks only leak data, not code. We demonstrate this
fact for transient-execution attacks, such as Meltdown [25] or Foreshadow [45].

For native, non-virtualized environments, we additionally present Lixom-
Light, which uses Memory Protection Keys (MPK) instead of EPT to enforce
XOM [18]. This hardware mechanism is widely available and well-supported
in the Linux kernel. Lixom-Light provides strong disclosure protection against
transient-execution attacks and is practical to deploy on existing software stacks.

We evaluate Lixom with 3 case studies in which we protect cryptographic al-
gorithms and analyze the security benefits and performance overhead of Lixom.
Our case studies involve the secure handling of password hashes and key protec-
tion for AES and HMAC. Furthermore, we integrate these implementations into
an OpenSSL provider module, making them available to established programs
and tools, such as the nginx web server. As Lixom involves hypervisor-based
components, we create a customized version of the Xen hypervisor and a set of
libraries that make EPT available to guests securely. Our results show that Lixom
provides strong disclosure protection without affecting the throughput of AES
and outperforming OpenSSL by up to 6%, making Lixom an ideal hardening
mechanism for applications like disk encryption or digital rights management.

Contributions. In summary, the contributions of this paper are:
1. We propose and design Lixom, a technique to protect cryptographic secrets

with execute-only memory. Lixom works without hardware changes.
2. We create implementations for cryptographic algorithms that use Lixom,

demonstrating their practicability.
3. We show that Lixom is resistant against various attack vectors, including

transient-execution attacks, and can defend against privileged attackers.
4. We perform an extensive performance analysis to show the low runtime over-

head of Lixom.
Availability. Lixom is available at https://github.com/cispa/Lixom.

2 Background

In the following, we introduce the necessary background to understand the re-
mainder of this paper.

2



2.1 Memory Protection Keys

Execute-only memory (XOM) permits instruction fetches but can neither be
read nor written. Although simple in principle, the x86 page tables do not sup-
port XOM, which means that programs must use alternative mechanisms to
create XOM mappings [18]. One method for XOM are Memory Protection Keys
(MPK), which are widely supported on recent hardware [18]. This feature al-
lows tagging page table entries with a 4-bit protection key, with each possible
value associated with a configurable set of access restrictions. Programs can then
modify these restrictions in the special 32-bit PKRU register. Notably, this does
not require supervisor-mode privileges, making it trivial to turn off their restric-
tions. It is, therefore, challenging to use them for security purposes, with early
works containing various vulnerabilities [44, 17, 47]. Nevertheless, MPK sees use
in certain sandboxing techniques [44, 17, 47] and as a Spectre mitigation [19],
demonstrating that this feature can provide security benefits if used correctly.

2.2 Hardware-assisted Virtualization and EPT

Virtualization allows the execution of multiple guest operating systems on a
single host machine. The hypervisor occupies the highest privilege domain and
governs hardware resources and communication between guests. Modern CPUs
support virtualization in hardware, e.g., as Intel’s virtual-machine extensions
(VMX) [18, 2]. VMX introduces a mode of operation for guests named VMX non-
root operation, which, from a guest perspective, is indistinguishable from native
execution. However, privileged instructions, interrupts, or accesses to protected
memory regions can trigger VM exits, which transfer control from the guest to
the hypervisor. Another addition of VMX is Second Layer Address Translation
(SLAT). With SLAT, guest-managed page tables translate virtual addresses to
so-called guest-physical addresses. These addresses undergo a second translation
step with the hypervisor-managed Extended Page Tables (EPT), resulting in
a hardware-backed physical address. Notably, however, EPT entries follow a
different format than the regular page tables on x86, allowing for the creation
of XOM. EPT-enforced XOM provides security guarantees that are far stronger
than MPK. Moreover, since the hypervisor manages EPT entries, not even guest
kernels can modify them, minimizing the attack surface. This approach to XOM
was pioneered by Readactor [12], which protects diversified code with EPT to
prevent code-reuse attacks. Other works utilizing EPT-enforced XOM include
KHide [14] and ExOShim [7]. Unfortunately, EPT is exclusive to Intel CPUs,
making approaches involving it incompatible with AMD. While AMD’s Reverse
Map Table (RMP) provides a similar mechanism to enforce XOM [2], this is far
less widely supported, and not considered in the remainder of this paper.

3 Design of Lixom

This section presents the design of Lixom and Lixom-Light. Section 3.1 provides
an overview, Section 3.2 defines the threat model, and Section 3.3 introduces the
challenges we have to solve.

3



Regular Program

.data
...
key_1
key_2
...

.text
...
encrypt()
...

Lixom
.data

...

.text
...
encrypt_1()
encrypt_2()
...

R-XRW- --X

Fig. 1: Key storage in memory with
Lixom

ymm0: 0xdeadbeef
rip: 0x000100ac
r15: 0x0

ymm0: 0xdeadbeef
rip: 0x000100ac
r15: 0x0

ymm0: 0x0
rip: 0x000100ac
r15: 0xbabababa

ymm0: 0x0
rip: 0x000100ac
r15: 0xbabababa

ymm0: 0x0
rip: 0x000100ac
r15: 0xbabababa

interrupt / vmexit

clear
if rip
in XOM

vmenter

mode switch

User

Kernel

Hyper-
visor

Fig. 2: Illustration of the register clearing
process. r15 is the signal register.

