
Rapid Reversing of Non-Linear CPU Cache Slice Functions:
Unlocking Physical Address Leakage

Mikka Rainer, Lorenz Hetterich, Fabian Thomas, Tristan Hornetz,
Leon Trampert, Lukas Gerlach and Michael Schwarz

CISPA Helmholtz Center for Information Security
Saarbrücken, Germany

Abstract—Microarchitectural attacks are a growing threat to
modern computing systems. CPU caches are an essential but
complex element in many microarchitectural attacks, making
it crucial to understand the inner workings. Despite progress
in reverse-engineering techniques, non-linear cache-slice func-
tions remain challenging to analyze, especially in recent Intel
hybrid microarchitectures.

In this paper, we introduce a novel approach towards
reverse-engineering complex, non-linear cache-slice functions,
particularly on modern Intel CPUs with hybrid microarchi-
tectures. Our method significantly advances prior work by
understanding the specific structure of microarchitectural hash
functions, reducing the time required for reverse-engineering
from days to minutes. In contrast to prior work, our technique
successfully handles systems with 512 GB of memory and
diverse slice configurations. We present 13 newly identified
functions used for cache-slice addressing and extend existing
functions to support systems with more DRAM for multiple
CPU generations. Additionally, we introduce an unprivileged
virtual-to-physical address oracle that is a direct consequence
of the complexity of the non-linear slice functions. Our method
is particularly effective on modern Intel hybrid CPUs, in-
cluding Alder Lake and Meteor Lake, where previously used
methods for measuring slices or leaking physical addresses
are unavailable. In 3 case studies, we validate our approach,
demonstrating its effectiveness in executing targeted Spectre
attacks on non-attacker-mapped memory, enabling DRAMA
attacks, and creating cache eviction sets. Our findings em-
phasize the increased attack surface introduced by complex
cache-slice functions in modern CPUs.

1. Introduction

Microarchitectural attacks pose a significant threat to
modern computing systems, which are constantly evolv-
ing in complexity and scale. These attacks exploit sub-
tle nuances in the implementation details of CPUs, the
so-called microarchitecture. As the complexity of modern
CPUs grows, so does the surface area available for ex-
ploitation, leading to numerous microarchitectural attacks.
Microarchitectural attacks have been shown on various parts
of computing systems, such as side-channel attacks on
caches [10], data leakage from internal CPU buffers [4], or

fault attacks on the DRAM [47]. A frequent element in such
attacks is the CPU cache: either directly as a covert or side
channel [40] or indirectly by requiring access to the DRAM,
circumventing the cache [31], [50]. Consequently, reverse-
engineering the cache is often a critical preliminary step
to understanding the implementation details and mounting
effective attacks. Fortunately, as the number of microar-
chitectures is limited, such reverse-engineering is often a
one-time effort, and the results can be applied to multiple
CPUs. Previous work reverse-engineered various details of
caches, such as addressing functions [11], [24], [25], [27],
[40], [43], [44], [58], [68], internal structures [69], buses [5],
[49], replacement policies [1], [17], [51], or predictors [38].

In this paper, we make two key observations that chal-
lenge common assumptions of previous works. First, while
many aspects of caches have been reverse-engineered, non-
linear cache-slicing functions remain challenging to reverse-
engineer despite recent advancements [11]. These non-linear
slice functions, common in modern Intel CPUs with hy-
brid microarchitectures, introduce additional complexity into
the reverse-engineering process. Second, microarchitectural
attacks often assume that physical address information is
readily available. Physical addresses are often necessary for
attacks targeting structures such as the DRAM or CPU
caches, where precise indexing depends on the physical
address used as input to various microarchitectural hash
functions [11]. Although these two observations appear dis-
tinct, we demonstrate that a deeper understanding of cache-
slice functions allows constructing an oracle for translating
virtual addresses to physical addresses. We demonstrate
how attackers, even without privileged code execution, can
construct such an oracle using timing side channels.

Our primary contribution is a generic approach for the
efficient reverse-engineering of full non-linear cache-slice
functions for a wide range of Intel CPUs, including the
new hybrid microarchitectures. We extend prior work [11]
that used Gröbner bases to reverse-engineer cache slices by
incorporating the common structures we identify in Intel
cache-slice functions. This advancement eliminates previous
limitations, such as being able to reverse-engineer only a
limited number of bits. It drastically reduces the required
reverse-engineering time from several days to mere minutes.
Our approach is the only one that can reverse-engineer non-
linear cache-slice functions for modern systems with more

than 4GB of memory across various microarchitectures.
We demonstrate this by reversing the non-linear cache-
slice function for a system with 512GB DRAM which is
not feasible with previous approaches. Due to our efficient
approach, we can provide reverse-engineering results for all
major microarchitectures from the 5th to the 13th genera-
tion, including various slice counts from 2 to 24. We present
13 previously unknown functions used as components in
cache-slice functions and extend known functions to be
usable on systems with more DRAM.

Building on our reverse engineering of the full non-linear
function, we introduce a novel method for translating virtual
addresses into physical addresses. Physical address infor-
mation is beneficial for several microarchitectural attacks,
such as DRAMA [50], Rowhammer [35], [57], [67], Fore-
shadow [23], [56], [61], eviction-based cache attacks [13],
[37], [65], [71], or ZombieLoad [54], and also kernel ex-
ploitation [29]. We extend previous side channels that deter-
mine the cache slice using timing measurements [11], [18],
[68] to also work on hybrid microarchitectures. On these
systems, a simple minimum is not sufficient, as cores have
different frequencies, requiring dynamic thresholding and
separation of Gaussian distributions. By measuring cache
slice behavior within a target memory region and leveraging
the full cache-slice function, we infer the corresponding
physical address, given that slice functions operate directly
on physical addresses. We adapt the Knuth-Morris-Pratt [33]
algorithm to efficiently recover this information in linear
time without storing the entire slice-function output in mem-
ory. Our analysis shows that we require less than 0.8%
of the available DRAM as a contiguous memory block to
determine the physical address reliably. We demonstrate that
this is a realistic assumption on real-world Linux systems.

Furthermore, we demonstrate that our technique is ef-
fective even on new Intel hybrid CPUs, such as those in the
Alder Lake, Raptor Lake, and Meteor Lake series, which
incorporate multiple different types of CPU cores. There is
no direct mapping of slices to cores on these hybrid CPUs
anymore, as cores might share cache slices [11]. On Me-
teor Lake and newer architectures, the previously-used per-
formance counters—commonly used in reverse-engineering
cache addressing functions [43]—are unavailable, rendering
previous methods ineffective. We introduce a new method
for automatically finding cache-based performance counters
correlating with slice accesses, re-enabling measurements on
these new architectures. Furthermore, this also generalizes
to older architectures, making the measurement approach
more generic than previous work [11], [43], [44].

We demonstrate the 3 case studies to validate our results.
We confirm the accuracy of our reverse-engineered func-
tions, and the v2p-oracle, by generating perfect cache evic-
tion sets for an AES T-table attack, implementing a DRAMA
covert channel, and executing a targeted Spectre attack by
letting the victim reuse the memory for which we obtain
the physical address. They demonstrate the practicality of
our approach and emphasize the additional attack surface
introduced by non-linear cache-slice functions.
Contributions. We summarize our contributions as follows.

• We introduce a generic approach to efficiently reverse-
engineer complete non-linear cache-slice functions, ex-
tending prior work and reducing the time required from
days to minutes.

• We show non-linear cache-slice functions for systems
with up to 512GB of memory and for hybrid CPU mi-
croarchitectures, spanning cache configurations from 2
to 24 slices across multiple microarchitectures, present-
ing the largest collection of full cache-slice functions.

• We introduce a novel method for translating virtual
addresses to physical addresses using an unprivileged
timing side channel to determine the active cache slice.

• We demonstrate the effectiveness of our technique on
new Intel hybrid CPUs, where previously used perfor-
mance counters are unavailable, validating our results
with 3 case studies, including cache eviction sets, a
DRAMA attack, and a targeted Spectre attack.

Responsible Disclosure. We responsibly disclosed our
findings to Intel on November 15, 2024. Intel acknowledged
the findings.
Availability. The source code of our reverse-engineering
framework, the v2p-oracle and our case studies are open-
sourced at https://github.com/CISPA/LLCSliceReversing.
Outline. The remainder of this paper is organized as
follows. Section 2 provides the background required for
the remainder of the paper. Section 3 introduces our novel
algorithm to reverse-engineer non-linear cache-slice func-
tions in linear time. Section 4 demonstrates how an unprivi-
leged attacker can combine non-linear cache-slice functions
with timing side channels to build a virtual-to-physical
address oracle. Section 5 evaluates the v2p-oracle for differ-
ent systems. Section 6 demonstrates that the new reverse-
engineered slice functions and the v2p-oracle can be used
for various attacks relying on physical addresses. Section 7
introduces additional use cases for the v2p-oracle and slice
functions, discusses related work and mitigations. Section 8
concludes.

2. Background

In this section, we introduce the required background to
understand the remainder of this work.
Caches. Caches are essential components of modern CPUs,
providing fast access to frequently used data. Typically,
caches are organized in a hierarchical structure, with caches
being smaller but faster the closer they are to the CPU core.
In Intel CPUs, the last-level cache (L3) is the largest cache
and shared among all CPU cores. This makes the L3 an
attractive target for microarchitectural attacks.
Cache Slices. On modern Intel CPUs, the L3 is divided into
multiple slices. Typically, there is one slice per CPU core
that is accessed directly, while the other slices are accessed
via a bus. However, with the introduction of performance
and efficiency cores on recent Intel CPUs, direct access to
one slice is not limited to one CPU core but is possible
for multiple cores. Dividing the L3 into slices increases its
memory bandwidth, as multiple slices can be accessed in
parallel. Accesses to the L3 cache are distributed across

slices using a microarchitectural hash function H : p 7→ s
implemented in hardware. The hash function takes a phys-
ical address p and maps it to a slice s. It is designed to
distribute accesses uniformly to slices with minimal latency.
Cache Eviction. Since caches are limited in size, they must
evict data to accommodate new data. This process, called
cache eviction, may follow different replacement policies,
such as least-recently-used (LRU) [1]. Fine-grained control
over cache eviction requires constructing minimal eviction
sets, which can be used to evict specific cache sets [17].
Previous work constructed such sets via prior profiling or
leveraging knowledge of replacement policies and physical
addresses [17], [37], [65].
DRAM. DRAM is organized in channels, DIMMs, ranks,
banks, and rows, where each row stores 8 kB with one
capacitor per bit. The memory controller uses a microarchi-
tectural hash function [50] to map from physical addresses
to the channel, DIMM, rank, bank, and row. While these
hash functions are not disclosed, previous work has shown
that they can be successfully reverse-engineered via side
channels such as timing, physically probing the address
lines, or performance counters [22], [50]. When a DRAM
row is accessed, it needs to first be loaded into the so-
called row buffer, from which data can be transferred to
the CPU. If another row is accessed, the row buffer must
be written back to the respective row before the next row
can be loaded into the row buffer. Such collisions are called
row conflicts and introduce timing differences, which can
then be used to leak if two physical addresses fall into
the same DRAM bank. These conflicts can be utilized for
so-called DRAMA attacks, which include leaking secret-
dependent memory accesses from victims and a fast cross-
CPU covert channel [50]. For mounting these row conflict
side channels, virtual-to-physical address translation enables
mapping addresses to a specific bank.

