
Page Cache Attacks
Microarchitectural Attacks on Flawless Hardware

Daniel Gruss, Trishita Tiwari, Michael Schwarz, Erik Kraft



Microarchitectural Components

� Modern CPUs contain multiple microarchitectural elements

Caches and buffers Predictors

� Transparent for the programmer

� Timing optimizations → side-channel leakage

1 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Microarchitectural Components

� Modern CPUs contain multiple microarchitectural elements

Caches and buffers Predictors

� Transparent for the programmer

� Timing optimizations → side-channel leakage

1 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Microarchitectural Components

� Modern CPUs contain multiple microarchitectural elements

Caches and buffers Predictors

� Transparent for the programmer

� Timing optimizations → side-channel leakage

1 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Microarchitectural Components

� Modern CPUs contain multiple microarchitectural elements

Caches and buffers Predictors

� Transparent for the programmer

� Timing optimizations → side-channel leakage

1 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



CPU Cache

printf("%d", i);

printf("%d", i);

2 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



CPU Cache

printf("%d", i);

printf("%d", i);

Cache miss

2 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



CPU Cache

printf("%d", i);

printf("%d", i);

Cache miss
Request

2 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



CPU Cache

printf("%d", i);

printf("%d", i);

Cache miss
Request

Response

2 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



CPU Cache

i

printf("%d", i);

printf("%d", i);

Cache miss
Request

Response

2 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



CPU Cache

i

printf("%d", i);

printf("%d", i);

Cache miss

Cache hit

Request

Response

2 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



CPU Cache

i

printf("%d", i);

printf("%d", i);

Cache miss

Cache hit

Request

Response

DRAM access,

slow

2 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



CPU Cache

i

printf("%d", i);

printf("%d", i);

Cache miss

Cache hit

Request

Response

DRAM access,

slow

No DRAM access,

much faster

2 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Caching speeds up Memory Accesses

80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
100

102

104

106

Access time [CPU cycles]

N
u

m
b

er
o

f
ac

ce
ss

es

Cache Hits

3 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Caching speeds up Memory Accesses

80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
100

102

104

106

Access time [CPU cycles]

N
u

m
b

er
o

f
ac

ce
ss

es

Cache Hits Cache Misses

3 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Flush+Reload

Attacker Victim

Shared Memory

flush

access
access

4 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Flush+Reload

Attacker Victim

Shared Memory

flush

access
accessShared Memory

ca
ch

ed
cach

ed

4 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Flush+Reload

Attacker Victim

Shared Memory

flushflush

access
accessShared Memory

4 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Flush+Reload

Attacker Victim

Shared Memory

flushflush

access
access

4 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Flush+Reload

Attacker Victim

Shared Memory

flush

access
accessaccess

4 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Flush+Reload

Attacker Victim

Shared Memory

flush

access
accessaccessShared Memory

4 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Flush+Reload

Attacker Victim

Shared Memory

flush

accessaccess
accessShared Memory

4 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Flush+Reload

Attacker Victim

Shared Memory

flush

accessaccess
accessShared Memory

vs

Victim accessed

(fast)

Victim did not access

(slow)

4 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Prime+Probe

Attacker Victim

prime

probe
access

5 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Prime+Probe

Attacker Victim

primeprime

probe
access

Attacker Data

5 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Prime+Probe

Attacker Victim

primeprime

probe
access

Attacker Data

Attacker Data

5 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Prime+Probe

Attacker Victim

primeprime

probe
access

Attacker Data

Attacker Data

Attacker Data

5 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Prime+Probe

Attacker Victim

primeprime

probe
access

Attacker Data

Attacker Data

Attacker Data

Attacker Data

5 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Prime+Probe

Attacker Victim

prime

probe
access

Attacker Data

Attacker Data

Attacker Data

Attacker Data

5 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Prime+Probe

Attacker Victim

prime

probe
accessaccess

Attacker Data

Victim Data

Attacker Data

Attacker Data

5 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Prime+Probe

Attacker Victim

prime

probe
access

Attacker Data

Victim Data

Attacker Data

Attacker Data

5 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Prime+Probe

Attacker Victim

prime

probeprobe
access

Attacker Data

Victim Data

Attacker Data

Attacker Data

5 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Prime+Probe

Attacker Victim

prime

probeprobe
access

Attacker Data

Victim Data

Attacker Data

Attacker Data

5 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Prime+Probe

Attacker Victim

prime

probeprobe
access

Attacker Data

Victim Data

Attacker Data

Attacker Data

5 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Prime+Probe

Attacker Victim

prime

probeprobe
access

Attacker Data

Victim Data

Attacker Data

Attacker Data

5 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Prime+Probe

Attacker Victim

prime

probeprobe
access

Attacker Data

Victim Data

Attacker Data

Attacker Data

5 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Prime+Probe

Attacker Victim

prime

probeprobe
access

Attacker Data

Victim Data

Attacker Data

Attacker Data

vs

Victim did not access

(fast)