3.1 Overview

The main idea of Lixom is to move secrets, such as cryptographic key material, to
code protected by XOM, as shown in Figure 1. This conversion can be as simple
as having a mov instruction with an immediate value as the source operand. The
hardware then prevents reading the secret both architecturally and transiently
(e.g., via Meltdown). As Lixom relies on EPT-enforced XOM for the highest
security guarantees, it also requires a method for securely allocating and deal-
locating such pages in the guest. We support two operations guests can invoke:
lock and unlock. lock transforms regular memory pages into XOM, preventing
read and write accesses. unlock transforms XOM pages into regular memory,
but only after clearing them. This way, guests can dynamically allocate XOM
without compromising secrets. We refer to this concept as page locking. How-
ever, while the main idea is intuitive, implementing it requires solving several
challenges discussed in Section 3.3 and ultimately solved with Lixom.

3.2 Threat Model

For Lixom, we assume an attacker who fully compromised the kernel of a VM
guest. They can remap, read, and overwrite memory, execute arbitrary code
in the victim’s context, and interrupt the victim at any time. The attacker can
mount Spectre and other microarchitectural attacks. Fault injection attacks, e.g.,
Rowhammer [37], are out of scope. For Lixom-Light, the attack runs without
kernel privileges and aims to disclose secrets from another security domain. We
assume that the isolation is not compromised architecturally level. However,
attackers can execute arbitrary code in their own unprivileged process.

3.3 Challenges

While the basic idea of Lixom is intuitive, we must address several challenges to
ensure robust guarantees for the protection of cryptographic secrets.

Memory-less Cryptography. Most implementations of cryptographic al-
gorithms store key-dependent data in regular memory accessible to a privileged

4



attacker. Hence, code protected with Lixom must use memory-less cryptogra-
phy, keeping secrets and intermediary results in the registers at all times. While
the capacity of the general-purpose register is generally too small to hold key
material and perform meaningful computation simultaneously, the vector regis-
ters provide significantly more storage space. AVX2 provides registers with 512
bytes of confidential “memory”, ample for many cryptographic algorithms. Previ-
ous works established this approach to protect encryption keys against cold-boot
attacks [30]. If more memory is required, secrets are encrypted with AES-NI be-
fore saving them to memory. The AES-NI key is stored in code alongside other
protected secrets [13, 15]. Additionally, we expect programs to authenticate such
backups, for example with schemes like AES-GCM. Confidentiality and integrity
are strictly required, as the attacker has full control over non-XOM memory.

Defending against Interrupts. XOM guarantees protection for secrets
in memory. However, at some point, confidential information must enter the
register state for processing. If a privileged attacker interrupts the program at
such times, they can disclose any secrets that are currently in use. We call code
sections where secrets are in the registers critical zones (not to be confused
with critical sections in concurrent programming). While it is possible to re-
strict how the guest can interrupt a program, non-maskable interrupts (NMIs)
cannot be turned off or deferred. Should an NMI occur by chance at the wrong
time, it could compromise encryption keys. With Lixom, we do not attempt to
prevent interrupts. Instead, we leverage that VMX permits hypervisors to han-
dle interrupts before transferring control back to the guest. This allows us to
perform register clearing, where the hypervisor partially overwrites the regis-
ter state when handling interrupts occurring during the execution of an XOM
page. In practice, Lixom only overwrites the processor’s vector registers and two
general-purpose registers, making it easy to recover from clearing events, as the
instruction pointer and most general-purpose registers remain unaffected. At the
same time, programs can store and process key material in the vector registers.
One of the 2 overwritten general-purpose registers transfers data from immedi-
ate values in code to the vector registers. The other register serves as a signal
register, which the hypervisor fills with a magic value during register clearing.
By checking the value in the signal register at regular intervals, the program can
determine whether register clearing took place and initiate recovery procedures
when needed. Figure 2 illustrates register clearing and how different privilege
levels perceive the program’s register state during a clearing event.

Defending against Control-Flow Hijacking. Even with the aforemen-
tioned measures in place, there remains a potent attack vector against programs
in XOM. An attacker may hijack control flow in a critical zone and redirect it
to a disclosure primitive. The easiest way to achieve this is by manipulating
code pointers in memory, such as return or function pointers. Spectre attacks,
which speculatively redirect control flow, also pose a significant risk. The solution
we propose to this problem is the complete elimination of indirect branches in
critical zones. As shown in previous work [43, 4], this elimination can be done au-
tomatically. This way, there are no code pointers to manipulate, and speculative

5



branch target injection with Spectre is no longer possible. Furthermore, while
Spectre can still manipulate direct conditional branches, the branch targets are
under the programmer’s control. Thus, it is possible to ensure that speculative
control flow cannot exit the critical zone without going through designated ’exit
points’ that erase any secrets from the register state. Without gadgets in the
critical zone, Spectre attacks are prevented.

Apart from pointer manipulation and Spectre, there is a second way in which
a privileged attacker could hijack control flow: Although they cannot access the
XOM pages directly, they can map them to an arbitrary location in a process’s
virtual address space. Therefore, if a program crosses a code page boundary
in a critical zone, the next page can be any page chosen by the guest kernel.
The kernel can thus disclose the register state by inserting gadget code there.
Unfortunately, this limits the maximum size of a critical zone to a single code
page. More complex programs may require 2MB pages instead of 4 kB pages.

Finally, an attacker may manipulate control flow by priming the registers
with chosen values and jumping to arbitrary addresses in critical zones. This is
usually not a problem, as a critical zone typically starts with the secret being
loaded into the register state. If the start is not executed, the secrets are not in the
registers and, hence, cannot be leaked. However, in cases where the program loads
additional secrets later, leakage must be avoided with defensive programming
measures, such as assertions on the current state.

