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ABSTRACT

We present a new side-channel attack that targets one of the most
fundamental software caches in modern computer systems: the
operating system page cache. The page cache is a pure software
cache that contains all disk-backed pages, including program bina-
ries, shared libraries, and other files. On Windows, dynamic pages
are also part of this cache and can be attacked as well, e.g., data,
heap, and stacks. Our side channel permits unprivileged monitor-
ing of accesses to these pages of other processes, with a spatial
resolution of 4 kB and a temporal resolution of 2 us on Linux (< 6.7
measurements per second), and 466 ns on Windows 10 (< 223 mea-
surements per second). We systematically analyze the side channel
by demonstrating different hardware-agnostic local attacks, includ-
ing a sandbox-bypassing high-speed covert channel, an ASLR break
on Windows 10, and various information leakages that can be used
for targeted extortion, spam campaigns, and more directly for Ul re-
dressing attacks. We also show that, as with hardware cache attacks,
we can attack the generation of temporary passwords on vulnerable
cryptographic implementations. Our hardware-agnostic attacks can
be mitigated with our proposed security patches, but the basic side
channel remains exploitable via timing measurements. We demon-
strate this with a remote covert channel exfiltrating information
from a colluding process through innocuous server requests.
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1 INTRODUCTION

Modern processors are highly optimized for performance and effi-
ciency. Caching takes advantage of temporal and spatial locality to
minimize slower memory or disk accesses. Caches typically fetch
or prefetch code and data into fast buffers closer to the processor.

While side channels have been known and utilized primarily in
military contexts for decades [47, 91], the idea of hardware-cache
side-channel attacks has gained more attention over the last twenty
years [3, 46, 61]. Notably, Osvik et al. [58] showed that an attacker
can observe the cache state at the granularity of a cache set using
Prime+Probe, and later Yarom et al. [90] showed this with cache
line granularity using Flush+Reload.

The pages targeted by Flush+Reload attacks reside in the so-
called page cache, a purely software cache that is implemented in
all major contemporary operating systems and contains virtually
all pages in active use. The operating system uses the page cache
to store frequently used pages in memory, obviating otherwise
slow disk loads; pages that contain data accessible to multiple pro-
grams, such as disk-backed pages (e.g., program binaries, shared
libraries, other files, etc.), are shared among all processes regardless
of privilege and permission boundaries [27]. There is a large body
of works exploiting Flush+Reload in various scenarios over the past
several years [34, 39-41, 48, 90]. There have also been a series of
software (side-channel) cache attacks in the literature, including
attacks on the browser cache [5, 23, 42, 43, 83] and exploiting page
deduplication [2, 6, 30, 59, 63, 78, 87, 88]; however, page deduplica-
tion is mostly disabled or limited to deduplication within a security
domain today [52, 64, 82].

In this paper, we present a new attack that directly targets the
software-based operating system page cache, and is thus hardware
agnostic. We present a set of local attacks that work entirely without
timers, utilizing operating system calls (nincore on Linux and An-
droid, and QueryWorkingSetEx on Windows) to elicit page cache
information. We also show that page cache metadata can leak to
a remote attacker over a network channel, producing a stealthy
covert channel between a malicious local sender process and an
external attacker.

We comprehensively evaluate and characterize our software-
cache side channel by comparing it to known hardware-cache side
channels. To this end, our attacks are similar in effect to DRAMA
attacks [62, 85], in that they work across cores and across CPUs;
the temporal granularity of the DRAMA attack is around 300 ns,
whereas the temporal granularity of our attack is 2 ps on Linux
(< 6.7 measurements per second) and 466 ns on Windows (< 223
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measurements per second). In other aspects, our attacks are similar
to controlled-channel attacks on TEEs [81, 89], in that the infor-
mation leaked is whether or not a page was used within a certain
time frame, implying a spatial granularity of 4kB. We conclude
that our attack can compete with the current state-of-the-art in
microarchitectural attacks.

Finally, we present several ways to mitigate our attack in soft-
ware, and observe that certain page replacement algorithms reduce
the applicability of our attack while simultaneously improving the
system performance. In our responsible disclosure, both Microsoft
and the Linux security team acknowledged the problem and plan
to follow our recommendations with security patches to mitigate
our attack, which has also been codified as CVE-2019-5489.

To summarize, we make the following contributions:

(1) We present a novel attack targeting the page cache.

(2) We present a high-speed covert channel and a set of local
attacks which are hardware-agnostic and can compete with
state-of-the-art microarchitectural attacks.

(3) We present timing-based attacks in form of a remote attack
which can leak information across the network.

We begin in Section 2 with background information on hard-
ware caches, cache attacks, and software caches, followed by our
threat model in Section 3. Section 4 overviews our attack. Section 5
presents a novel method to spy on the page cache state. Section 6
shows how page cache eviction can be done efficiently on Linux,
Android, and Windows. Section 7 presents hardware-agnostic local
page cache attacks. Section 8 presents timing-based remote page
cache attacks. Section 9 discusses different countermeasures against
our attack. Section 10 concludes our work.

2 BACKGROUND

We begin with a brief discussion of hardware and software cache
attacks, followed by some background on the operating system
page cache that we exploit.

2.1 Hardware and Software Cache Attacks

The suggestion of cache attacks harks back to the timing attacks
of Kocher [46]. Osvik et al. [58] presented a technique with a finer
granularity called Prime+Probe. Yarom et al. [90] presented Flush+
Reload, which is still today the cache attack technique with the
highest accuracy (virtually no false negatives or false positives) and
a finer granularity than most other attacks (one cache line). Conse-
quently, Flush+Reload is also used in other applications, including
the covert channel in Spectre [45] and Meltdown [49]. Flush+Reload
requires shared memory with the victim application. However, all
modern operating systems share code and unmodified data of every
program and shared library (and any unmodified file-backed page
in general) across privilege boundaries and applications.

Caches also exist in software, caching remote data, data that has
been retrieved from slow or offline storage, or precomputed results.
Some of these caches have very specific use-cases, such as browser
caches used for website content; other caches are more generic,
such as the page cache that stores a large portion of code and data
used. Caches make use of the principle of locality to retain common
computations closer to the processor, and consequently they can
leak information about the cache contents.

For example, browser caches leak information about browsing
history and other possibly sensitive user information [5, 23, 42, 43,
83]. Requested resources may have different access times, depend-
ing on whether the resource is being served from a local cache
or a remote server, and these differences can be distinguished by
an attacker. As another example of a software-based side chan-
nel, page-deduplication attacks exploit page deduplication across
security boundaries. A copy-on-write page fault reveals the fact
that the requested page was deduplicated and that another pro-
cess must have a page with identical content. Suzaki et al. [78]
presented the first page-deduplication attack, which detected pro-
grams running in co-located virtual machines. Subsequently, several
other page-deduplication attacks were demonstrated [30, 59, 87, 88].
Today, page deduplication is either completely disabled for secu-
rity reasons or restricted to deduplication within a security do-
main [6, 52, 63, 64].

2.2 Operating System Page Cache

Virtual memory creates the illusion for each involved process of
running alone on the system. To do this, it provides isolation be-
tween processes so that different processes may operate on the same
addresses without interfering with each other. Each virtual mem-
ory page may be mapped by the operating system, with varying
properties, to an arbitrary physical memory page.

When multiple processes map a virtual page to the same physical
page, this page is part of shared memory. Shared memory typically
may arise out of inter-process communication or, more broadly,
to reduce physical memory consumption. For example, if shared
library and common binary pages on the hard disk are mapped
multiple times by different processes, they map to the same pages
in physical memory.

Any page that might be used by more than one process may be
mapped as shared memory. However, if a process wants to write to
such a page, it must first secure a private copy of the page, so as
not to break the isolation between processes. The efficiency savings
come because a great many pages are never modified and, instead,
remain shared among multiple processes in a read-only state.