3. Reverse-Engineering of Address to Slice
Mapping in Linear Time

In this section, we describe a novel divide-and-conquer-
based method to reverse-engineer the cache-slice function of
Intel CPUs. In contrast to prior work on the generic recovery
of hash functions [11], our method exploits the structure
of the cache-slice function, increasing reverse-engineering
efficiency. Consequently, we are not limited in the number
of input bits to the function, enabling the recovery of
functions on systems utilizing more than 4GB of mem-
ory. Our method is the first to completely and generically
reverse-engineer non-linear cache-slice functions on real-
world systems. Additionally, our targeted approach leads to
a performance improvement of several orders of magnitude.
This speedup makes reverse engineering practical for a large
number of systems, as the required time is reduced from
multiple days [11] even for small functions (23 input bits)
to mere minutes for large functions (33 input bits).

3.1. Limitations of Prior Work

Prior work on reverse-engineering cache-slice functions
has primarily focused on recovering linear functions [24],
[27], [40], [43], [58], with only a few partial and manual
results for non-linear functions [25], [44], [68]. Gerlach et al.
[11] were the first to demonstrate a generic reverse-
engineering approach for non-linear cache-slice functions.
While their work proposes a generic method for recovering
arbitrary non-linear hash functions, the presented approach
scales exponentially in the number of input bits. For ex-
ample, for the Intel Core i9-12900K, they only manage to
reverse-engineer the slice function for 31 output bits while
taking 5 d, making it infeasible to infer significantly more
bits of the function. This limits the applicability of their
approach to systems with at most 4GB of DRAM, less
memory than typically present in modern computer systems.

The main limitation of the Gerlach et al. [11] approach is
that it assumes next to no structural information about the
reverse-engineered hash function, except that it is a non-
complex shallow circuit. While this assumption makes the
approach highly generic, it is limited to functions with few
input bits. Consequently, the approach is not practical on
modern CPUs with typically at least 16GB of DRAM.

3.2. Structure Analysis

Our goal is to vastly improve the reverse-engineering
time for many input bits. While this is not generically
possible, we aim to reduce the search space by exploiting
the hash function’s specific structure. For this, we manually
analyze linear hash functions [43] and partially-reversed
non-linear hash functions [11], [44], [68].

Based on the observation that parts of linear hash func-
tions have been the same for more than 10 years [11],
[43], and also other microarchitectural hash functions often
stay the same over multiple generations [11], we make the
following assumption:

Assumption 1 Entire or partial functions for cache slices
are re-used across different microarchitectures and CPU
generations.

Moreover, the function must be fast and energy-efficient,
as it is evaluated for every L3 access. Additionally, it should
balance the loads equally across all slices, for which many
input bits are required. Based on Assumption 1, we assume
that several bits are combined using XORs and then used as
inputs to non-linear circuits. Previously known partial slice
functions confirm this assumption [11], [44].

Assumption 2 Cache-slice functions effectively have 2
stages: a linear combination of bits, and a non-linear
“merge” of the linear output.

Finally, CPUs from the same generation and with the
same microarchitecture exist with linear and non-linear slice
functions. Thus, we assume that CPU manufacturers do not
want to have a large set of entirely different function designs.

. . . 16 15 14 13 12 11 10 9 . . .

h0

h1

Figure 1: Linear XOR chains of address bits are fed
into a non-linear mixer-circuit resulting in non-linear hash-
function outputs h1, h2.

Assumption 3 Cache-slice functions are mainly defined
by the number and types of cores, not by the microarchi-
tecture generation.

Based on these assumptions and the existing partial slice
functions, we recognize that all slice functions combine two
building blocks: linear XOR chains, and non-linear chain
mixers.
XOR Chain. We define an XOR chain as a function

Lid(x) =

n⊕
j=0

(xj ∧ aj) (1)

Where x denotes the input (i.e., physical address), n the
highest used input bit, aj a binary mask that decides whether
the jth input bit is part of the function, and ‘id’ a unique
name for the chain. The output is a single bit.
Chain Mixer. We define a chain mixer Cn(x) as a function
that takes at least ⌈log2 (n)⌉ input bits and uniformly1

distributes the input number across n output buckets, i.e.,
the output is a number between 0 and n− 1. For example,
Figure 1 illustrates a (non-real) concept of a C3 chain mixer.
It takes an input between ‘0’ and ‘7’ (in the form of one
XOR chain per bit) and maps it to an output number between
‘0’ and ‘2’, i.e., the 2 bits h0 and h1.

By viewing the cache slice function as a combination of
multiple smaller building blocks, the number of XOR chains
and mixers is limited and easier to find. Further analyzing
how the mixer is applied leads to another insight into the
structure: Chain mixers are typically only used if necessary.
For example, in a CPU with 6 cache slices, these cache slices
can also be thought of as 2 groups of 3 slices. Thus, one
linear XOR chain uniformly distributes addresses among
the 2 groups, and the non-linear chain mixer C3 distributes
addresses among the 3 slices. Similarly, for a CPU with
12 cache slices, there are 4 hypothetical groups of 3 slices
each. This results in 2 linear XOR chains and a chain mixer
C3 that distributes addresses among the 3 slices within the
groups. We can easily infer which chain mixer Cn for a
CPU with x slices (with x not a power of two) is required:

n =
x

2l
where l = max

{
k ∈ Z≥0 |

x

2k
∈ Z and

x

2k
≡ 1 (mod 2)

}

1. It is not a perfect uniform distribution, but close to one [44]. This is
the result of using a fast, shallow circuit.

Observation 1 Chain mixers are required for the remain-
ing odd factor when dividing the number of slices by the
highest power of two smaller than the number of slices.
Other parts can use linear XOR chains.

Consequently, only a small number of chain mixers are
needed, especially as Intel CPUs with an odd number of
cores are rare.2 For example, only chain mixers C3 and C5

are required to build a cache-slice function for CPUs with
1, 2, 4, 6 (2 × 3), 8, 10 (2 × 5), and 12 (4 × 3) cores. By
looking at all the odd factors of all CPU core counts of
available Xeon CPUs [26], it becomes apparent that only 8
different chain mixers are required for them: C3, C5, C7,
C9, C11, C13, C15, and C19. Given that 4 P-cores share one
slice of the last-level cache, the Intel Core CPUs since Ivy
Bridge [26] have 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 16, and 18
slices, which can be covered by C3, C5, C7, C9, and C11.
Thus, an even lower number of chain mixers is required.

3.3. Divide-and-Conquer: Component Splitting

In addition to the insights about the structure of the
function, there is another observation that helps reverse-
engineer the function:

Observation 2 XOR gates allow creating a shallow circuit
that evenly distributes inputs to a number of buckets
that is a power of two. Chained with a nonlinear mixer,
the output bit distribution can be skewed in the desired
direction, while also imposing activation constraints to the
output bits.

For example, looking at the C5 mixer in Figure 12, we
see that if the most significant output bit is one, the lower
2 output bits are fixed to zero. Given that the XOR chains
output 1 in 50% of the cases, this happens in 3

16 ≈ 1
5 of

the cases. If the upper bit is zero, the lower bits each have a
50% probability of being one. This means that the function
hits each of the 5 buckets evenly often, for a uniformly
distributed input space. While it would be possible, to use
individual input bits as input to the mixer, this would not
distribute well in a shallow circuit. Therefore, the chain
mixers do not use individual input bits, but only the output
of the XOR chains.

We can split the reverse-engineering process into two
parts, independently recovering the chain mixer and the
XOR chains and combining them into the final cache-
slice function. Based on the structure, we even know the
type of chain mixer we have to reverse-engineer. Reverse-
engineering the linear XOR chain is trivial and can be
done within seconds [43]. If solved independently of the
XOR chains, the remaining linear chain mixer is a small
linear function with a few input bits—in our analysis, the
number of input bits never exceeds 10. To solve this small
function, we use a combination of approaches designed to
synthesize loop-free programs [19], [20]. Such approaches

2. Some exceptions exist, e.g., the Intel Xeon E7-2870 v2 from 2014
with 15 cores.

systematically search for a small function representation
given a function’s input-to-output mapping (truth table). As
the problem is complex, all state-of-the-art approaches scale
exponentially; however, our problem instances remain small
and, therefore, solvable. These approaches are exact and
reconstruct a minimal version of the function while being
efficient enough to recover our small mixer functions.

3.4. Efficient Reverse-Engineering Algorithm

Algorithm 1: Reverse-engineering Algorithm for
Slice Addressing

Input: Address size n, threshold 0 ≤ m ≤ n
Output: Function for all bits up to n
Step 1: Obtain the compact form of the slice
addressing function for bits 1 to m;

Record a pattern of tuples (address, slice) for
all addresses with m bits;

Create a truth table t from the pattern;
Reduce t with Espresso [3];
Synthesize function for t;

Step 2: Record a small pattern for each unknown
bit m+ 1 to n;

Step 3: Brute-force the upper bits bitwise from
m+ 1 to n;

Step 4: Obtain a final function for all bits up to n;

Due to the independence of the linear and non-linear
parts, we design a highly efficient reverse-engineering algo-
rithm, as shown in Algorithm 1. To summarize, we measure
the cache-slice output for a small memory region. This
is sufficient to recover the non-linear chain mixer using
counter-example guided synthesis for boolean formulas [21].
For this chain mixer, we know the number of XOR chains
that are used as the input. Additionally, we know the first
few bits of the XOR chains, similar to Gerlach et al. [11].

However, instead of using a mathematical approach to
solve the XOR chain, we brute-force the chains bitwise.
We add every physical address bit to the XOR chain and
test whether the output of this reconstructed guessed func-
tion agrees with the measured slice for randomly sampled
addresses. More formally, for every aj in Equation (1), we
test whether setting it to ‘0’ or ‘1’ results in the same output
as the measured slice, i.e., the ground truth. As all bits in
Equation (1) are independent, the number of tries is n, i.e.,
linear in the number of used input bits.

3.5. Complexity Analysis

Our new method has a time complexity of O(n+c) com-
pared to O(2n) with the state of the art from Gerlach et al.
[11]. The runtime of our method is linear with the number
of relevant bits n of the physical address. The time required
to obtain a compact form of the chain mixer is independent
of n and thus constant O(c), as we obtain the function for
a fixed number of bits. Brute-forcing the upper bits of the

physical address requires a fixed time per additional bit and
is, therefore, linear to the number of bits O(n).

