
Peripheral Instinct: How External Devices Breach Browser
Sandboxes

Leon Trampert

leon.trampert@cispa.de

CISPA Helmholtz Center for

Information Security

Saarbrücken, Germany

Lorenz Hetterich

lorenz.hetterich@cispa.de

CISPA Helmholtz Center for

Information Security

Saarbrücken, Germany

Lukas Gerlach

lukas.gerlach@cispa.de

CISPA Helmholtz Center for

Information Security

Saarbrücken, Germany

Mona Schappert

s8mpscha@stud.uni-saarland.de

Universität des Saarlandes

Saarbrücken, Germany

Christian Rossow

rossow@cispa.de

CISPA Helmholtz Center for

Information Security

Dortmund, Germany

Michael Schwarz

michael.schwarz@cispa.de

CISPA Helmholtz Center for

Information Security

Saarbrücken, Germany

Abstract
Browser APIs such as WebHID, WebUSB, Web Serial, and Web

MIDI enable web applications to interact directly with external

devices. The support of such APIs in Chromium-based browsers,

such as Chrome and Edge, radically changes the threat model for

peripherals and increases the attack surface. In the past, devices

could assume a trusted host, i.e., the operating system. Now, the

host is a potentially malicious website and cannot be trusted.
We show how this changed threat model leads to security and

privacy problems, up to a complete compromise of the operating

system. While the API specifications list initial security considera-

tions, they shift the responsibility to (unprepared) device vendors.

We systematically analyze the security implications of external

devices exposed by such new APIs. By reverse-engineering periph-

eral devices of several popular widespread vendors, we show that

many vendors allow controlling devices via Web APIs up to re-

programming or even fully replacing the firmware. Consequently,

web attackers can reprogram devices with malicious payloads and

custom firmware without requiring any physical interaction. To

demonstrate the security implications, we build several full-chain

exploits, leading to arbitrary code execution on the victim sys-

tem, circumventing the browser sandbox. Our research shows that

browser security should not rely on the secure implementation of

third-party hardware.

CCS Concepts
• Security and privacy→ Browser security.

Keywords
Browser security, Peripheral devices, Firmware security

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WWW ’25, Sydney, NSW, Australia
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1274-6/25/04

https://doi.org/10.1145/3696410.3714637

ACM Reference Format:
Leon Trampert, Lorenz Hetterich, Lukas Gerlach, Mona Schappert, Chris-

tian Rossow, and Michael Schwarz. 2025. Peripheral Instinct: How External

Devices Breach Browser Sandboxes. In Proceedings of the ACM Web Confer-
ence 2025 (WWW ’25), April 28-May 2, 2025, Sydney, NSW, Australia. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3696410.3714637

1 Introduction
Over the past years, the web has become a central platform for ap-

plications. Web browsers are among the most essential applications

for end users. With a wide range of web-based applications, includ-

ing webmail and entire office suites, users can accomplish many

tasks purely from the browser. To facilitate these tasks, browsers

introduced a range of APIs allowing websites to access various func-

tionalities. Hand-in-hand with the APIs, browsers also rely on per-

missions for several of these APIs. Permissions protect users from

allowing websites to perform unexpected actions. While several

APIs can compromise confidentiality (e.g., webcam, or microphone)

when a user grants the permission, closing the browser (or tab) typi-

cally mitigates the security problem. For a long time, no permission

has had permanent effects beyond the browser session, preventing

any lasting harm to the integrity of the system. While most APIs

provide functionality on a relatively high level, some newAPIs have

started providing direct access to devices. Such web APIs include

WebUSB [77], WebHID [72], Web Serial [43], and Web MIDI [44].

Although the APIs are still experimental, they are already imple-

mented in Google Chrome and enabled by default. Consequently,

these APIs are also available in Microsoft Edge, Opera, and Electron,

which rely on the Chromium engine.

In this paper, we show that adding APIs for accessing peripheral

devices from the Web (e.g., WebHID, WebUSB, Web Serial, Web

MIDI) has changed the threat model. Although attackers lose access

to the device when the browser is closed, they canmodify the device

for persistence, allowing a web attacker to infect and take control of

a physical device. Before these APIs, devices could assume that the

host, i.e., the OS, was trusted and benign. Hence, devices assumed

that all requests stemmed from legitimate users. However, since

websites can interact with these devices, the host—now awebsite on

the Internet—is not necessarily trusted. Users, browser developers,

and device vendors are not sufficiently prepared for this drastic

https://doi.org/10.1145/3696410.3714637
https://doi.org/10.1145/3696410.3714637

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Leon Trampert et al.

change in the threat model.While the API specifications list security

considerations, they merely shift the responsibility of maintaining

security to device vendors, many of which have not prepared their

devices accordingly, as our analysis shows. Moreover, users are not

sufficiently aware of the threats induced by providing access to

peripherals. Current permission prompts, such as those indicating

a website “wants to connect to a HID device” in Chrome, do not

adequately convey the full security threats behind granting such

permissions. This underscores the need for scrutiny before wider

deployment of new specifications, as seen with the abuse potential

of the new File System API [55]. Concretely, we ask the following

research question in this paper:

Which security and privacy implications does the universal
deployment of peripheral access have, considering popular
peripheral devices and state-of-the-art defenses?

To answer this question, we analyze implemented Web APIs that

allow low-level access to peripheral devices. Our analysis reveals

two new attack vectors that circumvent the isolation guarantees of

browser sandboxes, undermining the system’s integrity.

First, attackers can replace the entire firmware of peripheral

devices from the browser, allowing them to repurpose a device.

For example, a non-input device can be maliciously repurposed

as a keyboard, allowing attackers to inject arbitrary keystrokes

into the system. We analyze WebUSB, demonstrating that we can

flash custom firmware on peripheral devices, such as the blink(1),

completely overtaking and repurposing the device. Similarly, we

analyze Web MIDI, showing that we can flash firmware on MIDI

devices to repurpose them for malicious use cases.

Second, attackers can abuse the existing functionality of devices,

exploiting the shifted threat model where the host is now malicious.

For example, attackers can program custom key sequences onto

a mouse button and inject them into the system whenever the

victim presses the respective mouse button. The most impactful

results are from WebHID, where we analyze keyboards and mice

as prime examples of Human Interface Devices (HIDs). We cover

22 device models from 15 vendors. All these devices allow changes

to persistent settings, e.g., key mappings and macros, allowing

attackers to inject arbitrary keys from outside the browser sandbox.

Additionally, using Web Serial, we show that websites can send

text messages via a SIM card, which can often be found in business

laptops, reviving dialers.

We build multiple exploit chains to get arbitrary code execution

on the victim system, entirely circumventing the browser sandbox.

We show that attackers can reprogram the firmware of non-input

devices and macros of input devices directly from the web. This

reprogramming is mostly persistent, surviving a re-connect of the

device. We show that our attack is especially impactful on input

devices, even if they only feature minimal macro functionality.

Our attack scenario for theWeb-based attacks resembles BadUSB

while reducing requirements and limitations [51]. We do not rely

on known bugs or vulnerabilities to exploit USB devices [30, 47]

and do not need to attach custom USB devices to the victim ma-

chine [18]. We solely rely on the well-defined and voluntarily-

provided interface of the already-attached device. When repro-

gramming macros, our attack does not change any device or device

descriptor from the operating system’s perspective, circumventing

software [21, 34, 63, 64] and hardware [13, 14] solutions to prevent

BadUSB attacks. Even worse, as soon as a user allows a website

to access peripherals, our attack can be mounted by a malicious

website directly from the browser without requiring any download

or browser vulnerability. Consequently, countermeasures against

such an attack are challenging without sacrificing functionality.

To mitigate peripheral-based attacks, we advocate for an ad-

ditional opt-in mechanism on the device that is honored by the

browser. Vendors could use it to indicate that they are aware of the

changed threat model of the APIs allowing peripheral access. As

a result, browsers would know it is safe to expose this device to

the web. We implemented our proposal as a proof of concept in

Chromium and a programmable open-source HID. We show that

only minimal changes are required to Chrome, with a total patch of

a single line of code. Most importantly, our proposal is compatible

with the HID specification and does not break functionality.

While minor changes to devices and browsers would make

peripheral-based attacks more complex, we show that exposing

devices to the web poses a significant threat. Our research demon-

strates that the new threat model with a malicious host that these

Web APIs introduce is often not considered during the design of pe-

ripherals. Given the wide distribution of Chromium-based browsers

and affected peripheral devices, we consider this problematic as it af-

fects a large user base. We hope our insights raise awareness among

device vendors, leading to more secure devices. Moreover, our re-

search shows that browser security should not rely on third-party

hardware vendors alone, and novel web APIs cannot simply shift

the responsibility to third parties without compromising security.

Contributions. We summarize our contributions as follows.

• We analyze the attack surface of Web APIs that provide low-

level access to peripheral devices.

• We present novel attacks on the host via browser-based APIs,

entirely circumventing the browser sandbox and leading to

arbitrary code execution.

• We demonstrate systemic improvements to the security of

the vulnerable API specifications.

Responsible Disclosure. We have disclosed our findings to the

Chromium team and Logitech. The Chromium team aims to im-

prove the clarity of permission prompts. Logitech acknowledged

our findings and plans to implement our proposal of configuration

functionality on a separate usage.

Availability. Experiments and proofs-of-concept are available at

https://github.com/CISPA/PeripheralInstinct.

2 Background
2.1 Device Protocols
Devices connect to a host system via various protocols. Some pro-

tocols are general-purpose carrier protocols, such as USB or Serial,

while others are specialized protocols, such as HID or MIDI.

USB& Serial. Universal Serial Bus (USB) is a wired communication

protocol for high-speed data transfer and power delivery [66]. It is

the de facto standard for connecting peripherals to computers. USB

is a general-purpose protocol that supports various device classes,

such as Human Interface (HID), Mass Storage, and Audio Devices.