The operating system page cache is a generalization of the above
memory sharing scenario, and, in fact, all modern operating systems
(e.g., Windows, Linux, Android, and OS X) implement a page cache.
The page cache contains not only shared pages, but all pages that are
memory mapped files, any file read from the disk, and (depending
on the system) possibly other pages such as anonymous pages or
shared memory [27]. The operating system keeps track of which
pages in the page cache are clean (i.e., their data is unmodified from
the disk version) and which are dirty (i.e., modified since they were
first loaded from the disk). Ideally, the page cache incorporates all
available memory, minimizing the disk I/O.

The introduction of a page cache disrupts the traditional func-
tioning of the operating system under a page fault. Without a page
cache, the operating system reserves a free physical page frame,
loads the data from the disk into that physical page frame, and then
maps a virtual page to the physical page frame accordingly. If there
are no available physical page frames, the system swaps out pages
to the disk using an operating system-dependent page-replacement
algorithm. In Linux, this algorithm had traditionally been based on



a variant of Least Recently Used (LRU) [12], and LRU-related data
structures can still be found throughout the kernel code. More re-
cent Linux versions implement an improved variant called CLOCK-
Pro [44] along with several adaptions [13]. Within this improved
framework, Linux moves pages among multiple lists (an inactive
list, an active list, and a recently evicted list). In contrast to Linux,
Windows uses the working-set model of page caching to introduce
more fairness among processes competing for memory [9, 19, 20].
The page replacement algorithm used on Windows was based on
Clock or pseudo-random replacement [26, 68] in older Windows
versions, and today is likely a variant of the Aging algorithm [8].

With a page cache, the operating system endeavors to make full
use of all physical page frames, and a page-replacement algorithm
is still needed for evicting page cache pages (swapping is less rele-
vant on modern operating systems [17, 18, 37]). Also pages from
KVM virtual machines are cached in the host-side page cache if the
machine is configured to use a write-back caching strategy [21].

Both Linux and Windows provide mechanisms for checking
whether a page is resident in the page cache - the mincore system
call for Linux (and Android), and the QueryWorkingSetEx system
call for Windows.

3 THREAT MODEL

Our threat model is based on the threat model for Flush+Reload [34,
39-41, 48, 90].

Specifically, we assume that attacker and victim have access to
the same operating system page cache. On Linux, we also assume
that the attacker has read access to the target page, which may
be any page of any attacker-accessible file on the system. This
assumption is satisfied, for example, when attacker and victim are

e processes running under the same operating system, or
e processes running in isolated sandboxes with a copy-on-
write file system mapping (e.g., Firejail [24], (s)chroot, etc.).
On Windows, read access to the target page is not necessary for
our attack, i.e., our attack works on non-shared pages.

Our local attacks are timing-free, in that they do not rely on
hardware timing differences. Our remote attack leverages timing
differences between memory and disk access, measured on a remote
system, as a proxy for the required local information.

4 HIGH-LEVEL VIEW OF THE ATTACK

Our attack fundamentally relies on the attacker’s capability to distin-
guish whether a page is in the page cache or not. In the local attack
we are agnostic to the underlying hardware, i.e., we do not exploit
any timing differences although this would be practically possible
on virtually all systems. Thus, we use the mincore system call on
Linux and Android for this purpose and the QueryWorkingSetEx
system call on Windows. The mincore system call returns which
pages of a memory range are present in memory (i.e., in the page
cache) and which are not. Likewise, the QueryWorkingSetEx sys-
tem call returns a list of pages that are in the current working set
of a process, and thus are present in the page cache.

Bringing the page cache into a known state is not trivial, as it
behaves like a fully associative cache. Previous approaches for page
cache eviction can lead to out-of-memory situations [32, 75, 82]
or consume too much time and impose system pressure [31]. This
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Figure 1: Attack overview.

is not practical when evicting pages often, e.g., multiple times per
second. Hence, they have not been used in published side-channel
attacks so far, but only to support other attacks, e.g., relocation of
a page for Rowhammer. For Linux, we devise an eviction strategy
that forms working sets of pages and accesses them frequently. As
the page to evict is accessed less frequently (never by the attacker),
it is evicted in the process.

On Windows, our attack is much more efficient than on Linux.
On Linux, the page cache is directly influenced by all processes. In
contrast, Windows has per-process working sets [53], and the page
cache is influenced indirectly through these working sets. Hence,
for Windows, we present an attack which evicts pages only from the
working set of the victim process, but not from the page cache (i.e.,
not from DRAM), i.e., causing no additional disk accesses. Although
both attack variants follow the same attack methodology, we have
to distinguish between the Linux and Windows variant at several
places in the remainder of the paper.

In contrast to hardware cache attacks and page-deduplication
attacks, our local attacks are non-destructive, allowing us to re-
peat measurements. Measuring whether a memory location is
cached or not manipulates the state such that the information is
not available anymore at a later point in both hardware cache at-
tacks [58, 90] and page-deduplication attacks [59, 78]. However,
it is not the case for our local attack. As we rely on the mincore
and QueryWorkingSetEx system calls, we can arbitrarily check
whether the page is in the page cache (on Linux) or the process
working set [53] (Windows). These checks are non-destructive as
they neither modify nor influence the state of the page cache or the
process working set with respect to the target memory location.

Our attack is illustrated in Figure 1. The attacker wants to mea-
sure when the function foo() is called by a victim program. The
attacker determines the page which contains the function foo().
By observing when the page is in the page cache, the attacker learns
when foo() was called.

Our attack continuously runs through the following steps: Ini-
tially, the target pages are in the page cache (on Linux) respectively
the working set of the victim process (on Windows). After the evic-
tion, the page is not in the page cache (Linux) or process working
set (Windows) anymore. The attacker can now continuously probe
when the page is added back in. As soon as the page is found in



the page cache (Linux) or the process working set (Windows), the
attacker logs the memory access and evicts the page again.

In the following sections, we detail the two main steps of the
attack, i.e., determining the page cache state (defining the temporal
resolution) and performing the page cache eviction (defining the
maximum frequency at which the attack can be performed).

5 DETERMINING THE PAGE CACHE STATE

In this section, we discuss how to determine the page cache state.
Note that although our attack starts with the page cache eviction,
following the attack description is easier when understanding how
to determine the page cache state first.

The attacker wants to determine when a specific page in a victim
process is loaded into the page cache, as this is exactly the access
time of the victim program. On Linux, the binary containing the
page targetted by an attacker has to be mapped into the attacker’s
address space, using mmap. On Windows the same can be achieved
via LoadLibraryEx or CreateFileMappingA and MapViewOfFile,
but this is not necessary for our attack, as we detail in Section 5.1.

To map the shared library, the user only requires read-only ac-
cess to the file containing the target page. As the attacker process
works on its own mapping of the shared library, all addresses are
observed relative to the start of the shared library. Hence, security
mechanisms such as Address Space Layout Randomization (ASLR)
have no effect on our attack on Linux. On Windows attack even
allows to break ASLR in other processes, as we detail in Section 5.1.

To determine whether or not a page is in the page cache, we rely
on the operating-system provides APIs to query the page cache. On
Linux, this API is provided by the mincore system call. mincore
expects the base address and length of a memory area and returns
a vector indicating for each page whether it is in the page cache or
not. On Windows, there are two variants we discuss.

5.1 Windows Process Working-Set State

On Windows, every process has a working set which is a very small
subset of the page cache. We cannot query the page cache directly
as on Linux but instead we focus on the working set. While this
makes determining the cache state more complex, the following
eviction is much easier and faster (cf. Section 6.2). On Windows, we
rely on the QueryWorkingSetEx system call. This function takes
a process handle and an array specifying the virtual addresses of
interest as arguments. It returns a vector of structures which, if
the page is part of the working set, contain various information
about the corresponding pages. We devise two different variants to
determine whether or not a page is in the working set of a process
based on the return value of the QueryWorkingSetEx system call.
Variant 1: Low Share Count and Attacker-Readable.