3.6. Implementation

We measure all required patterns with a small C pro-
gram. We implement our reverse-engineering algorithm in
Python and use an SMT-based variant of counter-example
guided synthesis [19], [20] using the Z3 solver [6] to solve
the non-linear part of the functions. We brute-force the XOR
chains in a bit-by-bit fashion to obtain the final function.
Measurement Interface. The prerequisite for reverse-
engineering the slice function is to measure the accessed
cache slice of a chosen address. Although this is a solved
challenge on older microarchitectures, we have to reverse-
engineer the interface for new microarchitectures. Previous
work relied on performance counters documented by Intel
to measure the accesses to every cache slice [11], [43], [44].
The used performance counters are either the L3/CHA read
counters [44] for Xeon CPUs or the L3/CBox counters [43]
for Core CPUs. Unfortunately, all these counters are un-
documented for the newest generation of Intel CPUs, i.e.,
Meteor Lake (Core) and Sapphire Rapids (Xeon). Moreover,
the counter configuration differs from previous generations
and is no longer applicable.

We devised an automated approach to avoid relying on
recurring reverse-engineering efforts for current and future
microarchitectures. The main idea is to find any uncore
performance counter that correlates with the number of
slice accesses. We rely on the Linux intel_uncore_pmu
driver to get the base of the uncore events and iterate over
all possible 256 event selectors. For every event selector,
we iterate over the masks from 0 to 255. While masks can
be larger, previous relevant events did not use larger masks.
For each of the 216 event-mask combinations, we measure
the number of increments for every uncore counter when
accessing the same uncached memory location 212 times.
Theoretically, this should result in 212 accesses in one slice
and no access in any other slice. However, due to unrelated
memory accesses, both of the measuring application (e.g.,
stack and code) and other applications sharing the L3, we
accept up to 100% more accesses as expected per slice, and
also 100% more accesses in total over all slices.

Table 2 shows the automatically inferred events we
use for the measurement. As a quick verification, we test
whether the event results in the same slice over multiple
measurements within an arbitrarily chosen cache line and
in different (but consistent) slices for the adjacent cache
lines. Interestingly, while most events match the docu-
mented events, for some CPUs, the inferred events are
undocumented or used for a different event, according to
the documentation. On the Intel Core Ultra 7 155h (Me-
teor Lake), we use the listed but not documented counter
UNC_HAC_CBO_TOR_ALLOCATION.DRD, which we as-
sume counts uncore (UNC) cache-coherency events via the
table of requests (TOR) for demand reads (DRD). While
counters are documented for older generations (e.g., Broad-

well), all microarchitectures since the 10th generation use
undocumented counters that we automatically inferred.
Measurement. Our measurement program to record the
cache-slice pattern for a memory region is written in C.
A pattern consists of tuples of physical addresses and the
corresponding cache slice for a small memory region, i.e.,
1024 cache lines (64 kB). We record a pattern at the start
of the physical memory that is later used to obtain the non-
linear mixer function. We further measure the tuples for the
start of regions where a new bit of the physical address is
used. This data is used to recover the upper parts of the XOR
chains. We use PTEditor [53] to map the target physical
memory to a virtual address region.
Non-linear Solving. We solve the non-linear chain mixer
over a small pattern of 1024 cache lines (64 kB) at the start
of the physical memory. In practice, we observe that 1024
addresses are sufficient to recover the mixer function on
all tested CPUs. Keeping the number of addresses small is
essential to ensure that the XOR chains remain as small as
possible and that we recover only the non-linear mixer. We
use counter-example-guided synthesis [19] combined with
generic optimizations [20] to recover the mixer function. We
use the implementation from Sebastian Hack [21] for our
implementation. This implementation uses the Z3 solver [6]
to repeatedly query for short programs that satisfy the input-
output behavior specified by our function.

To reduce the problem’s complexity, we find a function
for each output bit separately, starting with the most signif-
icant bit. We create a truth table from the initial pattern as
an Espresso [3] PLA. This PLA is minimized with Espresso
to make the problem more tractable for the boolean-formula
synthesis [21]. As a last step, we use the counter-example-
guided synthesis [21] to recover the function. The input bits
are the lower bits of the physical address and the output bit
is the value of the current bit of interest of the slice index.
The functions for the lower bits are found by adding the
function of the most significant bit to the input bits as an
additional input bit, as this is a typical mixer structure (cf.
Section E). As we can fix the number of input bits to the
mixer function for this step, the time complexity is constant.
Linear-chain Recovery. Once the non-linear mixing func-
tion is known, efficiently recovering the linear XOR chains
is possible. Based on the following observation, the bits
used in the XOR chains can be found within seconds using
brute-force search. We know the function up to bit j. We
try each combination of appending bit j + 1 to the XOR
chains. For example, for 6 chains, there are 26 = 64 possible
extensions of the known function, i.e., bit j + 1 is either
used or unused for each chain. We use the recorded pattern
of (physical address, slice) tuples to verify the correctness
of the extended XOR chain and only accept the correct
extension. This process is repeated for all bits up to the
maximum number of physical address bits.

3.7. Results

We evaluate our method on 18 CPUs, as listed in Table 1.
The components of the reverse-engineered functions are

shown in the last column, where Lid denotes the linear XOR
chains and Cid the non-linear chain mixers. These boolean
functions are presented in Section E. From the evaluated
CPUs, 8 CPUs have a linear function, i.e., the number of
slices is a power of two, and 10 CPUs have a non-linear
function, i.e., the number of slices is not a power of two. Our
method successfully reverse-engineers the non-linear slice
functions for DRAM higher than 4GB.

Mixers are regularly reused across microarchitecture
generations. For example, the C3 (cf. Figure 11) mixer
is used on the Intel Xeon E-2176M (Coffee Lake), the
Intel Core i7-10710U (Comet Lake), and the Intel Core i9-
13900K (Raptor Lake). The only change from Intel Core
i7-10710U to Intel Core i9-13900K is the addition of a new
XOR chain L9b to cover the increased number of cores. We
discover 2 new mixers, C2 and C9, that were not observed
by any previous work [11], [43], [44]. Our experiments
further indicate that the same non-linear slice function is
reused for all CPUs with the same number of slices. For
example, the function composed of L6b|C3 is used in all
4 CPUs with 6 slices, independent of the number of cores.
The same applies for the function L6b|L9b|C3, which is used
in both CPUs with 12 slices.

XOR chains are also heavily reused across microarchi-
tecture generations, e.g., XOR chain L6c (cf. Figure 10) is
used as a mixer input in all non-linear cache-slice functions.
In our reverse-engineered functions, we report 23 different
XOR chains, of which 11 were previously unknown, and
12 were already observed in previous work [11], [43], [44].
Still, we extended 9 known ones to support more DRAM.

Observation 3 Even though the cache architecture
changed significantly on hybrid microarchitectures (non-
inclusive last-level cache and shared slices), the slice
functions did not change.

Notably, we found that on the Intel Xeon E5-2697 v4
(Broadwell) there are two linear XOR chains that are com-
bined with a C2 mixer. Even though this does not change
the output distribution, it might be used to balance the load
across the slices more evenly. With the introduction of the
hybrid microarchitectures, we see interesting combinations
of the number of slices and cores, which do not have a direct
relationship anymore. Note that the Intel Core i9-12900H
(Alder Lake) has 14 cores and 8 slices, and therefore has a
linear function, while the Intel Core i9-12900K (Alder Lake)
has 16 cores and 10 slices, and therefore has a non-linear
function. This can be explained by the fact that typically,
4 E-cores share one slice of the last-level cache, while 1
P-core has its own slice. We observe outliers in the Intel
Xeon Gold 6346 (Ice Lake) with 24 slices and 16 cores of
the same type and the Intel Core i5-13420H (Raptor Lake)
with 4 E-cores and 4 P-cores. Here, the number of slices
does not directly relate to the number of cores.

Observation 4 The common assumption that the slice
function is linear if the number of cores is a power of
two and vice versa does not hold anymore with the hybrid
microarchitectures.

TABLE 1: Our tested systems with non-linear and linear cache-slice functions, including our reverse-engineered slice
functions. Highlighted (yellow) cells indicate non-power-of-two values, illustrating that all combinations of power-of-two
and non-power-of-two values for cores and slices exist on modern Intel CPUs.

CPU µarch Cores Slices Memory Components
N

on
-l

in
ea

r

Intel Xeon E-2176M Coffee Lake 6 6 4GB L6b|C3

Intel Core i7-8700 Coffee Lake 6 6 16GB L6b|C3

Intel Core i7-10710U Comet Lake 6 6 16GB L6b|C3

Intel Core i5-13420H Raptor Lake 8 6 8GB L6b|C3

Intel Core i9-12900K Alder Lake 16 10 96GB L6b|C5

Intel Core i9-13900K Raptor Lake 24 12 16GB L6b|L9b|C3

Intel Core Ultra 9 285K Arrow Lake 24 12 64GB L6b|L9b|C3

Intel Xeon E5-2697 v4 Broadwell 18 18 512GB C2|C9

Intel Xeon Gold 6526Y Emerald Rapids 16 20 128GB L6b|L6f |C5

Intel Xeon Gold 6346 Ice Lake 16 24 64GB L6b|L6f |L8d|C3

L
in

ea
r

Intel Xeon E5-2683 v4 Broadwell 16 16 32GB L6a|L7a|L8a|L9a

Intel Core i7-9700K Coffee Lake 8 8 64GB L6a|L9a|L10a

Intel Core i7-10510U Comet Lake 4 4 16GB L6a|L7a

Intel Core i3-1005G1 Ice Lake 2 2 16GB L6a

Intel Core i7-1185G7 Tiger Lake 4 4 32GB L6a|L9a

Intel Core i7-11700 Rocket Lake 8 8 16GB L6a|L9a|L10a

Intel Core i9-12900H Alder Lake 14 8 32GB L6a|L9a|L10a

Intel Core Ultra 7 155H Meteor Lake 16 8 32GB L6a|L9a|L10a

We benchmark our approach against previous work from
Gerlach et al. [11]. For the Intel Core i9-12900K, we
improve the measurement duration for reverse engineering
from 5 d to 8.19 s. For the Intel Xeon E-2176M, the im-
provement is from 23 h to 23.52 s. Moreover, we recover
the function up to 96GB, whereas Gerlach et al. [11] only
recover it up to 4GB, which is unrealistic for real-world
attacks. Our approach significantly outperforms the state
of the art, especially when required to reverse-engineer the
entire function and not a limited set of input bits. This is
because the approach of Gerlach et al. [11] scales expo-
nentially with the number of input bits, while ours scales
linearly. The speedup is in the range of 3500 to 53 000 for
systems with up to 4GB of DRAM—we cannot compare
for more DRAM, as previous approaches are infeasible.

3.8. Slice Function Correctness

To evaluate the correctness of the reverse-engineered
slice function, we rely on spot-checking [9]. As Ger-
lach et al. [11] show, measuring all slices for a system with
4GB of DRAM takes 5 days. For our systems with up to
512GB installed DRAM, this approach is infeasible with
an estimated measurement time of 1.75 years per system.
Thus, we only check for a small random subset of addresses
whether the slice index measured with performance counters
and the output of the reverse-engineered slice function agree.