3.4 Lixom-Light

Lixom-Light employs all programming rules of Lixom, but uses MPK instead of
EPT to enforce XOM. It does not rely on virtualization and hence uses neither
page locking nor register clearing. Since it does not rely on EPT, it is compatible
with both Intel and AMD.

In contrast to Lixom, Lixom-Light only considers attackers with code exe-
cution in a different privilege domain. If isolation is not compromised on an ar-
chitectural level, this attacker must resort to transient execution attacks, which
exploit flaws in the microarchitecture. We argue that in this scenario, we can
safely rely on MPK. To disable its XOM protection, the attacker must execute
code architecturally, which is not the case, e.g., with Spectre attacks. Further-
more, the wrpkru instruction, which is the only way to modify PKRU, serializes
memory accesses similarly to memory fences [18]. Therefore, Spectre attackers
may execute a wrpkru gadget but cannot leak code afterward. Lixom-Light hence
provides robust disclosure protection against Spectre. In Section 6.2, we show
that Lixom-Light also resists attacks like Meltdown and RIDL [46], making it a
practical defense against several classes of transient execution attacks.

4 Implementation

We develop a proof-of-concept implementation of Lixom via a series of patches
for the Xen hypervisor (Section 4.1), a Linux kernel module named modxom
(Section 4.2), and a user-mode library called libxom (Section 4.3).

6



4.1 Xen Hypervisor Patches

We extend the Xen hypervisor to support page locking and register clearing.
Page Locking. Our patches add a vmcall interface for locking 4 kB memory

pages into XOM. Guests can then enable register clearing for individual XOM
pages. Furthermore, our patches add a sub-page XOM mechanism, which al-
lows guests to manage XOM on a 128B granularity. This makes Lixom more
memory efficient since programs would otherwise have to lock an entire 4 kB for
every individual secret, thus wasting memory if the protected code is smaller.
Setting up a memory range for sub-page XOM zeroes it, and immediately locks
it into XOM without initialization. However, guests can invoke the hypervisor
to populate uninitialized sub-pages with data, with the hypervisor ensuring that
a sub-page can only be written to when still uninitialized. Once the data is in
place, it is therefore unreadable and immutable, as with regular XOM. Unlocking
uses the regular page-granularity unlock function, freeing all sub-pages at once.
This way, we can support page locking for memory ranges smaller than 4 kB.

Register Clearing. We enforce the register clearing mechanism in Xen’s
VM exit handler. Whenever an interrupt or a fault occurs, we check whether the
currently executed code page is among the previously marked XOM pages and
modify the guest’s register state accordingly. To reliably catch every interrupt,
our patches also disable the virtual interrupt controller (vAPIC) of VMX by
default, as it typically delivers interrupts directly to the guest kernel rather
than the hypervisor. While enabling the vAPIC is technically still possible, we
strongly discourage it, as this may undermine the security of register clearing.

4.2 Kernel Module

modxom, Lixom’s kernel module, serves two functions: Firstly, it provides an
interface to issue hypervisor operations from user-space, as user-mode programs
cannot issue hypercalls directly. Secondly, modxom prevents the Linux kernel
from attempting to read from XOM pages, which could lead to irrecoverable
error conditions, i.e., when swapping out or reusing pages. To effectively address
these issues, modxom implements a separate in-kernel memory allocator and
restricts the hypervisor operations to memory allocated with this mechanism.
User-mode programs can access this allocator through the mmap system call,
and issue operations with write calls to a special file in Linux’s /proc filesys-
tem. Through this approach, modxom reliably ensures that every XOM page
is pinned to memory, thereby preventing it from being swapped out. Addition-
ally, modxom’s handler for the close system call is invoked whenever a process
closes its handle to the /proc file, which occurs when the process terminates or
crashes. Therefore, we can reliably unlock every XOM page that is still in use
at this point, preventing Linux from reusing locked XOM pages.

4.3 User Space Library

Finally, we present a shared user-mode library that simplifies the management
of XOM by abstracting modxom’s interface. Additionally, the user-space library

7



can emulate the Xen hypervisor’s XOM behavior with MPK if the hardware
supports it. This way, programs setting up a Lixom environment do not need
to distinguish between Lixom-Light and Lixom, with any code for Lixom also
working for Lixom-Light. We use this mechanism for our case studies so that all
experiments for both Lixom-Light and Lixom can use the same code.

5 Case Studies

In this section, we present 3 case studies in which we implement programs that
utilize Lixom to protect cryptographic secrets. Section 6 evaluates the perfor-
mance of these implementations.

5.1 Case Study 1: Message Authentication with HMAC

We show that it is possible to perform message authentication with HMAC-
SHA256 purely in XOM using Lixom. Although widely supported hardware ex-
tensions exist for SHA-256, they are only partially usable as the SHA extensions
only cover certain primitive operations. Therefore, the bulk of SHA-256 must
be implemented using more conventional techniques. These techniques involve
control-flow structures that are challenging to create using only direct branches.
Our case study, therefore, provides insights into the performance of Lixom for
more involved algorithms.

An implementation challenge of SHA-256 is that it uses round constants,
manipulation of which may undermine the algorithm’s security guarantees. To
prevent attackers from changing these round constants, we store them in code
as immediate values. As with the key, each round constant requires a small code
segment moving it to the correct register. Although these segments are not large
individually, they alone consume 720 bytes of the available 4 kB memory page.