The ShareCount represents the number of processes that have this
page in their working set. It is one of the members in the struc-
ture returned by QueryWorkingSetEx. Unfortunately, the value is
capped to 7 processes, i.e., if more processes have the page in their
working set, the number remains 7. However, as the working-set
size is limited to 1.4 MB by default, this rarely happens for a page.
In fact, most pages in the page cache have a ShareCount of 0 due
to the small working-set sizes. With this variant, we do not need
any permissions for other processes and only default permissions

on our own process. Hence, we can mount the attack even across
users without restrictions.

Variant 2: High Share Count or Not Attacker-Readable.

If the ShareCount is 7 or larger, we cannot gain any information by
calling QueryWorkingSetEx on our own process. Instead, we can
use QueryWorkingSetEx directly on the victim process. In contrast
to the official documentation [53], the QueryWorkingSetEx sys-
tem call only requires the PROCESS_QUERY_LIMITED_INFORMATION
permission. By default, the attacker process has this permission
for handles of other processes of the same user but also for some
processes with a higher integrity level (as part of the generic ex-
ecute access) [54]. This allows us to use QueryWorkingSetEx to
break ASLR in these other processes. Even worse, this allows us
to spy on pages that are not shared, i.e., not attacker-readable
at all, QueryWorkingSetEx still leaks information whether the
page is currently in the page cache or not. Hence, we can use
QueryWorkingSetEx to directly break ASLR in the victim process
and also determine directly whether the target page is in the work-
ing set of the victim process.

5.2 Spatial and Temporal Granularity

One limitation of our attack is the coarse spatial granularity of
4KkB, i.e, one page. This is identical to TLB- [28, 29] and DRAM-
based attacks [62, 85], but also to controlled-channel attacks on
TEEs [81, 89]. If a target region contains other frequently used
data, the signal-to-noise ratio decreases in these attacks same as in
ours. However, this just increases the number of measurements an
attacker has to perform.

The temporal granularity of the DRAMA attack is constrained
by the time it takes to run one or two rounds of Flush+Reload,
which is around 300 ns [62, 85]. The temporal granularity of our
attack is constrained by the time the system call consumes, which
we observed to be 2.04 us on average for mincore with a standard
error of 20 ns, and 465.91 ns on average for QueryWorkingSetEx
with a standard error of 0.20 ns on our Intel i17-6700K. Hence, on
Linux, it is only 6.8 times lower than the DRAMA attack, and
on Windows only 55 % lower than the DRAMA attack. Thus, our
attack can be used as a reasonable replacement for the hardware-
dependent DRAMA attack. However, as we describe in Section 6,
the eviction limits how often an attacker can measure, i.e., 6.7 times
per second on Linux and 223 times per second on Windows.

5.3 procfs and Timing

As an alternative to mincore on Linux, we also tried to mount the
same attack using information from /proc/self/pagemap. How-
ever, /proc/self/pagemap only shows the information from the
page translation tables. As operating systems commonly use lazy
page mapping, the page is in practice not mapped into the attacker
process and thus, the information in /proc/self/pagemap does
not change. Furthermore, as a response to Rowhammer attacks [75],
access to /proc/self/pagemap was first restricted and nowadays
it is often not accessible by unprivileged processes.

Timing of pagefaults is a generic alternative to mincore and
QueryWorkingSetEx. Accessing a page may trigger a pagefault.
Measuring the time it takes to handle the pagefault reveals whether
it was a soft pagefault, just mapping a page from the page cache, or a



regular pagefault, loading data from the disk. The timing differences
we observed are easy to distinguish, with 1-2 orders of magnitude
between the two cases. In our remote attack we exploit these timing
differences. However, this makes page cache eviction more difficult
as the accessed page is now the least-recently used one.

Finally, as stated in Section 3, our local attacks are entirely attack
hardware-agnostic. Hence, we cannot use any timing differences
in our local attacks.

6 PAGE CACHE EVICTION

In this section, we discuss how page cache eviction can be imple-
mented efficiently on Linux and Windows systems. Page cache
eviction is the process of accessing enough pages in the right way
such that a target page is evicted. We show that we improve over
state-of-the-art eviction algorithms by 1 to 2 orders of magnitude,
enabling practical side-channel attacks through the page cache for
the first time.

Less efficient variants of page cache eviction have been used in
previous work [31, 36]. Holen et al. [36] generates a large amount of
data, simply exhausting the physical memory. Using this approach
it takes 8 s or more to evict a target page on Linux. Furthermore,
when reproducing their results we observed severe stability issues,
constantly leading to crashes and system lock-ups during eviction.
The technique presented by Gruss et al. [31] takes 2.68 s on Linux to
evict a target page. On Windows, their technique is slower, with an
average execution time of 10.1 s. State-of-the-art microarchitectural
side-channel attacks have a higher temporal resolution by more
than 6 orders of magnitude [51, 62, 90]. Hence, we can conclude that
page cache eviction, as done in previous work, would be far too slow
for side-channel attacks with a relevant frequency. We solve this
problem by combining the technique from Section 5 with efficient
page cache eviction on Linux (Section 6.1) and process working-set
eviction on Windows (Section 6.2), allowing page cache attacks
with a decent frequency. Our technique for Linux is also applicable
to Android, as Android is based on Linux and also exposes the
required functions to user-space applications.

6.1 Efficient Page Cache Eviction on Linux

The optimal cache eviction for the attacker would evict only the
target page of the victim, without affecting other cached pages.
Our idea is to constantly access a large number of pages which are
already in the page cache (to keep them there) and then access a
few non-cached pages to evict the target page.

In a feasibility analysis, we measured how many pages an at-
tacker can locate inside the page cache. On our test system, we
had 1040 542 files accessible to the attacker program, amounting
to 77 GB of disk space. We found that less than 1 % of the files had
pages in the page cache, still amounting to 68 % to 72 % of the total
page cache pages. This information is available to an unprivileged
attacker using system calls like mmap and mincore.

The attacker then creates a list of all pages currently in the page
cache and a list of further pages that could be loaded into the page
cache to increase memory pressure. Both lists are updated occa-
sionally to reflect changes in how the system is utilized currently.
To also reflect the current memory load, the attacker adapts how

many pages in each of the two lists are accessed to achieve efficient
cache eviction.

Thus, the attacker creates 3 eviction sets:

Eviction Set 1. The pages in this set are already in the page cache,
used by other processes. To keep them in the page cache, a thread
continuously accesses these pages. The system load is kept low
by using sched_yield and sleep frequently. Consequently, the
pages in this set are among the most recently accessed pages of the
system and eviction of these pages is highly unlikely.

Eviction Set 2. The pages in this set are not yet in the page cache.
Pages in this eviction set are randomly accessed, to avoid repeated
accesses and thus any similarity to the pages in eviction set 1 for
the replacement algorithm.

Eviction Set 3. We use another eviction set, namely non-evictable
pages, e.g., dynamic content. The attacker has to make sure these
pages cannot be swapped, e.g., by disabling swapping. These pages
are only created and filled with content, but never again read or
written. Hence, they block a certain amount of memory, reducing
the required eviction-set size. This reduces the runtime of the evic-
tion significantly. Still, this introduces no stability issues, as we
always keep a large amount of pages ready for immediate eviction,
i.e., the other eviction sets.

Alternative Approaches and Optimizations. For our tests, we
used ext4 as a file system. We investigated the influence of the file
system type, by running our attack also on XFS and ReiserFS. We
didn’t find a relevant influence of the file system type on the attack
performance.

