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Microarchitectural Components

� Modern CPUs contain multiple microarchitectural elements
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Caching speeds up Memory Accesses
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Flush+Reload

Attacker Victim
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Flush+Reload on Keystrokes
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� Key presses trigger code execution in shared library (e.g., libgdk)

� Flush+Reload does not reveal actual key, only time difference between keys

� → Recover text with machine learning
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Meltdown, Foreshadow, ZombieLoad, Spectre
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Countermeasures for µ-arch. Attacks

� Deeply rooted in hardware → no real fixes

� More isolation → make exploitation harder

� Attacks on design difficult to fix

� Caches → we want timing differences

� Prediction → we don’t want stalls

� So far: fixing symptoms
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...in a parallel universe

Original image from commitstrip.com
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Hardware Side Channels

Thought experiment: what if there were no hardware side channels?
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Operating System and CPU Microarchitecture

OS CPU

µ-arch. Interface
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µ-Architecture
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OS Side Channel

� Hardware → Software?

� Hardware-Agnostic Side Channel through the OS Page Cache

� Temporal resolution:

2 µs (≤ 6.7 measurements per second)

466 ns (≤ 223 measurements per second)

� Spatial resolution of 4 KiB

� Various attacks: PHP RNG, UI-Redress, Windows ASLR,

Keystroke Timings, Covert channels (local + remote)
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Page Cache

� Managed by operating system

� Buffers file pages in RAM for faster accesses

� Ideally all file pages in page cache

� Implemented by all major operating systems

13 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache

� Managed by operating system

� Buffers file pages in RAM for faster accesses

� Ideally all file pages in page cache

� Implemented by all major operating systems

13 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache

� Managed by operating system

� Buffers file pages in RAM for faster accesses

� Ideally all file pages in page cache

� Implemented by all major operating systems

13 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache

� Managed by operating system

� Buffers file pages in RAM for faster accesses

� Ideally all file pages in page cache

� Implemented by all major operating systems

13 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache Attacks

OS

Disk

Victim Attacker

Address Space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address Space

RAM

Page Cache

14 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache Attacks

OS

Disk

Victim Attacker

Address Space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address Space

RAM

Page Cache

foo.so#2

faults

fetches foo.so#2

buffers foo.so#2

accesses

slow

15 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache Attacks

OS

Disk

Victim Attacker

Address Space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address Space

RAM

Page Cache

foo.so#2

16 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache Attacks

OS

Disk

Victim Attacker

Address Space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address Space

RAM

Page Cache

foo.so#2

accesses

fast

17 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache Attacks

OS

Disk

Victim Attacker

Address Space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address Space

RAM

Page Cache

foo.so#2

eviction#5

accessesfetches eviction#5

buffers eviction#5

faults

slow

18 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache Attacks

OS

Disk

Victim Attacker

Address Space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address Space

RAM

Page Cache

eviction#4
foo.so#2

eviction#5

accessesfetches eviction#4

buffers eviction#4

faults

slow

19 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache Attacks

OS

Disk

Victim Attacker

Address Space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address Space

RAM

Page Cache

eviction#4
foo.so#2

eviction#3

eviction#5

accessesfetches eviction#3

buffers eviction#3

faults

slow

20 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache Attacks

OS

Disk

Victim Attacker

Address Space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address Space

RAM

Page Cache

eviction#4
foo.so#2

eviction#3
eviction#2

eviction#5

accessesfetches eviction#2

buffers eviction#2

faults

slow

21 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache Attacks

OS

Disk

Victim Attacker

Address Space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address Space

RAM

eviction#4
eviction#1
eviction#3
eviction#2

eviction#5

accessesfetches eviction#1

buffers eviction#1

faults

slow

Page Cache

22 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache Attacks

OS

Disk

Victim Attacker

Address Space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address Space

RAM

Page Cache

eviction#4
eviction#1
eviction#3
eviction#2

eviction#5

23 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache Attacks

OS

Disk

Victim Attacker

Address Space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address Space

RAM

eviction#4
eviction#1
eviction#3
eviction#2

foo.so#2

accessesfetches foo.so#2

buffers foo.so#2

faults

slow

Page Cache

24 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)





Observe Page Cache State

1010 1

First idea:

� Measure page access time

� Buffers pages in page cache → destructive

� Eviction always necessary → lower average resolution

Better:

� Use APIs provided by the operating system

� mincore

� QueryWorkingSetEx

� Non-destructive → higher average resolution
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Reset Page Cache State

� Necessary for detecting multiple accesses

� Bottleneck of side channel

� Ideal strategy depends on memory management implementation

� Differences in page replacement

� Global CLOCK-Pro like algorithm

� Per-process working sets with Aging algorithm
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Eviction Linux

� Access pages until target page is replaced

� Basic eviction set: Large memory-mapped file

� -O1: Add pages already in page cache

� -O2: Fill memory with anonymous dirty pages

� Average run time down to 149 ms depending on optimisations
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Eviction Windows

� Page cache eviction ↔ target page drops out of all working sets

� Previous approach slow...