Another challenge is that the hash state, which updates with each message
block, is lost after register clearing and cannot be easily recovered. Therefore, we
utilize authenticated encryption with AES-128-GCM to confidentially store the
hash state in memory at regular intervals. When interrupted, the hash function
then restores its internal state from the latest checkpoint instead of starting from
scratch. This enables the authentication of messages of arbitrary size, even with
heavy CPU contention from other processes. The encryption key is generated
randomly and inserted into the program simultaneously with the HMAC key.

5.2 Case Study 2: Encryption with AES

Our second application for Lixom protects AES encryption keys. The AES-NI
instruction set extensions allow for implementing AES with little to no control
flow structures. Furthermore, most AES-NI instructions work on vector register
operands, making it easy to derive round keys and perform encryptions without
writing key material to memory. For most modes of operation, gracefully han-
dling register clearing events is relatively straightforward, as the program can

8



check the signal register after encrypting a message block. When the registers
are cleared, we simply need to re-derive the round keys, and can continue at the
block that was last processed. The current block offset is not confidential and is
thus stored in a register that is unaffected by register clearing.

For this paper, we provide two Lixom-compliant implementations of AES-
128-CTR: One utilizing the 128-bit AES-NI extensions and one using the 256-bit
VAES extensions. Both implementations can also serve as the GCTR function
for AES-128-GCM, allowing for authenticated encryption with Lixom. Our case
study does not pre-compute the round keys, as loading them from immediates
takes roughly 330 bytes of code under Lixom’s rules, whereas key expansion
with AES-NI takes as little as 211 bytes. An implementation with pre-computed
round keys may exhibit slightly better runtime performance at a higher memory
cost per encryption key.

5.3 Case Study 3: Protecting Password Hashes

One of the more straightforward application scenarios for Lixom is to provide
leakage resistance to password hashes, which are popular targets for Spectre at-
tacks [49, 41]. Following the programming rules from Section 3 in this scenario
is trivial, as the correct hash is subject only to simple equality checks. If imple-
mented with conditional move instructions, this does not require any branches.
Therefore, once the protected code is fully initialized, there is no longer any at-
tack surface for Spectre. Note that this specific application does not benefit from
Lixom’s resistance against privileged attackers, as the guest kernel can trivially
disclose the correct hash when a user authenticates with the correct password.
Attackers may also use the protected code as an oracle for dictionary attacks,
albeit at a relatively low test rate compared to the GPU-powered methods avail-
able when the hash is known directly. Nevertheless, we argue that Lixom’s low
cost in this scenario justifies its use as a hardening technique.

6 Evaluation of Lixom

In this section, we evaluate the performance and attack resistance of Lixom.

6.1 Performance

Our performance study of Lixom investigates 3 aspects: Encryption throughput,
setup costs, and application performance. We analyze the former two aspects
with custom benchmarks and employ the nginx benchmark of the Phoronix test
suite [22] to gauge Lixom’s impact on real-world applications. All tests utilize a
custom-built OpenSSL provider library, making the case-study implementations
from Section 5 available to any program using OpenSSL without requiring code
changes. This way, the nginx benchmark utilizes the Lixom-compliant AES-128-
GCM implementation for its TLS connections. In summary, the only signifi-
cant overhead of Lixom occurs when setting up an encryption context. However,

9



AES-128-CTR AES-128-GCM
0

2

4
G
B
/s

4.
02

3.
974.
28

3.
61

3.
51

3.
533.
62

3.
06

Core i7-7700k (AES-NI)

HMAC-SHA256 AES-128-CTR AES-128-GCM
0.0

2.5

5.0

7.5

10.0

G
B
/
s

2.
31

8.
09

7.
07

2.
01

8.
61

7.
79

2.
25

7.
71

6.
70

1.
94

8.
15

7.
49

2.
00

8.
64

7.
78

1.
85

8.
17

7.
37

Core i5-13600kf (VAES, SHA-NI)

OpenSSL Lixom-Light Lixom Low Contention High Contention

Fig. 3: Throughput of our Lixom implementations (n = 128, SE
µ < 0.7%, 256MB

per sample, single thread). Cross-hatching indicates that the test was conducted
with high contention for CPU time, causing frequent interrupts.

some of our implementations outperform OpenSSL in throughput, meaning that
Lixom may not incur any overhead, depending on the application.

Test Environment. Unless otherwise stated, we test Lixom on a 2-core
HVM guest of our modified Xen hypervisor based on Xen v4.18.1. The guest runs
Debian 12 with Linux v6.1.0. Tests involving OpenSSL use OpenSSL v3.0.11.

Data Throughput. The first benchmark series measures the data through-
put of our Lixom-compliant implementations under various conditions and hard-
ware configurations. Furthermore, it aims to quantify to which extent frequent
interrupts degrade the performance of Lixom, since the protected code must run
recovery procedures after register clearing. We run two threads parallel to the
benchmark to increase the interrupt frequency, one with high CPU usage and
one spinning the sync system call. On the test VM with two virtual cores, this
fully utilizes the available CPU resources, while the frequent system calls require
many context switches. Note that the benchmarks for Lixom-Light and Lixom
execute the same code, only with a different XOM-enforcement method and the
addition of register clearing for Lixom.