We also investigated whether madvise and posix_fadvise sys-
tem calls on Linux can improve the attack performance. These
system calls allow a programmer to provide usage hints for a given
memory or file range to the kernel. The advice MADV_DONTNEED in-
dicates that the process will not access the specified pages any time
soon again, whereas the advice MADV_WILLNEED indicates that the
process will soon access the specified pages again. Thus, the operat-
ing system will evict the corresponding pages from the page cache.
We found that marking the target page as MADV_DONTNEED and all
eviction set pages as MADV_WILLNEED was often ignored by the ker-
nel, which ignores these hints unless the process exclusively owns
the pages (madvise) or when no other process has the file mapped
(posix_fadvise). Still, this allows to use posix_fadvise on files
regardless how frequently they are accessed, e.g., via read(), as
long as they are not mapped. Hence, we are able to mount a covert
channel by using posix_fadvise on a file which is not mapped by
any (other) process, instead of eviction.

6.1.1 Evaluation. We measured the precision and recall of our
eviction by monitoring a periodic event which was triggered every
second. The page cache eviction using all 3 eviction sets simulta-
neously achieves an average runtime of 149ms (¢ = 1.3 ms) on
average and an F-Score of 1.0

Hence, while the temporal resolution of our attack is generally
2.04 ps on Linux, the maximum rate at which events can be ob-
served can be lower. The reason is that, if (and only if) the event
occurs, eviction is necessary, and thus, we cannot perform any
measurements within these 149 ms needed for eviction. This still
allows capturing more than 6 keystrokes per second, enough to
capture keystrokes accurately for most users [73].



The temporal resolution is significantly higher than that of page-

deduplication attacks. The frequency at which page deduplication
happens is lower the more memory the system has, and has in use,
and the less power the device should invest in deduplication. In
practice deduplication happens every 2 to 45 minutes, depending on
the system configuration [30]. Hence, our attack has an at least 800
times higher temporal resolution than the best page-deduplication
attacks.
Limitations. One obvious limitation of our approach is that the
target page has to be in the page cache. However, as detailed in
Section 2.2, virtually all pages used by user programs end up in the
page cache, even dynamically allocated ones.

On Linux, the page also must be accessible to the attacker, e.g.,
file-backed memory such as binary pages, shared library pages, or
other files. This is exactly the same requirement (and limitation)
of Flush+Reload attacks [34, 39-41, 48, 90]. Other microarchitec-
tural attacks, e.g., Prime+Probe, may not have this requirement
but usually have other similarly constraining requirements, such
as knowledge of the physical address which is difficult to obtain
in practice [51]. Page-deduplication attacks also do not have this
limitation, but they face other limitations such as a significantly
lower temporal resolution and, more recently, that page deduplica-
tion is mostly disabled or limited to deduplication within a security
domain [52, 64, 82]. On Windows, we do not have these limitations:
We can attack any page in the victim process, including data pages,
heap pages, stack pages, and of course any executable and shared
library pages.

Like other cache attacks, the side channel experiences noise if
the target location is not only used by the event the attacker wants
to spy on but also other events. This is the same limitation as for
any other cache side-channel attack [34, 90]. Another limitation for
hardware cache attacks is prefetching [34, 90]. Unsurprisingly, soft-
ware again implements the same techniques as hardware. When ac-
cessing the SSD, the Linux kernel reads ahead to increase the perfor-
mance of file accesses. If not specified otherwise, the readahead win-
dow is 32 pages large, cf. /sys/block/sda/queue/read_ahead_kb.
This is similar to the adjacent line prefetcher and the streaming
prefetcher in hardware. Whenever a cache miss occurs, the adja-
cent line prefetcher always fetches the sibling cache line region
into the cache, i.e, the adjacent 64 B. Whenever a second cache
miss within a page occurs, the streaming prefetcher reads ahead
of the cache miss and reads up to 512 B (i.e., 8 cache lines) into the
cache. Gruss et al. [34] noted that this limits their attack to a small
number of memory locations per page. The same limitations apply
to our work, i.e., simultaneously monitoring multiple pages within a
32-page window can be noisy. However, this does not significantly
reduce the abundance of side channel targets for cache attacks. To
avoid triggering the prefetcher, we add the pages surrounding the
target page to the eviction set 1, i.e., we reduce their chance of being
evicted, in order to avoid all noise from prefetching, as no other
page from this range will be accessed.

Finally, the attacker process can, of course, only perform mea-
surements and evictions when it is scheduled. Hence, scheduling
can introduce false negatives into our attack. Again, this is also the
case for hardware cache attacks and it can be compensated for [51].

Compared to previous work, we improve the state-of-the-art for
page cache eviction by a factor of more than 16 and additionally

avoid cache eviction in most cases (cf. Section 5). With these two
building blocks, we are able to mount practical attacks as demon-
strated in the following sections. The ideal target for our attack is
a function or data block which is used at frequencies below 8 times
per second, allowing our attack to yield a temporal resolution of up
to 2 us. Furthermore, the noise is the lowest if the target code or data
resides on a page which is not much used by other functionality.

6.2 Process Working-Set Eviction on Windows

As previous page cache eviction techniques [31, 36] are too slow
to mount generic side-channel attacks, we pursue a different ap-
proach on Windows. Windows has per-process working sets [53],
which (by default) are constrained to a size between 100kB and
1.4 MB [53]. Hence, we evict a page from the process working set
rather than from the page cache. Our results show that the runtime
of the eviction is on par with eviction in hardware cache attacks.
We use process working-set eviction in both, covert channels
and side-channel attacks. For a covert channel, the sender can add
pages to the working set, e.g., by accessing them. To evict pages, we
use an unintended behavior of VirtualUnlock that comes from a
programming error [54]. Calling VirtualUnlock on a page which
is not locked evicts it directly from the working set. For reasons
of backward-compatibility, the behavior was never changed [54].
Additionally, pages which are only read in one of the processes can
be locked, so that they are never removed from the working set. This
way, arbitrary information can be encoded into the ShareCount of
the page cache pages — up to 3 bits exist, which allows 7 sharers.
Hence, we can transmit arbitrary information without any special
privileges (as long as the receiver is not constrained by an App
Container). The default maximum working-set size is 1.4 MB. As
the page size is 4 kB, that is, there are at most 345 page slots in
the working set by default [53]. Hence, we can exploit self-eviction
(from the working set) for the side channel, which can happen
frequently with a little heavy memory pressure because of the
small working-set size. Pages that are not accessed are evicted from
the working set, but remain in RAM and mapped in the process.
However, we can speed up eviction by reducing the victim process’
working-set size using SetProcessWorkingSetSize and even evict
all pages from the working set on the other process [53]. The lowest
possible value for the maximum working-set size is 13 pages (52 kB).

6.2.1  Evaluation. We found that VirtualUnlock has a success rate
of 100 % over several million tests. The average time to evict a page
from the process working set with VirtualUnlock is 4.48 ms with
a standard error of 3.6 ps.

Similarly to Linux (cf. Section 6.1), the higher runtime of the
eviction has a local influence on the temporal resolution of our
attack. Generally, the temporal resolution of our attack on Win-
dows is 466 ns, which is only 55 % lower than the temporal resolu-
tion of the DRAMA attack [62, 85]. The eviction on Windows via
VirtualUnlock consumes 4.48 ms during which no second mea-
surement can be taken. This is by far fast enough for inter-keystroke
timing attacks [56, 73].