A serial port is a communication interface that transfers infor-

mation sequentially, one bit at a time [5]. Serial ports have been

commonly used in personal computers to transfer data to devices

https://github.com/CISPA/PeripheralInstinct

Peripheral Instinct: How External Devices Breach Browser Sandboxes WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

such as modems, terminals, peripherals, and between computers.

While USB has largely replaced serial ports, they are still used to

control embedded systems or legacy devices (e.g., modems).

HID&MIDI. TheHuman Interface Device (HID) protocol is a stan-
dardized protocol for communication between devices and hosts. It

is transmitted via USB or Bluetooth and used for devices to interact

with a human operator [75]. Data packets exchanged between the

host and device are called HID Reports [67]. Devices send input
reports to the host, while hosts send output reports to the devices.
Additionally, there are bi-directional feature reports intended to con-
figure a device. HID report descriptors describe the binary format

of reports supported by a device and can be enumerated by the

host [67]. The Usage describes the intended use of a device and the

purpose of reports. OSs ship with default drivers for many standard-

ized classes of HIDs, such as keyboards and mice [31]. A Musical
Instrument Digital Interface (MIDI) allows electronic musical in-

struments and computers to communicate and synchronize [57]. It

can operate over various transport protocols, including USB and

Bluetooth. Data packets, known as MIDI messages, carry musical

parameters (channel messages) or system settings (system messages).

2.2 Device Browser APIs
The web platform already supports input from some device types

(e.g., HIDs) via operating system (OS) drivers that provide an ab-

straction of a device [72]. However, some devices lack OS support

(e.g., gamepads). Furthermore, device-specific communication or

configuration is not exposed to web pages. Device Browser APIs

bridge this gap [72] and allow web pages to communicate with de-

vices directly. Currently, five device APIs are available in Chromium-

based browsers: WebHID, Web MIDI, Web Serial, Web Bluetooth,

and WebUSB [42]. Both Mozilla and Apple do not implement these

APIs at the moment [3, 39], with the exception of Web MIDI in

Firefox which is implemented behind a site permission add-on [46].

Chrome uses various security measures to protect the host, de-

vice, and user. The following measures apply to the most recent

version of Google Chrome (121) at the time of writing.

TLS only. Device Browser APIs are only available in a secure TLS

context to prevent MITM attackers from accessing the API [38].

Blocklist. According to the proposals, each API, except for theWeb

MIDI API, includes a blocklist [73, 74, 76, 78]. Depending on various

properties and identifiers, devices may be blocked and hidden. The

specifics of the respective blocklists are discussed in Appendix A.

Permissions & User Activation. The standard proposals recom-

mend implementing a chooser-based dialog with at least two clicks

(to reduce the possibility of accidental clicks) for requesting device

access [72, 77]. The only exception here is theWebMIDI API, which

only has a single click prompt [44]. The initial permission dialog is

guarded by transient user activation [15, 40]. Permissions persist

until the user or site explicitly revokes them.

Recommendations in API Proposals. Although the API propos-

als have mentioned potential security risks since at least 2019 [72],

our investigation shows these considerations are largely unad-

dressed. This indicates the need for research to raise awareness

of the API and its capabilities. Our work underlines that the W3C

underestimates the prevalence and impact of device-associated

threats. For example, while the W3C acknowledges that an HID

“may contain [...] programmable macros” and suggests that “device

manufacturers must [...] prevent a malicious app from reprogram-

ming the device”, we show that the issues remain unaddressed [72].

3 API Security Analysis
In this section, we provide an overview of the security implications

of device APIs due to the drastic change in the threat model. We

bootstrap our evaluation on APIs included in the Permissions Pol-

icy [36, 41], following the assumption that all critical APIs must be

gated by a prompt. Out of those, we focus on APIs that interact with

peripheral devices. For all remaining APIs, we manually evaluate if

they allow attackers tampering with the devices. Following these

steps reveals five browser APIs: Bluetooth [79], WebHID [72], Web

MIDI [69], Web Serial [80] and WebUSB [77]. In the remainder of

this work, we do not expand further on the Bluetooth API, as the

implications of the API are analogous to those of other transport

protocols such as USB.

3.1 Change of Threat Models
The threat model of devices traditionally only spans the host system

and the device itself [65]. This model only allows for two directions

of local exploitation. First, a device can exploit vulnerabilities on the
host, e.g., by injecting keystrokes to execute commands or extract

sensitive information. Second, a host can exploit vulnerabilities on

shared devices (e.g., printers) or security hardware (e.g., FIDO secu-

rity keys) to extract confidential data. With device APIs in browsers,

a new threat model emerges in which the devices are exposed to
third parties via browsers. Here, the device may process malicious

requests from an—in the classic threat model—trusted host system,

which forwards the API-initiated requests of an untrusted site. This

confused deputy attack enables several devastating security-critical

attacks (Section 3.2). The only assumption is that an attacking web-

site gains user permission for the respective Device API, for which

there are several ways (Section 3.3).

3.2 Attacks Enabled by Device APIs
Using a device API, a malicious website can send data to a device.

Below, we discuss the security implications of this new threat model.

Integrity. The focus of our investigations are threats to device

and system integrity. First, many devices allow modifying or replac-

ing the firmware via an exposed bootloader (Section 4) enabling

BadUSB-like attacks [51]. The capabilities of an attacker depend on

the capabilities of the device (e.g., Bluetooth) but generally allow

emitting trusted input events via HID. Second, devices can be “re-

configured” or controlledwithout replacing the firmware (Section 6).

For example, several mice or keyboards allow users to reprogram

buttons with macro functionalities, all of which are exposed via

WebHID. A malicious actor can abuse this to escape the browser

sandbox. Similarly, modems are accessible via Web Serial, allowing

attackers to control the modem.

Availability & Confidentiality. The device API proposals also
state some other concerns only discussed briefly in this work. A

malicious actor could perform Denial-of-Service (DoS) attacks on

the device to temporarily or permanently disrupt the functionality

of the device. Similarly, device APIs may violate confidentiality. For

example, macro features in keyboards may be used to quickly enter

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Leon Trampert et al.

sensitive information such as credentials or passwords. Device APIs

potentially enable web attackers to extract such sensitive data by

reading the on-board device storage.

3.3 Gaining Device API Permission
To launch any attack leveraging device APIs, malicious websites

must gain access to the respective API. Attackers have several ways

of obtaining such privileges. In all cases, the user must grant per-

mission to use a device on some site. Once permitted, the site can

interact with the device without further consent on future visits.

In the simplest scenario, the user grants permission to a malicious

website directly. Attackers may leverage social engineering tech-

niques (i.e., phishing) to trick users into granting permissions, e.g.,

by impersonating legitimate vendor sites. For example, Hazhirpas

et al. [19] convinced up to 95 % of users into granting permissions

leveraging a browser game. Furthermore, an attacker can leverage

permissions granted to another site via a Cross-Site Scripting (XSS),

website compromise, or domain re-registration [25]. XSS in partic-

ular is one of the most prominent security issues for websites and

frequent in the wild [54]. In addition, browser extensions can ma-

nipulate requests and execute JavaScript in the context of arbitrary

sites [1]. As such, malicious or vulnerable browser extensions can

also be used to gain access to devices. Lastly, users of rehosting ser-

vices may inadvertently grant permissions to a malicious site since

such services frequently merge the origin of all proxied sites [70].

4 Firmware Attacks
Devices commonly implement firmware update mechanisms. This

is usually implemented as a bootloader that allows flashing new

firmware. Communication with the bootloader is often done via

the same interface as the device itself, e.g., HID or MIDI. Such

mechanisms are implemented on most devices regardless of their

transport protocol. In this section, we analyze the risks of exposing

firmware update mechanisms to web-based APIs. We identify two

primary attack vectors, namely, allowing the flashing of custom

firmware (Section 4.1) and firmware rollbacks (Section 4.2). We

illustrate attacks on two different web APIs via case studies on the

Logitech Unifying Receiver (WebHID/WebUSB) and the Launchpad

MK2 (Web MIDI). However, this class of attacks is not limited to the

two presented APIs but rather an overarching issue with exposing

firmware update mechanisms.

4.1 Custom Firmware
Allowing the host to flash custom firmware onto a device via a

browser-based API is a severe security risk. Custom firmware can re-

program the device to perform almost arbitrary attacker-controlled

functionality. In the following, we present two case studies that

show the practicality of this attack vector.

Logitech Unifying Receiver. The Logitech Unifying Receiver

is a proprietary USB wireless receiver used for a wide range of

wireless keyboards and mice from Logitech. The wireless receiver

communicates using the custom HID++ protocol (Section 5.1.3)

and features an HID-based bootloader that allows replacing the

firmware. As a response to a variety of vulnerabilities reported

by Bastille Research [6, 50] (e.g., CVE-2016-10761) and Markus

Mengs [29] (e.g., CVE-2019-13053), Logitech introduced signed

firmware updates in 2019 (i.e., RQR12.09 and RQR24.07). However,

wireless receivers sold with older firmware, i.e., firmware before

2019, allow flashing arbitrary firmware unless a user manually

updates the device. A custom firmware, for example, allows emitting

trusted input events such as keystrokes. Such a compromised device

fully covers the functionality of USB Rubber Ducky devices [18]

(Section 6.1). This effectively allows an attacker to execute arbitrary

commands on the host system. Additionally, the device provides

a malicious actor access to the 2.4GHz transceiver module, which

can interact with other wireless Logitech devices. Access to the

transceiver module allows, for example, abusing the MouseJack

vulnerability [6]. We verify that we can flash the firmware used to

exploit the MouseJack vulnerability using WebHID onto a Logitech

Unifying Receiver.With the custom firmware, we successfully inject

arbitrary keys into a different laptop in the same room that uses

a Logitech MX Anywhere 2S wireless mouse. This attack only

requires granting the WebHID permission to exploit the wireless

receiver and no user interaction by the ultimate target user. Thus,

control over a wireless receiver running outdated firmware can be

used to compromise systems in the proximity of the victim device.