Victim accessed

(slow)

5 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Flush+Reload on Keystrokes

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

·109

0

200

400

600

Runtime [cycles]

L
at

en
cy

[c
yc

le
s]

� Key presses trigger code execution in shared library (e.g., libgdk)

� Flush+Reload does not reveal actual key, only time difference between keys

� → Recover text with machine learning

6 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Flush+Reload on Keystrokes

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

·109

0

200

400

600

Runtime [cycles]

L
at

en
cy

[c
yc

le
s]

� Key presses trigger code execution in shared library (e.g., libgdk)

� Flush+Reload does not reveal actual key, only time difference between keys

� → Recover text with machine learning

6 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Flush+Reload on Keystrokes

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

·109

0

200

400

600

Runtime [cycles]

L
at

en
cy

[c
yc

le
s]

� Key presses trigger code execution in shared library (e.g., libgdk)

� Flush+Reload does not reveal actual key, only time difference between keys

� → Recover text with machine learning

6 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Meltdown, Foreshadow, ZombieLoad, Spectre

7 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Countermeasures for µ-arch. Attacks

� Deeply rooted in hardware → no real fixes

� More isolation → make exploitation harder

� Attacks on design difficult to fix

� Caches → we want timing differences

� Prediction → we don’t want stalls

� So far: fixing symptoms

8 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Countermeasures for µ-arch. Attacks

� Deeply rooted in hardware → no real fixes

� More isolation → make exploitation harder

� Attacks on design difficult to fix

� Caches → we want timing differences

� Prediction → we don’t want stalls

� So far: fixing symptoms

8 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Countermeasures for µ-arch. Attacks

� Deeply rooted in hardware → no real fixes

� More isolation → make exploitation harder

� Attacks on design difficult to fix

� Caches → we want timing differences

� Prediction → we don’t want stalls

� So far: fixing symptoms

8 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Countermeasures for µ-arch. Attacks

� Deeply rooted in hardware → no real fixes

� More isolation → make exploitation harder

� Attacks on design difficult to fix

� Caches → we want timing differences

� Prediction → we don’t want stalls

� So far: fixing symptoms

8 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Countermeasures for µ-arch. Attacks

� Deeply rooted in hardware → no real fixes

� More isolation → make exploitation harder

� Attacks on design difficult to fix

� Caches → we want timing differences

� Prediction → we don’t want stalls

� So far: fixing symptoms

8 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Countermeasures for µ-arch. Attacks

� Deeply rooted in hardware → no real fixes

� More isolation → make exploitation harder

� Attacks on design difficult to fix

� Caches → we want timing differences

� Prediction → we don’t want stalls

� So far: fixing symptoms

8 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



...in a parallel universe

Original image from commitstrip.com

9 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Hardware Side Channels

Thought experiment: what if there were no hardware side channels?

10 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Operating System and CPU Microarchitecture

OS CPU

µ-arch. Interface
Non-standard Syscall ISA Extension

µ-Architecture
Software Caches Hardware Caches

Software Prefetcher Hardware Prefetcher

11 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Operating System and CPU Microarchitecture

OS CPU

µ-arch. Interface
Non-standard Syscall ISA Extension

µ-Architecture
Software Caches Hardware Caches

Software Prefetcher Hardware Prefetcher

11 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Operating System and CPU Microarchitecture

OS CPU

µ-arch. Interface
Non-standard Syscall ISA Extension

µ-Architecture
Software Caches Hardware Caches

Software Prefetcher Hardware Prefetcher

11 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Operating System and CPU Microarchitecture

OS CPU

µ-arch. Interface
Non-standard Syscall ISA Extension

µ-Architecture
Software Caches Hardware Caches

Software Prefetcher Hardware Prefetcher

11 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Operating System and CPU Microarchitecture

OS CPU

µ-arch. Interface
Non-standard Syscall ISA Extension

µ-Architecture
Software Caches Hardware Caches

Software Prefetcher Hardware Prefetcher

11 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



OS Side Channel

� Hardware → Software?

� Hardware-Agnostic Side Channel through the OS Page Cache

� Temporal resolution:

2 µs (≤ 6.7 measurements per second)

466 ns (≤ 223 measurements per second)

� Spatial resolution of 4 KiB

� Various attacks: PHP RNG, UI-Redress, Windows ASLR,

Keystroke Timings, Covert channels (local + remote)

12 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



OS Side Channel

� Hardware → Software?