While prefetching posed a relevant limitation on Linux, it is no
problem on Windows. On Windows, features like SuperFetch fetch
memory into the page cache, acting like an intelligent hardware



prefetcher or speculative execution. Indeed, SuperFetch specula-
tively prefetches pages from the disk into the main memory, based
on similar past usage, e.g., same time of day, same sequence of
applications started [72]. However, these pages are not added to the
working set of any process. Thus, our side channel remains entirely
unaffected by these Windows features. This makes the side channel
very well suited for inter-keystroke timing attacks [56, 73]. Still,
future work should investigate whether the speculative nature of
SuperFetch can be exploited by other means, such as timing, e.g.,
leaking valuable information about the user behavior.
Limitations. VirtualUnlock works on our own process and re-
quires no permissions, yet it also evicts the corresponding pages
from all other processes. Thus, it only works for read-only shared
pages, e.g., file-backed pages. The SetProcessWorkingSetSize
system call requires the PROCESS_SET_QUOTA permission on the pro-
cess handle [53]. By default, the attacker process has this permission
for handles of other processes of the same user running on the same
or a lower integrity level. Hence, by default, processes with a higher
integrity level, e.g., Administrator processes, must be attacked with
eviction if both VirtualUnlock and SetProcessWorkingSetSize
are not applicable [54].

7 LOCAL ATTACKS

In this section we present and evaluate our local attacks. The
temporal resolution naturally scales with the performance of the
system. We perform all performance evaluations on recent sys-
tems with multiple gigabytes of RAM, with off-the-shelf mid-class
consumer SSDs (e.g., transfer rates above 250 MB/s [79]). For our
tests on Linux, we have swapping disabled. This is recommended
with recent processors (e.g., Haswell or newer) and to reduce disk
wear [17, 18, 37], and it is also by default the case on Android (cf.
Section 7.8 for the experiments on Android). Disabling swapping
allows for a better comparison with related work which also focuses
on such recent systems [40, 48, 62, 85]. Running our attacks inside
a sandbox did not have any measurable effect on the performance
of our attacks, e.g., running it inside a Firejail sandbox [24] or other
cgroups-based sandbox which share the host system page cache.

7.1 Covert Channel

To systematically evaluate the page cache side channel, we adapt
different state-of-the-art hardware cache attacks to it and demon-
strate that they achieve a comparable performance. In this section,
we cover the first example, a covert channel between two processes
additionally isolated by running them in different sandboxes. The
strongly isolated sender process sends a secret file from a restrained
environment to a receiver process which can forward the data to
the attacker.

As evicting a page is comparably slow (cf. Section 6), and check-
ing the state of a page is comparably fast (cf. Section 5), it is optimal
to reduce the number of evictions. Hence, it is more efficient to trans-
mit multiple bits at once. We took this into account for the design of
our covert channel. We follow the basic principle of hardware cache
covert channels [33, 50, 51, 62]. First, a large shared file (e.g., a shared
library) is mapped read-only into the address space of the sender
and receiver process. As described in Section 4, we use mmap for

this purpose on Linux. On Windows, we use CreateFileMappingA
and MapViewOfFile for the same purpose.

The covert channel works by accessing or not accessing specific
pages. We use two pages to transmit a ‘READY’ signal and one page
to transmit an ‘ACK’ signal. The remaining pages up to the end of
the file are used as data transmission bits. The two ‘READY’ pages
are used alternately to avoid any race conditions in the protocol
between the transmission of two subsequent messages. On Win-
dows, we use two ‘READY’ pages and two ‘ACK’ pages, for the two
transmission directions.

The present state of each page of the mapped file (cf. Section 5)
corresponds to one bit of the message. Hence, the size of the file de-
fines the maximum message size of a single transmission. To avoid
the prefetcher, we only allow a single access in a region of 32 pages.
If the file has a size S, the (maximum) message size is computed
asw = Wgszbit& For instance, on Linux, Firefox’ 1ibxul.so or
Chromium’s chromium-browser binaries are more than 100 MB
large. Similarly, large files can also be found on Windows.

These large files allow transmitting more than 3200 bits in a
single message including the 3 pages required for the control chan-
nels. To avoid the introduction of noise, the attacker can skip noisy
pages, i.e., pages which are also accessed by other system activity.
By combining pages from multiple shared libraries, the attacker can
easily find a significantly higher number of pages that can be used
for transmissions, leading to very large message sizes w. The pages
are numbered from 0, 1, .., i, .., w, i.e., it is not relevant which file
they belong to. Instead of a static list of files to check, the attacker
could also use a dynamic approach and a jamming-agreement pro-
tocol [51].

To exchange a message, the sender first checks the present state
of the ‘ACK’ page (cf. Section 5). If the ‘ACK’ page is present, the
sender knows the receiver is ready for the next transmission. The
sender then evicts (cf. Section 6) any pages that are mapped, e.g.,
from previous transmissions. After that, the sender reads the next
w bits (w is the message size) from the secret to transmit. If the i-th
bit is set, page i page is accessed. Otherwise, page i is not accessed.
As soon as the sender is done with accessing the data transmission
pages, it accesses the currently to-be-set ‘READY’ page, to signal
the receiver to start reading the message.

On the other side, the receiver first waits until a READY’ page
is present. As soon as it is set, the receiver reads the message by
analyzing the present state of the pages of the memory mapped files.
After that, the receiver accesses the ‘ACK’ page again to inform the
sender that it is ready for the next message.

While above protocol is implemented with mmap, mincore (cf. Sec-
tion 5), and page cache eviction (cf. Section 6.1) on Linux, we use a
slightly different mechanism on Windows as we only work with
working-set eviction (cf. Section 6.2). On Windows, we lock pages
in the working set which should always remain in the working set,
i.e, the READY’ and ‘ACK’ bit pages of the sender and the receiver
process on the corresponding receiving side. Additionally, we in-
crease the minimal working-set size so that none of the pages we
use are removed from the working set. We temporarily add pages
into the working set by accessing them and remove pages surgi-
cally from the working set by calling VirtualUnlock. Hence, the
covert channel information is perfectly (no information loss) stored



in the page cache in the ShareCount for the shared pages. Using
QueryWorkingSetEx the receiving side can read the ShareCount
and decode the information that was encoded in the page cache.
Performance Evaluation. We tested the implementation by trans-
mitting random messages between two processes. The test system
was equipped with an Intel i5-5200U processor, 8 GB DDR3-1600
RAM, and a 256 GB Samsung SSD.

For the tests on Linux, we used Ubuntu 16.04 with kernel version
4.4.0-101-generic. We observed transmission rates of up to 9.69kB/s
with an average transmission rate of 7.04kB/s with a standard
error of 0.18 kB/s. We did not observe any influence by the core or
CPU scheduling, which is not surprising, as both the system calls
and the page cache eviction can equally run on any core or CPU.
We observed a bit-error rate of less than 0.000 03 %. We evaluated
the performance of the covert channel across sandboxes using a
cgroups-based sandbox (e.g., Firejail [24]), preventing all outgoing
inter-process communication, denying all network traffic, and only
allowing read access to the file system. We did not observe any
interference from running the covert channel in Firejail or other
sandboxes and containers using the host system page cache, e.g.,
(s)chroot, or Docker, if configured accordingly.

For the tests on Windows, we used two different hardware setups
with fully updated Windows 10 installations. On the Intel i5-5200U
system, we observed transmission rates of up to 152.57 kB/s with
an average transmission rate of 100.11 kB/s with a standard error
of 0.79kB/s and a bit-error rate below 0.000 006 %. On a second
system, an Intel i7-6700K with a SanDisk Ultra II 480GB SATA
SSD (running Ubuntu 19.04 with a 4.18.0-11-generic kernel), we
observed transmission rates of up to 278.16 kB/s with an average
transmission rate of 273.44 kB/s with a standard error of 0.23 kB/s,
again with a bit-error rate below 0.000 006 %.