LaunchpadMK2. The LaunchpadMK2 is a MIDI controller widely

used in music production. Below, we analyze its firmware update

mechanism. The Launchpad can be forced into bootloader mode

using a specific SysEx message [28]. Firmware updates are provided

as syx files (files containing SysEx messages). They can be applied

by sending the contained SysEx messages to the device when the

Launchpad is in bootloader mode. Using software to build custom

firmware for a similar device [8], we reverse-engineer the message

format and extract the firmware binary. The firmware comprises

a full ARM image for an Arm Cortex M4, enabling unconstrained

privileged code execution on the device. While the Launchpad MK2

appears as a MIDI device, it is connected to the PC via USB and

uses USB as a carrier protocol. Thus, with complete control over

the executed code, it is possible to modify the low-level USB imple-

mentation to implement an HID instead. We successfully patch the

firmware achieving arbitrary code execution on the device.

4.2 Firmware Rollbacks
While devices may not allow flashing arbitrary firmware by en-

forcing vendor signatures, they may still be vulnerable to firmware

rollbacks. Such a rollback can bring the device into a state where old,

vulnerable firmware is installed, which can then be exploited. Such

an attack is possible with up-to-date Logitech Unifying Receivers.

Our investigation shows that they do not implement rollback pro-
tection. This protective mechanism would prevent downgrading the

firmware to older versions [56]. For example, we can construct a full-

chain exploit for a known and fixed vulnerability (CVE-2019-13055).

Our target device was the Logitech Unifying Receiver (model C-

U0008), running the latest firmware (RQR24.11). The vulnerability

allows extracting AES keys to encrypt the receiver’s wireless traffic

and a wireless device (e.g., keyboard) via USB/HID. Our full-chain

exploit first restarts the wireless receiver into bootloader mode us-

ing a specific HID output report and then flashes the older firmware

version using HID output reports. Afterward, we extract the AES

keys as described by the original vulnerability. Note that the boot-

loader mode of the wireless receiver reports as a different device,

Peripheral Instinct: How External Devices Breach Browser Sandboxes WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

Configuration Protocol

USB

Memory

Macros

R VCtrl

Left
Click

W
eb

H
ID HID

Figure 1: HIDs (right), such as mice, communicate with the
browser (left) using WebHID. Custom configuration proto-
cols are built on top of the HID protocol on top of USB. Pro-
grammable devices feature on-boardmemory to storemacros
for keys/buttons in a custom macro language.

such that a malicious actor must obtain two separate permissions.

This process takes approximately 38 s.

5 Analysis of Device-Specific Protocols
While firmware attacks are a severe threat and grant a malicious

actor full control over a device, they have several prerequisites.

Alternatively, the attacker can abuse the device’s existing func-

tionality to perform attacks. In contrast to firmware attacks, such

attacks differ from device to device and require a detailed under-

standing of the device. In this section, we first analyze the macro

functionality often found in HIDs. This functionality allows users

to reprogram keys or buttons to perform custom actions and is

implemented differently across device vendors and devices. Second,

we discuss how modems can be controlled via a serial interface

using the AT command set.

5.1 HIDs with Onboard Macros
Figure 1 provides a high-level overview in which an HID is exposed

to WebHID and allows attackers to use the configuration protocol

to change macros stored in memory. In the following, we study each

of these aspects in more detail on a subset of devices representative

of the implementation choices of device vendors. We rely on these

results to instantiate macro-based attacks in Section 6.

5.1.1 Overview of HIDs and Methodology. Table 1 in Appendix B

provides an overview of the devices discussed in the following. We

investigate the features of 22 devices from 15 vendors, covering

many widespread devices from large vendors, such as Logitech and

Microsoft, as well as smaller vendors. We are mainly interested

in reprogrammable on-board macro functionality supported by 14

devices. Further, we investigate to which extent this functionality

can be accessed fromWebHID. Since our Razer devices only expose

this functionality via USB and not via the HID protocol, they are

not discussed in detail. For our analysis, we rely on protocol reverse

engineering using USB dumps, prior work on protocol reverse

engineering, and documentation. We use Wireshark’s capability of

dumping USB traffic [81] to filter relevant packets. Using the official

closed-source tools, we analyze the effects of different settings on

the raw bytes sent via USB to understand the protocol.

5.1.2 Macro Capabilities. Generally, a macro consists of a sequence

of actions, such as key/button press/release or actions to control

a mouse pointer. Moreover, many devices allow custom delays

between actions. The analyzed devices show vast differences in

macro capabilities, ranging from a single keycode to complex macro

languages. We group the macro capabilities into 3 categories.

Single Key. The simplest macro implementations only allow defin-

ing a single keycode that the device sends when the corresponding

button is pressed. Such macro functionality is the least critical

from a security standpoint, as the exploitation is severely limited.

However, it still is, e.g., possible to build a wiretap on an attacker-

controlled site using an auto-focussed hidden input field and the

key combination that activates voice typing (Section 6.2). We find

such an implementation on the Microsoft Pro IntelliMouse.

Key Sequence. The majority of analyzed devices support key-

stroke sequences of varying lengths. In the simplest case, these

sequences have a fixed upper bound for the length (e.g., 5 for the

CH57x). For other devices, e.g., from VIA or Logitech, the limiting

factor is the available on-board memory. In addition, the devices

differ in how fast they replay macro actions. We provide the maxi-

mum length and the minimum time between keystrokes in Table 1

in Appendix B. Key sequences also come in different encodings. The

most simplest encoding is a sequence of HID keycodes. This encod-

ing does not require any complex logic on the device (e.g., CH57x).

If other functionalities such as mouse movement (e.g., Zelotes) or

custom delays (e.g., VIA, Zelotes) are supported, lists of custom

structures are used for storing the macros.

Instruction-set Emulators. Logitech uses the most complex

and flexible encoding of all analyzed devices. They store macros

as custom variable-length instructions that are interpreted by an

instruction-set emulator. The devices support a wide variety of

instructions that range from delay, key press, and mouse function-

ality instructions to sophisticated control flow instructions (e.g.,

‘unconditional jump’ or ‘jump if the macro button is released’).

5.1.3 Proprietary Configuration Protocols. 14 of our tested devices

use custom protocols built on the HID protocol. These protocols

range from straightforward protocols using 4 HID reports to pro-

gram a key to complex protocols requiring 800 HID reports to

achieve the same. Most devices feature error-tolerant protocols and

firmware. Logitech, e.g., uses a default profile if the profile infor-

mation in memory cannot be parsed. The Logitech and the Zelotes

software reset the device to factory defaults if the information can-

not be parsed. While several protocols are documented or have

been (partly) reverse-engineered [26, 27, 68], we provide details of

our findings for the Zelotes and CH57x protocol in Appendix F.

5.2 Hayes and Hayes-compatible Modems
In this section, we discuss how modems can be controlled via the

Web Serial API. We focus on the AT command set, also known as

the Hayes AT command set, which is a standard for controlling

modems that was introduced in 1981 [60]. Modems that support the

AT command set are called Hayes-compatible modems. An example

of a Hayes-compatible modem is the Fibocom L850-GL LTE modem.

It is a PCIe modem used in various laptops, such as the Lenovo

ThinkPad X1 Carbon or the Lenovo ThinkPad T490s.

TheAT command set is text-based and uses ASCII characters [11].

The commands are sent to the modem via a serial interface, such

as UART or USB. Similarly, the modem also responds using plain

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Leon Trampert et al.

text. AT commands are used to communicate with different ser-

vices provided by the modem. Commonly, AT commands are used

to control call services, cellular network services, and SMS ser-

vices [11]. Note that some vendors may extend the AT command

set with proprietary commands. For example, AT+CMGF=1\r\n in-
structs the modem to switch to text mode for SMS messages. In the

following, AT+CMGS="+00123456789"\r defines the recipient of an
SMS message. Lastly, the message content is defined and sent using

Text\x1A. Section 7 demonstrates how this API can be abused.

6 Device-specific Attack: Onboard Macros
The first device-specific attack vector targets macro-capable de-

vices to inject keystrokes into the host system. Our investigation

in Section 5.1 revealed that 14 of the 22 tested HIDs allow repro-

gramming over WebHID, including vendors such as Logitech and

Microsoft. In this section, we demonstrate resulting threats, leading

to browser-sandbox escapes via key injections and exposure of

potentially confidential information via key injections.

6.1 Command Injection
Our first attack method aims to compromise a target system by

circumventing the browser sandbox. To this end, the web attacker

reprograms a HID with a critical chain of commands that spawn

an attacker-controlled program. For brevity, we focus on Windows

systems, as they are the most prominent target system [62]. Other

systems, such as macOS and Linux, are discussed in Appendix D.

While the attack is similar to the well-known Rubber Ducky at-

tack, the device is merely reprogrammed and not fully under the

attacker’s control. This imposes several limitations on the attack,

such as the inability to query host system information or even a

strict limit on the number of keystrokes that can be injected.

Keystroke injections all follow the same basic principles. At

first, a sequence of keystrokes provides the attacker access to a run
dialog, a part of a system that facilitates dynamic code execution.

The remaining part of the injection provides inputs to the run dialog

and contains the actual payload executed on the system.

Run Dialogs. There are multiple run dialogs on Windows. The

Start menu can be accessed using a single keystroke, q . Alterna-

tively, the Run command window can be accessed using q + R .

Both run dialogs provide similar functionality. They may be used

to navigate to web resources using the system’s default browser,

to start applications, or to run arbitrary commands. Another run

dialog is the Quick Link menu (q + X), which can open the Win-

dows Powershell as Administrator using only five key presses. If

the user is logged in as an Administrator, this only requires con-

firming a dialog which is possible using � , . Using keystroke

combinations and commands that do not affect one OS but per-

form actions on another OS, we may build a polyglot injection that

works regardless of the victim system. As an example, a polyglot

run dialog opener for Windows and Linux can be achieved using

the following keystrokes: q + X , I , Ctrl + Alt + T .