� Optimizations:

� Increase ws size + memory pressure → self-eviction (<2 s)

� Evicting any page in other processes

→ SetProcessWorkingSetSize (4.48 ms)

� for processes with same integrity level as attacker

� Evicting pages you have in your own working set

→ VirtualUnlock (17.69µs)
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Covert Channel

� Shared file as information carrier

� File page presence in page cache ↔ message bits

� Additional file pages for transmission control

Different implementation approaches:

OS Eviction Observation Speed

Linux

like side channel mincore 20.20 kB/s

madvise

posix fadvise
mincore 81.16 kB/s

Windows
process WS

VirtualUnlock

QueryWorkingSetEx

(ShareCount)
100.11 kB/s

� Low bit error rate for all approaches (down to 0.000 03 %)
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PHP RNG Attack

� Targets seeding of PHP PRNG

� microtime used as seed by some frameworks

� Returns UNIX timestamp in microseconds

� Later PRNG used for cryptographic operations :(

� Side channel used to detect microtime call

� Seed recoverable

� zif microtime on page 781 of php-fpm executable

� PHP 7.3.5, depends on build environment/configuration

� Average detection accuracy: ±1 ms

30 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



PHP RNG Attack

� Targets seeding of PHP PRNG

� microtime used as seed by some frameworks

� Returns UNIX timestamp in microseconds

� Later PRNG used for cryptographic operations :(

� Side channel used to detect microtime call

� Seed recoverable

� zif microtime on page 781 of php-fpm executable

� PHP 7.3.5, depends on build environment/configuration

� Average detection accuracy: ±1 ms

30 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



PHP RNG Attack

� Targets seeding of PHP PRNG

� microtime used as seed by some frameworks

� Returns UNIX timestamp in microseconds

� Later PRNG used for cryptographic operations :(

� Side channel used to detect microtime call

� Seed recoverable

� zif microtime on page 781 of php-fpm executable

� PHP 7.3.5, depends on build environment/configuration

� Average detection accuracy: ±1 ms

30 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



PHP RNG Attack

� Targets seeding of PHP PRNG

� microtime used as seed by some frameworks

� Returns UNIX timestamp in microseconds

� Later PRNG used for cryptographic operations :(

� Side channel used to detect microtime call

� Seed recoverable

� zif microtime on page 781 of php-fpm executable

� PHP 7.3.5, depends on build environment/configuration

� Average detection accuracy: ±1 ms

30 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



PHP RNG Attack

� Targets seeding of PHP PRNG

� microtime used as seed by some frameworks

� Returns UNIX timestamp in microseconds

� Later PRNG used for cryptographic operations :(

� Side channel used to detect microtime call

� Seed recoverable

� zif microtime on page 781 of php-fpm executable

� PHP 7.3.5, depends on build environment/configuration

� Average detection accuracy: ±1 ms

30 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



PHP RNG Attack

� Targets seeding of PHP PRNG

� microtime used as seed by some frameworks

� Returns UNIX timestamp in microseconds

� Later PRNG used for cryptographic operations :(

� Side channel used to detect microtime call

� Seed recoverable

� zif microtime on page 781 of php-fpm executable

� PHP 7.3.5, depends on build environment/configuration

� Average detection accuracy: ±1 ms

30 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



PHP RNG Attack

� Targets seeding of PHP PRNG

� microtime used as seed by some frameworks

� Returns UNIX timestamp in microseconds

� Later PRNG used for cryptographic operations :(

� Side channel used to detect microtime call

� Seed recoverable

� zif microtime on page 781 of php-fpm executable

� PHP 7.3.5, depends on build environment/configuration

� Average detection accuracy: ±1 ms

30 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



PHP RNG Attack

� Targets seeding of PHP PRNG

� microtime used as seed by some frameworks

� Returns UNIX timestamp in microseconds

� Later PRNG used for cryptographic operations :(

� Side channel used to detect microtime call

� Seed recoverable

� zif microtime on page 781 of php-fpm executable

� PHP 7.3.5, depends on build environment/configuration

� Average detection accuracy: ±1 ms

30 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



PHP RNG Attack

� Targets seeding of PHP PRNG

� microtime used as seed by some frameworks

� Returns UNIX timestamp in microseconds

� Later PRNG used for cryptographic operations :(

� Side channel used to detect microtime call

� Seed recoverable

� zif microtime on page 781 of php-fpm executable

� PHP 7.3.5, depends on build environment/configuration

� Average detection accuracy: ±1 ms

30 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Live Demo

31 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



UI Redressing Attack

� Detect opening of interesting window

� e.g. authentication windows

� Overlay original window with fake

� Side channel used as a trigger

� Provides low latency → hardly noticeable

� Tested with root authentication window on Ubuntu 16.04

� Page 6 of binary polkit-gnome-authentication-agent-1
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UI Redressing Attack
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Impact

� Identified as CVE-2019-5489

� Linux and Windows deployed countermeasures
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Countermeasures - Windows

� Higher privilege for QueryWorkingSetEx on other processes

� No direct querying of working set state

� ShareCount hidden for unprivileged users

� No indirect querying of working set state

� No non-destructive probing of higher-integrity processes
→ weaker attack

� If QueryWorkingSetEx only possible leakage source

� Page-cache eviction already harder than on Linux
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Countermeasures - Linux

� mincore only reveals information for writeable file pages

� Read-only files excluded → shared libraries, executables

� Merged with the release of the 5.1.4 kernel

� Non-destructive probing no longer possible?

� No, preadv2 with RWF NOWAIT leaks same information

� Not fixed yet
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Countermeasures are Difficult

� We want the performance optimizations

� Many side-channel attacks exploit intended behavior

� Often a trade-off between security and performance

� Every optimization is potentially a side channel
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The Future

� We won’t get rid of side channels

� More optimizations → more side channels

� More attacks on the “OS microarchitecture”
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Take Aways

� Abstraction leads to side channels

� Software-cache attacks are similar to hardware-cache attacks

� Finding countermeasures is difficult
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