For a performance comparison in a similar cross-CPU scenario,
Pessl et al. [62] reported an error rate of 0.4 % for the DRAMA
covert channel, albeit with a channel capacity of 74.5kB/s which is
much slower than our covert channel on Windows, but faster than
our covert channel on Linux. Wu et al. [86] presented a cross-CPU
covert channel with a channel capacity of 93.25B/s. Hence, our
Linux covert channel outperforms this one by two orders of magni-
tude and our Windows covert channel even by three to four orders
of magnitude. In particular, the covert channel on the i7-6700K
test system can even compete with Flush+Reload and Flush+Flush
covert channels which require specific hardware (Intel processors)
and shared memory [33]. Thus, we conclude that our covert channel
can very well compete with state-of-the-art hardware-component-
based covert channels. Yet, our covert channel works regardless of
the presence of these leaking hardware components.

7.2 Breaking ASLR on Windows 10

In this section, we break ASLR in other processes through the use
of the page cache side channel. Breaking ASLR undermines the
main line of defense against memory-error attacks [2] in both local
and remote attacks [76]. Indeed, different memory errors require
different regions of the process to be derandomized for exploitation.
In the case of Windows 10, we note that the operating system
randomizes the location of executable, heap, and stack per process,
but the locations of shared libraries are the same across all processes.

For our attack, we use QueryWorkingSetEx directly on the vic-
tim process. This only requires the PROCESS_QUERY_LIMITED_IN-
FORMATION permission, which the attacker process does not only
have for handles of other processes of the same user, but also for
some processes with a higher integrity level, cf. Section 5.1. As we
only want to locate cached pages, it does not make sense to evict
pages; the slow part of our attack, namely eviction, is not necessary.
Iterating over the entire user address space with a 4 kB granularity
(i.e., 2% pages) takes 4.4 h, with a test for a single address taking
465.91 ns on average (standard error of 0.20 ns) on our i7-6700K.
However, in practice the entropy of ASLR is much lower, leaving
us with smaller address ranges to search. The working set of every
process almost always contains some code and data pages, heap
pages, and stack pages as they are essential to the process execution.
Windows 10 uses 24 bits of entropy for the heap, 17 to 19 bits of
entropy for the executable, and up to 25 bits of entropy for the
stack pages (with an additional 8 bits of displacement within the
stack) [2, 29, 55]. All this means that we can skip most locations and
only search through the corresponding randomized region. With
465.91 ns on average (standard error of 0.20 ns) per address check,
we find that it takes 15.6 s to locate the stack, 8 s to locate the heap,
and less than 1 s to locate the executable on our i7-6700K. Microsoft
acknowledged the issue and issued a fix for the ASLR break.

7.3 Observing Low Frequency Events

In this section, we present the basic idea of observing system events
via the page cache side channel. The information obtained is used
for various attacks in the subsequent subsections. Due to the simi-
larity to controlled-channel attacks on TEEs [81, 89], the first ques-
tion is of course whether we can mount the same attacks without
privileges on regular applications. However, as controlled-channel
attacks artificially slow down the victim enclave, they can have
an arbitrarily high timing resolution. While these attacks work
equally with page cache attacks when artificially slowing down
the victim, this is not a realistic attack scenario, as the attacker
needs elevated privileges to slow down the victim. Page cache at-
tacks can trivially detect running applications, which is directly
reflected through the corresponding program binary’s presence in
the page cache. Beyond that, we focus on lower frequency events
in browsers, mail clients, password safes, web servers, and other
applications. There is an abundance of information leaks allowing
the complete supervision of any (user) activity on the system.

For browsers, we analyzed what information can be leaked from
Firefox (63.0-20181023213305 4.18.0-11-generic). We found that
we can observe the opening of new browser windows (among
many others: /usr/1lib/firefox/firefox, pages 54 and 55), and
whether a video starts playing (1ibmozavcodec. so, pages 438 to
63). Furthermore, we noticed differences in the side channel when
playing videos from different sources: Youtube (streaming webm)
uses most pages of libmozavcodec.so up to page 416 while play-
ing a video, Dailymotion was not distinguishable from directly
playing an mp3 or mp4 file only e.g., pages 48 to 56 were in use
when starting a video, and Pornhub (streaming mp4) used more
pages while playing a video e.g., 64 to 80 and 240 to 256. We can
also deduce to some extent which type of website is currently
opened: /usr/lib/firefox/libmozavutil.so leaks via pages 0



to 23 whether a media-containing website like Twitter, Facebook,
or Youtube is opened in any (loaded) tab. Other, more static or
non-media pages (Google, Google Maps, Github, Yahoo) do not
require the corresponding code from this library. We can infer
when a PNG file is rendered (across various applications) when spy-
ing on /usr/1lib/x86_64-1inux-gnu/libpngl16.so. libxul.so
is the largest shared library used by Firefox and exposes an abun-
dance of events, such as scrolling, marking text, mouse clicks, open-
ing links, as well as opening and closing tabs and windows. The
same library is also used by Thunderbird, and there allows us to
monitor when emails come in, when users click on emails, delete
emails, and write emails. Future work should systematically analyze
the leakage in 1ibxul. so via templating [34] or machine learning
techniques [35, 84, 93].

While this type of leakage is mostly a privacy issue, personal
and context-aware information is also essential for extortion and
phishing attacks [7, 38, 71]. In particular the information on which
video site was visited for how long could be used to make extortion
attacks more compelling [60]. Furthermore, Ul redress attacks, as
shown in the following section, can benefit from our information
leaks, e.g., to open fake overlay windows at exactly the right time.

7.4 Authentication UI Redress Attack

In this section, we present a user-interface redress attack [4, 10, 25,
57, 65, 70] which relies on our side channel as a trigger. The basic
idea is to detect when an interesting window is opened and to place
an identically looking fake window over it. This can be so stealthy
that even advanced users do not notice it [25]. However, to achieve
this, the latency between the original window opening and the fake
window being placed over it must be very low. Fortunately, our
side channel provides us with exactly this capability, regardless of
any other information leakage. Note that the operating systems au-
thentication windows may be protected. However, other password
prompts, e.g., for password managers, browsers, and mail clients,
are usually unprotected and can be targeted in our attack.

We use our side channel to detect when a root authentication
window on Ubuntu 16.04 is displayed. We detect this with a latency
of 2.04 s on average, and it does not take us longer to make our
fake window visible and move it on top of the real window. The user
now types in the root password in our fake window. Depending
on the attacker capabilities, the attacker can either forward the
password to the real window or simply close the fake window after
the password was entered. In the latter case, the user would see the
original authentication window afterwards and likely think that
the password was rejected on the first try, e.g., because of a typing
error occurred.

To identify binary pages which are used when spawning the
root authentication window, we performed an automated template
attack (cf. Section 7.5). Note that the template attack is performed
on an attacker-controlled system with identical software installed.
Hence, the attacker can take arbitrary means (e.g., side-channel at-
tacks or a debugger) to find interesting memory locations that can be
exploited on the victim system. The attacker first runs a debugger-
based or cache-based template attack [34] to identify binary regions
that handle the corresponding event. In a second run, the attacker
templates with our page cache side-channel attack. In our specific
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Figure 2: Values returned by the page cache side channel dur-
ing a password entry on Linux (top) and while typing in an
editor on Windows (bottom). On Windows we observe key
up and key down events due to the page selected and the
high attack frequency achievable. In both cases, there is no
noise between the keystrokes.

case, the result of the templating was that the strongest leakage is
page 2 in the binary file polkit-gnome-authentication-agent-1.
Hence, on the victim system, the attacker simply uses the previously
obtained templates to mount the attack.

Mounting the same attack on Windows 10 works even better.
Here, the latency is below 1 ps, which is clearly not perceivable for
a human. Also, unsurprisingly, we found that fake windows can be
created on Windows just as on Linux. Events like authentication
windows and password prompts are well suited for our attack due
to the low frequency in which they occur. This also makes the
automated templating for leaking pages less noisy.