We rely on the sample size formula n = Z2×p×(1−p)
E2 ,

where we choose Z = 3 for 99.9% confidence, p = 0.5
as we do not know the error rate, and E = 0.01 for

1% error margin. Thus, we have to sample 22 500 random
addresses for our test. If all of these addresses are correct,
we have a 99.9% confidence level with 1% error margin
that the reverse-engineered slice function is correct. All our
reverse-engineered functions passed this test. Additionally,
Section 6 shows the correctness in practical use cases. By
demonstrating that we can mount real-world attacks using
the reverse-engineered slice functions, we show that even if
errors were left, they are negligible for attackers.

4. Virtual-to-Physical Address Oracle

In this section, we demonstrate how we can exploit the
complexity of non-linear cache-slice functions for building
an unprivileged virtual-to-physical address translation ora-
cle. For the sake of readability, we refer to this oracle as v2p-
oracle. In the following, we denote a sequence generated by
applying the slice function to all cache lines in a memory
region as a slice index sequence. The v2p-oracle builds on
the observation that, in contrast to linear slice functions,
non-linear slice functions lead to slice index sequences
in which sub-patterns rarely repeat. Sufficiently long sub-
patterns in this sequence only occur once in the physical
address space, starting at a unique base input. Given a slice
pattern for a sufficiently long physically contiguous memory
range, we can uniquely infer this input, i.e., the range’s base
physical address. Figure 2 illustrates this concept for a toy
non-linear slice function. In this example, every slice index
sequence of length 3 is unique for the memory range. Thus,
by knowing the sequence and the slice function, it is possible

h(a) = (¬h0 ∧ a1)||((a2 ∨ a4 ∨ a5) ∧ (a2 ∨ a3) ∧ a0)

0 0 1 1 0 2 1 2 . . .

h(a · · · a+2) = 011 → a = 0x40

h(a · · · a+2) = 102 → a = 0xc0

0x0 0x200

Figure 2: Example illustrating the physical-address recovery.
When measuring a sufficiently large slice index sequence,
this sequence does not repeat in the physical address space.
Finding the slice index sequence hence results in the input
to the slice function, i.e., the physical address.

to infer the input to the slice function. While the concept
is intuitive, we discuss 4 main challenges when practically
implementing it as an unprivileged attacker.

4.1. Threat Model

We assume an unprivileged attacker with native code
execution on the system. The attacker runs as a single
unprivileged process on the system. The goal of the attacker
is to retrieve the physical address of an (accessible) virtual
address. The CPU requires a non-linear slice function, which
is nowadays a common property of Intel CPUs. 55.9%,
i.e., the majority of CPUs since the introduction of the
hybrid microarchitecture (12th generation) have a non-linear
slice function. This ratio is similar when looking at large-
scale deployments in the cloud. For example, on AWS, we
analyzed the slice numbers for all bare-metal Intel instances.
17 of the 34 (50%) available bare-metal instances fulfill our
requirement. Even considering all 1704 Intel Core and Xeon
CPUs since the introduction of cache slices, 35.3% have a
non-linear cache-slice function. We assume that there is no
direct architectural access to physical addresses (e.g., via the
now restricted /proc/self/pagemap interface). We ex-
pect that there is no CPU vulnerability that directly extracts
page-table entries and thus leaks physical addresses [39],
[61], [63]. We do not rely on software vulnerabilities or
Spectre gadgets in the kernel or other processes.

4.2. Challenges

To use the v2p-oracle in a realistic setting with an un-
privileged attacker, we must solve the following challenges.
C1: Unprivileged Slice Measurement. We require a tech-
nique to measure the slice number of an address that works
in unprivileged code. The techniques used for measuring
the slice number during reverse-engineering require access
to performance counters of shared microarchitectural el-
ements. For security reasons, these performance counters
are only available to privileged users on modern Linux
distributions. Thus, while they are extremely useful for
reverse-engineering the slice function (a one-time effort),

they cannot be used for the v2p-oracle within our threat
model. Section 4.3 describes how we rely on a timing side
channel in combination with unprivileged Linux APIs to
reliably retrieve this information as unprivileged user.
C2: Contiguous Physical Memory. Inferring the physical
address from the slice index sequence using our approach
requires the underlying memory to be physically contiguous.
However, an unprivileged user does not have any control
over the allocation of physical memory. This is done trans-
parently by the memory allocator in the kernel. Section 4.4
describes how we can reliably get physically contiguous
memory by exhausting the fragmented memory blocks and
by increasing the chances of getting 2MB pages.
C3: Slice Function Identification. We have to know the
slice function used by the CPU to infer the underlying
physical address from the slice measurements. However,
an attacker cannot reverse-engineer this function, as access
to slice measurements (which we solve by solving C1) and
knowledge of physical addresses are required. This leads to
the circular dependency where physical address knowledge
is required for inferrence. Hence, Section 4.5 introduces
an unprivileged side-channel-based approach for identifying
which (known) slice function is used by the CPU.
C4: Physical Address Reconstruction. The final challenge
is to infer the correct physical address from the measure-
ments (cf. C1) and the identified slice function (cf. C3). As
the slice function is a lossy compression function, it is not
possible to fully recover the input from the output. Thus,
Section 4.6 introduces an efficient algorithm to reconstruct
the input (i.e., the physical address) to the slice function
from multiple measurements.

4.3. C1: Mapping Virtual Addresses to Slices

As an unprivileged user cannot access the required per-
formance counters, we instead rely on a timing side channel.
While a timing side channel has already been used in prior
work for measuring the timing differences induced by cache
slices [11], [18], it does not provide the slice number on
hybrid microarchitectures. The reason is that the access
latencies vastly differ between performance (P) and energy-
efficient (E) cores. Thus, the approach by Gerlach et al. [11]
relying on the minimum access time only sometimes results
in the correct slice. Figure 3 illustrates the problem on an
Alder Lake i9-12900H with 8 slices. If the slice belongs to a
P core, the minimum access (or flush) latency corresponds to
the slice from which the measurement originates. However,
if the slice belongs to an E core, the “fast” access time to
the local slice is still slower than the “slow” access time to
the remote slice from a P core.

Instead of looking for the minimum, we measure a per-
core threshold to determine if a memory access is to the
local slice or a remote slice. For this, we require at least
one address that maps to the local slice of a core. As we
do not have any ground truth, i.e., we do not know any
address that fulfills that property, we have to rely on timing
measurements again. We measure the access time to a large
number of random addresses. Since the number of slices

P 0 P 1 P 2 P 3 P 4 P 5 E 0 E 1

60

70

80

L
at

en
cy

(c
yc

le
s)

(a) L3 access times to an address from different cores if the slice
belongs to a performance (P) core, in this example, to P3. The
further away the other performance core, the higher the timing.
The ring-bus architecture leads to a nearly symmetric distribution
of timings. Efficiency (E) cores are slower and thus show much
higher timings.

P 0 P 1 P 2 P 3 P 4 P 5 E 0 E 1

70
75
80
85

L
at

en
cy

(c
yc

le
s)

(b) L3 access times to an address from different cores if the
slice belongs to an efficiency (E) core, in this example, to E1.
Performance (P) cores are significantly faster, making remote slice
access from P cores even faster than local slice accesses from E
cores.

Figure 3: Comparison of L3 access times from performance
and efficiency cores.

67 68 69 70
0
20
40
60
80

Latency (cycles)

C
ou

nt

Figure 4: The Gaussian distributions of access times of one
core to addresses on different slices. The local slice is always
the fastest (marked in red).

is comparably small, several of these addresses are in the
local slice and thus have the lowest latency. However, as
timings always have some measurement error, we cannot
simply choose the minimum.

As the measurements result in multiple normal distribu-
tions, depending on how long it takes to access the slice,
our measurements are a Gaussian mixture model [8]. Such
a measurement is illustrated in Figure 4. Note that the
figure is recorded on a machine where the distributions
are easily distinguishable—on other machines, they are far
more interleaved. Thus, we can use the EM algorithms [45]
to infer the parameters of each Gaussian distribution. The
Gaussian distribution with the smallest mean is then used
as the threshold.

Solution 1 Per-core thresholds extracted from Gaussian
mixture models are required for unprivileged slice mea-
surements on hybrid CPU microarchitectures.

4.4. C2: Recording a Pattern

For recording the slices, we use a contiguous virtual
memory region allocated using mmap. As shown in pre-
vious work [28], [47], [62], choosing a sufficiently-large
memory block (e.g., 4GB) leads to a contiguous physical
memory range after the kernel runs out of fragments in the
allocator. We achieve the best result by using the mmap
flag MAP_LOCK, which tries to keep the physical pages in
memory, in combination with a read- and writable mapping.
A side effect of this flag is that, similar to MAP_POPULATE,
the physical memory is allocated nearly atomically, increas-
ing the chance of getting contiguous memory that stays
in memory and is not swapped. By allocating multiple
gigabytes and only using the last part, we reliably have
physically-contiguous memory (cf. Section 5.2). While sim-
ple memory allocations were sufficient in our experiments,
more advanced techniques to obtain physically contiguous
memory have been outlined in recent research [36], [59].
Transparent Huge Pages. Alternatively, we can use dif-
ferent tricks for physically contiguous memory in specific
scenarios. On several Linux distributions, transparent huge
pages are enabled by default [7]. We have verified this for
several distributions, as shown in Table 3 in the appendix.
On such systems, we can first exhaust small pages by using
a dummy allocation of several megabytes up to gigabytes.
Afterward, we mmap a private anonymous memory range
with a size that is a multiple of 2MB. Immediately fol-
lowing the allocation, we initialize the memory range, call
madvise with MADV_HUGEPAGE, and sleep for 2 s. The
sleep is essential to give the operating system time to convert
the underlying physical pages to transparent huge pages.
The resulting huge pages have a significant chance of being
physically contiguous—even on our system with only 16GB
of DRAM, we get on average 62.4 (± 6.9) contiguous huge
pages with this trick when allocating a 512MB range.
Page Cache. In specific scenarios, especially with Row-
hammer [15], it can be beneficial to know the physical
address of a page residing in the page cache. If this is
either desired or not a limitation, we demonstrate another
possibility that we use to get physical contiguous memory
reliably. Instead of using an anonymous memory mapping
using mmap, we map a dummy file, e.g., containing ze-
ros. This results in the pages being taken from the page
cache [14], which might feature lower fragmentation.

Solution 2 Reliably getting Physically-contiguous mem-
ory is achievable with mmap and madvise flags.

Noise Reduction. Independently of how we allocate the
contiguous physical memory, we require essentially noise-
free measurements. Since we rely on a timing side channel,
we inherently have measurement inaccuracies. To increase
the likelihood of detecting errors, we measure the slice of
different offsets within the same cache line. As cache lines
are never distributed over slices, all offsets must result in
the same measured slice. We repeat this process until the
measurements agree. Our measurements result in a slice
index sequence over the physically contiguous memory.

4.5. C3: Determining the Slice Function

To identify the employed slice function as an unpriv-
ileged attacker, we use a side-channel-based approach to
detect which known slice function parts are used by the
CPU. As an unprivileged user can read the CPU brand, it
is theoretically possible to build a database containing all
CPUs since the introduction of cache slices and their slice
function. However, with more than 1700 CPUs implement-
ing cache slices [70], this is infeasible. Such an approach
could only be used if the target set of CPUs is small enough,
e.g., for all CPUs in the AWS cloud.