Figure 3 shows the results. All AES implementations except for AES-128-
GCM on the Core i7 7700K slightly outperform OpenSSL. Monitoring the per-
formance counters reveals this is primarily due to execution stalls when loading
the plain text. On the Core i5 13600KF, for instance, the OpenSSL AES-128-
CTR benchmark executes 80.4% more stall cycles on average, and 161% more
stall cycles with a concurrently pending L3 cache miss. Contrarily, our HMAC
implementation’s throughput is 13.4% lower than OpenSSL’s. This is expected,
as the code requires changes to eliminate indirect branches, load round constants
from the code, and backup internal state.

While Lixom-Light is faster than Lixom on average, the overhead is low. The
most significant difference occurs in the high-contention HMAC-SHA256 bench-
mark, where Lixom-Light’s throughput is 4.9% higher than Lixom’s. This, too,
is expected, as Lixom loses its progress up to the last checkpoint when inter-
rupted, whereas Lixom-Light does not. However, there is virtually no overhead
with the AES benchmarks. For AES-128-CTR, Lixom’s average throughput is
even 0.3% higher than Lixom-Light’s. We conclude that register clearing has a

10



HMAC-SHA256 AES-128-CTR AES-128-GCM

10−7

10−6

10−5

S
ec

on
d

s
p

er
K

ey

OpenSSL Lixom-Light Lixom Setup Free

Fig. 4: Mean time required for allocating and freeing encryption contexts (n =
214, Intel Core i5 13600kf). Less is better.

minor impact on performance if the protected code section has appropriate re-
covery mechanisms. Note, however, that an algorithm more complex than HMAC
or AES may require more involved recovery procedures, increasing performance
degradation from register clearing.

Setup Costs. Another source of overhead are setup and teardown costs.
Lixom requires creating and freeing a separate executable memory segment for
every secret we use, meaning we need to modify the NX bit in the page tables.
In contrast to standard memory allocations, this always requires a system call.
For Lixom, creating and freeing XOM requires a hypercall on top of this. Fig-
ure 4 shows the overhead of the setup. Both Lixom-Light and Lixom have setup
overheads that are higher than an unprotected OpenSSL version. However, using
sub-page granularity XOM eliminates most of the freeing costs for AES. This
way, system- and hypercalls are only necessary when all 128B sub-pages in an
XOM region are freed. For the AES benchmarks, we allocate and free the sub-
page XOM ranges in 16 kB chunks, so we only need a hypercall after freeing all
encryption contexts in this range. Our HMAC implementation does not use this
mechanism, hence the significantly higher freeing costs. These results indicate
that Lixom is better suited for applications with few, rarely changing encryption
keys. Note that our results are an upper bound for Lixom’s setup costs. There
is still room for optimization.

Application Performance. Finally, we investigate the performance impact
of Lixom on the popular nginx web server using the Phoronix test suite [22]. Its
nginx benchmark measures the number of requests nginx can handle per second
while using our AES-128-GCM implementation for TLS connections. We use this
benchmark because nginx is a worst-case scenario given Lixom’s cost profile in
the previous experiments. Encryption keys are frequently exchanged, meaning
that nginx should be among the applications most affected by the high setup
costs. We expect other real-world applications to be less affected. For comparison,
we also perform a benchmark with Gramine-SGX v1.7 [42], which allows running
nginx inside an SGX enclave. For this SGX benchmark only, we use KVM (Linux
v6.1.0) as the hypervisor, as Xen does not fully support SGX. This benchmark
is performed on a Core i7 8700, as neither of the other processors supports SGX
Launch Control, which Gramine-SGX requires.

11



20 100 200 500 1000 4000
No. of Parallel Connections

8.5

9.0

9.5

10.0

10.5

R
eq

ue
st

s
pe

r
Se

co
nd

Core i7 7700k×103

20 100 200 500 1000 4000
No. of Parallel Connections

2.0

4.0

6.0

8.0

10.0

Core i7 8700×103

20 100 200 500 1000 4000
No. of Parallel Connections

14.0

15.0

16.0

17.0

18.0

19.0

20.0

Core i5 13600kf×103

OpenSSL Gramine SGX Lixom Lixom-Light

Fig. 5: Results from the Phoronix nginx benchmark v.3.0.1, which measures the
number of HTTPS requests processed per second with parallel connections.

Figure 5 illustrates our results. As expected, Lixom reduces nginx’s perfor-
mance, with Lixom incurring a higher overhead than Lixom-Light. However, this
overhead is significantly smaller than in the setup benchmark. Lixom-Light re-
duces the amount of requests per second by roughly 13% on average across all
configurations, and Lixom reduces them by roughly 18%. Also, Lixom is sig-
nificantly faster than Gramine-SGX, which reduces them by 83%. This demon-
strates that despite Lixom’s high setup costs, the effect on real-world software
is not as significant as in a raw benchmark, even in a worst-case scenario.

6.2 Attack Resistance

This section shows that Lixom mitigates many architectural and microarchi-
tectural attacks, including transient execution attacks such as Spectre [20] and
Meltdown [25]. We also discuss interrupt-based attacks [35] and DMA attacks.

Spectre-like attacks. We experimentally verify that XOM prohibits direct
read access even under speculation and thus prevents attackers with Spectre read
primitives from disclosing secrets in memory. The attack surface is, therefore, re-
stricted to program sections where secrets are in the registers. Our programming
rules effectively prevent the successful exploitation of these sections. Spectre-
BTB [20] and Spectre-RSB [26] are impossible, and direct branches only target
code within the protected code section. Furthermore, disclosure gadgets out-
side this section cannot be used since the program can only leave this section
through exit points that erase secrets. If the protected code segments are free of
exploitable Spectre gadgets, we can guarantee resistance against Spectre.