Injection Payloads. Keystroke-based payloads are well explored,

mainly due to the USB Rubber Ducky [18], a programmable USB

device designed for keystroke injection attacks. An extensive li-

brary of payloads for the device [17], covers most popular attack

targets. Our injection payloads, however, have more limitations, as

discussed previously. For example, less than 15 % of payloads from

the official repository would work on the Logitech G203 due to

the limitation of 80 keystrokes. A simple downloader payload that

downloads and executes a script from an attacker-controlled web-

site amounts to approximately 50-60 keystrokes. To significantly

reduce the number of keystrokes, attackers can store an ephemeral

payload in the system-wide clipboard.

Write-access to the clipboard from the browser is only guarded

by transient user activation [35] and thus implicitly granted with

the WebHID permission. Leveraging the clipboard, the shortest

payload is Ctrl + V , . Thus, the shortest total injection length

amounts to 3 keystrokes on Windows. Such an injection can be

performed using all programmable devices discussed in Section 5,

except for the Microsoft Pro IntelliMouse. Using the Keychron V1Z2

as an example, the injection only takes about 35ms. Similarly, the

shortest injection with elevated privileges uses 7 keystrokes on

Windows and takes about one second. Our investigation shows

that the time to reprogramm is well below 1 s for all devices in our

set. Appendix B includes a table of the times for a subset of devices.

6.2 Spyware
Besides the command injection, which aims to gain remote access

to a system or exfiltrate sensitive data, keystroke injections via

macros can also be leveraged to spy on a user’s behavior. Most

intuitively, an attacker can log user activity using screenshots. Here,

they assign a frequently used button to a macro that first issues a

key combination that triggers a screenshot and then performs the

expected behavior to remain stealthy. OnWindows, e.g., the PrtScn

(i.e., PrintScreen) key captures a screenshot of the entire screen and

stores it in the clipboard [32]. It can be exfiltrated (using Ctrl + V)

or via the clipboard history. Further, it is, e.g., possible to construct

an audio wiretap. On Windows, a payload may use the keyboard

shortcut to activate the in-built dictation tool, q + H , to build

a wiretap [33] that writes all spoken words to the current cursor

location. Exfiltration can, e.g., happen via an attacker-controlled

website with hidden input elements. Note that this does, however,

trigger a message display by the OS and a sound.

7 Device-specific Attack: Modems
As introduced in Section 5.2, Hayes-compatible modems can be

controlled via the AT command set. In the following, we discuss

several potential threats that can be exploited by a malicious actor

that can control a modem via the Web Serial API. The threats

range from dialing or sending SMS to premium-rate numbers, over

GPS tracking to permanent denial of service attacks. These attacks

assume that a SIM card is inserted into themodem,which commonly

occurs in a business setting. To prevent unauthorized usage of a

SIM card, usage is commonly gated by a PIN code. Upon booting,

the system prompts the user to enter the PIN code.

Reviving Dialer Campaigns. In the past, a dialer was a common

type of malware that would dial premium-rate numbers, resulting

in a charge to the victim [58]. The attacker would set up a premium-

rate number, which features high charges for the caller. The dialer

malware would then dial the number, resulting in a charge to the

victim. In recent years, dialer campaigns have become less common

Peripheral Instinct: How External Devices Breach Browser Sandboxes WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

due to the widespread use of broadband internet connections. How-

ever, the Web Serial API allows reviving dialer campaigns. Given

serial access to a modem, an attacker can issue AT commands that

dial or send SMS to premium-rate numbers (Section 5.2).

Spyware. The modem contains various privacy-relevant informa-

tion that can be accessed via AT commands. For example, many

modems contain a GPS module that allows the modem to determine

its location, which allows tracking a user’s location. In addition,

the modem also contains information about recent activity, such as

dialed numbers or SMS messages. SMS messages, in particular, can

contain sensitive information such as two-factor authentication

codes or passwords. Such information can even be intercepted by

forwarding SMS messages and calls to the attacker’s number.

Permanent Denial of Service. If the SIM card is not unlocked, a

malicious actor cannot use the modem for the advanced attacks dis-

cussed in the previous sections. To hinder brute-force attacks, SIM

cards are locked after a certain number of incorrect attempts [20].

Commonly, after three incorrect attempts, the SIM card is locked,

and the user has to enter a PUK code to unlock it. Then, after some

incorrect attempts with the PUK code, the SIM card is permanently

locked, and the user has to be issued a new SIM card by the carrier.

PIN and PUK are entered using AT commands, which allows an

attacker to perform a permanent DoS that locks the SIM card.

8 Mitigating Device API Attacks
In this section, we propose and discuss mitigations for Device API

attacks.While disabling the APIsmitigates the underlying issue, this

is a drastic measure. We discuss the advantages and disadvantages

of other mitigation approaches that are fully backward-compatible

with the respective standards and ideally also compatible with the

current implementation of the APIs.

8.1 Extension-based Control
The extension-based approach introduces an abstraction layer be-

tween the low-level access to the device and the interface exposed

to any (malicious) site. This layer can inspect the data sent to a

device, which allows the extension to implement a firewall-like

mechanism to prevent arbitrary sites from performing security-

relevant actions, such as macro programming or firmware updates.

Alternatively, the extension can also completely prevent access

to low-level functionality and instead expose abstract functions

that encapsulate the device’s behavior. Such an abstract function

could, e.g., allow any site with access to change the LED color of the

connected device (e.g., device.setRGB(0,0,0)) without exposing
any other functionality. Such an extension could be provided by

the device vendor that protects access to the device against mali-

cious use by restricting access to sensitive functionality. It would

even require fewer privileges than regular native configuration

software. Similarly, it is possible to implement an extension that

blocks sending data or even removes an API completely.

Implementation. The mechanism is implemented by leveraging

a technique called Virtual Machine Layering [24, 59], which allows

intercepting JavaScript functions. Here, the API functions that can

be used to send data to a device are encapsulated by functions

that first filter their arguments and then pass those arguments

to the device via a handle to the original function. The original

function can only be called using the handle in the encapsulation. A

Chrome Extension with Manifest Version 2 can use the manifest in

Listing 1 in Appendix E to run a content script before the rendering

of any arbitrary site (and subdocuments) injects the encapsulation

before the head of the document. After the initial encapsulation,

any script that tries to access the WebHID API can no longer access

the original WebHID API. As a proof of concept, we implement a

Chrome Extension that prevents a site from accessing the on-board

memory feature on Logitech devices relying on the HID++ 2.0+

protocol via the WebHID API (Section 5.1.3). This is easily possible

since the third byte of a report is the feature identifier.

8.2 API-Device Contracts
The WebUSB proposal discusses the possibility of instantiating API-

device contracts that are honored by the browser [77]. While such

contracts are an impractical solution for the broader set of USB

devices due to the lack of standardization, they may be feasible for

a subset of devices. In the following, we propose two approaches

to implement such contracts for WebHID with minimal impact on

devices that aim to support the API. HID Usages allow grouping re-

lated controls by specifying a Usage Page and a Usage ID associated

with a report, forming the so-called 32-bit extended Usage [67].

Reserved Usages. We propose an approach where devices imple-

ment security-relevant functionality, such as persistent memory

manipulation, either behind a reserved Usage Page or a reserved

Usage ID. For most firmware, this only requires minor firmware

modifications. To evaluate the feasibility of this approach, we mod-

ify the firmware of the blink(1) [7], an open-source device that

supports WebHID and has a driver integrated into the upstream

Linux kernel, to expose less functionality via WebHID. It uses two

feature reports operating under the same Extended Usage. The

feature report with ID ‘2’ exposes the “reboot to bootloader” func-

tionality. To separate this functionality, we introduce a feature

report with ID ‘3’ that operates under Usage Page ‘0xdead’. The

code of the official tool for the device has to be modified by a single

digit. We extend the Chromium blocklist locally to prevent any

reports associated with Usage Page ‘0xdead’. Only reports under

the blocked Usage Page can no longer be sent or received.

WebHID Capability Indicator. The WebUSB specification pro-

poses a WebUSB Platform Capability Descriptor implemented by

storing a specific Platform Descriptor on the USB device [16]. This

descriptor provides basic information about the device to the browser

and could also be used to indicate that a device should be exposed

via WebUSB. Similarly, a report under Usage Page ‘0xdead’ could

indicate that the device acknowledges the WebHID threat model.

Since this Usage Page is not standardized, the device is free not to

implement any functionality on this report and only use it as a flag.

Browser-Device Communication. The WebUSB specification

discusses two other approaches to mitigate attacks on USB de-

vices [77]. The first mechanism is similar to the Referer header [37]
and would be used by the browser to communicate the origin of

a request to the device. This mitigation, however, shifts the re-

sponsibility of access control to the device. Meanwhile, the second

mechanism is similar to Cross-Origin Resource Sharing [71]. Here, a

device can specify a set of origins allowed to communicate with the

device. The browser then enforces this allowlist. The proposal states

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Leon Trampert et al.

that such an allowlist could also be specified in a separate public

registry. Such an approach may be challenging to maintain as it

requires maintenance of the registry or modifications to firmware.

8.3 Pure Browser-based Approaches
Directional Permissions. Bi-directional communication may not

be necessary in many scenarios. Hence, splitting permissions into

input and output would be possible. The default permission would

only allow receiving input from the device. Permission to send

data to the device could be granted separately, with an additional

warning. This way, non-standard controllers could, e.g., be used in

browser games without the risk of reprogramming.