We rely on a generic method that only requires knowl-
edge of the linear parts Lx of the cache-slice functions.
As discussed in Section 3.7, these functions are heavily
reused across CPUs and microarchitectures, resulting in only
a few distinct functions (cf. Figure 10). The main idea is
to measure whether two addresses that only differ in bit
i where i ∈ {0, ..., log2(pagesize) − 1} have different L3
access latencies. These bits of the virtual address are also
the same in the physical address. Thus, by flipping these bits,
we directly influence the physical address, and, with that, the
slice. We observe that it is in many cases sufficient to only
detect which bits of a 4 kB page, i.e., the 12 least-significant
address bits, are used in a function to detect which linear
chain is used. For 2MB pages, this is possible for all linear
chains, since none of them use the same bits from 0 to 20.

Solution 3 The linear chains of the slice function can be
inferred by measuring the influence of the address bits in
the page offset on the L3 latency.

For CPUs with more than 2 slices, flipping a bit used in
a slice function results in a different slice depending on the
slice function that uses this bit. However, as slice timings
can be distinguished (cf. Section 4.3), we can also infer to
which slice function a bit belongs with the timing difference.
We use the access-time difference between the address v
and v ⊕ 2i to group the bits using 1-dimensional k-means
clustering, with k = number of slices.

4.6. C4: Mapping a Pattern to the Physical Address

The remaining challenge is to infer the physical address
based on a slice index sequence for an arbitrary contigu-
ous memory range and knowledge of the slice function.
Depending on the resources available to the attacker, we
choose one of two different approaches. If an attacker can
use a large amount of memory or outsource the computation
to a different machine with a large amount of memory,
we employ pre-computed suffix and longest common prefix
(LCP) arrays to recover the physical address with a time
complexity of O(|P | + log(n)), where P is the recorded
pattern and n is the amount of DRAM in the target system.
Such an implementation also allows fuzzy matching if we
can accept higher runtimes. Otherwise, we use an adapted
version of the Knuth-Morris-Pratt (KMP) pattern-matching
algorithm with a sliding window over the slice function, with

a time complexity of O(n) but without the requirement to
store the output of the entire slice function.
Suffix and LCP Arrays. A string’s suffix array is a sorted
array of its suffixes [42]. The main benefit of this data
structure is that it allows for locating all occurrences of
a substring P (needle) in a string S (haystack) with only
binary searches. Combined with the LCP array, which stores
the lengths of the longest common prefixes for consecutive
entries in a suffix array, this achieves a search time of only
O(|P |+ log(|S|)). Furthermore, constructing the suffix and
LCP arrays only requires O(|S|) time [48], making this
approach ideal for large strings.

To utilize these properties, we treat the slice index
sequence as the haystack, with its length depending on
the amount of DRAM in the target system. As the slice
function is constant, we only need to compute the suffix
array once for every CPU and DRAM configuration. Given
a slice pattern, we can then efficiently locate its occurrences,
retrieving its physical address if it is unique or a list of
candidate addresses otherwise. Note that the LCP array’s
maximum corresponds to the longest repeating substring,
giving us an upper bound for the contiguous memory we
need to uniquely recover the physical address. If we permit
errors, suffix arrays can also improve the performance of
fuzzy matching [34]. Due to the memory requirements, we
mainly use this approach for the evaluation of slice functions
and not for the end-to-end attacks.
Adapted KMP. For attacks, we adapt the KMP algorithm
to use a sliding window for the haystack to avoid storing all
possible outputs of the slice function in memory. The KMP
algorithm is another efficient (O(n)) algorithm for finding
the position of a substring (needle) within a long string
(haystack). The original KMP algorithm expects that both
the haystack and needle are in memory, which is unrealistic
on the target system as the haystack requires 16 kB per 1MB
of DRAM. Thus, on larger systems, the haystack would
require multiple gigabytes of memory.

In contrast, our sliding window adaption only needs to
keep the prefix array in memory, which only depends on the
length of the needle, i.e., our measurements. All haystack
values are computed on the fly within the sliding window
with the additional optimization that every haystack value
is only computed once. Additionally, we change the KMP
algorithm such that it does not only return the first match
but optionally all matches of the needle within the haystack.
Solution 4 An adapted window-based KMP algorithm can
recover the physical address from a slice index sequence
with linear runtime and negligible memory overhead.

5. Evaluation

In this section, we evaluate the v2p-oracle. The effec-
tiveness of the v2p-oracle depends on 3 key points: The
minimum length of a slice index sequence that does not
repeat on the machine (Section 5.1), the average size of a
contiguous physical memory block allocated by the oper-
ating system (Section 5.2), and the reliablity of the slice

4 8 16 32 64 128 256 512
0.0

0.5

1.0

Total DRAM (GB)

%
D

R
A

M

Core i9 12900K Xeon E5-2697 v4

Figure 5: Length of the longest repeating sub-pattern relative
to DRAM size.

function measurement (Section 5.3). While all three points
are interdependent, i.e., a larger allocation size results in a
longer slice index sequence which is easier to recognize if
measured precisely, we also focus on all points individu-
ally. This is useful, as the allocator changes with different
operating systems and versions, while the slice function can
change with new CPU generations. Similarly, improvements
in slice-function measurements or fuzzy matching for the
slice index sequence can be implemented independently. We
evaluate the v2p-oracle on 2 systems and are able to recover
the physical address of a virtual address whithin 22min on
an Intel Core i7-10700 and within 30min on an Intel Xeon
E-2176M, both with 16GB of RAM.

5.1. Slice Index Sequence Evaluation

We determine the smallest amount of physically contigu-
ous memory for the recovered physical address to be unique
as well below 1% of the system’s DRAM. This bound is
given by the longest repeating sub-pattern in the function’s
output sequence, which we can efficiently locate with LCP
arrays (cf. Section 4.6). We evaluate the output sequences
of all DRAM configurations that are a multiple of 4GB
in the ranges for which we reverse-engineered the function.
Figure 5 shows our results for the Core i9-12900K and Xeon
E5-2697 (cf. Section A for the remaining functions). First,
we observe that the size of the longest repeating sub-pattern
is always well below 1% of the system’s DRAM. This holds
for all non-linear slice addressing functions we analyze,
including those not shown in Figure 5. With the Core i9-
12900K, we require at most 0.77% of the installed DRAM
as contiguous memory to recover the physical address. For
the Xeon E5-2697 v4, which has more cache slices, we only
require 0.08%. Second, the longest repeating sub-pattern
often occurs near the highest power of 2 in the evaluation
range. Hence, this pattern’s relative size is typically lowest
when the DRAM size is a power of 2, as the next-largest
repetition is just out of range. To illustrate this, we need
at most 2052 kB for the Xeon E5-2697 v4 with 16GB of
DRAM, which amounts to roughly 0.01%. With 20GB, we
need approximately 16MB, or roughly 0.08%. In contrast,
the contiguous memory required with linear slice addressing
functions is significantly larger. With the Xeon E5-2683 v4,
we require up to 50% of the system’s DRAM as contiguous
memory. Nevertheless, the v2p-oracle may still be practical
for some configurations with linear functions. If the Xeon

20% 40% 60% 80%
0

1

2

3

Memory Pressure

%
D

R
A

M

Figure 6: Average amount of contiguous memory for alloca-
tions under varying memory pressure (blue) and maximum
amount of required physically contiguous memory (dashed).

E5-2683 v4 runs with 8GB of DRAM, we only need 3.1%
(256MB), for instance.

5.2. Memory Allocator Evaluation

We experimentally determine how much physically con-
tiguous memory an unprivileged user can typically get from
the operating system with a simple allocation under varying
memory pressure. For this, we recreate the Memory Uti-
lization and Contiguity experiment from Islam et al. [28].
However, instead of recording the fraction of allocations
with a physically contiguous part of at least 520 kB, we
measure the average size of the largest physically contiguous
part of each allocation over 25 executions.

The result is shown in Figure 6. For memory pres-
sures up to 66.7% (77.8% including the measured 1GB
allocation), the average amount of physically contiguous
memory obtained by allocations exceeds even the maximum
requirement of 0.77% of physical memory. Thus, a simple
call to mmap usually suffices to obtain enough physically
continguous memory.

5.3. v2p-oracle Evaluation

The unprivileged measurement to determine the cache
slice of one cache line takes, on average, around 5.6 million
CPU cycles. This is below 1ms on all tested machines. The
time already includes repeating the measurement 30 times
to make it essentially noise-free on all our tested machines.
We evaluate our approach on the Intel Core i7-10710U by
measuring the slice for 1 000 000 cache lines. We achieve
a success rate above 99.99%. To rule out the remaining
errors, we record the pattern multiple times and use majority
voting to create a noise-free pattern. Additionally, the dy-
namic threshold calibration for hybrid systems is a one-time
overhead of 13 s. However, as we must determine the slice
for multiple thousand cache lines (cf. Section 5.1), this one-
time overhead is negligible for the entire runtime. The v2p-
oracle is evaluated on the Intel Core i7-10710U and Intel
Xeon E5-2176M, both with 16GB of DRAM. A complete
translation on the Intel Core i7-10710U takes 22min with
a pattern length of 8MB and on the Intel Xeon E5-2176M
30min with a pattern length of 25MB.

6. Case Studies

In the following, we present 3 case studies showing
how access to physical addresses can improve attacks. We
show how a victim can be coerced to reuse previously
attacker-controlled memory for which the attacker inferred
the physical address using the v2p-oracle. Based on this,
we demonstrate a case study with a Spectre gadget leaking
memory via the kernel physmap, i.e., the kernel mapping
of the entire physical memory. Additionally, we show that
an attacker can mount DRAMA attacks using the v2p-
oracle. To demonstrate the correctness of our non-linear slice
function, we efficiently generate eviction sets for attacks
such as Evict+Reload and Prime+Probe on a server system
with 512GB memory.

