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Motivation www.tugraz.at

• Analysis of address-translation attack by Gruss et al. [Gru+16]

• The effect was attributed to the prefetch instruction

• Show that the actual root-cause is speculative execution in the

kernel

• This misattribution led to wrong conclusions in follow-up work

• We present stronger attacks like reviving Foreshadow
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i

maccess(i);

maccess(i);

Cache miss

Cache hit

Request

Response

DRAM access,

slow
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Virtual memory per process www.tugraz.at

Physical memory
Non-canonical

Kernel

Direct-physical map

User space
0x0000 0000 0000 0000

0x0000 8000 0000 0000

0xffff 8880 0000 0000

0xffff 8000 0000 0000
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Address-Translation Attack www.tugraz.at

• Fetch kernel addresses into the cache

• Using this technique virtual addresses can be translated into

physical addresses

• The KAISER patch should mitigate the address-translation

attack [Gru+17]
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i

i ≡ DPM-Address;

flush(i);

prefetch(DPM-Address);

sched yield();

maccess(i);
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Reproduction www.tugraz.at

• We successfully reproduced the address-translation attack

• We only enable the page-table isolation and disabled all other

mitigations

• Still cache fetches occured...

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Reproduction www.tugraz.at

• We successfully reproduced the address-translation attack

• We only enable the page-table isolation and disabled all other

mitigations

• Still cache fetches occured...

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Reproduction www.tugraz.at

• We successfully reproduced the address-translation attack

• We only enable the page-table isolation and disabled all other

mitigations

• Still cache fetches occured...

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Reproduction www.tugraz.at

• We successfully reproduced the address-translation attack

• We only enable the page-table isolation and disabled all other

mitigations

• Still cache fetches occured...

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



The attack still works even with active Meltdown

mitigations?



Analysis I www.tugraz.at

• Root-cause was attributed to the prefetch

instruction [Gru+16]

• We disassembled the PoC and observed that the DPM-Address

is located in a register (r14)

• In addition the sched yield syscall is performed in the attack

• By enabling all mitigations against microarchitectural the

leakage disappears
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Analysis II www.tugraz.at

• We NOPed out the prefetch instructions

• Cache fetches still occured → value in register is used

• Up to 60 cache fetches per second

• If the sched yield is removed, the leakage nearly disappears

• If full Spectre-V2 mitigations are applied, the leakage is

completely gone
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Speculative Execution www.tugraz.at

• CPU tries to predict the outcome of branches

• Predicted part gets executed speculatively

• If the prediction was correct, . . .

• . . . very fast

• otherwise: Discard results
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fun index = 0;

math functions[fun index]();

float

(*math functions[2])(float)

= {sin,cos};

LUT[data[x] * 4096] 0

si
n(
x)

Prediction

cos(x)

cos(x)
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Speculative execution in the kernel www.tugraz.at

• We debugged the kernel and found a Spectre-BTB gadget in

the kernel

• put prev task fair dereferences a user-controlled register

• There are multiple gadgets, for instance, also one triggered by

NVMe interrupts
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Speculative execution in the kernel www.tugraz.at

Kernel

indirect jmp

VA

DPM address

DPM address
DPM address
DPM address
DPM address

mov (%rdx), %rax

...

...

...

...

...

...

...

...

...

cache line

rax
.
.
.

r15

Handler A Handler B
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New attacks after understanding the correct root cause



Foreshadow www.tugraz.at

• Foreshadow or L1TF

• Leak data from L1 data cache

• Affects virtual machines (VM), hypervisors (VMM), operating

systems (OS) and system management mode (SMM)

• Read SGX-protected memory and leak machine’s private

attestation key
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Page Table Entry www.tugraz.at

P RW US WT UC R D S G Ignored

Physical Page Number
Ignored PK X

• Present bit defines whether a page is present in physical memory.
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Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

L1

Cache
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Foreshadow Revived www.tugraz.at

• Foreshadow:

• By modifying the PTE to a host-physical virtual address

• Suppressing the exception using TSX or exception handling

• Leaking the content of the data via Flush+Reload

• Foreshadow is already mitigated by performing L1 flushing

• Default setting for KVM is that L1 is conditionally flushed

• Speculative Dereferencing allows it to fetch data from L3 into

the cache (L1)

• Using the new insights Foreshadow is still possible on Linux

KVM
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• With Dereference Trap we want to leak the content of registers

from transient code paths

• We require a gadget which speculatively dereferences a register

within an SGX enclave

• The basic idea is to ensure that the entire virtual address space

of the victim application is mapped

• If a register containing a secret is speculatively dereferenced,

the corresponding virtual address is cached

• The attacker detects whether a certain address was cached or

not
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• Leaking register values used in enclave(SGX)

• Speculative register dereferencing of memory values required

(jump tables, function pointers)

• Due to address space limit we perform binary search by

mapping the same 2 physical addresses to multiple locations

• Split 32-bit value range into two equal sized mappings

• One half maps physical page p1, the other page p2

• Verify which physical page was cached using Flush+Reload

• Repeat
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Register filling in JavaScript www.tugraz.at

• Can also be triggered in browsers

• Up to 20 cache fetches per second, if syscall would is directly

triggered

• On an unmodified browser 2 cache fetches per hour

• Using NVMe interrupts up to 1 cache fetch per minute
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• KAISER [Gru+17] does not prevent the address-translation

attack

• EIBRS is also vulnerable (30 B/s on Ice Lake)

• → Full Spectre-BTB mitigations required
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• Root cause of prefetch effect was wrong

• Real effect is speculative execution in the kernel

• Demonstrated that L1TF mitigations alone are not sufficient

• Showed a technique to leak values from registers within SGX

• Demonstrated that prefetching can also be triggered in browsers
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