Other Transient Execution Attacks. Meltdown-type attacks exploit lazy
exception handling in combination with out-of-order execution [9]. Such attacks
have targeted various microarchitectural buffers, including the L1 data cache [25,
45], store buffer [8], load ports [46], and line-fill buffer [36]. However, none of these
buffers hold any secret information in the context of Lixom. The programming
rules prohibit storing secrets in memory, and loading secrets from memory uses
instruction fetches, which affect none of these buffers directly. The only buffer

12



in the core’s memory subsystem that may hold instructions is the L2 cache,
which, to our knowledge, is unaffected by any such attack. Therefore, attacks
like Meltdown [25] and Foreshadow [48] do not threaten Lixom’s confidentiality,
even on affected processors. We experimentally verify this with an Intel Core
i7 7700K processor. However, Lixom cannot protect secrets against attacks that
target the vector registers, such as ZenBleed [31], Downfall [28], and RFDS [1].
These attacks are mitigated using microcode updates, making Lixom secure on
these affected CPUs if the newest microcode is applied.

Side Channel Attacks. Side channels are a well-known threat to the con-
fidentiality of cryptographic operations. As with any implementation of a cryp-
tographic algorithm, we expect code for Lixom to be free from key-dependent
control flow and other key-dependent memory access patterns. Such program-
ming techniques prevent timing and cache-based side channels [32].

Interrupt-based attacks. Information gathering through interrupts is one
of the most potent attack vectors against XOM. Naturally, this affects key ma-
terial stored in the registers, which a privileged attacker can disclose with a
well-timed interrupt. We argue that Lixom’s register clearing fully prevents the
leakage of cryptographic secrets through malicious interrupts. However, an at-
tacker can still infer instruction semantics by observing changes in unprotected
registers. Previous work demonstrates the practicability of similar code-recovery
attacks [35]. We stress that the goal of Lixom is to protect cryptographic secrets,
not to prevent code disclosure.

DMA attacks. Attacks leveraging peripheral devices with Direct Memory
Access (DMA) bypass the processor’s MMU and, thus, the page table configu-
ration entirely. However, we can mitigate DMA attacks using an IOMMU, such
as Intel’s VT-d [18]. Our implementation of Lixom already considers this, pre-
venting DMA peripherals from accessing XOM regions.

7 Discussion

7.1 Deployment and Potential Applications

Lixom is generic and applicable to a wide range of use cases. Therefore, the most
practical means of deploying Lixom is in the form of a cryptographic library next
to a set of hypervisor patches. While users can also integrate Lixom-compliant
cryptography into projects directly, this necessitates assembly programming. Fu-
ture work may explore the code generation for Lixom with a compiler pass.

Digital Rights Management (DRM) systems enforcing the copyright asso-
ciated with remotely distributed media is another use case for Lixom. DRM
systems encrypt media before delivery and only allow decryption in a restricted
environment to prevent leakage of the encryption key. Modern DRM systems
such as Google’s Widevine rely on a TEE for this purpose [33]. However, many
consumer-level x86 processors are not equipped with a TEE, forcing DRM sys-
tems to utilize obfuscation-based software-only mechanisms instead [33].

We argue that Lixom can improve upon pure obfuscation. With a TPM, it
is possible to remotely attest the hypervisor’s integrity to media distributors. If

13



keys are exchanged with the hypervisor and then made available to guests with
Lixom, its use is governed by a trusted component without reducing performance.
This is generic and does not require the entire DRM system to be implemented
in the hypervisor. Furthermore, since operating systems like Windows already
use virtualization for security [27], we expect that this is easy to integrate.

Furthermore, Lixom can also efficiently allocate and manage EPT-enforced
XOM for other purposes. While the primary functionality of Lixom is to hide
cryptographic secrets, we envision our implementation’s potential for further
research involving XOM. We make our code publicly available, hoping it will
facilitate future developments in this field. For example, it may help implement
a leakage-resistant diversity scheme akin to Readactor [12].

7.2 Related Work

Other Ways to Create Execute-only Memory. While Lixom relies on
explicit hardware support for XOM, other ways to enforce execute-only per-
missions exist. For instance, Sparks and Butler propose ShadowWalker [39], a
technique to hide kernel rootkits via a split TLB. The instruction TLB’s state
differs from that of the data TLB through a special page fault handler, which
yields different address translations depending on the type of access. However,
shared higher-level TLBs make a split TLB unreliable on recent hardware [40].
Execute-no-Read (XnR) [3] uses a custom page-fault handler to keep only a slid-
ing window of the most recently used code pages readable. Kwon et al. propose
uXOM [21], which leverages unprivileged memory instructions on ARM Cortex-
M. Such instructions always perform unprivileged memory accesses, regardless
of the program’s actual privileges. Hence, a privileged program with only unpriv-
ileged memory instructions can execute privileged code but not read it. Finally,
approaches like LR2 [6] and kRˆX [34] require only the standard W ⊕X policy
to enforce XOM, using range checks and software-based load address masking.

Microarchitectural Defense Mechanisms. T-SGX [38] defends against
controlled-channel attacks on SGX using Intel TSX. T-SGX assumes a TEE-
specific attack model in which the enclave is trusted, but the operating system
is not. Most closely related to our work, Guan et al. [16] protect encryption
keys by performing AES encryptions inside a TSX transaction. However, this
approach is limited by the TSX transaction length.