� Hardware-Agnostic Side Channel through the OS Page Cache

� Temporal resolution:

2 µs (≤ 6.7 measurements per second)

466 ns (≤ 223 measurements per second)

� Spatial resolution of 4 KiB

� Various attacks: PHP RNG, UI-Redress, Windows ASLR,

Keystroke Timings, Covert channels (local + remote)

12 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



OS Side Channel

� Hardware → Software?

� Hardware-Agnostic Side Channel through the OS Page Cache

� Temporal resolution:

2 µs (≤ 6.7 measurements per second)

466 ns (≤ 223 measurements per second)

� Spatial resolution of 4 KiB

� Various attacks: PHP RNG, UI-Redress, Windows ASLR,

Keystroke Timings, Covert channels (local + remote)

12 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



OS Side Channel

� Hardware → Software?

� Hardware-Agnostic Side Channel through the OS Page Cache

� Temporal resolution:

2 µs (≤ 6.7 measurements per second)

466 ns (≤ 223 measurements per second)

� Spatial resolution of 4 KiB

� Various attacks: PHP RNG, UI-Redress, Windows ASLR,

Keystroke Timings, Covert channels (local + remote)

12 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



OS Side Channel

� Hardware → Software?

� Hardware-Agnostic Side Channel through the OS Page Cache

� Temporal resolution:

2 µs (≤ 6.7 measurements per second)

466 ns (≤ 223 measurements per second)

� Spatial resolution of 4 KiB

� Various attacks: PHP RNG, UI-Redress, Windows ASLR,

Keystroke Timings, Covert channels (local + remote)

12 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache

� Managed by operating system

� Buffers file pages in RAM for faster accesses

� Ideally all file pages in page cache

� Implemented by all major operating systems

13 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache

� Managed by operating system

� Buffers file pages in RAM for faster accesses

� Ideally all file pages in page cache

� Implemented by all major operating systems

13 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache

� Managed by operating system

� Buffers file pages in RAM for faster accesses

� Ideally all file pages in page cache

� Implemented by all major operating systems

13 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache

� Managed by operating system

� Buffers file pages in RAM for faster accesses

� Ideally all file pages in page cache

� Implemented by all major operating systems

13 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache Attacks

OS

Disk

Victim Attacker

Address Space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address Space

RAM

Page Cache

14 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache Attacks

OS

Disk

Victim Attacker

Address Space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address Space

RAM

Page Cache

foo.so#2

faults

fetches foo.so#2

buffers foo.so#2

accesses

slow

15 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache Attacks

OS

Disk

Victim Attacker

Address Space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address Space

RAM

Page Cache

foo.so#2

16 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache Attacks

OS

Disk

Victim Attacker

Address Space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address Space

RAM

Page Cache

foo.so#2

accesses

fast

17 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache Attacks

OS

Disk

Victim Attacker

Address Space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address Space

RAM

Page Cache

foo.so#2

eviction#5

accessesfetches eviction#5

buffers eviction#5

faults

slow

18 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache Attacks

OS

Disk

Victim Attacker

Address Space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address Space

RAM

Page Cache

eviction#4
foo.so#2

eviction#5

accessesfetches eviction#4

buffers eviction#4

faults

slow

19 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache Attacks

OS

Disk

Victim Attacker

Address Space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address Space

RAM

Page Cache

eviction#4
foo.so#2

eviction#3

eviction#5

accessesfetches eviction#3

buffers eviction#3

faults

slow

20 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache Attacks

OS

Disk

Victim Attacker

Address Space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address Space

RAM

Page Cache

eviction#4
foo.so#2

eviction#3
eviction#2

eviction#5

accessesfetches eviction#2

buffers eviction#2

faults

slow

21 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache Attacks

OS

Disk

Victim Attacker

Address Space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address Space

RAM

eviction#4
eviction#1
eviction#3
eviction#2

eviction#5

accessesfetches eviction#1

buffers eviction#1

faults

slow

Page Cache

22 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache Attacks

OS

Disk

Victim Attacker

Address Space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address Space

RAM

Page Cache

eviction#4
eviction#1
eviction#3
eviction#2

eviction#5

23 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache Attacks

OS

Disk

Victim Attacker

Address Space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address Space

RAM

eviction#4
eviction#1
eviction#3
eviction#2

foo.so#2

accessesfetches foo.so#2

buffers foo.so#2

faults

slow

Page Cache

24 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)





Observe Page Cache State

1010 1

First idea:

� Measure page access time

� Buffers pages in page cache → destructive

� Eviction always necessary → lower average resolution

Better:

� Use APIs provided by the operating system

� mincore

� QueryWorkingSetEx

� Non-destructive → higher average resolution

25 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Observe Page Cache State

1010 1

First idea:

� Measure page access time

� Buffers pages in page cache → destructive

� Eviction always necessary → lower average resolution

Better:

� Use APIs provided by the operating system

� mincore

� QueryWorkingSetEx

� Non-destructive → higher average resolution

25 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Observe Page Cache State

1010 1

First idea:

� Measure page access time

� Buffers pages in page cache → destructive

� Eviction always necessary → lower average resolution

Better:

� Use APIs provided by the operating system

� mincore

� QueryWorkingSetEx

� Non-destructive → higher average resolution

25 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Observe Page Cache State

1010 1

First idea:

� Measure page access time

� Buffers pages in page cache → destructive

� Eviction always necessary → lower average resolution

Better:

� Use APIs provided by the operating system

� mincore

� QueryWorkingSetEx

� Non-destructive → higher average resolution

25 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Observe Page Cache State

1010 1

First idea:

� Measure page access time

� Buffers pages in page cache → destructive

� Eviction always necessary → lower average resolution

Better:

� Use APIs provided by the operating system

� mincore

� QueryWorkingSetEx

� Non-destructive → higher average resolution

25 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Observe Page Cache State

1010 1

First idea:

� Measure page access time

� Buffers pages in page cache → destructive

� Eviction always necessary → lower average resolution

Better:

� Use APIs provided by the operating system

� mincore

� QueryWorkingSetEx

� Non-destructive → higher average resolution

25 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Observe Page Cache State

1010 1

First idea:

� Measure page access time

� Buffers pages in page cache → destructive

� Eviction always necessary → lower average resolution

Better:

� Use APIs provided by the operating system

� mincore

� QueryWorkingSetEx

� Non-destructive → higher average resolution

25 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Observe Page Cache State

1010 1

First idea:

� Measure page access time

� Buffers pages in page cache → destructive

� Eviction always necessary → lower average resolution

Better:

� Use APIs provided by the operating system

� mincore

� QueryWorkingSetEx

� Non-destructive → higher average resolution

25 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Observe Page Cache State

1010 1

First idea:

� Measure page access time

� Buffers pages in page cache → destructive

� Eviction always necessary → lower average resolution

Better:

� Use APIs provided by the operating system

� mincore

� QueryWorkingSetEx

� Non-destructive → higher average resolution

25 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Reset Page Cache State

� Necessary for detecting multiple accesses

� Bottleneck of side channel

� Ideal strategy depends on memory management implementation

� Differences in page replacement

� Global CLOCK-Pro like algorithm

� Per-process working sets with Aging algorithm

26 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Reset Page Cache State

� Necessary for detecting multiple accesses

� Bottleneck of side channel

� Ideal strategy depends on memory management implementation

� Differences in page replacement

� Global CLOCK-Pro like algorithm

� Per-process working sets with Aging algorithm

26 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Reset Page Cache State

� Necessary for detecting multiple accesses

� Bottleneck of side channel

� Ideal strategy depends on memory management implementation

� Differences in page replacement

� Global CLOCK-Pro like algorithm

� Per-process working sets with Aging algorithm

26 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Reset Page Cache State

� Necessary for detecting multiple accesses

� Bottleneck of side channel

� Ideal strategy depends on memory management implementation

� Differences in page replacement

� Global CLOCK-Pro like algorithm

� Per-process working sets with Aging algorithm

26 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Reset Page Cache State

� Necessary for detecting multiple accesses

� Bottleneck of side channel

� Ideal strategy depends on memory management implementation

� Differences in page replacement

� Global CLOCK-Pro like algorithm

� Per-process working sets with Aging algorithm

26 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Reset Page Cache State

� Necessary for detecting multiple accesses

� Bottleneck of side channel

� Ideal strategy depends on memory management implementation

� Differences in page replacement

� Global CLOCK-Pro like algorithm

� Per-process working sets with Aging algorithm

26 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Eviction Linux

� Access pages until target page is replaced

� Basic eviction set: Large memory-mapped file

� -O1: Add pages already in page cache

� -O2: Fill memory with anonymous dirty pages

� Average run time down to 149 ms depending on optimisations

27 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Eviction Linux

� Access pages until target page is replaced

� Basic eviction set: Large memory-mapped file

� -O1: Add pages already in page cache

� -O2: Fill memory with anonymous dirty pages

� Average run time down to 149 ms depending on optimisations

27 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Eviction Linux

� Access pages until target page is replaced

� Basic eviction set: Large memory-mapped file

� -O1: Add pages already in page cache

� -O2: Fill memory with anonymous dirty pages

� Average run time down to 149 ms depending on optimisations

27 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Eviction Linux

� Access pages until target page is replaced

� Basic eviction set: Large memory-mapped file

� -O1: Add pages already in page cache

� -O2: Fill memory with anonymous dirty pages

� Average run time down to 149 ms depending on optimisations

27 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Eviction Linux

� Access pages until target page is replaced

� Basic eviction set: Large memory-mapped file

� -O1: Add pages already in page cache

� -O2: Fill memory with anonymous dirty pages

� Average run time down to 149 ms depending on optimisations

27 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Eviction Windows

� Page cache eviction ↔ target page drops out of all working sets

� Previous approach slow...