Permission Dialogue. As of writing, the permission dialogue fol-

lows a chooser-based approach, which requires at least two clicks

to grant permission for a device [72]. However, there is little to

no information about what the site may achieve, given access to

a device. Further, the Device API permission prompts are visually

and operationally similar to the prompts by non-security-relevant

browser APIs such as the notification API. Given that prior work on

browser extensions [23] and Android permissions [10] established

that users rarely understand the risks associated with permissions,

this likely also applies to browser APIs. Moreover, inconsistent

browser implementations [52] obfuscate implications for the end

user. Further, Progressive Web Apps (PWAs) are web applications

that can be installed on a device [45]. Since installing PWAs re-

quires further consent and user interaction, they may be granted

permissions that go beyond the capabilities of a regular website.

Allowlist. The several specifications and Chromium implement

blocklists restricting access to devices. Vendors have to submit

rules proactively. While blocklist-based approaches are often easy

to manage and set up, they often grow exponentially and are incom-

plete [53]. In contrast, allowlist-based approaches usually take more

time to manage but provide greater security due to the restrictive

default behavior [53]. As such, an allowlist-based approach may be

a better fit due to the prevalence of insecurely configurable devices.

8.4 Device-based Approaches
Update mechanisms are crucial to ensure that vulnerabilities are

fixable by the end user. However, devices must ensure attackers

cannot exploit the update mechanism. Device vendors should em-

ploy authenticated firmware update mechanisms [56]. Here, the

origin and integrity of firmware updates are verified using crypto-

graphic signatures to prevent malicious ones. In addition, to prevent

firmware downgrades to vulnerable versions, devices should also

employ rollback protection, which checks the firmware version

before performing an update [56]. The update mechanism may also

require physical interaction with the device (e.g., pressing a button)

to ensure a user-initiated update. This requirement can additionally

be imposed during runtime reprogramming of the device.

8.5 Host-based Approaches
Since USB is a prominent attack vector, a wide variety of allow-

or blocklisting approaches [21, 34, 63, 64] has emerged to deal

with USB threats such as BadUSB [51]. Such an approach would,

e.g., defend against BadUSB-like attacks performed via HID-based

bootloaders since the firewall can prevent devices from sending

input by default. However, this is ineffective against macro-based

attacks since the intended functionality of a device is abused. Since

the behavior and, in particular, the time between keyboard events

differ from normal user behavior during keystroke injection attacks,

various injection-detection approaches have emerged [9, 22, 48, 49].

These approaches leverage timing differences between keystrokes,

letter frequencies, keypress times, and latency. To our knowledge,

thesemechanisms are not widely deployed due to their performance

costs and relatively high false-positive rates. However, our minimal

injection sequences of 3 keystrokes only feature 2 data points for

such mechanisms, so any detection mechanism is heavily limited.

OS Device Access Control. On Linux, udev is the generic device

manager that provides an abstract interface of the hardware [4]. By

default, HIDs are not accessible to unprivileged users. The device

manager has an extensive set of rules that allows customizing this

behavior. This default behavior also prevents opening devices from

WebHID on Linux systems unless Chromium runs as a privileged

process or the necessary udev rules are present. Similarly, Apple’s

macOS also blocks applications from accessing devices that imple-

ment a keyboard or mouse to prevent input monitoring [2]. As such,

a user must grant the browser permission to access such devices.

8.6 Recognizing Macro-exploitable Devices
In order to estimate whether a device is exploitable, we propose a

simple tool that can be used to rule out that a device is exploitable

with WebHID. The tool is based on observations from our analysis

of 22 devices (Section 5). All exploitable devices implement the

Keyboard or Keypad Usage and support output or feature
reports under a Usage that is accessible using the WebHID API. As

such, devices that lack one of these two features are definitely not

exploitable. For the remaining devices, we observed that output or

feature reports that carry more than 64 bytes were only used for

programming macros or exchanging the memory or firmware of

the device. Thus, the presence of high-capacity output or feature

reports increases the likelihood of a device being exploitable.

9 Conclusion
We showed how Device APIs change the threat model for peripher-

als, leading to severe security and privacy problems. Based on our

reverse-engineering and analysis of devices from several vendors,

we found that many allow device control from within the browser,

up to reprogramming or even fully replacing the firmware. Conse-

quently, malicious websites can control devices without requiring

any physical interaction. To demonstrate the security implications,

we built full-chain exploits, leading to arbitrary code execution

on the victim system, circumventing the browser sandbox. Our

research highlights the need to raise awareness among device ven-

dors, indicating that the web might not be ready yet for a global

deployment of Device APIs, given their security implications.

Acknowledgments
We want to thank our anonymous reviewers for their comments

and suggestions. This work has been supported by the Deutsche

Forschungsgemeinschaft (DFG, German Research Foundation) -

491039149. We further thank the Saarbrücken Graduate School of

Computer Science for their funding and support.

Peripheral Instinct: How External Devices Breach Browser Sandboxes WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

References
[1] Shubham Agarwal. 2022. Helping or Hindering? How Browser Extensions Un-

dermine Security. In CCS.
[2] Apple. 2023. Control access to input monitoring on Mac. https:

//support.apple.com/guide/mac-help/control-access-to-input-monitoring-on-

mac-mchl4cedafb6/mac

[3] Apple. 2023. WebKit Standard Positions. https://webkit.org/tracking-preventi

on/#anti-fingerprinting

[4] ArchWiki. 2023. udev. https://wiki.archlinux.org/title/udev

[5] Jan Axelson. 2007. Serial Port Complete: The Developer’s Guide. Lakeview Research

LLC.

[6] Bastille Research. 2016. MouseJack. https://www.mousejack.com/

[7] blink(1). 2023. blink(1) - the USB RGB LED notification light. https://blink1.thi

ngm.com/

[8] Dave Hodder. 2015. Open source firmware for the Launchpad Pro grid controller.

https://github.com/dvhdr/launchpad-pro

[9] Nitzan Farhi, Nir Nissim, and Yuval Elovici. 2019. Malboard: A novel user key-

stroke impersonation attack and trusted detection framework based on side-

channel analysis. Computers & Security 85 (2019).

[10] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and

David Wagner. 2012. Android permissions: User attention, comprehension, and

behavior. In SOUPS.
[11] Fibocom. 2013. AT Commands User Manual. https://web.archive.org/web/2024

0616014731/https://www.maritex.com.pl/product/attachment/40451/15b4db6d

1a10eada42700f7293353776

[12] GamingOnLinux. 2023. Desktop Environment Trends. https://www.gamingonli

nux.com/users/statistics/#DesktopEnvironment-top

[13] Globotron. 2023. Armadillo Hardware Firewall USB 2.0. https://globotron.nz/p

roducts/armadillo-hardware-usb-firewall

[14] Globotron. 2023. USG v1.0 Hardware Firewall. https://globotron.nz/products/usg-

v1-0-hardware-usb-firewall

[15] Google Chrome Developers. 2019. Making user activation consistent across APIs.

https://developer.chrome.com/blog/user-activation/

[16] Grant, Reilly. 2018. Building a device for WebUSB. https://developer.chrome.c

om/articles/build-for-webusb/

[17] Hak5. 2023. Payload Library for the USB Rubber Ducky. https://github.com/hak

5/usbrubberducky-payloads

[18] Hak5. 2023. USB Rubber Ducky. https://hak5.org/products/usb-rubber-ducky

[19] Mohammadreza Hazhirpasand, Mohammad Ghafari, and Oscar Nierstrasz. 2020.

Tricking johnny into granting web permissions. In Proceedings of the Evaluation
and Assessment in Software Engineering.

[20] Sheng He and Ing Christof Paar. 2007. SIM card security. In Seminar Work,
Ruhr-University of Bochum.

[21] Peter C Johnson, Sergey Bratus, and Sean W Smith. 2017. Protecting against

malicious bits on the wire: Automatically generating a USB protocol parser for a

production kernel. In ACSAC.
[22] George Karantzas. 2023. Forensic Log Based Detection For Keystroke Injection"

BadUsb" Attacks. arXiv preprint arXiv:2302.04541 (2023).
[23] Ankit Kariryaa, Gian-Luca Savino, Carolin Stellmacher, and Johannes Schöning.

2021. Understanding users’ knowledge about the privacy and security of browser

extensions. In USENIX.
[24] Erick Lavoie, Bruno Dufour, and Marc Feeley. 2014. Portable and efficient run-

time monitoring of javascript applications using virtual machine layering. In

European Conference on Object-Oriented Programming.
[25] Chaz Lever, RobertWalls, YacinNadji, DavidDagon, PatrickMcDaniel, andManos

Antonakakis. 2016. Domain-Z: 28 registrations later measuring the exploitation

of residual trust in domains. In S&P.
[26] libratbag Team. 2023. libratbag. https://github.com/libratbag/libratbag

[27] Logitech. 2018. Public Documentation of the Logitech HID++ Protocol. https:

//drive.google.com/drive/folders/0BxbRzx7vEV7eWmgwazJ3NUFfQ28

[28] Lottie Thomas. 2024. Launchpad MK2 Programmer’s Reference Manual v1.03.
Focusrite Audio Engineering LTD.

[29] MarcusMengs. 2019. Summary / Overview of known Logitechwireless peripheral

vulnerabilities. https://github.com/mame82/misc/blob/5e7f02962b5556a03aa6d4

277c8618e536117f7b/logitech_vuln_summary.md

[30] Jacob Maskiewicz, Benjamin Ellis, James Mouradian, and Hovav Shacham. 2014.