Memory-less Encryption. Programs for Lixom must rely on memory-less
encryption, where any key-dependent information remains in the registers. This
concept was pioneered by TRESOR [30], which stores AES keys in the debug
registers to defend against cold boot attacks. Later works, such as PRIME [13],
Copker [15] and Mimosa [23] demonstrate the practicability of memory-less en-
cryption for RSA. Yang et al. propose a memory-less implementation of ECDH
key exchange algorithm with curve SECT163K1 [50].

Cryptographic Secrets in Protected Code. As part of uXOM, Kwon
et al. proposed embedding encryption keys into XOM on ARM Cortex-M [21].
uXOM’s threat model does not include transient execution or a malicious kernel,
and the approach, therefore, lacks Lixom’s defense measures. Yang et al. propose

14



the PLCrypto library [51]. PLCrypto leverages the programming model of indus-
trial Programmable Logic Controllers, where only data is remotely accessible.
Hence, it stores cryptographic secrets in code to prevent manipulation.

8 Conclusion

This paper presented Lixom, a novel and generic technique for protecting crypto-
graphic secrets with execute-only memory. Lixom-Light defends against transient
execution attacks, and Lixom additionally protects secrets from the kernel of a
VM guest. We implemented 3 case studies for Lixom, showing its applicability
to password checking, AES encryption, and message authentication. Our perfor-
mance studies showed that Lixom works with real-world software and can achieve
a better throughput for AES than OpenSSL. Lixom can serve as a low-cost hard-
ening technique in many applications using AES, and its unique properties are
particularly well-suited for DRM systems.

Acknowledgment

We would like to thank our anonymous shepherd, and our anonymous reviewers
for their insightful and constructive feedback.

References

1. “INTEL-SA-00898: 2024.1 IPU - Intel Atom Processor Advisory,” 2024,
accessed 2024-08-03. [Online]. Available: https://www.intel.com/content/www/
us/en/security-center/advisory/intel-sa-00898.html

2. “AMD64 Architecture Programmer’s Manual,” Advanced Micro Devices Inc., 2024.
3. M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and J. Pewny, “You

can run but you can’t read: Preventing disclosure exploits in executable code,” in
ACM SIGSAC CCS, 2014.

4. M. Bauer, L. Hetterich, M. Schwarz, and C. Rossow, “Switchpoline: A Software
Mitigation for Spectre-BTB and Spectre-BHB on ARMv8,” in AsiaCCS, 2024.

5. P. Borrello, A. Kogler, M. Schwarzl, M. Lipp, D. Gruss, and M. Schwarz, “ÆPIC
Leak: Architecturally Leaking Uninitialized Data from the Microarchitecture,” in
USENIX Security, 2022.

6. K. Braden, L. Davi, C. Liebchen, A.-R. Sadeghi, S. Crane, M. Franz, and P. Larsen,
“Leakage-resilient layout randomization for mobile devices.” in NDSS, vol. 16, 2016.

7. S. Brookes, R. Denz, M. Osterloh, and S. Taylor, “Exoshim: Preventing memory
disclosure using execute-only kernel code,” International Journal of Information
and Computer Security, 2022.

8. C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin, D. Moghimi,
F. Piessens, M. Schwarz, B. Sunar, J. Van Bulck, and Y. Yarom, “Fallout: Leaking
Data on Meltdown-resistant CPUs,” in CCS, 2019.

9. C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner, F. Piessens,
D. Evtyushkin, and D. Gruss, “A Systematic Evaluation of Transient Execution
Attacks and Defenses,” in USENIX Security, 2019.

15



10. D. Chakraborty, M. Schwarz, and S. Bugiel, “TALUS: Reinforcing TEE Confiden-
tiality with Cryptographic Coprocessors,” in FC, 2023.

11. G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “SgxPectre Attacks:
Stealing Intel Secrets from SGX Enclaves via Speculative Execution,” in EuroS&P,
2019.

12. S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi, S. Brun-
thaler, and M. Franz, “Readactor: Practical code randomization resilient to memory
disclosure,” in IEEE SP, 2015.

13. B. Garmany and T. Müller, “Prime: private rsa infrastructure for memory-less
encryption,” in ACSAC, 2013.

14. J. Gionta, W. Enck, and P. Larsen, “Preventing kernel code-reuse attacks through
disclosure resistant code diversification,” in IEEE CNS, 2016.

15. L. Guan, J. Lin, B. Luo, and J. Jing, “Copker: Computing with private keys without
ram.” in NDSS, 2014.

16. L. Guan, J. Lin, B. Luo, J. Jing, and J. Wang, “Protecting private keys against
memory disclosure attacks using hardware transactional memory,” in S&P, 2015.

17. M. Hedayati, S. Gravani, E. Johnson, J. Criswell, M. L. Scott, K. Shen, and
M. Marty, “Hodor:Intra-Process isolation for High-Throughput data plane li-
braries,” in USENIX ATC, 2019.

18. Intel, “Intel 64 and IA-32 Architectures Software Developer′s Manual Combined
Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4,” 2024.

19. I. R. Jenkins, P. Anantharaman, R. Shapiro, J. P. Brady, S. Bratus, and S. W.
Smith, “Ghostbusting: Mitigating spectre with intraprocess memory isolation,” in
Proceedings of the 7th Symposium on Hot Topics in the Science of Security, 2020.