� Optimizations:

� Increase ws size + memory pressure → self-eviction (<2 s)

� Evicting any page in other processes

→ SetProcessWorkingSetSize (4.48 ms)

� for processes with same integrity level as attacker

� Evicting pages you have in your own working set

→ VirtualUnlock (17.69µs)

28 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Eviction Windows

� Page cache eviction ↔ target page drops out of all working sets

� Previous approach slow...

� Optimizations:

� Increase ws size + memory pressure → self-eviction (<2 s)

� Evicting any page in other processes

→ SetProcessWorkingSetSize (4.48 ms)

� for processes with same integrity level as attacker

� Evicting pages you have in your own working set

→ VirtualUnlock (17.69µs)

28 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Eviction Windows

� Page cache eviction ↔ target page drops out of all working sets

� Previous approach slow...

� Optimizations:

� Increase ws size + memory pressure → self-eviction (<2 s)

� Evicting any page in other processes

→ SetProcessWorkingSetSize (4.48 ms)

� for processes with same integrity level as attacker

� Evicting pages you have in your own working set

→ VirtualUnlock (17.69µs)

28 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Eviction Windows

� Page cache eviction ↔ target page drops out of all working sets

� Previous approach slow...

� Optimizations:

� Increase ws size + memory pressure → self-eviction (<2 s)

� Evicting any page in other processes

→ SetProcessWorkingSetSize (4.48 ms)

� for processes with same integrity level as attacker

� Evicting pages you have in your own working set

→ VirtualUnlock (17.69µs)

28 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Eviction Windows

� Page cache eviction ↔ target page drops out of all working sets

� Previous approach slow...

� Optimizations:

� Increase ws size + memory pressure → self-eviction (<2 s)

� Evicting any page in other processes

→ SetProcessWorkingSetSize (4.48 ms)

� for processes with same integrity level as attacker

� Evicting pages you have in your own working set

→ VirtualUnlock (17.69µs)

28 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Eviction Windows

� Page cache eviction ↔ target page drops out of all working sets

� Previous approach slow...

� Optimizations:

� Increase ws size + memory pressure → self-eviction (<2 s)

� Evicting any page in other processes

→ SetProcessWorkingSetSize (4.48 ms)

� for processes with same integrity level as attacker

� Evicting pages you have in your own working set

→ VirtualUnlock (17.69µs)

28 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)





Covert Channel

� Shared file as information carrier

� File page presence in page cache ↔ message bits

� Additional file pages for transmission control

Different implementation approaches:

OS Eviction Observation Speed

Linux

like side channel mincore 20.20 kB/s

madvise

posix fadvise
mincore 81.16 kB/s

Windows
process WS

VirtualUnlock

QueryWorkingSetEx

(ShareCount)
100.11 kB/s

� Low bit error rate for all approaches (down to 0.000 03 %)

29 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Covert Channel

� Shared file as information carrier

� File page presence in page cache ↔ message bits

� Additional file pages for transmission control

Different implementation approaches:

OS Eviction Observation Speed

Linux

like side channel mincore 20.20 kB/s

madvise

posix fadvise
mincore 81.16 kB/s

Windows
process WS

VirtualUnlock

QueryWorkingSetEx

(ShareCount)
100.11 kB/s

� Low bit error rate for all approaches (down to 0.000 03 %)

29 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Covert Channel

� Shared file as information carrier

� File page presence in page cache ↔ message bits

� Additional file pages for transmission control

Different implementation approaches:

OS Eviction Observation Speed

Linux

like side channel mincore 20.20 kB/s

madvise

posix fadvise
mincore 81.16 kB/s

Windows
process WS

VirtualUnlock

QueryWorkingSetEx

(ShareCount)
100.11 kB/s

� Low bit error rate for all approaches (down to 0.000 03 %)

29 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Covert Channel

� Shared file as information carrier

� File page presence in page cache ↔ message bits

� Additional file pages for transmission control

Different implementation approaches:

OS Eviction Observation Speed

Linux

like side channel mincore 20.20 kB/s

madvise

posix fadvise
mincore 81.16 kB/s

Windows
process WS

VirtualUnlock

QueryWorkingSetEx

(ShareCount)
100.11 kB/s

� Low bit error rate for all approaches (down to 0.000 03 %)

29 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Covert Channel

� Shared file as information carrier

� File page presence in page cache ↔ message bits

� Additional file pages for transmission control

Different implementation approaches:

OS Eviction Observation Speed

Linux

like side channel mincore 20.20 kB/s

madvise

posix fadvise
mincore 81.16 kB/s

Windows
process WS

VirtualUnlock

QueryWorkingSetEx

(ShareCount)
100.11 kB/s

� Low bit error rate for all approaches (down to 0.000 03 %)

29 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Covert Channel

� Shared file as information carrier

� File page presence in page cache ↔ message bits

� Additional file pages for transmission control

Different implementation approaches:

OS Eviction Observation Speed

Linux

like side channel mincore 20.20 kB/s

madvise

posix fadvise
mincore 81.16 kB/s

Windows
process WS

VirtualUnlock

QueryWorkingSetEx

(ShareCount)
100.11 kB/s

� Low bit error rate for all approaches (down to 0.000 03 %)

29 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



PHP RNG Attack

� Targets seeding of PHP PRNG

� microtime used as seed by some frameworks

� Returns UNIX timestamp in microseconds

� Later PRNG used for cryptographic operations :(

� Side channel used to detect microtime call

� Seed recoverable

� zif microtime on page 781 of php-fpm executable

� PHP 7.3.5, depends on build environment/configuration

� Average detection accuracy: ±1 ms

30 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



PHP RNG Attack

� Targets seeding of PHP PRNG

� microtime used as seed by some frameworks

� Returns UNIX timestamp in microseconds

� Later PRNG used for cryptographic operations :(

� Side channel used to detect microtime call

� Seed recoverable

� zif microtime on page 781 of php-fpm executable

� PHP 7.3.5, depends on build environment/configuration

� Average detection accuracy: ±1 ms

30 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



PHP RNG Attack

� Targets seeding of PHP PRNG

� microtime used as seed by some frameworks

� Returns UNIX timestamp in microseconds

� Later PRNG used for cryptographic operations :(

� Side channel used to detect microtime call

� Seed recoverable

� zif microtime on page 781 of php-fpm executable

� PHP 7.3.5, depends on build environment/configuration

� Average detection accuracy: ±1 ms

30 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



PHP RNG Attack

� Targets seeding of PHP PRNG

� microtime used as seed by some frameworks

� Returns UNIX timestamp in microseconds

� Later PRNG used for cryptographic operations :(

� Side channel used to detect microtime call

� Seed recoverable

� zif microtime on page 781 of php-fpm executable

� PHP 7.3.5, depends on build environment/configuration

� Average detection accuracy: ±1 ms

30 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



PHP RNG Attack

� Targets seeding of PHP PRNG

� microtime used as seed by some frameworks

� Returns UNIX timestamp in microseconds

� Later PRNG used for cryptographic operations :(

� Side channel used to detect microtime call

� Seed recoverable

� zif microtime on page 781 of php-fpm executable

� PHP 7.3.5, depends on build environment/configuration

� Average detection accuracy: ±1 ms

30 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



PHP RNG Attack

� Targets seeding of PHP PRNG

� microtime used as seed by some frameworks

� Returns UNIX timestamp in microseconds

� Later PRNG used for cryptographic operations :(

� Side channel used to detect microtime call

� Seed recoverable

� zif microtime on page 781 of php-fpm executable

� PHP 7.3.5, depends on build environment/configuration

� Average detection accuracy: ±1 ms

30 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



PHP RNG Attack

� Targets seeding of PHP PRNG

� microtime used as seed by some frameworks

� Returns UNIX timestamp in microseconds

� Later PRNG used for cryptographic operations :(

� Side channel used to detect microtime call

� Seed recoverable

� zif microtime on page 781 of php-fpm executable

� PHP 7.3.5, depends on build environment/configuration

� Average detection accuracy: ±1 ms

30 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



PHP RNG Attack

� Targets seeding of PHP PRNG

� microtime used as seed by some frameworks

� Returns UNIX timestamp in microseconds

� Later PRNG used for cryptographic operations :(

� Side channel used to detect microtime call

� Seed recoverable

� zif microtime on page 781 of php-fpm executable

� PHP 7.3.5, depends on build environment/configuration

� Average detection accuracy: ±1 ms

30 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



PHP RNG Attack

� Targets seeding of PHP PRNG

� microtime used as seed by some frameworks

� Returns UNIX timestamp in microseconds

� Later PRNG used for cryptographic operations :(

� Side channel used to detect microtime call

� Seed recoverable

� zif microtime on page 781 of php-fpm executable

� PHP 7.3.5, depends on build environment/configuration

� Average detection accuracy: ±1 ms

30 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Live Demo

31 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



UI Redressing Attack

� Detect opening of interesting window

� e.g. authentication windows

� Overlay original window with fake

� Side channel used as a trigger

� Provides low latency → hardly noticeable

� Tested with root authentication window on Ubuntu 16.04

� Page 6 of binary polkit-gnome-authentication-agent-1

32 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



UI Redressing Attack

� Detect opening of interesting window

� e.g. authentication windows

� Overlay original window with fake

� Side channel used as a trigger

� Provides low latency → hardly noticeable

� Tested with root authentication window on Ubuntu 16.04

� Page 6 of binary polkit-gnome-authentication-agent-1

32 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



UI Redressing Attack

� Detect opening of interesting window

� e.g. authentication windows

� Overlay original window with fake

� Side channel used as a trigger

� Provides low latency → hardly noticeable

� Tested with root authentication window on Ubuntu 16.04