Mouse Trap: Exploiting Firmware Updates in USB Peripherals. In WOOT.
[31] Microsoft. 2022. HID Architecture. https://learn.microsoft.com/en-us/windows-

hardware/drivers/hid/hid-architecture#hid-clients-supported-in-windows

[32] Microsoft. 2023. Copy the window or screen contents. https:

//support.microsoft.com/en-us/office/copy-the-window-or-screen-contents-

98c41969-51e5-45e1-be36-fb9381b32bb7

[33] Microsoft. 2023. Use voice typing to talk instead of type on your

PC. https://support.microsoft.com/en-us/windows/use-voice-typing-to-talk-

instead-of-type-on-your-pc-fec94565-c4bd-329d-e59a-af033fa5689f

[34] Hessam Mohammadmoradi and Omprakash Gnawali. 2018. Making whitelisting-

based defense work against badusb. In International Conference on Smart Digital

Environment.
[35] Mozilla. 2023. Clipboard API. https://developer.mozilla.org/en-US/docs/Web/

API/Clipboard/

[36] Mozilla. 2023. Permissions Policy. https://developer.mozilla.org/en-US/docs/We

b/HTTP/Permissions_Policy

[37] Mozilla. 2023. Referer. https://developer.mozilla.org/en-US/docs/Web/HTTP/H

eaders/Referer

[38] Mozilla. 2023. Secure Context. https://developer.mozilla.org/en-US/docs/Web/

Security/Secure_Contexts

[39] Mozilla. 2023. Standard Positions. https://mozilla.github.io/standards-positions/

#webhid

[40] Mozilla. 2023. User Activation. https://developer.mozilla.org/en-US/docs/Web/

Security/User_activation

[41] Mozilla. 2023. Web APIs. https://developer.mozilla.org/en-US/docs/Web/API

[42] Mozilla. 2023. WebHID. https://developer.mozilla.org/en-US/docs/Web/API/We

bHID_API

[43] Mozilla. 2023. WebSerial. https://developer.mozilla.org/en-US/docs/Web/API/

Web_Serial_API

[44] Mozilla. 2023. WebSerial. https://developer.mozilla.org/en-US/docs/Web/API/

Web_MIDI_API

[45] Mozilla. 2024. Progressive web apps. https://developer.mozilla.org/en-US/docs/

Web/Progressive_web_apps

[46] Mozilla. 2024. Site Permission Add-ons. https://support.mozilla.org/en-US/kb/si

te-permission-add-ons

[47] Jens Müller, Vladislav Mladenov, Juraj Somorovsky, and Jörg Schwenk. 2017. SoK:

Exploiting Network Printers. In S&P.
[48] Arun Negi, Santosh Singh Rathore, and Debanjan Sadhya. 2021. USB Keypress

Injection Attack Detection via Free-Text Keystroke Dynamics. In International
Conference on Signal Processing and Integrated Networks (SPIN).

[49] Sebastian Neuner, Artemios G Voyiatzis, Spiros Fotopoulos, Collin Mulliner, and

Edgar R Weippl. 2018. Usblock: Blocking usb-based keypress injection attacks.

In DBSec.
[50] Marc Newlin. 2016. MouseJack, KeySniffer and Beyond: Keystroke Sniffing and

Injection Vulnerabilities in 2.4 GHz Wireless Mice and Keyboards. DEFCON
(2016).

[51] Karsten Nohl and Jakob Lell. 2014. BadUSB - On Accessories that Turn Evil. Black
Hat USA (2014).

[52] Kazuki Nomoto, Takuya Watanabe, Eitaro Shioji, Mitsuaki Akiyama, and Tatsuya

Mori. 2023. Browser Permission Mechanisms Demystified. In NDSS.
[53] M.K. Nozaki and H.F. Tipton. 2016. Information Security Management Handbook,

Volume 5. Number v. 5. CRC Press.

[54] Open Web Application Security Project (OWASP). 2021. Top 10 Web Application

Security Risks. https://owasp.org/Top10/

[55] Harun Oz, Ahmet Aris, Abbas Acar, Güliz Seray Tuncay, Leonardo Babun, and

Selcuk Uluagac. 2023. RøB: Ransomware over ModernWeb Browsers. In USENIX.
[56] Andrew Regenscheid. 2017. Platform firmware resiliency guidelines.

[57] Joseph Rothstein. 1995. MIDI: a Comprehensive Introduction, 2nd ed. Atlantic
Books.

[58] Merve Sahin, Aurélien Francillon, Payas Gupta, and Mustaque Ahamad. 2017.

SoK: Fraud in Telephony Networks. In EuroS&P.
[59] Michael Schwarz, Moritz Lipp, and Daniel Gruss. 2018. JavaScript Zero: Real

JavaScript and Zero Side-Channel Attacks. In NDSS.
[60] Victoria Shannon. 1999. The Rise and Fall of the Modem King. https://www.ny

times.com/1999/01/07/news/the-rise-and-fall-of-the-modem-king.html

[61] StatCounter Global Stats. 2023. Operating System macOS Version Market Share

Worldwide. https://gs.statcounter.com/os-version-market-share/macos/deskto

p/worldwide

[62] StatCounter Global Stats. 2023. Operating System Market Share Worldwide.

https://gs.statcounter.com/os-market-share/desktop/worldwide

[63] Dave Jing Tian, Adam Bates, and Kevin Butler. 2015. Defending against malicious

USB firmware with GoodUSB. In ACSAC.
[64] Dave Jing Tian, Nolen Scaife, Adam Bates, Kevin Butler, and Patrick Traynor.

2016. Making USB great again with USBFILTER. In USENIX.
[65] Jing Tian, Nolen Scaife, Deepak Kumar, Michael Bailey, Adam Bates, and Kevin

Butler. 2018. SoK:" Plug & Pray" today–understanding USB insecurity in versions

1 through C. In S&P.
[66] USB Implementers Forum (USB-IF). 2000. USB 2.0 Specification. https://www.us

b.org/document-library/usb-20-specification

[67] USB Implementers Forum (USB-IF). 2001. Device Class Definition for Human

Interface Devices (HID) - Version 1.11. https://www.usb.org/sites/default/files/h

id1_11.pdf

[68] Vuchener, Clément. 2015. HID++ library and tools. https://github.com/cvuchen

er/hidpp

[69] W3C Audio Working Group. 2024. Web MIDI API W3C Editor’s Draft. https:

//webaudio.github.io/web-midi-api/

[70] Takuya Watanabe, Eitaro Shioji, Mitsuaki Akiyama, and Tatsuya Mori. 2020.

Melting Pot of Origins: Compromising the IntermediaryWeb Services that Rehost

Websites.. In NDSS.

https://support.apple.com/guide/mac-help/control-access-to-input-monitoring-on-mac-mchl4cedafb6/mac
https://support.apple.com/guide/mac-help/control-access-to-input-monitoring-on-mac-mchl4cedafb6/mac
https://support.apple.com/guide/mac-help/control-access-to-input-monitoring-on-mac-mchl4cedafb6/mac
https://webkit.org/tracking-prevention/#anti-fingerprinting
https://webkit.org/tracking-prevention/#anti-fingerprinting
https://wiki.archlinux.org/title/udev
https://www.mousejack.com/
https://blink1.thingm.com/
https://blink1.thingm.com/
https://github.com/dvhdr/launchpad-pro
https://web.archive.org/web/20240616014731/https://www.maritex.com.pl/product/attachment/40451/15b4db6d1a10eada42700f7293353776
https://web.archive.org/web/20240616014731/https://www.maritex.com.pl/product/attachment/40451/15b4db6d1a10eada42700f7293353776
https://web.archive.org/web/20240616014731/https://www.maritex.com.pl/product/attachment/40451/15b4db6d1a10eada42700f7293353776
https://www.gamingonlinux.com/users/statistics/#DesktopEnvironment-top
https://www.gamingonlinux.com/users/statistics/#DesktopEnvironment-top
https://globotron.nz/products/armadillo-hardware-usb-firewall
https://globotron.nz/products/armadillo-hardware-usb-firewall
https://globotron.nz/products/usg-v1-0-hardware-usb-firewall
https://globotron.nz/products/usg-v1-0-hardware-usb-firewall
https://developer.chrome.com/blog/user-activation/
https://developer.chrome.com/articles/build-for-webusb/
https://developer.chrome.com/articles/build-for-webusb/
https://github.com/hak5/usbrubberducky-payloads
https://github.com/hak5/usbrubberducky-payloads
https://hak5.org/products/usb-rubber-ducky
https://github.com/libratbag/libratbag
https://drive.google.com/drive/folders/0BxbRzx7vEV7eWmgwazJ3NUFfQ28
https://drive.google.com/drive/folders/0BxbRzx7vEV7eWmgwazJ3NUFfQ28
https://github.com/mame82/misc/blob/5e7f02962b5556a03aa6d4277c8618e536117f7b/logitech_vuln_summary.md
https://github.com/mame82/misc/blob/5e7f02962b5556a03aa6d4277c8618e536117f7b/logitech_vuln_summary.md
https://learn.microsoft.com/en-us/windows-hardware/drivers/hid/hid-architecture#hid-clients-supported-in-windows
https://learn.microsoft.com/en-us/windows-hardware/drivers/hid/hid-architecture#hid-clients-supported-in-windows
https://support.microsoft.com/en-us/office/copy-the-window-or-screen-contents-98c41969-51e5-45e1-be36-fb9381b32bb7
https://support.microsoft.com/en-us/office/copy-the-window-or-screen-contents-98c41969-51e5-45e1-be36-fb9381b32bb7
https://support.microsoft.com/en-us/office/copy-the-window-or-screen-contents-98c41969-51e5-45e1-be36-fb9381b32bb7
https://support.microsoft.com/en-us/windows/use-voice-typing-to-talk-instead-of-type-on-your-pc-fec94565-c4bd-329d-e59a-af033fa5689f
https://support.microsoft.com/en-us/windows/use-voice-typing-to-talk-instead-of-type-on-your-pc-fec94565-c4bd-329d-e59a-af033fa5689f
https://developer.mozilla.org/en-US/docs/Web/API/Clipboard/
https://developer.mozilla.org/en-US/docs/Web/API/Clipboard/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Permissions_Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Permissions_Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referer
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referer
https://developer.mozilla.org/en-US/docs/Web/Security/Secure_Contexts
https://developer.mozilla.org/en-US/docs/Web/Security/Secure_Contexts
https://mozilla.github.io/standards-positions/#webhid
https://mozilla.github.io/standards-positions/#webhid
https://developer.mozilla.org/en-US/docs/Web/Security/User_activation
https://developer.mozilla.org/en-US/docs/Web/Security/User_activation
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API/WebHID_API
https://developer.mozilla.org/en-US/docs/Web/API/WebHID_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Serial_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Serial_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_MIDI_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_MIDI_API
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://support.mozilla.org/en-US/kb/site-permission-add-ons
https://support.mozilla.org/en-US/kb/site-permission-add-ons
https://owasp.org/Top10/
https://www.nytimes.com/1999/01/07/news/the-rise-and-fall-of-the-modem-king.html
https://www.nytimes.com/1999/01/07/news/the-rise-and-fall-of-the-modem-king.html
https://gs.statcounter.com/os-version-market-share/macos/desktop/worldwide
https://gs.statcounter.com/os-version-market-share/macos/desktop/worldwide
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://www.usb.org/document-library/usb-20-specification
https://www.usb.org/document-library/usb-20-specification
https://www.usb.org/sites/default/files/hid1_11.pdf
https://www.usb.org/sites/default/files/hid1_11.pdf
https://github.com/cvuchener/hidpp
https://github.com/cvuchener/hidpp
https://webaudio.github.io/web-midi-api/
https://webaudio.github.io/web-midi-api/

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Leon Trampert et al.