6.1. Spectre Attack

In this case study, we use the v2p-oracle for a victim
page by “massaging” the memory allocator. We demonstrate
that it is possible to infer a page’s physical address, unmap
it, and trick a victim into reusing this page with known
physical address. Combined with a Spectre gadget targeting
the physmap (allowing to leak memory from arbitrary known
addresses), this leaks victim memory.
Setup. In line with other work [41], [55], we introduce a
Spectre gadget for demonstration. This gadget is a bit-wise
Spectre-V1 gadget performing an out-of-bounds access to a
pointer in the physmap like those obtained using kmalloc.
We assume the attacker knows this pointer and can trigger
the Spectre gadget via ioctl. The attacker can coarsely
synchronize with the victim to run before the victim. In
our proof of concept, the victim maps a single page.
Attack. The attacker first allocates a large buffer, resulting
in physically contiguous memory (cf. Section 4.4) for which
they infer the physical address. After inferring the physical
address, the attacker frees the memory range, causing the
victim to reallocate one of the previously freed physical
pages. The victim then stores their secret on the allocated
page. Consequently, the attacker knows the physical address
of the victim page and uses the Spectre gadget to leak the
targeted secret via the physmap.
Reallocation of Attacker Data. We analyze the realloca-
tion patterns on multiple devices running Linux 6.8.0 and
Linux 6.11.5. The reallocated addresses are always located
close to the end of the attacker-unmapped large buffer and
consistently correspond to the same (virtual) offsets within
the buffer. This offset stays consistent across different sys-
tem configurations running the same kernel version. Thus,
an attacker can measure this offset once for a given victim
executable and kernel and then reuse this offset for attacks
on other devices. Even if the victim-mapped buffer spans
multiple pages, we find that all of its physical addresses are
consistently predictable. This is in line with Frame Feng
Shui described by Kwong et al. [36].
Evaluation. We evaluate our proof of concept on an Intel
Core i7-8700 running Linux 6.8.0. We run the code 10 000

times and record the victim page offset relative to the pre-
dicted attacker buffer index and whether the Spectre attack
correctly recovers all 20 bytes. In 7106 cases, the predicted
page is allocated, and the complete secret is recovered with-
out error. In 173 cases, the predicted page is allocated, but
the Spectre attack fails to recover at least one bit correctly.
The predicted attacker buffer index is one page off in the
remaining 2721 cases. However, as this is a constant offset,
the victim can be coerced into allocating one of two pages
with a known physical address in all runs. In 72.79% of
executions, the physical address can be predicted.
Conclusion. While the v2p-oracle is limited to addresses
mapped by an attacker, this limitation can be overcome by
coercing a victim to reuse addresses with known physical
addresses after they are unmapped. On devices running
Linux, an attacker can accurately predict which pages are
reused by the victim.

6.2. DRAMA Attack

In this case study, we demonstrate that the v2p-oracle
can be used to mount a DRAMA covert channel [50].
Setup. We mount the covert channel on an Intel Core i7-
8700 machine with 16GB of memory. We assume the slice
and DRAM addressing functions have been successfully
reverse-engineered before setting up the covert channel. The
sender and receiver processes allocate a large contiguous
memory region and use the v2p-oracle to infer the physical
base address. Since the v2p-oracle uses timing measure-
ments on L3 slices and is, therefore, susceptible to noise
from other processes, we start the receiver process, wait
for the v2p-oracle to complete its work, and then start the
sender process. We randomly select a virtual address that
maps to the attacker-chosen DRAM set 0, which is used
for the covert channel. Since the DRAMA covert channel
relies on inducing row conflicts, the chosen virtual addresses
must map to different rows; otherwise there would be no row
conflicts. We rely on the fact that the v2p-oracle sets up two
sufficiently big mappings that span many rows, removing the
chance that we get the same row for sender and receiver.

For simplicity, the sender and receiver synchronize via
the shared time stamp counter accessible via rdtscp. If the
corresponding sender bit is ‘1’, we introduce a row conflict
on DRAM set 0 by keeping the row open. We alternatingly
use clflush and mov to keep the data in the row buffer.
The receiver measures the DRAM access time of its virtual
address (DRAM set 0) and compares it against a threshold.
If the access time exceeds the threshold, the receiver logs
the current bit to be a ‘1’, ‘0’ in the other case.
Evaluation. The v2p-oracle takes approx. 30min with a
pattern length of 25MB to set up a contiguous mapping with
a known physical address. The total setup time of the covert
channel is, therefore, 1 h. Note that this is a one-time effort;
after that, the covert channel can operate for an arbitrary
time span. We send 1MB of random data over the covert
channel and observe a transmission rate of 1.04 kbit/s with
a low error rate of only 0.1%. This case study shows that the

v2p-oracle can be successfully used for mounting an end-to-
end DRAM row conflict covert channel from unprivileged
processes. While the setup time is relatively high, this is an
unoptimized one-time effort.

6.3. Perfect Cache Eviction for AES T-Tables

With the knowledge of physical addresses and the slice
function, we can build perfect eviction sets without relying
on collision-based eviction-set generation [64].
Setup. We run our case study on the Intel Xeon E5-2697 v4
with 18 slices and 512GB memory. For such a system, no
slice function was previously known, and the approach by
Gerlach et al. [11] is not applicable as the measurement
would take roughly 1.75 years. We demonstrate the perfect
eviction set on the well-known example of AES T-tables
from OpenSSL 3.4.0 (released October 2024). Note that the
T-table implementation is largely unchanged since OpenSSL
1.0.1e, which is regularly used as a “benchmark” for side
channels [10], [11], [18], [37], [51]. Our implementation
is based on the code from Gruss et al. [18]. However,
we reduce the number of encryptions to 1000 and use our
reverse-engineered slice function.
Evaluation. We execute our attack 1000 times. Figure 9
(Section D) shows the typical heatmap for the T-table ac-
cesses, with the expected diagonal. We fully recover the
correct key in 97% of the runs, with only single-byte errors
in the remaining runs. Thus, these remaining cases can be
easily brute-forced in negligible time. Our minimal eviction
set also outperforms a Flush+Reload-based implementation.
On average, recovering the key with our eviction takes
328ms±0.1, while Flush+Reload takes 379ms±0.09.

7. Discussion

In this section, we discuss other CPU architectures,
using additional side channels, related work and propose
mitigations.

7.1. Other Architectures

In this paper, our focus is purely on Intel CPUs, as
they have the most complex slice functions. As our reverse-
engineering efforts show, server CPUs used in the cloud
and new hybrid microarchitectures have complex non-linear
slice functions. Thus, as evaluated in Section 5.3, they
allow building an efficient virtual-to-physical address oracle.
While AMD also has the concept of cache slices, the design
is different and has significantly lower complexity. AMD
uses so-called core complexes (CCX), which typically con-
sist of 4 cores that share a part of the last-level cache. Thus,
the slice function within the CCX is significantly simpler,
using only bits within the page offset [11]. Consequently,
the slice function on AMD does not depend on any unknown
part of the physical address and can thus not be used for a
virtual-to-physical address oracle. ARM also supports cache
slices [2], but they are similarly limited. Moreover, we are

unaware of any work reverse-engineering the cache-slice
function on ARM devices or the existence of cache slices
on any hardware RISC-V CPU.

7.2. Additional Side-channel Information

For the v2p-oracle, we solely rely on the cache-slice
function. While this results in a practical oracle (cf. Sec-
tion 4), the v2p-oracle could be improved further by con-
sidering additional side-channel information. For example,
additional constraints for the physical address could be
generated via the DRAM addressing function [50]. Previous
work showed that the DRAM addressing function can be
used on older Intel CPUs to infer the cache set from a virtual
address [52]. We expect that additional effects, such as from
TLB timings [12] or page-table-walk contention [73], can
further improve the v2p-oracle. We leave the evaluation of
how the combination of different side-channel leakages can
be used to improve the v2p-oracle to future work.

7.3. Related Work

In the following, we cover related work on slice reverse
engineering and virtual-to-physical address oracles.
Reverse Engineering of L3 Slice Addressing Functions.
The microarchitectural hash functions that map physical
addresses to L3 cache slices are linear if the number of
slices is a power of two [24], [27], [43] and non-linear
otherwise [11], [44], [68]. A generic approach for reverse-
engineering linear slice-addressing functions was first shown
by Maurice et al. [43]. The linear nature of these func-
tions makes it possible to interpolate them from a small
number of measurements. Gerlach et al. [11] presented the
first general approach to reverse-engineer non-linear slice-
addressing functions, advancing previous techniques that
required manual reverse-engineering of the structure [68] or
only partially reverse-engineered the functions by relying
on look-up tables [44]. While their approach is generic and
can be applied to infer minimal versions of arbitrary non-
linear functions, the time complexity of their approach is
exponential in the number of function input bits.
Virtual-to-Physical Address Oracles. Until 2015, un-
privileged users could access physical addresses via the
/proc/self/pagemap interface on Linux systems [32].
As a response to previous attacks, this interface was re-
stricted to privileged users [29], [46]. Since then, researchers
have developed various techniques to obtain information
about address mappings. Gruss et al. [16] used the prefetch
instruction to determine if two virtual addresses map to
the same physical address. Mounting the approach on the
physmap region, which maps the physical memory into the
kernel address space, allowed for determining virtual-to-
physical mappings. However, recent work by Schwarzl et al.
[56] attributed the leakage to a Spectre gadget in the kernel,
and not the prefetch instruction. Wikner et al. [66] and
Trujillo et al. [60] also used Spectre gadgets in the kernel
to perform a cache attack on the physmap region. Most
notably, such Spectre-based approaches rely on the presence

of a Spectre gadget in the kernel. Such gadgets are, however,
regularly patched. The SPOILER [28] side channel can leak
the 8 least significant bits of a physical page number by
using timing differences induced by the dependency res-
olution logic that serves speculative loads. Meltdown-type
attacks [4], such as Meltdown [39] or RIDL [63] can leak
physical addresses as page-table entries also end up buffers
from which these attacks leak. However, modern CPUs used
in this paper are unaffected by these vulnerabilities.

7.4. Mitigations

In our case studies (Section 6), we show that complex
cache-slice functions increase the attack surface of modern
CPUs. This motivates the need for suitable mitigations.
Software. In a system that uses a vulnerable cache-slice
function, the operating system can use a modified memory
allocator [72] that does not give large physically contiguous
regions to user-space processes. This prevents an attacker
from obtaining a sufficiently large “fingerprint” pattern to
uniquely identify the physical base address. However, the
attacker can still reduce the number of candidate physical
base addresses.
Hardware. A possible hardware defense could be to add
a 64-bit IV that is XORed with the physical address before
feeding it to the cache-slice function. The IV is generated
randomly upon boot. This would lead to different patterns
every time a system is restarted. Given that the attacker has
no method to infer the IV, attacks become significantly more
difficult [11].

8. Conclusion

We provided a significant step forward in reverse-
engineering complex, non-linear cache-slice functions on
modern Intel CPUs, particularly those with hybrid architec-
tures. By exploiting the structural characteristics of these
microarchitectural hash functions, our method drastically
reduces reverse-engineering time and handles large mem-
ory configurations and diverse slice structures, resulting in
multiple new slice functions. We introduced a novel un-
privileged virtual-to-physical address oracle, the v2p-oracle,
which combines the slice function with a timing side channel
to infer physical addresses. We demonstrated the practical-
ity of our approach for targeted Spectre attacks, DRAMA
attacks, and eviction-set creation, showing the attack surface
introduced by complex cache-slice functions.

Acknowledgements

We want to thank our shepherd and the anony-
mous reviewers, for their comments and valuable sug-
gestions. This work has been supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) - 491039149. We thank Daniel Weber for helpful feed-
back on this work, and Katharina Buchthal for proposing the
use of the KMP algorithm.

References

[1] Andreas Abel and Jan Reineke. Reverse engineering of cache re-
placement policies in intel microprocessors and their evaluation. In
International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2014.