� Page 6 of binary polkit-gnome-authentication-agent-1

32 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



UI Redressing Attack

� Detect opening of interesting window

� e.g. authentication windows

� Overlay original window with fake

� Side channel used as a trigger

� Provides low latency → hardly noticeable

� Tested with root authentication window on Ubuntu 16.04

� Page 6 of binary polkit-gnome-authentication-agent-1

32 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



UI Redressing Attack

� Detect opening of interesting window

� e.g. authentication windows

� Overlay original window with fake

� Side channel used as a trigger

� Provides low latency → hardly noticeable

� Tested with root authentication window on Ubuntu 16.04

� Page 6 of binary polkit-gnome-authentication-agent-1

32 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



UI Redressing Attack

� Detect opening of interesting window

� e.g. authentication windows

� Overlay original window with fake

� Side channel used as a trigger

� Provides low latency → hardly noticeable

� Tested with root authentication window on Ubuntu 16.04

� Page 6 of binary polkit-gnome-authentication-agent-1

32 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



UI Redressing Attack

� Detect opening of interesting window

� e.g. authentication windows

� Overlay original window with fake

� Side channel used as a trigger

� Provides low latency → hardly noticeable

� Tested with root authentication window on Ubuntu 16.04

� Page 6 of binary polkit-gnome-authentication-agent-1

32 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



UI Redressing Attack

33 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Impact

� Identified as CVE-2019-5489

� Linux and Windows deployed countermeasures

34 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Impact

� Identified as CVE-2019-5489

� Linux and Windows deployed countermeasures

34 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Impact

� Identified as CVE-2019-5489

� Linux and Windows deployed countermeasures

34 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)





Countermeasures - Windows

� Higher privilege for QueryWorkingSetEx on other processes

� No direct querying of working set state

� ShareCount hidden for unprivileged users

� No indirect querying of working set state

� No non-destructive probing of higher-integrity processes
→ weaker attack

� If QueryWorkingSetEx only possible leakage source

� Page-cache eviction already harder than on Linux

35 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Countermeasures - Windows

� Higher privilege for QueryWorkingSetEx on other processes

� No direct querying of working set state

� ShareCount hidden for unprivileged users

� No indirect querying of working set state

� No non-destructive probing of higher-integrity processes
→ weaker attack

� If QueryWorkingSetEx only possible leakage source

� Page-cache eviction already harder than on Linux

35 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Countermeasures - Windows

� Higher privilege for QueryWorkingSetEx on other processes

� No direct querying of working set state

� ShareCount hidden for unprivileged users

� No indirect querying of working set state

� No non-destructive probing of higher-integrity processes
→ weaker attack

� If QueryWorkingSetEx only possible leakage source

� Page-cache eviction already harder than on Linux

35 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Countermeasures - Windows

� Higher privilege for QueryWorkingSetEx on other processes

� No direct querying of working set state

� ShareCount hidden for unprivileged users

� No indirect querying of working set state

� No non-destructive probing of higher-integrity processes
→ weaker attack

� If QueryWorkingSetEx only possible leakage source

� Page-cache eviction already harder than on Linux

35 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Countermeasures - Windows

� Higher privilege for QueryWorkingSetEx on other processes

� No direct querying of working set state

� ShareCount hidden for unprivileged users

� No indirect querying of working set state

� No non-destructive probing of higher-integrity processes

→ weaker attack

� If QueryWorkingSetEx only possible leakage source

� Page-cache eviction already harder than on Linux

35 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Countermeasures - Windows

� Higher privilege for QueryWorkingSetEx on other processes

� No direct querying of working set state

� ShareCount hidden for unprivileged users

� No indirect querying of working set state

� No non-destructive probing of higher-integrity processes
→ weaker attack

� If QueryWorkingSetEx only possible leakage source

� Page-cache eviction already harder than on Linux

35 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Countermeasures - Windows

� Higher privilege for QueryWorkingSetEx on other processes

� No direct querying of working set state

� ShareCount hidden for unprivileged users

� No indirect querying of working set state

� No non-destructive probing of higher-integrity processes
→ weaker attack

� If QueryWorkingSetEx only possible leakage source

� Page-cache eviction already harder than on Linux

35 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Countermeasures - Windows

� Higher privilege for QueryWorkingSetEx on other processes

� No direct querying of working set state

� ShareCount hidden for unprivileged users

� No indirect querying of working set state

� No non-destructive probing of higher-integrity processes
→ weaker attack

� If QueryWorkingSetEx only possible leakage source

� Page-cache eviction already harder than on Linux

35 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Countermeasures - Linux

� mincore only reveals information for writeable file pages

� Read-only files excluded → shared libraries, executables

� Merged with the release of the 5.1.4 kernel

� Non-destructive probing no longer possible?