[71] Web Hypertext Application Technology Working Group (WHATWG). 2023.

CORS Protocol. https://fetch.spec.whatwg.org/#cors-protocol

[72] Web Incubator Community Group (WICG). 2022. WebHID API Draft Community

Group Report. https://wicg.github.io/webhid/

[73] Web Incubator Community Group (WICG). 2023. WebBluetooth GATT Blocklist.

https://github.com/WebBluetoothCG/registries/blob/master/gatt_blocklist.txt

[74] Web Incubator Community Group (WICG). 2023. WebHID Blocklist. https:

//github.com/WICG/webhid/blob/main/blocklist.txt

[75] Web Incubator Community Group (WICG). 2023. WebHID Explainer. https:

//wicg.github.io/webhid/EXPLAINER.html

[76] Web Incubator Community Group (WICG). 2023. WebSerial Bluetooth Service

Blocklist. https://github.com/WICG/serial/blob/main/bluetooth-service-blocklis

t.txt

[77] Web Incubator Community Group (WICG). 2023. WebUSB API Draft Community

Group Report. https://wicg.github.io/webusb/

[78] Web Incubator Community Group (WICG). 2023. WebUSB Blocklist. https:

//github.com/WICG/webusb/blob/main/blocklist.txt

[79] Web Incubator Community Group (WICG). 2024. Web Bluetooth API Draft

Community Group Report. https://webbluetoothcg.github.io/web-bluetooth/

[80] Web Incubator Community Group (WICG). 2024. Web Serial API Draft Commu-

nity Group Report. https://wicg.github.io/serial/

[81] Wireshark. 2020. USB capture setup. https://wiki.wireshark.org/CaptureSetup/

USB

A Accessible Device Classes
In this section, we provide a generic overview of the device classes

that are accessible via the critical device APIs.

WebHID. WebHID allows access to almost all HIDs, including key-

boards, mice, and gamepads [72]. However, for security reasons, the

user agent blocks access to FIDO U2F collections and input-related

HID collections for keyboards, mice, and keypads. This prevents

spoofing of communication with FIDO functionality, the creation

of input loggers and circumvention of the operating system’s focus

model. Most notably, we show that devices with macro function-

ality are generally reprogrammable via additional collections in

Section 5.

Web MIDI. Web MIDI allows access to MIDI devices, such as

electronic musical instruments, MIDI controllers, and MIDI inter-

faces [69]. While the OS may provide drivers for MIDI devices,

the protocol itself is not used by the OS. Instead, MIDI devices

are typically accessed by (proprietary) music production software.

Most MIDI messages relate to musical performance and thus do

not pose a direct threat, even if an attacker can send arbitrary MIDI

messages. However, MIDI supports System Exclusive (SysEx) mes-

sages which add device-specific (non-standardized) functionality.

In Chromium-based browsers, the prompt is the same, regardless

of whether SysEx messages are exchanged.

WebUSB. While USB is a generic protocol, WebUSB only allows

access to a small subset of devices [77]. The user agent blocks access

to a set of USB interface classes for which most OSs have built-in

drivers, such as mass storage, HID, and audio/video devices. As a

rule of thumb, every type of interface available via some other high-

level API (e.g., WebHID) is blocked by WebUSB. Thus, WebUSB

can primarily only access generic interfaces or devices that are not

covered by other APIs.

Web Serial. TheWeb Serial API allows access to serial devices, such

as microcontrollers, GPS modules, 3D printers, and other devices

that communicate via a serial interface [80]. Such devices can be

connected to the host system via USB or other interfaces. Further,

the API allows access to the serial ports of Bluetooth Classic devices.

B Macro-based Exploits
Table 2 shows the time it takes to reprogram a device. This time is

measured from the user interaction that triggers reprogramming

until the macro is entirely written to the device and activated by,

e.g., also modifying the current active profile. Here, we measure the

time it takes to program the shortest malicious macro (i.e., q + R ,

Ctrl + V ,), as discussed in Section 6.1. This time, however,

only represents an upper bound since our web applications are not

optimized for performance. Further reverse engineering efforts may

drastically reduce the time to configure.

C Run Dialogs
Table 3 gives an overview of the various run dialogs that may be

used to execute payloads, as discussed in Section 6.1. The table also

shows the time to payload, which measures the time it takes until

the dialog appears after the start of a macro such that a malicious

actor may enter the actual payload. This time was measured using

the Keychron V1Z2, which featured the smallest time interval be-

tween macro keystrokes (Table 1). Since this time is heavily system

and hardware-dependent, it only serves as a reference point. Our

times were measured on aWindows 11/Ubuntu 22.04 LTS dual-boot

system with an Intel Core i9-10900K CPU. The macOS times were

measured on a macOS Ventura system with an Apple M1 CPU.

D Keystroke Injections on Linux and macOS
D.1 Keystroke Injections on Linux
On Linux systems, the available keyboard shortcuts and the gen-

eral behavior of the UI depend on the desktop environment. While

there are many different desktop environments and window man-

agers, our work focuses on the three most widespread desktop

environments: KDE Plasma, XFCE, and GNOME [12]. Here, our

focus remains on recent versions, KDE Plasma 5, XFCE 4.0+, and

GNOME 40+, that are shipped with many Linux distributions by

default (e.g., Ubuntu/Kubuntu/Xubuntu 22.04 LTS).

Run Dialogs. Multiple prominent run dialogs exist on KDE-,

GNOME- and XFCE-based systems. By default, all three environ-

ments feature the same keyboard shortcuts to open terminals. Thus,

Ctrl + Alt + T can be used in all environments to open the default

terminal emulator with the default shell. Further, all environments

feature a command window that can be used to enter arbitrary

commands, which can be accessed using Alt + F2 in all three envi-

ronments. Similar toWindows, pressing q provides a search in all

three environments. This search can, however, only be used to open

files or start applications. As such, it can open a terminal emulator,

e.g., cmd. However, an attacker cannot obtain elevated privileges

without additional effort, as all dialogs require a password. While

elevated privileges granted to open applications might be reusable,

we do not investigate this.

Optimal Injections. The shortest total injection length amounts

to 3 keystrokes: q + R , Ctrl + V , on our Linux sytems. Using

the Keychron V1Z2, the entire injection only lasts about 5ms. To

our knowledge, this is also the fastest injection on Linux systems.

https://fetch.spec.whatwg.org/#cors-protocol
https://wicg.github.io/webhid/
https://github.com/WebBluetoothCG/registries/blob/master/gatt_blocklist.txt
https://github.com/WICG/webhid/blob/main/blocklist.txt
https://github.com/WICG/webhid/blob/main/blocklist.txt
https://wicg.github.io/webhid/EXPLAINER.html
https://wicg.github.io/webhid/EXPLAINER.html
https://github.com/WICG/serial/blob/main/bluetooth-service-blocklist.txt
https://github.com/WICG/serial/blob/main/bluetooth-service-blocklist.txt
https://wicg.github.io/webusb/
https://github.com/WICG/webusb/blob/main/blocklist.txt
https://github.com/WICG/webusb/blob/main/blocklist.txt
https://webbluetoothcg.github.io/web-bluetooth/
https://wicg.github.io/serial/
https://wiki.wireshark.org/CaptureSetup/USB
https://wiki.wireshark.org/CaptureSetup/USB

Peripheral Instinct: How External Devices Breach Browser Sandboxes WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

Table 1: Tested devices and their macro functionality. 𝛿𝑚𝑖𝑛 is the average minimal time between individual keystrokes registered
by the host and the corresponding standard error over 1000measurements. Devices with n/a in the WebHID column do not
feature support for on-board macros.