[2] Arm Limited. Cache slice and master port selection, 2024. URL:
https://developer.arm.com/documentation/100453/0300/functional-
description/l3-cache/cache-slices-and-portions/cache-slice-and-
master-port-selection?lang=en.

[3] Robert K Brayton, Gary D Hachtel, Curt McMullen, and Alberto
Sangiovanni-Vincentelli. Logic minimization algorithms for VLSI
synthesis. Springer Science & Business Media, 1984.

[4] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-
jamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin,
and Daniel Gruss. A Systematic Evaluation of Transient Execution
Attacks and Defenses. In USENIX Security, 2019. Extended classi-
fication tree and PoCs at https://transient.fail/.

[5] Miles Dai, Riccardo Paccagnella, Miguel Gomez-Garcia, John Mc-
Calpin, and Mengjia Yan. Don’t mesh around: Side-Channel attacks
and mitigations on mesh interconnects. In USENIX Security Sympo-
sium, 2022.

[6] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt
solver. In International conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 337–340. Springer, 2008.

[7] Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Herbert Bos, Cris-
tiano Giuffrida, and Kaveh Razavi. Smash: Synchronized many-sided
rowhammer attacks from javascript. In USENIX Security Symposium,
2021.

[8] Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong. Math-
ematics for machine learning. 2020.

[9] Funda Ergün, Sampath Kannan, S Ravi Kumar, Ronitt Rubinfeld, and
Mahesh Viswanathan. Spot-checkers. In ACM Symposium on Theory
of Computing, 1998.

[10] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A Survey
of Microarchitectural Timing Attacks and Countermeasures on Con-
temporary Hardware. Journal of Cryptographic Engineering, 2016.

[11] Lukas Gerlach, Simon Schwarz, Nicolas Faroß, and Michael Schwarz.
Efficient and Generic Microarchitectural Hash-Function Recovery. In
S&P, 2024.

[12] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Trans-
lation Leak-aside Buffer: Defeating Cache Side-channel Protections
with TLB Attacks. In USENIX Security Symposium, 2018.

[13] Marc Green, Leandro Rodrigues-Lima, Andreas Zankl, Gorka Irazo-
qui, Johann Heyszl, and Thomas Eisenbarth. AutoLock: Why Cache
Attacks on ARM Are Harder Than You Think. In USENIX Security
Symposium, 2017.

[14] Daniel Gruss, Erik Kraft, Trishita Tiwari, Michael Schwarz, Ari
Trachtenberg, Jason Hennessey, Alex Ionescu, and Anders Fogh. Page
Cache Attacks. In CCS, 2019.

[15] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas
Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom.
Another Flip in the Wall of Rowhammer Defenses. In S&P, 2018.

[16] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch Side-Channel Attacks: Bypassing SMAP
and Kernel ASLR. In CCS, 2016.

[17] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowham-
mer.js: A Remote Software-Induced Fault Attack in JavaScript. In
DIMVA, 2016.

[18] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Man-
gard. Flush+Flush: A Fast and Stealthy Cache Attack. In DIMVA,
2016.

[19] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam
Venkatesan. Synthesis of loop-free programs. ACM SIGPLAN
Notices, 2011.

[20] Winston Haaswijk, Mathias Soeken, Alan Mishchenko, and Giovanni
De Micheli. Sat-based exact synthesis: Encodings, topology families,
and parallelism. IEEE TCAD, 2019.

[21] Sebastian Hack. shack/Synth: Synthesis of Loop-free Programs, 2024.
URL: https://github.com/shack/synth.

[22] Christian Helm, Soramichi Akiyama, and Kenjiro Taura. Reliable
reverse engineering of intel dram addressing using performance coun-
ters. In International Symposium on Modeling, Analysis, and Simula-
tion of Computer and Telecommunication Systems (MASCOTS), 2020.

[23] Lorenz Hetterich, Fabian Thomas, Lukas Gerlach, Ruiyi Zhang,
Nils Bernsdorf, Eduard Ebert, and Michael Schwarz. ShadowLoad:
Injecting State into Hardware Prefetchers. In ASPLOS, 2025.

[24] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical Timing
Side Channel Attacks against Kernel Space ASLR. In S&P, 2013.

[25] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas
Eisenbarth, and Berk Sunar. Seriously, get off my cloud! Cross-VM
RSA Key Recovery in a Public Cloud. Cryptology ePrint Archive,
Report 2015/898, 2015.

[26] Intel. Product specifications, 2024. URL: https://ark.intel.com/
content/www/us/en/ark.html.

[27] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Systematic
reverse engineering of cache slice selection in intel processors. In
Euromicro Conference on Digital System Design, 2015.

[28] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk Gul-
mezoglu, Thomas Eisenbarth, and Berk Sunar. SPOILER: Speculative
Load Hazards Boost Rowhammer and Cache Attacks. In USENIX
Security Symposium, 2019.

[29] Vasileios P Kemerlis, Michalis Polychronakis, and Angelos D
Keromytis. ret2dir: Rethinking kernel isolation. In USENIX Security
Symposium, 2014.

[30] The kernel development community. Transparent Hugepage Support,
Kernel Version 6.12.0-rc6, 2024. URL: https://www.kernel.org/doc/
html/latest/admin-guide/mm/transhuge.html.

[31] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flip-
ping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors. In ISCA, 2014.

[32] Kirill A. Shutemov. Pagemap: Do Not Leak Physical
Addresses to Non-Privileged Userspace, 2015. URL:
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/
?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce.

[33] Donald E. Knuth, James H. Morris, Jr., and Vaughan R. Pratt. Fast
pattern matching in strings. SIAM Journal on Computing, 1977.

[34] Philipp Koehn and Jean Senellart. Fast Approximate String Matching
with Suffix Arrays and A* Parsing. In Conference of the Association
for Machine Translation in the Americas, 2010.

[35] Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu Kim, Moritz
Lipp, Nicolas Boichat, Eric Shiu, Mattias Nissler, and Daniel Gruss.
Half-Double: Hammering From the Next Row Over. In USENIX
Security Symposium, 2022.

[36] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom.
RAMBleed: Reading Bits in Memory Without Accessing Them. In
S&P, 2020.

[37] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. ARMageddon: Cache Attacks on Mobile
Devices. In USENIX Security Symposium, 2016.

[38] Moritz Lipp, Vedad Hadžić, Michael Schwarz, Arthur Perais,
Clémentine Maurice, and Daniel Gruss. Take a Way: Exploring the
Security Implications of AMD’s Cache Way Predictors. In AsiaCCS,
2020.

[39] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher,
Daniel Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Read-
ing Kernel Memory from User Space. In USENIX Security, 2018.

[40] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
Last-Level Cache Side-Channel Attacks are Practical. In S&P, 2015.

[41] G. Maisuradze and C. Rossow. ret2spec: Speculative Execution Using
Return Stack Buffers. In CCS, 2018.

[42] Udi Manber and Gene Myers. Suffix arrays: a new method for on-
line string searches. In Proceedings of the First Annual ACM-SIAM
Symposium on Discrete Algorithms, 1990.

[43] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann,
Olivier Heen, and Aurélien Francillon. Reverse Engineering Intel
Complex Addressing Using Performance Counters. In RAID, 2015.

[44] John D McCalpin. Mapping addresses to l3/cha slices in intel
processors. Technical report, 2021.

[45] Todd K Moon. The expectation-maximization algorithm. IEEE Signal
processing magazine, 13(6), 1996.

[46] Andrew Morton. [RFC][PATCH 1/2] fs proc: make pagemap
a privileged interface, 2015. URL: https://lore.kernel.
org/all/20150312153533.d1c6083e4a9e7825b1a4bc64@linux-
foundation.org/.

[47] Onur Mutlu and Jeremie S Kim. Rowhammer: A retrospective. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2019.

[48] Ge Nong, Sen Zhang, and Daricks Wai Hong Chan. Linear suffix
array construction by almost pure induced-sorting. In Data Com-
pression Conference, 2009.

[49] Riccardo Paccagnella, Licheng Luo, and Christopher W Fletcher.
Lord of the Ring (s): Side Channel Attacks on the CPU On-Chip
Ring Interconnect Are Practical. In USENIX Security Symposium,
2021.

[50] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. DRAMA: Exploiting DRAM Addressing for
Cross-CPU Attacks. In USENIX Security Symposium, 2016.

[51] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede.
Prime+Scope: Overcoming the Observer Effect for High-Precision
Cache Contention Attacks. In CCS, 2021.

[52] Michael Schwarz, Daniel Gruss, Samuel Weiser, Clémentine Maurice,
and Stefan Mangard. Malware Guard Extension: Using SGX to
Conceal Cache Attacks. In DIMVA, 2017.

[53] Michael Schwarz, Moritz Lipp, and Claudio Canella.
misc0110/PTEditor: A small library to modify all page-table
levels of all processes from user space for x86 64 and ARMv8,
2018. URL: https://github.com/misc0110/PTEditor.

[54] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-
Privilege-Boundary Data Sampling. In CCS, 2019.

[55] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss.
NetSpectre: Read Arbitrary Memory over Network. In ESORICS,
2019.

[56] Martin Schwarzl, Thomas Schuster, Michael Schwarz, and Daniel
Gruss. Speculative Dereferencing of Registers: Reviving Foreshadow.
In FC, 2021.

[57] Mark Seaborn. Exploiting the DRAM rowhammer bug to
gain kernel privileges, March 2015. Retrieved on June
26, 2015. URL: http://googleprojectzero.blogspot.com/2015/03/
exploiting-dram-rowhammer-bug-to-gain.html.

[58] Mark Seaborn. L3 cache mapping on Sandy Bridge
CPUs, April 2015. Retrieved on June 26, 2015. URL:
http://lackingrhoticity.blogspot.com/2015/04/l3-cache-mapping-
on-sandy-bridge-cpus.html.

[59] Youssef Tobah, Andrew Kwong, Ingab Kang, Daniel Genkin, and
Kang G. Shin. Spechammer: Combining spectre and rowhammer for
new speculative attacks. In S&P, 2022.

[60] Daniël Trujillo, Johannes Wikner, and Kaveh Razavi. Inception:
Exposing new attack surfaces with training in transient execution.
In USENIX Security, 2023.

[61] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval
Yarom, and Raoul Strackx. Foreshadow: Extracting the Keys to
the Intel SGX Kingdom with Transient Out-of-Order Execution. In
USENIX Security, 2018.

[62] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel
Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
Razavi, and Cristiano Giuffrida. Drammer: Deterministic Rowham-
mer Attacks on Mobile Platforms. In CCS, 2016.

[63] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. RIDL: Rogue In-flight Data Load. In S&P, 2019.

[64] Pepe Vila, Boris Köpf, and Jose Morales. Theory and Practice of
Finding Eviction Sets. In S&P, 2019.

[65] Pepe Vila, Boris Köpf, and José Francisco Morales. Theory and
practice of finding eviction sets. arXiv:1810.01497, 2018.

[66] Johannes Wikner and Kaveh Razavi. Retbleed: Arbitrary speculative
code execution with return instructions. In USENIX Security, 2022.