� No, preadv2 with RWF NOWAIT leaks same information

� Not fixed yet

36 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Countermeasures - Linux

� mincore only reveals information for writeable file pages

� Read-only files excluded → shared libraries, executables

� Merged with the release of the 5.1.4 kernel

� Non-destructive probing no longer possible?

� No, preadv2 with RWF NOWAIT leaks same information

� Not fixed yet

36 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Countermeasures - Linux

� mincore only reveals information for writeable file pages

� Read-only files excluded → shared libraries, executables

� Merged with the release of the 5.1.4 kernel

� Non-destructive probing no longer possible?

� No, preadv2 with RWF NOWAIT leaks same information

� Not fixed yet

36 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Countermeasures - Linux

� mincore only reveals information for writeable file pages

� Read-only files excluded → shared libraries, executables

� Merged with the release of the 5.1.4 kernel

� Non-destructive probing no longer possible?

� No, preadv2 with RWF NOWAIT leaks same information

� Not fixed yet

36 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Countermeasures - Linux

� mincore only reveals information for writeable file pages

� Read-only files excluded → shared libraries, executables

� Merged with the release of the 5.1.4 kernel

� Non-destructive probing no longer possible?

� No, preadv2 with RWF NOWAIT leaks same information

� Not fixed yet

36 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Countermeasures - Linux

� mincore only reveals information for writeable file pages

� Read-only files excluded → shared libraries, executables

� Merged with the release of the 5.1.4 kernel

� Non-destructive probing no longer possible?

� No, preadv2 with RWF NOWAIT leaks same information

� Not fixed yet

36 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Countermeasures are Difficult

� We want the performance optimizations

� Many side-channel attacks exploit intended behavior

� Often a trade-off between security and performance

� Every optimization is potentially a side channel

37 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Countermeasures are Difficult

� We want the performance optimizations

� Many side-channel attacks exploit intended behavior

� Often a trade-off between security and performance

� Every optimization is potentially a side channel

37 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Countermeasures are Difficult

� We want the performance optimizations

� Many side-channel attacks exploit intended behavior

� Often a trade-off between security and performance

� Every optimization is potentially a side channel

37 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Countermeasures are Difficult

� We want the performance optimizations

� Many side-channel attacks exploit intended behavior

� Often a trade-off between security and performance

� Every optimization is potentially a side channel

37 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



The Future

� We won’t get rid of side channels

� More optimizations → more side channels

� More attacks on the “OS microarchitecture”

38 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



The Future

� We won’t get rid of side channels

� More optimizations → more side channels

� More attacks on the “OS microarchitecture”

38 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



The Future

� We won’t get rid of side channels

� More optimizations → more side channels

� More attacks on the “OS microarchitecture”

38 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Take Aways

� Abstraction leads to side channels

� Software-cache attacks are similar to hardware-cache attacks

� Finding countermeasures is difficult

39 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Take Aways

� Abstraction leads to side channels

� Software-cache attacks are similar to hardware-cache attacks

� Finding countermeasures is difficult

39 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Take Aways

� Abstraction leads to side channels

� Software-cache attacks are similar to hardware-cache attacks

� Finding countermeasures is difficult

39 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Acknowledgements

We want to thank James Forshaw for helpful discussions on COM use cases and

Simon Gunacker for early explorative work on this topic. Daniel Gruss and

Michael Schwarz were supported by a generous gift from ARM and also by a

generous gift from Intel. Ari Trachtenberg and Trishita Tiwari were supported, in

part, by the National Science Foundation under Grant No. CCF-1563753 and

Boston University’s Distinguished Summer Research Fellowship, Undergraduate

Research Opportunities Program, and the department of Electrical and Computer

Engineering. Any opinions, findings, and conclusions or recommendations

expressed in this paper are those of the authors and do not necessarily reflect the

views of the funding parties.

40 Daniel Gruss (@lavados), Trishita Tiwari (@fork while 1), Michael Schwarz (@misc0110), Erik Kraft (@ekraft95)



Page Cache Attacks
Microarchitectural Attacks on Flawless Hardware

Daniel Gruss, Trishita Tiwari, Michael Schwarz, Erik Kraft