20. P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre Attacks: Exploiting
Speculative Execution,” in S&P, 2019.

21. D. Kwon, J. Shin, G. Kim, B. Lee, Y. Cho, and Y. Paek, “uXOM: Efficient eXecute-
Only memory on ARM Cortex-M,” in USENIX Security, 2019.

22. M. Larabel and M. Tippett, “Phoronix test suite,” Phoronix Media, 2011, accessed
2024-08-03. [Online]. Available: https://www.phoronix-test-suite.com/

23. C. Li, L. Guan, J. Lin, B. Luo, Q. Cai, J. Jing, and J. Wang, “Mimosa: Protect-
ing private keys against memory disclosure attacks using hardware transactional
memory,” IEEE Transactions on Dependable and Secure Computing, 2021.

24. M. Li, Y. Zhang, and Z. Lin, “CrossLine: Breaking “Security-by-Crash” based Mem-
ory Isolation in AMD SEV,” in SIGSAC, 2021.

25. M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Man-
gard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown: Reading
Kernel Memory from User Space,” in USENIX Security, 2018.

26. G. Maisuradze and C. Rossow, “ret2spec: Speculative Execution Using Return
Stack Buffers,” in CCS, 2018.

27. Microsoft, “Virtualization-based security (vbs),” 2021. [Online]. Available: https://
docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs

28. D. Moghimi, “Downfall: Exploiting speculative data gathering,” in USENIX Secu-
rity, 2023.

29. M. Morbitzer, M. Huber, J. Horsch, and S. Wessel, “Severed: Subverting amd’s
virtual machine encryption,” in EuroSec, 2018.

30. T. Müller, F. C. Freiling, and A. Dewald, “TRESOR Runs Encryption Securely
Outside RAM,” in USENIX Security, 2011.

31. T. Ormandy, “Zenbleed,” 2023. [Online]. Available: https://lock.cmpxchg8b.com/
zenbleed.html

16



32. D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and Countermeasures:
the Case of AES,” in CT-RSA, 2006.

33. G. Patat, M. Sabt, and P.-A. Fouque, “Exploring widevine for fun and profit,” in
2022 IEEE Security and Privacy Workshops (SPW). IEEE, 2022.

34. M. Pomonis, T. Petsios, A. D. Keromytis, M. Polychronakis, and V. P. Kemerlis,
“kRˆ X: Comprehensive Kernel Protection against Just-In-Time Code Reuse,” in
EuroSys, 2017.

35. M. Schink and J. Obermaier, “Taking a look into Execute-Only memory,” in
USENIX WOOT, 2019.

36. M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T. Prescher, and
D. Gruss, “ZombieLoad: Cross-Privilege-Boundary Data Sampling,” in CCS, 2019.

37. M. Seaborn and T. Dullien, “Exploiting the dram rowhammer bug to gain kernel
privileges,” Black Hat, vol. 15, no. 71, 2015.

38. M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX: Eradicating controlled-
channel attacks against enclave programs,” in NDSS, 2017.

39. S. Sparks and J. Butler, “Shadow walker: Raising the bar for rootkit detection,”
Black Hat Japan, vol. 11, no. 63, 2005.

40. J. Torrey, “More shadow walker: Tlb-splitting on modern x86,” Blackhat USA,
2014.

41. D. Trujillo, J. Wikner, and K. Razavi, “Inception: Exposing new attack surfaces
with training in transient execution,” in USENIX Security, 2023.

42. C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A practical library OS for
unmodified applications on SGX,” in 2017 USENIX Annual Technical Conference
(USENIX ATC 17), 2017.

43. P. Turner, “Retpoline: a software construct for preventing branch-target-injection,”
2018. [Online]. Available: https://support.google.com/faqs/answer/7625886

44. A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler, P. Druschel,
and D. Garg, “ERIM: Secure, efficient in-process isolation with protection keys
(MPK),” in USENIX Security, 2019.

45. J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silber-
stein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow: Extracting the Keys
to the Intel SGX Kingdom with Transient Out-of-Order Execution,” in USENIX
Security, 2018.

46. S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze, K. Razavi,
H. Bos, and C. Giuffrida, “RIDL: Rogue In-flight Data Load,” in S&P, 2019.

47. A. Voulimeneas, J. Vinck, R. Mechelinck, and S. Volckaert, “You shall not (by)
pass! practical, secure, and fast pku-based sandboxing,” in EuroSys, 2022.

48. O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens, M. Sil-
berstein, R. Strackx, T. F. Wenisch, and Y. Yarom, “Foreshadow-NG: Breaking
the Virtual Memory Abstraction with Transient Out-of-Order Execution,” 2018.

49. J. Wikner and K. Razavi, “Retbleed: Arbitrary speculative code execution with
return instructions,” in USENIX Security, 2022.

50. Y. Yang, Z. Guan, Z. Liu, and Z. Chen, “Protecting elliptic curve cryptography
against memory disclosure attacks,” in Information and Communications Security,
L. C. K. Hui, S. H. Qing, E. Shi, and S. M. Yiu, Eds., Cham, 2015.

51. Z. Yang, Z. Bao, C. Jin, Z. Liu, and J. Zhou, “Plcrypto: A symmetric crypto-
graphic library for programmable logic controllers,” IACR Transactions on Sym-
metric Cryptology, 2021.

52. R. Zhang, L. Gerlach, D. Weber, L. Hetterich, Y. Lü, A. Kogler, and M. Schwarz,
“CacheWarp: Software-based Fault Injection using Selective State Reset,” in
USENIX Security, 2024.

17