[67] Fan Yao, Adnan Siraj Rakin, and Deliang Fan. DeepHammer:
Depleting the intelligence of deep neural networks through targeted
chain of bit flips. In USENIX Security Symposium, 2020.

[68] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and Gernot Heiser.
Mapping the Intel Last-Level Cache. Cryptology ePrint Archive,
Report 2015/905, 2015.

[69] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: A
Timing Attack on OpenSSL Constant Time RSA. JCEN, 2017.

[70] Dogan Yigit Yenigun. toUpperCase78/Intel-Processors: Datasets for
All Processors Maufactured By Intel , 2024. URL: https://github.com/
toUpperCase78/intel-processors.

[71] Ruiyi Zhang, Lukas Gerlach, Daniel Weber, Lorenz Hetterich,
Youheng Lü, Andreas Kogler, and Michael Schwarz. CacheWarp:
Software-based Fault Injection using Selective State Reset. In
USENIX Security, 2024.

[72] Ruiyi Zhang, Tristan Hornetz, Lukas Gerlach, and Michael Schwarz.
Taming the Linux Memory Allocator for Rapid Prototyping. In
DIMVA, 2025.

[73] Zirui Neil Zhao, Adam Morrison, Christopher W Fletcher, and Josep
Torrellas. Binoculars: Contention-based side-channel attacks exploit-
ing the page walker. In USENIX Security Symposium, 2022.

Appendix A.
Longest Repeating Pattern

Figure 8 and Figure 7 show the length of the longest
repeating sub-pattern for CPUs with linear and non-linear
slice addressing functions, respectively. For non-linear func-
tions, the length never exceeds 1% of the system’s DRAM
size. Note that the values for the Core i9-12900K and
Xeon E-2176M match perfectly despite these CPUs having
different addressing functions. With linear functions, the
length is significantly higher. For the Core i7-9700K, the
longest repeating pattern frequently repeats within itself.
Hence, we require more than 95% of the system’s DRAM
as contiguous memory to uniquely determine the physical
address with larger DRAM configurations.

4 8 16 32 64 128 256 512
0.0

0.5

%
D

R
A

M

Core i9-12900K

4 8 16 32 64 128 256 512
0.0

0.5

%
D

R
A

M

Xeon E-2176M and Core i7-10710U

4 8 16 32 64 128 256 512
0.0

0.2

0.4

%
D

R
A

M

Xeon Gold 6346

4 8 16 32 64 128 256
0.00

0.05

Total DRAM (GB)

%
D

R
A

M

Xeon E5-2697 v4

Figure 7: Length of the longest repeating sub-pattern relative
to DRAM size for non-linear slice addressing functions.

4 8 16 32 64 128 256
0

50

100

%
D

R
A

M

Core i7-9700K

4 8 16 32 64 128 256
0

20

40

Total DRAM (GB)

%
D

R
A

M

Xeon E5-2683 v4

Figure 8: Length of the longest repeating sub-pattern relative
to DRAM size for linear slice addressing functions.

Appendix B.
Used Performance Counters

To measure the accessed slice for a physical address, we
rely on performance counters. However, as the slice counters
are not documented for every microarchitecture, we record
all uncore performance counters and choose the one that
has the best correlation with the number of expected slice
accesses (cf. Section 3.6). Table 2 lists the counters we used
for each microarchitecture based on this profiling step.

TABLE 2: The uncore performance counters used to measure the accessed slice.

CPU µarch Base Event Mask Name

Intel Core i7-1185G7 Tiger Lake 0xb 0x37 0xf undocumented
Intel Xeon E5-2697 v4 Broadwell 0x18 0x10 0x2 UNC_H_TxR_BL.DRS_CORE
Intel Xeon Gold 6526Y Emerald Rapids 0x17 0x50 0x1 UNC_CHA_REQUESTS.READS_LOCAL
Intel Core i7-8700 Coffee Lake 0xd 0x2 0x1 undocumented
Intel Core i7-10510U Comet Lake 0xc 0x24 0xf undocumented
Intel Core Ultra 7 155H Meteor Lake 0xe 0x22 0xf UNC_HAC_CBO_TOR_ALLOCATION.DRD
Intel Core i9-12900H Alder Lake 0xe 0x37 0xf undocumented
Intel Core i9-13900K Raptor Lake 0xe 0x35 0x1 undocumented
Intel Core i3-1005G1 Ice Lake 0xc 0x3c 0x7 undocumented
Intel Xeon Gold 6346 Ice Lake 0x16 0x32 0x7f undocumented
Intel Core Ultra 9 285K Arrow Lake 0x10 0x35 0x1 UNC_HAC_CBO_TOR_ALLOCATION.DRD
Intel Core i5-13420H Raptor Lake 0xe 0x35 0x1 undocumented

Plaintext byte
00 40 80 c0 f8

C
ac

he
se

t

0

4

8

12

15

Figure 9: AES T-table cache-access pattern on an Intel Xeon
E5-2697 v4 with 18 slices.

Appendix C.
Transparent Huge Page Settings

Table 3 shows the default settings for transparent huge
pages (THPs) on different Linux distributions. The setting
always indicates that THPs are always allocated. Mean-
while, madvise indicates that THPs are only allocated
when requested by the application. In this case, the appli-
cation has to call madvise with the MADV_HUGEPAGE
flag [30].

TABLE 3: Default settings for Transparent Huge Pages on
different Linux distributions.

Distribution Version Default

Ubuntu 24.04 LTS Desktop madvise
Fedora 41 Workstation madvise
Linux Mint 22 madvise
Manjaro 24.1.1 always
Debian 12.7 always
openSUSE Tumbleweed 20241031 always

Appendix D.
AES T-Table Heatmap

Figure 9 shows the typical heatmap for the T-table
accesses, with the expected diagonal when the first key byte
is ‘0’.

Appendix E.
Reverse-engineered Functions

Figure 10 shows the linear slice functions we reverse-
engineered on our tested CPUs. Out of the 20 functions, 13
are new (L6d, L6e, L6f , L6f , L6h, L7c L8c, L8d, L9b, L9d,
L9e, L11b, L12a), and 9 known ones are extended with our
approach (L6b, L6c, L7b, L8a, L8b, L9a, L9c, L10b, L11a).
We provide the structures of C3 in Figure 11, and of C5

in Figure 12. Additionally, the full structure of the slice
addressing function of the Intel Xeon E5-2697 v4 is shown
in Figure 13.

L6a = [b6, b10, b12, b14, b16, b17, b18, b20, b22, b24, b25, b26, b27, b28, b30, b32, b33, b35, b36]⊕
L6b = [b6, b8, b9, b10, b14, b15, b17, b18, b20, b23, b27, b30, b31, b34, b36, b38]⊕
L6c = [b6, b11, b12, b16, b18, b21, b22, b23, b24, b26, b30, b31, b32, b35, b38]⊕
L6d = [b6, b7, b8, b9, b10, b12, b13, b14, b15, b18, b19, b20, b22, b24, b25, b30, b32, b33, b34, b38]⊕
L6e = [b6, b9, b11, b17, b18, b19, b24, b25, b27, b29, b30, b35, b36, b37]⊕
L6f = [b6, b7, b8, b12, b16, b17, b20, b21, b22, b23, b24, b25, b26, b28, b30, b33, b35]⊕
L6h = [b6, b7, b11, b13, b16, b17, b18, b19, b21, b25, b26, b27, b30, b33, b35, b36]⊕
L7a = [b7, b11, b13, b15, b17, b19, b20, b21, b22, b23, b24, b26, b28, b29, b31, b33, b34, b35, b37]⊕
L7b = [b7, b12, b13, b17, b19, b22, b23, b24, b25, b27, b31, b32, b33, b36]⊕
L7c = [b7, b8, b11, b12, b13, b19, b22, b23, b24, b27, b31, b32, b33, b36]⊕
L8a = [b8, b12, b13, b16, b19, b22, b23, b26, b27, b30, b31, b34, b35, b36, b37]⊕
L8b = [b8, b13, b14, b18, b20, b23, b24, b25, b26, b28, b32, b33, b34, b37]⊕
L8c = [b8, b12, b14, b16, b19, b21, b22, b23, b27, b28, b29, b31, b32, b38]⊕
L8d = [b8, b9, b12, b15, b16, b18, b19, b21, b23, b25, b26, b28, b30, b34, b35]⊕
L9a = [b9, b12, b16, b17, b19, b21, b22, b23, b25, b26, b27, b29, b31, b32]⊕
L9b = [b9, b11, b12, b13, b14, b17, b19, b21, b22, b26, b27, b29, b32]⊕
L9c = [b9, b14, b15, b19, b21, b24, b25, b26, b27, b29, b33, b34, b35, b38]⊕
L9d = [b9, b13, b14, b17, b18, b19, b20, b21, b22, b23, b25, b27, b30, b32, b36, b38]⊕
L10a = [b10, b11, b13, b16, b17, b18, b19, b20, b21, b22, b27, b28, b30, b31, b32, b33]⊕
L10b = [b10, b15, b16, b20, b22, b25, b26, b27, b28, b30, b34, b35, b36]⊕
L11a = [b11, b16, b17, b21, b23, b26, b27, b28, b29, b31, b35, b36, b37]⊕
L11b = [b11, b12, b15, b20, b21, b25, b26, b27, b28, b29, b32, b34, b35, b36, b37, b38]⊕
L12a = [b12, b14, b16, b18, b19, b20, b22, b24, b25, b27, b28, b30, b31, b32, b33, b35, b36, b38]⊕

Figure 10: All reverse-engineered XOR chains.

L9c L8b L10b L11a

L6c

c1

L7b

c0

Figure 11: Structure of the C3 mixer.

L11aL10b
L7b L9c

L6cL8b

c2c1c0

Figure 12: Structure of the C5 mixer.

C2 C9

L6d L8c L9d L11b L8b L12a L6c L6e

h1 h2 h3h0

L7b L10b L11aL9c

h4

L9d

Figure 13: Cache slice function for the Intel Xeon E5-2697 v4

Appendix F.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

F.1. Summary

This paper presents a novel approach for reverse engi-
neering the non-linear cache-to-slice functions on modern
Intel machines. Understanding these functions is crucial for
many types of microarchitectural side-channel attacks. The
authors’ proposed method applies some domain knowledge
to the problem, resulting in a solution which slightly less
generic than previous works, but which is drastically faster
and more comprehensive. The knowledge of the mapping
function is used to mount several practical attacks.

F.2. Scientific Contributions

• Creates a New Tool to Enable Future Science.
• Identifies an Impactful Vulnerability
• Provides a Valuable Step Forward in an Established Field

F.3. Reasons for Acceptance

1) The paper Provides a Valuable Step Forward in an Es-
tablished Field and Creates a New Tool to Enable Future
Science. The proposed method for reversing the cache
to slice mapping is fast, robust and well-documented. It
will be useful in understanding future architectures as
well.

2) The paper Identifies an Impactful Vulnerability. The pro-
posed attacks, in particular the v2p oracle, have offensive
potential in themselves, and can also be used as building
blocks in future attacks, as well as serving as inspiration
for future defensive designs.