7.5 Keystroke Timing Attack

In this section, we present a higher frequency inter-keystroke-
timing attack [34, 56, 67, 77, 92] on keyboard input in the root
authentication window on Ubuntu 18.04. To mount a keystroke
timing attack, we first template [34] (cf. Section 7.4) pages that are
loaded into the page cache when the user presses a key. We target
the Ubuntu 18.04 authentication window, where the user types in
the root password. In the template attack, we identified page 14 of
libgksu2.s0.0.0.2 as a viable target page.

Figure 2 shows two attack traces when typing a password, one
on Linux (Section 7.5) and one on Windows 10 (Section 7.5) in
notepad.exe. We obtain identical traces on Windows when run-
ning the attack on Firefox. Note that on Linux, for an extremely fast
typing person, we could miss some keystrokes, i.e., false negatives
can occur. However, we can gather these traces multiple times and
combine the information from multiple traces to recover highly
accurate inter-keystroke timings [56, 73]. For Windows, the tem-
poral resolution is much higher, far below the timing variations
of a human [56, 73], allowing us to reliably detect and report all
inter-keystroke timings including key down and key up events.

When running the side-channel attack on an idle system for one
hour, we did not observe a single false positive, neither on Windows
nor on Linux. This is not surprising, if the memory region is used
by unrelated events we would have already seen such noise in
the template phase. However, as the attacker can and will choose
the memory region based on the templating, the attacker chooses
memory regions which are not really used by any unrelated events.



Thus, in the optimal case, the selected memory region is completely
noise-free. In such a case, there is no functionality in the operating
systems that could lead to false positives due to spurious cache hits.

7.6 PHP Password Generation

A standard approach to benchmark and evaluate novel cache side
channels, is to use them in an attack on weak cryptographic imple-
mentations which are known to be insecure [34, 58, 90, 94].

The PHP microtime function returns the current UNIX times-
tamp in microseconds. It is carelessly used by some frameworks to
initialize the PHP pseudo-random number generator (PRNG) before
it is used in cryptographic operations or to generate temporary pass-
words [1, 22, 94]. This is a practice known to be insecure, and very
similar code has been attacked previously to benchmark side chan-
nels [94]. We found that the popular phpMyFAQ framework [66]
still relies on this approach.!

We mount our page cache attack on the main PHP binary (7.0.4-
7ubuntu2), on the function zif_microtime. This function is read-
only and shared with any unprivileged process including the at-
tacker. In our case, the function resides on page @x1b9 (441) of the
binary. By monitoring this page, we can determine the return value
of microtime at the initialization of the PRNG. Based on this, we
can reconstruct any password generated based on the same PRNG
initialization, as the password generation algorithm is open source.

Due to the large variance on the runtime of PHP scripts, we only
detected an access to the microtime function with an accuracy
of +1.5 ms. However, this is practical to brute force the range of
remaining possible return values. On a newer PHP version (7.0.30-
Oubuntu0.16.04.1), we observed an average difference of +2.0 ms.
Thus, we have to try around 4000 different passwords in the real-
world attack. We confirmed that in 85 % of the test runs, the real
password of the user was among the 4000 generated passwords
from the attacker. Hence, also in this scenario, our page cache side
channel can compete with state-of-the-art attacks [94].

Our attack also works on Windows. However, as the main source
of noise is the varying runtime of PHP, the accuracy is not measur-
ably better on Windows.

7.7 Oracle Attacks

Our side channel also allows implementing padding- or length-
oracle attacks. For instance, a password or token comparison using
strcmp forms a length oracle. If the attacker can place the string
on the page boundary, the attacker can measure at which byte of
the string the comparison terminated. By manipulating the string,
the attacker can figure our the correct password or token.

We verified that this attack is practical in a proof-of-concept
program. The attacker passes the string through an API to the
victim process. With the page-cache- or working-set-based side
channel we can determine whether the second page was loaded into
the page cache or added to the working set. If it was, the attacker
learns that the bytes on the first page were guessed correctly.

As the attacker can fully control the frequency of the measure-
ments here and can repeat the attack, we observed no cases where
we could not successfully leak the secret.

!We responsibly disclosed this vulnerability to the developers of phpMyFAQ, who
issued a patch following our recommendation.
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Figure 3: Timing histogram of the remote covert channel
with a 100 kB file (25 pages).

7.8 Mobile Attacks

Android also provides the mincore function to unprivileged user
applications, and we can also mount our side-channel attack on this
operating system. For our evaluation, we used a Samsung Galaxy
S9 running Android 8.1.0.

The difference between Android and Linux is that user-space ap-
plications are better isolated. Indeed, we cannot target user binaries,
but only system libraries and system applications. By monitoring
libinputflinger.so, we are able to detect all user inputs (e.g.,
touches), which can be used to mount a keystroke-timing attack (cf.
Section 7.5). By monitoring libcamera_client. so, we are able to
detect when the camera is opened, and when the user takes a photo

Besides libraries, system applications can also be targeted. We
verified that we can see the startup and user interaction with system
applications such as the calendar, NFC service, or the default on-
screen keyboard.

8 REMOTE ATTACK

For our remote attack we have to distinguish soft pagefaults, i.e.,
just mapping the page from the page cache, and regular pagefaults,
i.e., page cache misses, over a network connection. In this scenario,
two physically separated processes wish to communicate with each
other. The sender process runs on a server and has access to infor-
mation that the attacker wants to have. However, it is unprivileged,
firewalled, and possibly sandboxed, so it cannot reach any network
resources or expose files for remote access. However, the server
exposes multiple files to the public internet, e.g., over a web server.
We also assume that the sender process has read permissions to
these files, e.g., Apache has world-readable permissions on files
in the web server root directory by default. The receiver process
runs on a remote server, measuring the remote access latency to
pages in these public files. Hence, the sender process can encode
the information in the page cache state of these pages.

Page Cache Hits and Misses. Of course, a remote attacker cannot
invoke mincore to check which pages are in cache, so the attacker
needs to rely on timing. Hence, we first try to distinguish cache hits
and misses over the network, similarly to the related work in [74,
80], by performing remote accesses with and without clearing the
page cache. We also ensured that there was no other intermediary
network caching or proxy caching active by passing appropriate
HTTP headers to the server. Figure 3 shows the frequencies of
remote access latencies for various cached and uncached accesses;
the figure shows that cache hits can be distinguished from cache
misses. Here, the mean access time was 8.4 ms for cache hits and
14.2ms for cache misses to access a file with 25 pages (around
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by accessing a 10 MB file (2560 pages). A threshold can distin-
guish the two cases.

100 kB). The latency differences between cache hits and misses
grow with the number of pages accessed. Hence, we use larger files
for the subsequent remote attacks.

8.1 Covert Channel Protocol

Figure 5 depicts how the two processes communicate over the
covert channel. The local sender process is an unprivileged (possi-
bly sandboxed) malware that encodes secret data from the victim
machine into page cache hits and misses, and the remote receiver
process decoding the secret data after measuring the remote access
latency. For this, the sender process uses one file to encode data, and
another file for synchronization (control file). The sender process
first evicts both the data and control files from the file system cache
(Step 1) using posix_fadvise on a rarely used file, i.e, a file which
is not currently locked in memory by another process. Note that
the attacker could also use any other means of page cache eviction
as described in Section 6. It then encodes one bit of information in
the data file (Step 2) by either bringing it into the page cache by
reading the file (encoding a ‘1’), or not bringing it into the cache
(encoding a ‘0’). After encoding, the sender waits for the control
file to be read by the remote process (Step 3). For this, the sender
uses mincore on the control file in a loop, checking how many of
the file’s pages are in the page cache. In our case, the sender waits
until 80 % of the file are cached, indicating that the remote attacker
accessed it.