Vendor Device Connectivity Firmware Protocol WebHID Macro Length 𝛿𝑚𝑖𝑛 in𝑚𝑠

M
o
u
s
e

Logitech G203 LIGHTSYNC Wired Logitech v152.2.17 Logitech HID++ v4.2 ✓ ≈80 keys 4.08 ± 0.01

G305 LIGHTSPEED Wireless Receiver Logitech v68.1.14 Logitech HID++ v4.2 ✓ ≈40 keys 3.91 ± 0.02

G500s Wired Logitech v84.9 Logitech HID++ v1.0 ✓ ≈1076 keys 7.94 ± 0.02

G502 HERO Wired Logitech v127.3.10 Logitech HID++ v4.2 ✓ ≈420 keys 4.06 ± 0.01

Microsoft Pro IntelliMouse Wired Microsoft 0095 Custom HID ✓ 1 key -

Roccat Kone Aimo Wired Roccat v1.05 Custom HID ✓ >100 keys 3.94 ± 0.01

Redragon Pegasus M705 Wired ? Custom HID ✓ 30 keys 19.96 ± 0.02

Speedlink TAUROX Wired ? Custom HID ✓ 55 keys 15.99 ± 0.02

Zelotes T-90 Wired Gaming Mouse 3.0 Custom HID ✓ ≈80 keys 20.44 ± 0.04

Razer Viper Ultimate Wireless Receiver Razer v1.06.00 Custom USB ✗ >100 keys 1.96 ± 0.00

Corsair M55 RGB PRO Wired Corsair v4.7.23 - n/a - -

SteelSeries Rival 3 Wired SteelSeries 0.36.0.0 - n/a - -

Asus TUF Gaming M3 Wired Asus v1.00.09 - n/a - -

K
e
y
b
o
a
r
d

Logitech G710+ Mechanical Keyboard Wired Logitech v0x8000 - n/a - -

MX Keys Mini Bluetooth ? Logitech HID++ v4.2 n/a - -

Keychron Keychron V1Z2 Wired VIA v3 VIA Firmware Protocol v12 ✓ ≈408 keys 1.94 ± 0.00

Skyloong GK61XS Wired ? Custom HID ✓ 30 keys 17.65 ± 0.19

Multiple 4 Key Macro Keypad Wired CH57x Custom HID ✓ 5 keys 48.00 ± 0.02

Redragon K629 Wired ? Custom HID ✓ 31 keys 12.16 ± 0.14

Razer BlackWidow 2019 Wired Razer v1.01.00 Custom USB ✗ >100 keys 1.95 ± 0.00

M
i
s
c
. Multiple USB Foot Switch FS221-P Wired FS22-P v5.3 Custom HID ✓ 15 keys 1.90 ± 0.01

Diswoe Wireless Pro Controller Bluetooth ? - n/a - -

Table 2: Devices and their respective upper bound on the time
to configure the shortest malicious payload.

Vendor Device Time to Configure

M
o
u
s
e

Logitech G203 LIGHTSYNC ≈600ms

G305 LIGHTSPEED ≈600ms

G500s LIGHTSYNC ≈20ms

G502 HERO ≈600ms

Zelotes T-90 ≈180ms

K
e
y
b
o
a
r
d

Keychron V1Z2 ≈55ms

Multiple 4 Key Macro Keypad ≈125ms

D.2 Keystroke Injections on Apple’s macOS
Apple’s desktop OSs account for about 17 % of the respective mar-

ket share [61]. Out of all versions, macOS Catalina is the most

prominent one with above 91 % of adoption.

RunDialogs. By default, macOS does not offer asmany run dialogs

as the other OSs. The most prominent run dialog is the Spotlight

Search, where files, settings, and applications can be searched and

opened. As such, it can be leveraged to open a terminal with the

system’s default shell. The search term may be shortened. If a

terminal is already open, that terminal is brought to the foreground

and into focus. Note that this also allows reusing permissions should

the user have already entered a privileged state with the open

terminal (e.g., using sudo).
Optimal Injections. With the shortest ephemeral payload be-

ing + V , the shortest total injection length amounts to 12

keystrokes: + , T , E , R , M , I , N , A , L , ,

0 1 2 3 4 5 6

0x18 cmd index offset page data end

Figure 2: Zelotes custom HID protocol.

+ V , . Such an injection can be performed using most pro-

grammable devices discussed in Section 5, except for the macropad

which can only store 5 keystrokes. Using the Keychron V1Z2, the

entire injection only lasts about 125ms. The injection requires two

small delays: ≈10ms until the search responsive and ≈110ms until

the terminal application becomes responsive.

E Extension-based Mitigation
Listing 2 shows an example of virtual machine layering. It replaces

the functions sendReport and sendFeatureReport of any HID

with placeholders that do nothing. This effectively prevents any

HID-based reprogramming of the device from WebHID. Alterna-

tively, they could also be replaced by filter functions that act as a

firewall. Freezing the device objects prevents the untrusted code

from removing the encapsulations. Further, we can ensure that the

scripts are injected into the site before executing any other script

using the manifest in Listing 1. We run a content script before the

rendering of any context starts such that no (potentially malicious)

code can interfere with our encapsulation process.

F Reverse-Engineered Protocols
Zelotes. The device communicates via HID feature reports with

report ID ‘7’. All reports have the same length of 7 B. Figure 2

shows the report format. The protocol sends the binary internal

state, consisting of button assignments, profiles, LED mode, and

macro sequences, in blocks of 8 bytes, where each byte is encoded

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Leon Trampert et al.

Table 3: Keystroke sequences to access run dialogs and the delays required for using them.

Run Dialog Description Keystrokes Clipboard Content Time to Payload

W
i
n
d
o
w
s

Start menu q 60ms

Run command window q + R 30ms

Quick Link menu into Run command window q + X , R 110ms

Quick Link menu into Powershell q + X , I 450ms

Quick Link menu into Powershell as Administrator q + X , A , � , 950ms

L
i
n
u
x

Command window Alt + F2 0ms

Terminal Ctrl + Alt + T 200ms

Search into Terminal q , C , M , D , 550ms

q , Ctrl + V , cmd or terminal 600ms

m
a
c
O
S

Spotlight Search into Terminal + Space , T , E , R , M , I , N , A , L , 120ms

+ Space , + V , terminal 90ms

1 {
2 "manifest_version": 2,
3 "name": "Device Driver",
4 "version": "1.0",
5 "content_scripts": [
6 {
7 "matches": ["<all_urls>"],
8 "js": ["sdk.js"],
9 "run_at": "document_start",
10 "all_frames": true
11 }
12]
13 }

Listing 1: Thismanifest ensures the content script is executed
before the rendering of the document starts. It allows inject-
ing the encapsulation function shown in Listing 2 which
must run in the context of the webpage.

0 1 2 3 4 5 6 7 8 9

0xa1 0x01 pos type len seq mod key 0xaa 0xaa︸ ︷︷ ︸
Start

︸ ︷︷ ︸
Keys, repeated per key

︸ ︷︷ ︸
End

Figure 3:CH57x custom key-programming protocol. pos is the
key position on the keyboard, type the type of key (normal,
media, mouse), len the length of the macro sequence, seq the
index of the key in the macro sequence, mod a bitfield for
modifier keys, and key the HID code of the key.

in a report. Reports use the command ‘0x3’ to write a byte directly

to the flash memory of the mouse. The location is calculated as

page × 256 + offset + index (Figure 2). After a maximum of 8 bytes,

a block is “committed” using commands ‘0x9’ and ‘0x0’. Command

‘0x5’ finishes the button assignment, and command ‘0x10‘ indicates

that the entire programming process has been completed.

CH57x. The communication with the device is via HID output

reports with report ID ‘3’. All reports sent are 64 B, with unused

bytes set to ‘0’. To program keys, the device first expects a “hand-

shake” report, which consists of only ‘0’s. After this report, the keys

can be programmed. The basic protocol for programming keys is

illustrated in Figure 3. The device expects a 2-byte start token (0xa1,
0x01) to start the programming mode. In programming mode, keys

are sent one by one as 6-byte reports. Every report contains the

position of the key on the keyboard, the type of key (e.g., normal

1 (function () {
2

3 // originals are only accessible in this scope
4 let original_requestDevice
5 = window.navigator.hid.requestDevice;
6 let original_getDevices
7 = window.navigator.hid.getDevices;
8

9 let encapsulate = function (original) {
10 return async function () {
11 let devices = await original.apply(
12 window.navigator.hid, arguments);
13 // ... replace device.sendReport and
14 // device.sendFeatureReport on sensitive
15 // devices by encapsulations
16 for (let device of devices) {
17 device.sendReport = function () {
18 return;
19 }
20 device.sendFeatureReport = function () {
21 return;
22 }
23 // prevent removing encapsulations
24 // because it then returns to default
25 Object.freeze(device);
26 }
27 return devices;
28 };
29 };
30

31 window.navigator.hid.requestDevice
32 = encapsulate(original_requestDevice);
33 window.navigator.hid.getDevices
34 = encapsulate(original_getDevices);
35

36 })();
37

Listing 2: This snippet removes the sendReport and
sendFeatureReport function from all HIDs by encapsulating
the original functions for device access. It has to be executed
before any untrusted code.

key (‘1’), media key (‘2’), or mouse button (‘3’)), the number of keys

in the macro sequence, the index within the macro sequence, and

the key with one or more modifier keys (e.g., shift or control). A

2-byte end token (0xaaaa) terminates the programming mode.

	Abstract
	1 Introduction
	2 Background
	2.1 Device Protocols
	2.2 Device Browser APIs

	3 API Security Analysis
	3.1 Change of Threat Models
	3.2 Attacks Enabled by Device APIs
	3.3 Gaining Device API Permission

	4 Firmware Attacks
	4.1 Custom Firmware
	4.2 Firmware Rollbacks

	5 Analysis of Device-Specific Protocols
	5.1 HIDs with Onboard Macros
	5.2 Hayes and Hayes-compatible Modems

	6 Device-specific Attack: Onboard Macros
	6.1 Command Injection
	6.2 Spyware

	7 Device-specific Attack: Modems
	8 Mitigating Device API Attacks
	8.1 Extension-based Control
	8.2 API-Device Contracts
	8.3 Pure Browser-based Approaches
	8.4 Device-based Approaches
	8.5 Host-based Approaches
	8.6 Recognizing Macro-exploitable Devices

	9 Conclusion
	References
	A Accessible Device Classes
	B Macro-based Exploits
	C Run Dialogs
	D Keystroke Injections on Linux and macOS
	D.1 Keystroke Injections on Linux
	D.2 Keystroke Injections on Apple's macOS

	E Extension-based Mitigation
	F Reverse-Engineered Protocols