The receiver process measures the access latency, inferring the
bits the sender process was transmitting (Step 4). In our experiments,
the access time threshold that demarcated a ‘0’ from a ‘1’ was set
to 105 ms for our hard drive experiments, as illustrated in Figure 4.

Immediately after the receiver process accessed the data file, it

also accesses the control file (Step 5), to let the sender know the
next bit can be transmitted now. The sender then continues at Step
1 again. This happens until the sender has transmitted all bits of
secret information.
Evaluation. Our experimental setup involved two separate, but ge-
ographically close, machines, i.e., a network distance of 4 hops. The
victim machine was running the Linux Mint (kernel version 4.10.0-
38) on an AMD A10-6700 with 8 GB RAM and a 977 GB hard drive.
The victim machine exposed two files to the network, data. jpg
(10 MB) and control. jpg, used as the data and control files respec-
tively. The remote machine was also running Linux Mint (kernel
version 4.13.0-37) on an Intel Core i7-7700 with 16 GB RAM and a
219GB SSD.

| LOCAL REMOTE
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o | Control file(s) lock release 1 L

! N
1

ANIL

Figure 5: Illustration of the web server covert channel.

For the evaluation, we transmitted 4000 bits from the local ma-
chine to the remote machine multiple times. The transmission
took 517 s on average, which corresponds to an average bit rate
of 7.74bit/s and an average bit error rate of 0.2 %. This is a higher
bit rate than several other remote covert channels [11, 16, 74]. The
bit rate can be further increased by encoding information through
more than one file, which is realistic given the vast number of files
most web servers today have. To increase stealthiness, the attacker
may choose to access the two files from different IPs, as the sender
process is agnostic to this.

As our covert channel relies on timing differences, we also re-
peated our experiments on a machine with an SSD. Distinguishing
a page cache hit from a page cache miss through timing over the
network, could be more difficult as the timing differences can be
smaller. To overcome this, we simply use a larger image file (30 MB,
7680 pages) to amplify the timing difference. However, this meant
that the load latency threshold that demarcates a read hit and miss
would need to be scaled up similarly from the previous experiment,
and was set to 300 ms for the experiments on SSDs. Furthermore,
we reduce the geographical distance between attacker and victim to
2 network hops. The victim server was running on a machine with
Linux Mint on an Intel Core i7-7700 (kernel version 4.13.0-37) with
16 GB RAM and a recent off-the-shelf 219 GB SSD, and the attacker
machine was the same as before. The transmission of 4000 bits, now
takes 1298 s on average, giving us an average bit rate of 3.08 bit/s
at an average bit error rate of 0.35 %. Hence, this remote timing
covert channel is also possible on a machine with an SSD.

Our proof-of-concept implementation could be further optimized
to yield a higher transmission rate, to mount the attack over a
greater geographical distance, or to use smaller files, simply by
repeating measurements for each single bit [74]. In our proof-of-
concept we did not repeat any measurements to obtain a single bit,
again indicating the high capacity of this remote covert channel.

8.2 Remote Side Channel

Similarly to our local side-channel attacks, we could also mount
remote side-channel attacks exploiting the page cache. This infor-
mation could be used to determine whether certain pages or scripts
have been recently accessed [80]. However, in practice it is difficult
to evict the cache remotely. A web server would need to provide
access to enough files to occupy the entire page cache. The attacker
then would need to constantly access this set of files. Controlling
the working set via a huge number of remote file accesses will
make the attack very conspicuous, though it may still be practically



effective for opportunity-based attacks (e.g., password reset pages)
such as those presented in Section 7.6.

9 COUNTERMEASURES

Our side-channel attack targets the operating system page cache
via operating system interfaces and behavior. Hence, it clearly can
be mitigated by changing the operating system implementation,
but these changes can be substantial.

Privileged Access. The QueryWorkingSetEx and mincore sys-
tem calls are the core of our hardware-agnostic side-channel attacks.
Requiring a higher privilege level or returning fake information
for these system calls mitigates these attacks, but could also break
existing programs that legitimately use these system calls. While
we didn’t observe any sys_enter_mincore system calls over mul-
tiple hours of every-day computer usage, it appears to play an
important role in cloud service implementations [14]. Hence, rather
than making mincore privileged, we recommend changing what
information it returns or restricting the mapping types for which
it works. This would mitigate our basic hardware-agnostic attacks
(as acknowledged in our responsible disclosure). However, there
are other interfaces which provide equivalent information, such as
the preadv2 system call with certain flags or accessing files opened
with the O_DIRECT flag [15]. Furthermore, timing-based attacks re-
main unaffected, indicating that a generic mitigation of page cache
attacks on Linux may require a fundamental re-design of the page
cache.

On Windows, there are multiple possible solutions to mitigate
our hardware-agnostic attacks by adapting the privileges required
for the system calls we use. First of all, a process should not be
able to obtain working-set information of another process via
QueryWorkingSetEX, in particular not for processes with a higher
integrity level, especially, as this contradicts the official documen-
tation [53]. Second, the share count information should be omitted
from the struct returned by QueryWorkingSetEx as it exposes in-
formation about other processes to the attacker. The combination
of these two changes mitigates our hardware-agnostic attack vari-
ants on Windows. Again, timing-based attacks are still possible and
mitigating them would require more fundamental changes.

We responsibly disclosed our attacks, which have in response
been addressed in Linux and Windows, and was assigned CVE-2019-
5489. For QueryWorkingSetEx, instead of PROCESS_QUERY_LIMI-
TED_INFORMATION, Windows will require PROCESS_QUERY_INFOR-
MATION to prevent lesser privileged processes from directly obtain-
ing working set information, as well as omitting the share count in-
formation, to prevent indirect observations on working set changes
in other processes.

It was also surprising that Windows allows changing the working-
set size for another process. If this would be restricted, it would be
more difficult to reliably evict across processes. The performance
of our covert channel would decrease if VirtualUnlock did not
have the “feature” that it removes pages from the working set of
other processes if they are not locked.

Alternative approaches like page locking, signal burying, or
disabling page sharing are likely not practical for most use cases or
impose significant overheads.

Preventing Efficient Eviction while Increasing the System
Performance. On Windows, we used working set eviction instead
of page cache eviction as on Linux. We verified that the approach
we used on Linux, i.e., page cache eviction, also works on Windows.
However, it performs worse than on Linux and optimizing the evic-
tion is left as a challenge for future work. The reason for this lies
in the fact that Linux uses a global page replacement algorithm,
i.e., an algorithm which does not distinguish between different
processes. Global page replacement algorithms have been known
for decades to allow one process to perform a denial-of-service on
other processes [9, 19, 20, 69].

However, even working-set algorithms like those used by Win-
dows [69] do not perfectly mitigate our attack. In the worst case,
an attacker can always resort to evicting the entire cache and mea-
suring the time to fault the page back in. A complete mitigation
would need to eliminate either of these two attacker capabilities:
bringing the cache into a known state, and measuring whether the
state has changed.

10 CONCLUSION

We have demonstrated that the page cache in modern operating sys-
tems can be exploited in side-channel attacks. In hardware-agnostic
attacks, we have demonstrated a high-speed cross-sandbox covert
channel, an ASLR break on Windows 10, a Ul redressing attack
triggered by a side channel, a keystroke-timing side channel, and
password-recovery side channel from a vulnerable PHP script. Even
after applying the security changes we recommend, an attacker can
resort to timing-based attacks. We demonstrate this with a covert
channel exfiltrating data from a local malicious sender to a remote
receiver. The severity of this attack surface is exacerbated by the
variety of isolation techniques that share the page cache, including
regular Unix processes, sandboxes, Function-as-a-Service platforms,
managed language runtimes, web browsers, and even select remote
processes. Indeed, mitigating this core problem appears to require
a fundamental redesign of the functionality of the page cache.
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